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 11 

Abstract. Accurate and significant wave height prediction with a couple of hours of warning time should offer major safety 12 

improvements for coastal and ocean engineering applications. However, significant wave height phenomenon is nonlinear and 13 

nonstationary, which makes any prediction simulation a non-straightforward task. The aim of the research presented in this paper 14 

is to improve predicted significant wave height via a hybrid algorithm. Firstly, empirical mode decomposition (EMD) is used to 15 

preprocess the nonlinear data, which are decomposed into several simple signals. Then, least square support vector machine 16 

(LSSVM) with nonlinear learning ability is used to predict the significant wave height, and particle swarm optimization (PSO) is 17 

implemented to automatically perform the parameter selection in LSSVM modeling. The EMD-PSO-LSSVM model is used to 18 

predict the significant wave height for 1, 3 and 6 hours leading times of two stations in the offshore and deep-sea areas of the North 19 

Atlantic Ocean. The results show that the EMD-PSO-LSSVM model can remove the lag in the prediction timing of the single 20 

prediction models. Furthermore, the prediction accuracy of the EMD-LSSVM model that has not been optimized in the deep-sea 21 

area has been greatly improved, an improvement of the prediction accuracy of Coefficient of determination (𝑹𝟐) from 0.991, 0.982 22 

and 0.959 to 0.993, 0.987 and 0.965, respectively, has been observed. The proposed new hybrid model shows good accuracy and 23 

provides an effective way to predict the significant wave height for the deep-sea area.  24 

1 Introduction 25 

Significant wave height prediction has many vital applications. For instance, it can improve the efficiency and safety of operations 26 

in marine and offshore environments (Duan et al., 2016a). Installation of offshore wind turbines, cargo transfer between ships, sea 27 

rescue and lifting and landing of helicopters or aircraft are other significant examples to mention (Richter et al., 2017). More 28 

precisely, an accurate estimation of the significant wave height is relevant to characterize the wave energy production from Wave 29 

Energy Converters (WECs) facilities (Cornejo-Bueno et al., 2018). Prediction information can help to provide motion 30 

compensation, which may prevent the crash of cargo in cargo transfer, improve the firing accuracy of ship-borne weapon systems, 31 

and performance of the motion control systems (Ra and Whang, 2006).  32 

Over the past few years, several numerical methods have been developed to predict significant wave height, using either classical 33 

statistical methods, the artificially intelligent techniques based on linear and nonlinear models, or hybrid models (Hwang, 34 

2006;Casas-Prat et al., 2014;Janssen, 2008). However, accurate prediction of significant wave height requires a large amount of 35 

sensor-based data while the computational complexity of the calculations is still relatively high and requires high-performance 36 

computers. Last but not least wave height predictions are still not always very accurate (Yoon et al., 2011;Browne et al., 2007). 37 

With the development of machine learning, time series analysis provides an easy and computationally efficient solution that will 38 

be mainly based on historical wave height data. Such modelling approaches will have the advantage of being relatively simple as 39 

based on previous data and wave patterns, this avoiding a lot of computational costs. 40 

Early research studies on wave prediction using machine learning employed classical time series models, such as the auto-41 

regressive (AR) model, auto-regressive moving average (ARMA) model, an autoregressive integrated moving average (ARIMA) 42 

model. Soares et al. (1996) applied AR models to describe time series of significant wave heights in two Portuguese coast locations. 43 

Later, AR models have been further generalized from the application of univariate models of the long-term time series of significant 44 

wave height to the case of the bivariate series of significant wave height and mean period (Guedes Soares and Cunha, 2000). 45 

However, the prediction based on a single AR model in harsh conditions and large prediction leading time fails to satisfy the 46 

expectations. To further improve the prediction performance, Agrawal and Deo (2002) adopted ARMA and ARIMA models to 47 

predict the wave height for 3, 6, 12, and 24 hours of offshore location in India. Despite the high efficiency and adaptiveness of 48 

classical time series models, prediction results in severe sea conditions are far from being accurate enough. Since waves are always 49 

nonstationary, this conflicts with the linear and stationary classical time series models' assumptions. Overall, these approaches are 50 

not suitable for predicting nonlinear and nonstationary waves. 51 

In order to address the nonlinear component of ocean waves, intelligent-technique-based nonlinear models such as artificial 52 

neural networks (ANNs) models have been extensively studied. Such methods can carry out nonlinear simulations without a deep 53 
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understanding of the relationships between the input and output variables. Deo and Sridhar Naidu (1998) were amongst the first to 54 

apply an ANN applied exclusively as input parameters for real-time wave forecasting in the next 3-24 hours using wave 55 

characteristics, and compared the training results of different algorithms. In order to estimate large wave height and average wave 56 

periods, Deo et al. (2001) used wind velocity data and fetched data. Tsai et al. (2002) applied an ANN based on data from three 57 

wave graph stations in areas with different physical characteristics for short-term estimation of the wave height. Makarynskyy 58 

(2004) used ANN for the substantial wave height and for the subsequent 1-24 h forecast times, and to amend the forecasts by 59 

employing two different approaches. Mandal and Prabaharan (2006) used recurrent neural network (RNN) for wave height 60 

prediction in Marmugao, west coast of India, they concluded that the wave prediction using RNN is better than previous 61 

applications of neural networks. One of the limitations of the neural network approach is that it needs to find network parameters 62 

such as the number of hidden layers and neurons by trial and error, this being time consuming. Mahjoobi and Adeli Mosabbeb 63 

(2009) applied the SVM to predict the wave height, the analysis indicated that the SVM model had a reasonable precision, and 64 

compared to an ANN model, it took less computing time. Different experiments on the prediction effects in Lake Superior were 65 

carried out by Etemad-Shahidi and Mahjoobi (2009), and they compared the model trees and feedforward backpropagation ANNs. 66 

Their findings revealed that the model tree system was the most precise. Dixit et al. (2015) found the phenomenon of prediction 67 

time lag while using ANNs to predict ocean wave height. They used a discrete wavelet transform to enhance the predicted values 68 

and removed the lag in the prediction timing. Akbarifard and Radmanesh (2018) introduced an symbiotic organisms search (SOS) 69 

algorithm to predict the ocean wave heights. The findings showed that the SOS algorithm's performance performed better than that 70 

of the support vector regression, ANN, and simulating waves nearshore dynamic models. Fan et al. (2020) proposed a long short-71 

term network for the quick prediction of significant wave height with higher accuracy than the conventional neural networks. 72 

Significant wave height is a complicated, nonlinear, dynamic system, and it is impacted by various components (Valamanesh et 73 

al., 2016). The time series prediction of non-stationary data by using the ANN method will lead to the homogenization of the 74 

different characteristics of the original input data, which could affect the prediction accuracy. Accordingly, the non-stationarity of 75 

the time series of significant wave height and input variables should be reduced. To handle nonstationary features, the inputs for 76 

the corresponding data-driven models are need to be appropriately preprocessed. Hybrid models that combine preprocessing 77 

techniques with single prediction models are alternatives for more effective modeling. The wavelet analysis is a useful tool that 78 

can be used for nonstationary data (Rhif et al., 2019). Deka and Prahlada (2012) developed a wavelet neural network model in 79 

their study by hybridizing ANN with a wavelet transform, and the prediction results suggested that the hybrid models outperformed 80 

single models. Kaloop et al. (2020) designed the wavelet-PSO-ELM (WPSO-ELM) model for estimating the wave height belongs 81 

to coastal and deep-sea stations. The results demonstrated that the WPSO-ELM outperforms other models to predict the wave 82 

height in both hourly and daily leading times. Essentially, a linear and nonstationary solution is based on wavelet transform. It 83 

represents a signal through a linear combination of functions of the wavelet base. For nonlinear data, therefore, it may not be 84 

suitable (Huang and Wu, 2008). The other issue with wavelets is that they require defining a well-suited mother wavelet transform 85 

a priori (Chen et al., 2012). It is still an unresolved issue and generally requires a lengthy trial and error process (Prasad et al., 86 

2017). In hybrid prediction models, a more effective decomposition technique is needed to overcome nonlinearity and non-87 

stationarity instantaneously. 88 

In the study of nonlinear and nonstationary datasets, a data-driven methodology known as empirical mode decomposition (EMD) 89 

is efficient and adaptive (Huang et al., 1998). The EMD multiresolution utility offers self-adaptability by avoiding the need for 90 

any basis function and mother wavelets. It functions as a dyadic filter that divides a large frequency band complex signal into 91 

relatively essential, time-scale components (Flandrin et al., 2004). Duan et al. (2016b) proposed EMD-SVR for the short-term 92 

prediction of ocean waves. The result indicated the EMD-SVR model shows good model performances and provides an effective 93 

way for the short-term prediction of nonlinear and nonstationary waves. 94 

Based on these recent findings, the research presented in this paper integrated the EMD-PSO with the LSSVM models in order 95 

to improve prediction models' accuracy. LSSVM with nonlinear learning ability can be used for predictionEMD is an empirical 96 

analysis tool used for processing nonlinear and nonstationary datasets. Preprocessing with EMD can reduce the difficulty of 97 

prediction. and PSO is a swarm intelligence optimization algorithm by updating the distance between the current and best locations. 98 

The important parameters of LSSVM are optimally adjusted by PSO to improve the prediction accuracy of a single LSSVM. 99 

 100 

2 Methodology formulation 101 

2.1 EMD-PSO-LSSVM prediction model 102 

Ocean wave time series is a kind of complicated nonlinear and nonstationary signal composed of various oscillation scales. When 103 

performing wave predictions, the different oscillation scales create difficulties for the LSSVM models. Integrating an EMD model 104 

with an LSSVM model is an important way for enhancing the wave hright prediciton.. The EMD was adopted to decompose the 105 

wave height series that consisted of one residual series and several intrinsic mode functions (IMFs). Then, the residual series and 106 

IMFs were modeled by the LSSVM model, respectively, and finally the summation of the prediction outputs of subseries the wave 107 

height prediction. Besides, the PSO was employed to optimize LSSVM parameters to increase prediction accuracy. The specific 108 

steps of the EMD-PSO-LSSVM prediction algorithm are displayed in Fig. 1. The next part is to present this hybrid technique 109 

separately. 110 
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 111 
Figure 1. Flowchart of the hybrid EMD-PSO-LSSVM prediction model. The flow chart includes three important steps of our prediction model: 112 
EMD data preprocessing, PSO-LSSVM prediction, and finally significant wave height prediction.  113 

2.2 Preprocess data by EMD 114 

Empirical mode decomposition (EMD) is an empirical analysis tool used for processing nonlinear and nonstationary datasets. The 115 

main idea of EMD is to decompose the nonlinear and nonstationary time series into a sum of several simple intrinsic mode function 116 

(IMF) components and one residue with individual inherent time scale properties. Each IMF represents a kind of natural oscillatory 117 

mode and has to satisfy the following two conditions. 118 

(1) the number of extremes and the number of zero-crossings should be equal or differ by one, (2) and the local average should 119 

be null, i.e., the mean of the upper envelope defined by the local maxima and the lower envelope defined by the local minima is 120 

null. 121 

With a given significant wave height time sequence 𝑥(𝑡), EMD processing steps are summarized as follows. 122 

(1) Identify the local extrema. 123 

(2) Generate the upper envelope 𝑢(𝑡) and the lower envelope 𝑙(𝑡) via a spline interpolation among all the local maxima and the 124 

local minima, respectively. Then, the mean envelope is obtained as follows: 𝑚(𝑡) = [𝑙(𝑡) + 𝑢(𝑡)]/2. 125 

(3) Subtract 𝑚(𝑡) from the signal ℎ(𝑡) to obtain the IMF candidate, i.e.,ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡). 126 

(4) Verify whether ℎ(𝑡) satisfies the conditions for IMFs, do step (1) to step (4) until ℎ(𝑡) is an IMF. 127 

(5) Get the nth IMF component 𝑖𝑚𝑓𝑛 = ℎ(𝑡) (after n shifting processes) and the corresponding residue 𝑟(𝑡) = 𝑥(𝑡) − ℎ(𝑡). 128 

(6) Repeat the whole algorithm with 𝑟(𝑡) obtained in step (5) until the residue is a monotonic function. 129 

(7) By implementing these algorithms, the decomposition procedure of a signal is expressed as 130 

𝑥(𝑡) = ∑ 𝑖𝑚𝑓𝑖(𝑡) + 𝑟(𝑡)

𝑛

𝑖=1

. (1) 131 

2.3 Least square support vector machine (LSSVM) 132 

Support vector machine (SVM) is a statistical learning theory-based method with a strong capacity to handle nonlinear problems. 133 

Its basic idea is to map the nonlinear data into a  high dimensional feature space using a nonlinear mapping function, where linear 134 

techniques are available. LSSVM is the least squares formulation of a standard SVM. Unlike the inequality constrains introduced 135 

in the standard SVM, LSSVM proposed equality constrains in the formulation. This makes the solution being transformed from 136 

one of solving a quadratic program to a set of linear equations known as the linear Karush-Kuhn-Tucker (KKT) systems. LSSVM 137 

is a nonlinear prediction model based on SVM theory, and it has been widely applied in short-term prediction problems. The 138 

LSSVM is retained in this paper as it has good ability for data generalization. It has been shown that the results of a LSSVM model 139 

in the prediction problem are also better than other nonlinear models. The basic idea of the method can be described as follows. 140 

Given a training data set of 𝑁 points {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, 2, … , 𝑁} with input data 𝑥𝑖 ∈ 𝑅𝑁 and output data 𝑦𝑖 ∈ 𝑅. Define a nonlinear 141 

mapping function to map the input data into the high dimensional feature space. In the high dimensional feature space, there 142 

theoretically exists a linear function to express the nonlinear relationship between input and output data. Such a linear function, 143 

namely the LSSVM function, can be defined as 144 

𝑦(𝑥) = 𝜔𝑇𝜙(𝑥𝑖) + 𝑏, (2) 145 

where 𝜔 and 𝑏 are adjustable coefficients. The corresponding optimization problem for LSSVM is formulated as 146 
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{
𝑀𝑖𝑛   𝐽(𝜔, 𝑒𝑖) =

1

2
‖𝜔‖2 +

1

2
𝐶 ∑ 𝑒𝑖

2

𝑁

𝑖=1

𝑦(𝑥) = 𝜔𝑇𝜙(𝑥𝑖) + 𝑏 + 𝑒𝑖𝑖

, (3) 147 

where 𝐶 denotes the regularization constant and 𝑒𝑖 represents the training data error. 148 

The Lagrangian is represented by 149 

𝐿(𝜔, 𝑎𝑖 , 𝑏, 𝑒𝑖) = 𝐽 + ∑ 𝑎𝑖[𝑦𝑖 −

𝑁

𝐼=1

𝜔𝑇𝜙(𝑥𝑖) − 𝑏 − 𝑒𝑖𝑖]. (4) 150 

From the Karush-Kuhn-Tucker (KKT) conditions, the following equations must be satisfied 151 
𝜕𝐿

𝜕𝜔
= 0;

𝜕𝐿

𝜕𝑎𝑖

= 0;
𝜕𝐿

𝜕𝑏
= 0;

𝜕𝐿

𝜕𝑒𝑖

= 0. (5) 152 

The solution is found by solving the system of linear equations expressed in the following matrix form 153 

[
0 1𝑣

𝑇

1 𝛹 + 𝐶−1𝐼
] [

𝑏
𝑎

] = [
0
𝑦

] , (6) 154 

with 𝑦 = [𝑦1, . . . , 𝑦𝑁]𝑇 , 1𝑣 = [1, . . . , 𝑁]𝑇 , 𝑎 = [𝑎1, . . . , 𝑎𝑁]𝑇, 𝐼 is the identity matrix.𝛹𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗), 𝑖, 𝑗 = 1, . . . , 𝑁,which satisfies 155 

Mercer’s condition. 156 

The LSSVM regression model becomes 157 

𝑓(𝑥) = ∑ 𝑎𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑛

𝑖=1

, (7) 158 

where 𝑎𝑖 are the Lagrange multipliers that can be got by solving the dual problem and 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function that equals 159 

the inner product of 𝜙(𝑥𝑖) and 𝜙(𝑥𝑗). 160 

The most frequently used kernel functions are the polynomial kernel function, sigmoid kernel function, and radial basis kernel 161 

function (RBF). Considering that the RBF kernel is not only easy to implement but also an efficient tool for dealing with nonlinear 162 

problems, we selected and retained the RBF function, which is defined by the following equation: 163 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) . (8) 164 

It is well known that the efficiency of the LSSVM generalization (prediction accuracy) depends on a good collection of meta 165 

parameters, parameters 𝐶, 𝜎, and parameters of the kernel. When the RBF function is selected, the parameters (𝐶 and 𝜎) must be 166 

optimized using the PSO-LSSVM system. The regularization parameter 𝐶 and kernel parameter 𝜎 of LSSVM have a significant 167 

influence on the classification accuracy. The choices of 𝐶 and 𝜎 govern the model complexity of the prediction. 168 

2.4 LSSVM optimization by PSO 169 

To avoid the under-fitting and over-fitting issues, the LSSVM model's hyper-parameters should be appropriately tuned. This paper 170 

uses the particle swarm optimization (PSO) algorithm to find the best value of 𝐶 and 𝜎 in LSSVM. The LSSVM fitting process 171 

optimized by particle swarm algorithm is shown in Fig. 2. 172 

 173 
Figure 2. Flowchart of PSO-based parameter selection algorithm. Using the PSO algorithm to find the best value of 𝐶 and 𝜎 in LSSVM. 174 
 175 
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Particle swarm optimization uses the velocity-position search model. The iteration formula adjusting the position and speed of 176 

the particle is as follows: 177 

𝑉𝑖
𝑡+1 = 𝑤𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑡), (9) 178 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1, (10) 179 

where 𝑤 is the inertial weight; 𝑐1 and 𝑐2 are cognition and social learning factor respectively; 𝑟1and 𝑟2 are two random numbers; 180 

𝑡 denotes the 𝑡th iteration; 𝑋𝑖
𝑡 is the position of the particle 𝑖 in 𝑑-dimensional space, which denotes the current value of LSSVM 181 

parameters 𝐶  and 𝜎; 𝑉𝑖
𝑡  denotes the velocity of a particle 𝑖 in 𝑑-dimensional space, which decides to update the direction and 182 

distance of the next generation of 𝐶 and 𝜎; 𝑝𝑏𝑒𝑠𝑡 is the best position that every particle can be got during the execution of the PSO 183 

method; 𝑔𝑏𝑒𝑠𝑡  is the best situation that particles have obtained during the implementation of the PSO method. 184 

The following are some parameter descriptions and parameter settings of the particle swarm algorithm. 185 

The iteration 𝑡 is set to 50, 𝑐1 and 𝑐2 are the cognition and social learning factor respectively, their default values are set as 1, 186 

and they can ensure that particles are more affected locally or globally. 𝑟1and 𝑟2 are two random numbers in the range [0, 1]. The 187 

use of the inertial weight controls the previous history of velocity on the current one. 𝑤 is the weight factor. A considerable inertia 188 

weight facilitates global exploration, while a small one tends to facilitate local exploration. A suitable value of the inertia weight 189 

usually provides a balance between the global and regional exploration abilities. We used a linearly decreasing inertia weight, 190 

which starts at 0.9 and ends at 0.4, the performance of PSO can be significantly improved. The inertial weight can be expressed as 191 

follows: 192 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

× 𝑡, (11) 193 

where 𝑡𝑚𝑎𝑥 is the maximum iteration counter. 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 are the initial and terminal weights, respectively. New fitness values 194 

of the particles are calculated after the velocity and position updates if required, 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡  are also updated, and the same 195 

procedure is performed continuously until the stop criteria are satisfied. Usually, each particle's velocity is restricted to a maximum 196 

value within the interval [−0.01, 100], which is defined according to the bounds on decision variables. 197 

3 Descriptions of the wave data and prediction accuracy measures 198 

3.1 Raw data 199 

Two North Atlantic Ocean areas have been selected to predicted the significant wave height. The significant wave height and 200 

meteorological series were downloaded from National Data Buoy Center (NDBC) (https://www.ndbc. noaa.gov). Two stations 201 

were utilized in this study (Fig. 3), point A is station 41025 at 35°1'30" N 75°21'47" W, in the offshore, while point B is station 202 

41048 at 31°49'53" N 69°34'23" W, in the deep-sea zone. These stations were selected as they have an unimpaired and long series 203 

of recorded significant wave height and metrological data.  204 

 205 

we added two marks for our study locations. 207 

There are three sections of used data. The two sites in 2014, 2015, and 2016 are partially significant wave height data, with 1500 208 

sample points taken out each year. Data from 2014 and 2015 were used as training data and data from 2016 were used as testing 209 

data. Fig. 4 shows the significant wave height (SWH) records of both points. Table 1 shows the minimum, maximum, and average 210 

values of different training parameters and testing data sets. 211 
Table 1. Specific information on the two stations. 212 

Station ID Water depth(m) Year SWH average(m) SWH range(m) 

41025 59.4 2014 1.2287 [0.37,3.53] 

2015 1.1938 [0.45,2.81] 

2016 1.3141 [0.50,3.27] 

41048 5309 2014 2.0715 [0.63,8.01] 

2015 1.9668 [0.66,5.04] 

2016 2.2987 [0.67,6.34] 

206 Figure 3. Location map of the stations. Point A is the offshore area, while point B is the deep-sea area. The map download from © Google Maps, 
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 213 
a) 214 

 215 
b) 216 

Figure 4. Significant wave height of two points. a) 41025, b) 41048. Data from 2014 and 2015 were used as training data and data from 2016 217 
were used as testing data. 218 
 219 

As can be seen from Table 1 and Fig. 4, the average significant wave height at station 41025, located near the coast, is around 220 

1.2 m, with the maximum significant wave height around 3 m. The sea state is relatively stable. The average significant wave 221 

height at station 41048, located in the deep-sea area, is about 2 m, and the maximum significant wave height is about 6.5 m. The 222 

sea conditions are relatively rough. Therefore, it is difficult to predict the significant wave height in the deep-sea area. 223 

The significant wave height data for 2014 and 2015 were used as input variables for model development. The relevance of each 224 

feature with significant wave height needs to be determined before choosing the input features. The correlation coefficient 𝑟𝑥,𝑦  can 225 

be calculated as 226 

𝑟𝑥,𝑦 =

1
𝑛

∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦)𝑛
𝑖=1

√1
𝑛

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

√1
𝑛

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

, (12) 227 

where 𝑟𝑥,𝑦 represents the correlation coefficient between data set x and y, i is a positive integer. |𝑟| ≥ 0.8 indicates that there is a 228 

high correlation between the two features. The correlation coefficient of the input features with the output feature is shown in Table 229 

2. H-i in the table represents the significant wave height data from 𝑖th hours ago, H-2 represents the significant wave height data 230 

from two hours ago, as an example. From the table, it can be seen that the correlation coefficient is lower than 0.8 at  H-6, so the 231 

data from five hours ago are used as input in this paper. 232 

 233 
Table 2. Correlation coefficient of the input features with output feature. 234 

 H-1 H-2 H-3 H-4 H-5 H-6 

𝑟𝑥,𝑦 0.9707 0.9435 0.9093 0.8710 0.8039 0.7680 

 235 
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3.2 Models evaluations 236 

To evaluate the performance of the models, statistical and standardized metrics were used. The mathematical formulations of these 237 

assessment metrics are given as follows. 238 

1) Root mean square error (RMSE) is expressed as follow: 239 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

, (13) 240 

2) Mean absolute error (MAE) is expressed as follow: 241 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

, (14) 242 

3）Mean square error (MSE) is expressed as follow: 243 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

, (15) 244 

4) Coefficient of determination (𝑅2) is expressed as follow: 245 

𝑅2 = 1 −
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

, (16) 246 

where x and y are the observed and the predicted values, respectively; �̅� is the mean values of the observed values; n is the number 247 

of observations. The low values of RMSE, MAE, and MSE reveal the acceptable accuracy of the models. The 𝑅2 ranges between 248 

0 and 1, where 1 indicates a perfect positive linear relationship between the observed and the predicted values, and 0 shows no 249 

relationship.  250 

4 Results and discussion 251 

4.1 Single models 252 

We first consider the single model to predict the significant wave height. The single model used here is LSSVM, ELM, and ANN, 253 

and the significant wave height is predicted for 1 hour and 3 hours. The specific parameters of various model networks are shown 254 

in Table 3. IN is the number of input layer units, H is the number of hidden layer units, O is the number of output layer units, 𝜎 is 255 

the confidence, 𝐶 is the penalty coefficient. 256 

Table 3. Parameter of three single models. 257 

Model Initial settings 

LSSVM IN=5, O=1, 𝜎 = 10, 𝐶=100, kernel function = Radial Basis Function (RBF) 

ELM IN=5, H=10, O=1, activation function = Sigmoid 

ANN IN=5, H=10, O=1, training algorithm = Levenberg-Marquardt 

 258 

Fig. 5 and Fig. 6 show the predictions of the significant wave height of 41025 and 41048 stations by three single models. Table 259 

4 shows the numerical analysis of specific evaluation indicators.  It can be seen from Table 3 that for the wave height prediction 260 

of 41025 stations near the coast, 𝑅2 can be kept above 0.8 when the 3-hour prediction is made. For the 41048 station in the deep-261 

sea area, 𝑅2  can be maintained above 0.9 during the 3-hour prediction, and there is a high correlation between the predicted 262 

significant wave height and the observed significant wave height. In general, the three algorithms have achieved satisfactory results 263 

in predicting the significant wave height, but LSSVM has higher prediction accuracy than the other two models. This clearly shows 264 

that compared with other models, the proposed LSSVM model can be considered as the best wave height predictor. 265 

It can be seen from Fig. 5 and Fig. 6 that the observed wave height and the predicted wave height are slightly misaligned on the 266 

time scale axis. It can be seen from the enlarged view in the figure that a one-time step significantly shifts the predicted wave 267 

heights of the three single models. These wave forecasting models exhibit lag in the prediction timing, making the univariate time 268 

series forecasting a futile attempt. As the leading time increases, these lags become larger. The lag is a type of prediction error that 269 

can also be found in other work on wave forecasting using single models. The lag mainly results from the nonstationarity hidden 270 

in the measured wave time series. Modeling a nonlinear and nonstationary data set by applying a single nonlinear model is very 271 

difficult because there are too many possible patterns hidden in the data. A single model may not be general enough to capture all 272 

the essential features. Even if the nonlinear ANN is used to forecast the nonlinear and nonstationary wave heights, the lags remain. 273 

A single prediction model cannot capture all the components with different scales simultaneously. Therefore, the "lags" occur in 274 

the forecasting results. This would give a direct and physical explanation. These apparent lag phenomena affect the accuracy of 275 

prediction, so the following work content is to eliminate this lag phenomenon and improve the prediction accuracy. 276 

277 

278 
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 279 
a) 280 

 281 
b) 282 

Figure 5. Comparison between the observed and predicted significant wave height at station 41025. a) one hour, b) three hours. For station 41025, 283 
in the near-coastal area, there is a time lag in the prediction using a single model. Comparing a) and b), it can be seen that as the leading time 284 
increases, the prediction timing lag problem becomes greater.Figure.5 285 

 286 
a) 287 
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 288 
b) 289 

Figure 6. Comparison between the observed and predicted significant wave height at station 41048. a) one hour, b) three hours. For station 41048, 290 
in the deep-sea area, there is a time lag in the prediction using a single model. Comparing a) and b), it can be seen that as the leading time 291 
increases, the prediction timing lag problem becomes greater. 292 
 293 

Table 3 Analysis of the prediction results of three single models 294 

Station Model Leading time RMSE MAE MSE 𝑅2 

41025 LSSVM 1 0.115 0.082 0.013 0.942 

3 0.200 0.141 0.040 0.826 

ELM 1 0.115 0.082 0.013 0.942 

3 0.201 0.141 0.040 0.826 

ANN 1 0.116 0.082 0.013 0.942 

3 0.201 0.141 0.041 0.825 

41048 LSSVM 1 0.183 0.126 0.033 0.972 

 3 0.276 0.184 0.076 0.936 

ELM 1 0.184 0.127 0.034 0.972 

3 0.279 0.185 0.079 0.936 

ANN 1 0.188 0.128 0.035 0.971 

3 0.278 0.184 0.077 0.935 

295 

4.2 Hybrid models 296 

The time series of ocean waves is a complicated nonlinear and nonstationary signal that consists of different oscillation scales. The 297 

time series prediction of non-stationary data by using single models only will lead to the homogenization of the original input 298 

data's various characteristics, which could affect the prediction accuracy and cause the lag phenomenon. Accordingly, the non-299 

stationarity of the time series of significant wave height and input variables should be reduced. The combination of an EMD model 300 

with an LSSVM model provides an effective way to improve the wave prediction. The EMD was adopted to decompose a 301 

significant wave height series that consisted of one residual series and several IMFs. Then, the residual series and IMFs were 302 

modeled by the LSSVM model, and finally the summation of the prediction output of subseries significant wave height. In addition, 303 

the PSO was employed to optimize the LSSVM parameters to increase the prediction accuracy. 304 

In the first step, the wave height time series is decomposed into a couple of meaningful and straightforward IMFs and a residual 305 

by EMD (Fig. 7). 306 
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 307 

 308 
Figure 7. Decomposition results of significant wave height time series data using the EMD. The EMD decomposition decomposes the nonlinear 309 
significant wave height into 7 IMFs and 1 res, which reduces the difficulty of prediction. 310 

 311 

Significant wave data sets are decomposed into IMFs and residuals when implementing the EMD-based prediction models. Fig. 312 

7 displays the decomposition results of wave height time series measured at Station 41025, the EMD decomposition decomposes 313 

the nonlinear significant wave height into 7 IMFs and 1 res, where it is seen that several simple components can represent the 314 

complex wave height time series. This would have enabled the single model to extract features during the modeling of significant 315 

wave height effectively. Next, an EMD-based hybrid model will be used to predict the significant wave height. 316 

As can be seen in Fig. 8, the single model LSSVM shows a prediction timing lag (red dotted line).The other two models have 317 

overcome the lag by using the EMD technique, prediction results for the nonlinear and nonstationary waves were improved mainly 318 

by combining the EMD technique with the single model. 319 

It appears that the use of the EMD decomposition hybrid model solves the lag phenomenon and improves the prediction accuracy. 320 

As shown in Table 4, the comparison between the EMD-LSSVM and LSSVM shows that the EMD-LSSVM model is superior to 321 

the single model LSSVM in various numerical values. Especially for long-term predictions, taking a prediction leading time of 6 322 

hours as an example, the 𝑅2 of the EMD-LSSVM model for stations 41025 and 41048 are 0.888 and 0.959, respectively, and the 323 

𝑅2 of the LSSVM model for stations, 41025 and 41048 are 0.645 and 0.858, respectively. The correlation based on the EMD-324 

LSSVM model prediction is significantly higher, while the RMSE, MAE, and MSE are reduced considerably. 325 
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 326 
a) 327 

 328 
b) 329 

Figure 8. Comparison between LSSVM, EMD-LSSVM and EMD-PSO-LSSVM. a) 41025, b) 41048. By adding the EMD method to preprocess 330 
the data, the new hybrid model removed the time lag of a single model. At the same time, the prediction accuracy of the peak of the significant 331 
wave height has also been improved. 332 

 333 

It can be seen from Fig. 8 that the preprocessing method of EMD decomposition has solved the lag phenomenon. However, the 334 

significant wave height prediction effect using the LSSVM model is still not very satisfactory. For example, there are errors in 335 

predicting the peaks and troughs of the significant wave height. The next step is to optimize LSSVM parameters to improve the 336 

prediction accuracy of the model. 337 

Changing the parameter values of a prediction system can have a significant impact on its performance. Therefore, we should 338 

find the optimum parameter values for the prediction system , human experts have performed this task, who typically use a priori 339 

knowledge to specify the parameter values. However, this approach can be subject to human bias. PSO has emerged as a practical 340 

tool for high-quality parameter selection in prediction systems. 341 

PSO is used to optimize the LSSVM parameters. The methodological steps can be found in the description of the method in 342 

section 2. Fig. 8 shows that the EMD-PSO-LSSVM model can predict the significant wave height peaks and troughs very well, 343 

significantly improving the prediction accuracy. 344 

Table 4 presents the results obtained of the significant wave height prediction by the EMD-PSO-LSSVM method. As can be 345 

seen, the prediction of significant wave height is accurate with the proposed method, and the effect of using PSO to optimize the 346 

LSSVM parameters can be seen with an improvement of the prediction accuracy from 𝑅2=0.972, 0.945 and 0.888 (EMD-LSSVM) 347 

to  𝑅2 =0.972, 0.958 and 0.902 (EMD-PSO-LSSVM) at station 41025, and an improvement of the prediction accuracy 348 

from  𝑅2 =0.991, 0.982 and 0.959 (EMD-LSSVM) to  𝑅2 =0.993, 0.987 and 0.965 (EMD-PSO-LSSVM) at station 41048. 349 

Correspondingly, the RMSE, MAE, and MSE predicted by EMD-PSO-LSSVM at the two sites are also the lowest. With increasing 350 

prediction leading time, the model performed well using the improved EMD-PSO-LSSVM model, especially at station 41048 in 351 

the deep-sea region. 352 

It can be seen from Table 4 that the prediction effect at station 41048 is better than that at station 41025. One of the reasons for 353 
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this is that 41025 is a station near the coast. The significant wave height is relatively stable, and there are few big winds. In extreme 354 

cases, the training data is less. It can be seen from Fig. 9 and Fig. 10 that the significant wave height is relatively stable. When it 355 

is higher, the fitted data points are more scattered. 41048 is in the deep-sea area, the significant wave height range is relatively 356 

large, and the training data is also relatively large. It can be seen from Fig. 11 and Fig. 12 that when the significant wave height is 357 

high, the fitting effect of the data points is still better. 358 

 359 
Table 4. Performance results for station 41025 and station 41048. 360 

Station Algorithm Leading time RMSE MAE MSE 𝑅2 

41025 EMD-PSO-LSSVM 1 0.089 0.062 0.008 0.972 

3 0.105 0.079 0.011 0.958 

6 0.155 0.112 0.024 0.902 

EMD-LSSVM 1 0.097 0.071 0.009 0.972 

3 0.125 0.092 0.016 0.945 

6 0.169 0.123 0.029 0.888 

LSSVM 1 0.115 0.082 0.013 0.942 

3 0.200 0.141 0.040 0.826 

6 0.287 0.202 0.082 0.645 

41048 EMD-PSO-LSSVM 1 0.089 0.063 0.008 0.993 

3 0.127 0.091 0.016 0.987 

6 0.205 0.140 0.042 0.965 

EMD-LSSVM 1 0.105 0.074 0.011 0.991 

3 0.150 0.104 0.022 0.982 

6 0.224 0.154 0.050 0.959 

LSSVM 1 0.183 0.126 0.034 0.972 

3 0.278 0.184 0.076 0.936 

6 0.416 0.277 0.173 0.858 

361 

362 

 
a) 

 
b) 

 
c) 

Figure 9. Scatter diagram of the observed and the predicted using the EMD-PSO-LSSVM at Station 41025. a) one hour, b) three hours, c) six 363 
hours. The predicted value and the observed value are linearly fitted. The higher the slope of the fitted line, the better the prediction effect. The 364 
fitting slopes of EMD-PSO-LSSVM to 41025 stations at 1, 3, and 6 hours are 0.9613, 0.9475, and 0.8973. 365 
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a) 

 
b) 

 
c) 

Figure 10. Scatter diagram of the observed and the predicted using the EMD- LSSVM at Station 41025. a) one hour, b) three hours, c) six hours. 366 
The fitting slopes of EMD-PSO-LSSVM to 41025 stations at 1, 3, and 6 hours are 0.9467, 0.9248, and 0.8787. Compared with the hybrid model 367 
using PSO for parameter optimization, the accuracy of the model is not as good as the improved model, so the effectiveness of the PSO method 368 
is proved. 369 

 
a) 

 
b) 

 
c) 

Figure 11. Scatter diagram of the observed and the predicted using the EMD-PSO-LSSVM at Station 41048. a) one hour, b) three hours, c) six 370 
hours. The fitting slopes of EMD-PSO-LSSVM to 41048 stations at 1, 3, and 6 hours are 0.9886, 0.978, and 0.9524. Compared with 41025 in 371 
the offshore, the combined model is more suitable for deep-see area, and the fitted slopes are all above 0.95. 372 
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a) 

 
b) 

 
c) 

Figure 12. Scatter diagram of the observed and predicted using the EMD- LSSVM at Station 41048. a) one hour, b) three hours, c) six hours. 373 
The fitting slopes of EMD-PSO-LSSVM to 41048 stations at 1, 3, and 6 hours are 0.9781 0.9428, and 0.9327. As with the results for station 374 
41025, the hybrid model using PSO has higher accuracy. 375 

 376 

Fig. 9 and Fig. 11 show a comparison between the observed and predicted values by EMD-PSO-LSSVM at station 41025 and 377 

41048, respectively. Fig. 10 and Fig. 12 show a comparison between the observed and predicted values by EMD-LSSVM at station 378 

41025 and 41048, respectively. Referring to the scatter plots, by looking at the distribution of the scatter plot and the slope of the 379 

fitted line, we can clearly see that the relationship between the predicted and observed values. The denser the scatter plot 380 

distribution and the closer the slope of the fitted line is to 1, and the better is the prediction result. From those figures, it appears 381 

that the estimations of EMD-LSSVM time series are more scattered and farther than those EMD-PSO-LSSVM model. As the 382 

leading time increases, EMD-LSSVM performance decreases drastically, but EMD-PSO-LSSVM performance decreases 383 

gradually, as shown in figures. For example, the best-fit line slope for the scatter of wave prediction of six leading hours at Station 384 

41025 and 41048 are 0.8973 and 0.9524, respectively. Comparatively, the EMD-PSO-LSSVM model performs better than the 385 

EMD-LSSVM model. The coefficient of determination for the wave prediction at all stations using the EMD-PSO-LSSVM model 386 

is more than 0.902 (see Table 4), while the best-fit line slopes for the scatters are better than 0.8973 (Fig. 9 and Fig. 11). 387 

Correspondingly, the RMSE, MAE, and MSE predicted by EMD-PSO-LSSVM at the two sites are also the lowest. 388 

5 Conclusions 389 

This paper introduces a new prediction method, using EMD-PSO-LSSVM for nonlinear and nonstationary significant wave height 390 

prediction. It has high adaptability and accuracy for dealing with any random time series wave prediction problem.  391 

We have carried out some actual forecasting operations on the significant wave heights in the offshore and deep-sea areas of the 392 

North Atlantic Ocean, using single models and hybrid models to make the prediction. Several statistical indices were utilized for 393 

evaluating the accuracy of the predictions of the proposed models. From the obtained results, due to the nonlinearity and 394 

nonstationarity of the significant wave height, the traditional single models have the phenomenon of lagging prediction; and as the 395 

leading time increases, the lag in the prediction becomes more and more serious. This lagging phenomenon reduces the prediction 396 

accuracy, and of course, it will impact the actual engineering applications. Therefore, the EMD method is added to preprocess the 397 

significant wave height based on the time series, and the EMD-LSSVM hybrid model with preprocessing can well solve the 398 

problem of prediction lag. However, the predicted results are not very satisfactory. For example, the prediction of the peaks and 399 

troughs of the significant wave height is not accurate, which reduces the prediction accuracy. Therefore, the PSO algorithm is 400 

added to the original EMD-LSSVM hybrid method, and the critical parameters of LSSVM are optimized through the PSO 401 

algorithm. In this way, a new hybrid model EMD-PSO-LSSVM is proposed. Significant wave height data from two NDBC buoys 402 

with various geographical and statistical properties were used in the comparison studies. Various data from Table 4 show that the 403 

proposed EMD-PSO-LSSVM predictor of significant wave height in different locations show consistent conclusions. The proposed 404 

new hybrid model can solve the problem of prediction lag and significantly improve the prediction accuracy. 405 

  406 
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