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 10 
Abstract. To derive an optimal observation system for surface ocean pCO2 in the Atlantic Ocean and the Atlantic 11 
sector of the Southern Ocean eleven Observation System Simulation Experiments (OSSEs) were completed. Each 12 
OSSE is a Feed-Forward Neural Network (FFNN) that is based on a different data distribution and provides ocean 13 
surface pCO2 for the period 2008-2010 with a 5 day time interval. Based on the geographical and time positions 14 
from three observational platforms, volunteering observing ships (VOS), Argo floats and OceanSITES moorings, 15 
pseudo-observations were constructed using the outputs from an online-coupled physical-biogeochemical global 16 
ocean model with 0.25º nominal resolution. The aim of this work was to find an optimal spatial distribution of 17 
observations to supplement the widely used Surface Ocean CO2 Atlas (SOCAT) and to improve the accuracy of 18 
ocean surface pCO2 reconstructions. OSSEs showed that the additional data from mooring stations and an 19 
improved coverage of the Southern Hemisphere with biogeochemical ARGO floats corresponding to least 25% of 20 
the density of active floats (2008-2010) (OSSE 10) would significantly improve the pCO2 reconstruction and 21 
reduce the bias of derived estimates of sea-air CO2 fluxes by 74% compared to ocean model outputs.  22 

 23 

1 Introduction 24 
 25 
The ocean is a major sink of anthropogenic CO2 (Ciais et al., 2013; Friedlingstein et al., 2020). For the period 26 
2010-2019 the ocean uptake was 2.5 ± 0.6 GtC/yr with a strong intensification (from 1.9 to 3.1 GtC/yr) along with 27 
the increase of CO2 emissions (Friedlingstein et al., 2020). The ocean carbon sink estimate is derived from Global 28 
Ocean Biogeochemical Models (Hauck et al., 2020) and data-based reconstructions of surface ocean partial 29 
pressures of carbon dioxide (pCO2). The data-based reconstructions rely on the interpolation of surface ocean 30 
pCO2 - derived from measurements of surface ocean CO2 fugacity - by a variety of methods (e.g. Watson et al., 31 
2020; Gregor et al., 2019; Denvil-Sommer et al., 2019; Bittig et al., 2018; Landschützer et al., 2013, 2016; 32 
Rödenbeck et al., 2014, 2015; Fay et al., 2014; Zeng et al., 2014; Nakaoka et al., 2013; Schuster et al., 2013; 33 
Takahashi et al., 2002, 2009). These methods provide converging estimates of the global ocean carbon sink and 34 
its variability at seasonal and interannual time scales (Rödenbeck et al., 2015; Denvil-Sommer et al., 2019). They 35 
are, however, sensitive to the observation coverage in space and time which contributes to inconsistent results over 36 
regions with sparse data (Denvil-Sommer et al., 2019; Rödenbeck et al., 2015) and to persistent uncertainties at 37 
global scale (Gregor et al., 2019; Hauck et al., 2020).  38 
 39 
The majority of observations contributing to the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) are still 40 
obtained by underway sampling systems on board of volunteering observing ships. The data density is not 41 
homogenous, with Southern latitudes being less well sampled in space and also in time. Sparse data coverage and 42 
the lack of observations covering the full seasonal cycle challenge mapping methods and result in noisy 43 
reconstructions of surface ocean pCO2 and disagreements between different models (Denvil-Sommer et al., 2019, 44 
Rödenbeck et al., 2015). The ship-based sampling effort is progressively complemented by autonomous observing 45 
platforms, such as biogeochemical ARGO floats equipped with pH sensors. The expansion of the observing system 46 
to autonomous platforms is of particular relevance in regions that are undersampled either because of the presence 47 
of fewer regular shipping lines (e.g., South Atlantic) or because adverse weather conditions prevent a year around 48 
sampling (e.g., Southern Ocean). The benefits of combining ship-based measurements of pCO2 and data from 49 
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biogeochemical ARGO floats was recently demonstrated for the assessment of Southern Ocean CO2 fluxes 50 
(Bushinsky et al., 2019).  51 
 52 
This study extended the scope to the Atlantic basin, including the Atlantic sector of the Southern Ocean. It explored 53 
design options for a future augmented Atlantic scale observing system which would optimally combine data 54 
streams from various platforms and contribute to reduce the bias in reconstructed surface ocean pCO2 fields and 55 
sea-air CO2 fluxes. A series of Observation System Simulation Experiments (OSSEs) were carried out in a perfect 56 
model framework using output from an online-coupled physical-biogeochemical global ocean model at 1/4º 57 
nominal resolution. Since all fields used by the FFNN are produced by the same model run and thus internally 58 
consistent, the comparison between reconstructed and modelled pCO2 distributions allows to assess the theoretical 59 
skill for each experiment. Starting from measurements extracted from the SOCAT database, the goal was to 60 
identify how and where the new data from biogeochemical ARGO floats can improve surface ocean pCO2 61 
reconstructions and how to optimally integrate them with other existing platforms. Pseudo-observations were 62 
obtained by sub-sampling model output at sites of real-word observations. Surface ocean pCO2 was reconstructed 63 
from these pseudo-observations at basin scale by applying a non-linear feed forward neural network (FFNN) 64 
(Bishop, 1995; Rumelhart et al., 1986). The choice of the FFNN for our experiments was motivated by its overall 65 
performance reported in Denvil-Sommer et al. (2019). The architecture of the FFNN method was adapted to the 66 
current problem and differs from the one presented in Denvil-Sommer et al. (2019).  67 
 68 
The remainder of the article is structured into Section 2 presenting the model output, the observing systems and 69 
observations as well as the design experiments, and the description of the statistical model. Results are presented 70 
and discussed in Section 3. Section 4 is dedicated to the conclusion and the presentation of perspectives.  71 
 72 

2 Data and methods 73 
 74 
Here we present the ensemble of observing systems that either already perform measurements to estimate pCO2 75 
or have the possibility to be equipped with new sensors to provide biogeochemical measurements (Williams et al., 76 
2017). These datasets provide information on geographical, as well as time positions and hence on the distribution 77 
of pCO2 measurements. In this section we also describe the ocean model output and how we use it in the OSSEs. 78 
As mentioned in the introduction the data from the model co-localized with real positions of observing-systems 79 
are called pseudo-observations. 80 
 81 

2.1 Data  82 
 83 

a) Observing systems 84 
Three observing systems were selected for the study: (1) volunteering observing ships providing in situ 85 
measurements of surface ocean CO2 fugacity (fCO2), (2) moorings (OceanSITES), and (3) profilers (Argo). These 86 
observations form the dataset of geographical and time positions for our experiments. Surface ocean measurements 87 
of fCO2 from multiple platforms are converted to pCO2 and compiled in the SOCAT database (Bakker et al., 2016). 88 
Moorings are not routinely equipped with sensors of CO2 fugacity, though, we used their geographical positions 89 
to identify possible locations for additional measurements. Biogeochemical ARGO floats are increasingly 90 
equipped with pH sensors allowing computing pCO2 from pH and SST- based alkalinity. For the design 91 
experiments, we considered distributions of physical ARGO floats (2008-2011) from Gasparin et al. (2019) and 92 
supposed that they were equipped with pCO2 sensors.  93 
 94 
(1) SOCAT database v5 (Bakker et al., 2016; (https://www.socat.info/index.php/data-access/)): the database 95 
provides a good coverage of the Northern Hemisphere. Data for the period 2001-2010 were used, representing 96 
~60% of data in SOCAT database (Fig.1a). We used the synthesis files SOCATv5 with the daily measurements. 97 
There are 24 moorings in SOCATv5 that provided CO2 fugacity measurements between 2001 and 2010. These 98 
moorings were excluded from OceanSITES data (see below). 99 
(2) Argo profilers: We used the network of Argo (Gould et al., 2004) distributions provided by Mercator Ocean 100 
(details can be found in Gasparin et al., 2019) for the period 2008-2010. It provides a synthetic homogeneous 101 
distribution of 1 profiler per 3ºx3º grid box, amounting to 310-360 measurements per day (Fig.1b) based on real 102 
trajectories of Argo floats. This synthetic Argo distribution was built based on the time, date and location of Argo 103 
profiles during the 2009–2011 period (Gasparin et al., 2019). To provide a homogeneous coverage Gasparin et al. 104 
(2019) removed some float trajectories in well-sampled regions, for example the Gulf Stream, or added floats in 105 
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the low-sampled Tropical and South Atlantic regions. The target for BioGeoChemical Argo (1/4 of ARGO 106 
coverage) (Bittig et al., 2018) was derived from this distribution.  107 
(3) OceanSITES: This dataset combines observations from open ocean Eulerian time series stations providing 108 
data since 1999 (Fig.1c). We used all available locations of moorings (except moorings included in SOCATv5) 109 
and added this information to the period of reconstruction 2008-2010 (http://www.oceansites.org/). It provided 110 
318 additional positions to our data set. 111 
 112 
For this study, the same set of predictors was used as in Denvil-Sommer et al. (2019) for training the Machine 113 
Learning (ML) algorithm: sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), 114 
mixed layer depth (MLD), chlorophyll a concentration (Chl a) and atmospheric CO2 (pCO2, atm). These variables 115 
are known to represent the main physical, chemical and biological drivers of surface ocean pCO2 (Takahashi et 116 
al., 2009; Landschützer et al., 2013). 117 

b) Model output and pseudo-observations 118 

Here we used the numerical output from an online-coupled physical-biogeochemical global ocean model, the 119 
NEMO/PISCES model, at 5-day resolution. This configuration of the Nucleus for European Modelling of the 120 
Ocean (NEMO) framework was implemented on a global tripolar grid. It coupled the ocean general circulation 121 
model OPA9 (Madec et al., 1998), the sea ice code LIM2 (Fichefet & Maqueda, 1997), and the biogeochemical 122 
model PISCESv1 (Aumont and Bopp, 2006). Information on the simulation is given in Gehlen et al. (2020) and 123 
Terhaar et al. (2019). The geographical and time positions identified from the data mentioned before were used to 124 
create pseudo-observations by sub-sampling NEMO/PISCES model output at sites of real-word observations. 125 
Thus, the positions of SOCAT, Argo floats and mooring stations were chosen over 5 days centred on the 126 
NEMO/PISCES date and sub-sampled on the model grid. The model grid coordinate closest to the real 127 
geographical position was chosen, if several measurements were co-localized at the same grid coordinate and same 128 
time step it is counted as one measurement. No Argo floats were added to grid cells if there was already a 129 
measurement identified in the SOCAT database. All predictors and target pCO2 were taken from model output at 130 
corresponding coordinates. These outputs served as the reference for validation and evaluation of our experiments 131 
and for assessing the ML method’s accuracy. The simulation covers the period 1958 to 2010, the last 3 years were 132 
retained for the design study. 133 

2.2 Observational System Simulation Experiences 134 
Table 1 summarizes experiments designed for different combinations of observing platforms. 135 
The first test is based on individual sampling data extracted from the SOCAT database. As mentioned before these 136 
data provide a good coverage of the Northern Hemisphere. The lesser coverage in the Southern Hemisphere results 137 
in a larger dispersion of methods based on these observations only (Denvil-Sommer et al., 2019; Rödenbeck et al., 138 
2015). This has motivated experiments with additional data from Argo profilers limited to the Southern 139 
Hemisphere. An experiment based on the full physical ARGO network was included to evaluate the method for a 140 
high spatial and temporal coverage (an optimal, yet unrealistic case).  141 
 142 
We have tested combinations of SOCAT data and (1) total Argo data, (2) Argo only in the Southern Hemisphere, 143 
and (3) 25% or (4) 10% of the initial (total) Argo distribution. Finally, these experiments were repeated with 144 
additional mooring data. It is worth noting (Table 1) that OSSE 4 is closest to the target of the BGC-Argo program 145 
with a BGC-Argo density corresponding to 25% of the existing Argo distribution. However, we decided to choose 146 
OSSE 3 as a benchmark against which to evaluate individual experiments. This experiment has a high data density 147 
and provides additional information on a potential future BGC-Argo network.   148 

2.3 Method  149 
We used a Feed-Forward Neural Network (FFNN) based on Denvil-Sommer et al. (2019) to reconstruct surface 150 
ocean pCO2 over the Atlantic Ocean. Compared to the previous study we skipped the first step consisting of the 151 
reconstruction of the pCO2 climatology. The reconstruction covered January 2008 to December 2010 with a 5-day 152 
frequency and the spatial resolution of the tripolar ORCA025 model grid (nominal 1/4º resolution). The approach 153 
consisted in a method that reconstructs the non-linear relationships between the target pCO2 and predictors 154 
responsible for pCO2 variability:  155 

𝑝𝐶𝑂!,# = 156 
𝑓(𝑆𝑆𝑆#, 𝑆𝑆𝑇#, 𝑆𝑆𝐻#, 𝐶ℎ𝑙#, 𝑀𝐿𝐷#, 𝑝𝐶𝑂!,$%&,#,     (1) 157 

𝑆𝑆𝑆$#'&,#, 𝑆𝑆𝑇$#'&,#, 𝑆𝑆𝐻$#'&,#, 𝐶ℎ𝑙$#'&,#, 𝑀𝐿𝐷$#'&,#, 𝑝𝐶𝑂!,$%&,$#'&,#𝑙𝑎𝑡#, 𝑙𝑜𝑛𝑔(,#, 𝑙𝑜𝑛𝑔!,#) 158 
 159 
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As previously (Denvil-Sommer et al., 2019), we use Keras, a high-level neural network Python library (“Keras: 160 
the Python Deep Learning library”, Chollet, 2015; https://keras.io) to construct and train the FFNN models. We 161 
first identified an optimal configuration (number and size of hidden layers, the activation functions etc.) of the 162 
FFNN model. Based on our earlier work (Denvil-Sommer et al., 2019), a hyperbolic tangent was chosen as an 163 
activation function for neurons in hidden layers, and a linear function was chosen for the output layer. As an 164 
optimization algorithm, the mini-batch gradient descent or “RMSprop” was used (adaptive learning rates for each 165 
weight, Chollet, 2015; Hinton et al., 2012).  166 

The numbers of hidden layers and parameters depend on the number of data used for training. In this work, the 167 
FFNN was applied separately for each month (one model for January, one model for February, etc.). A sub-set of  168 
50% of data were used for training. 25% participated in the evaluation of the model during the training algorithm, 169 
and 25% were used to validate the model after training. These data were chosen regularly in time and space. Tables 170 
S1 presents the numbers of training data for each month and each OSSE. To adjust the number of FFNN parameters 171 
we followed the empirical rule that suggests using a factor 10 between the number of data and the number of 172 
parameters to avoid overfitting (Amari et al., 1997). The FFNNs for all OSSEs except OSSE 2 have four layers 173 
(two hidden layers) with 1116 parameters in total. The OSSE 2 which is based on Argo data for the period 2008-174 
2010, has significantly less data for training and thus, the FFNN for the OSSE 2 is different: 3 layers (one hidden 175 
layer) with 541 total parameters.  176 

It is worth noting that all data have to be normalized before their use in the FFNN as exemplified for SSS: 177 

𝑆𝑆𝑆# 	= 	
)))*)))+++++

),-())))
     (2) 178 

𝑆𝑆𝑆88888	is the total mean of variable SSS, STD(SSS) is standard deviation of SSS.  179 

Normalization is required to rank all predictors in the same scale, and it allows to avoid the possible influence of 180 
one predictor with strong variability (Kallache et al., 2011). 181 

Following Denvil-Sommer et al. (2019) we normalized the geographical positions (lat, long) in the following way:  182 

𝑙𝑎𝑡# = 𝑠𝑖𝑛(𝑙𝑎𝑡	 ∗ 	𝜋/180) 183 
𝑙𝑜𝑛𝑔#,( = 𝑠𝑖𝑛(𝑙𝑜𝑛𝑔	 ∗ 	𝜋/180)      184 

𝑙𝑜𝑛𝑔#,! = 𝑐𝑜𝑠(𝑙𝑜𝑛𝑔	 ∗ 	𝜋/180). 185 

A K-fold cross-validation was used to evaluate and validate the FFNN architecture. The cross-validation is based 186 
on K=4 different subsamples where 25 % of independent data are chosen for validation. In each of the 4 cases the 187 
25% of data are different and there is no overlap. Thereby, each run has 4 outputs. The different architectures of 188 
the FFNN were tested and the final one was chosen based on skill assessed by the root-mean-square difference 189 
(RMSD), the r2 and the bias of 4 outputs for each architecture. To ensure a good accuracy of the method and check 190 
that there is no overfitting, we compared the RMSD, r2 and bias estimated from the validation dataset with those 191 
estimated from the training dataset. Denvil-Sommer et al. (2019) provide a detailed description of the model 192 
including the accuracy of the ML method and its ability to correctly reproduce the pCO2 variability. 193 

2.4 Diagnostics  194 
The comparison between OSSEs is done per biome, following Rödenbeck et al. (2015) (Fig. 2, Table 2). Biome 195 
8, North Atlantic Ice, has been omitted due to poor data coverage in all OSSEs. It is expected that reconstructions 196 
over this region will yield large biases susceptible to interfere with the interpretation of results from individual 197 
OSSEs.   198 
 199 
In order to simplify the comparison, we used Taylor and Target Diagrams with standard deviation, biases, 200 
correlation and normalized RMSD (uRMSD) of the mean of 4 FFNN outputs for each OSSE. Here uRMSD is 201 
estimated as: 202 

𝑢𝑅𝑀𝑆𝐷	 = 	D𝑚𝑒𝑎𝑛({	[𝑝𝐶𝑂!	1))2 − 𝑝𝐶𝑂!	1))28888888888888] 	− [𝑝𝐶𝑂!	3241 	−	𝑝𝐶𝑂!	324188888888888888]	}!)      (3) 203 
For each OSSE and each output of the k-fold cross-validation, we estimated a time mean difference between its 204 
pCO2 and NEMO pCO2 at each grid point:   205 

Diffj,i = meanT(pCO2 OSSE j,i - pCO2 NEMO )=(
,
∑ (𝑝𝐶𝑂!	1))2	5,6,% 	− 	𝑝𝐶𝑂!	3241	%),
%	7	( , 206 
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where meanT is a time mean over the period, T is a number of time steps, j is an index of the OSSE and i is an 207 
index of output, from 1 to 4. 208 
Further, the maximum absolute value from 4 outputs maxValuej was estimated for each OSSE: 209 

maxValuej = maxi(abs(Diffj,i)), 210 
where maxi is a maximum value on i, the index of output, for each fixed j, the OSSE index. The index i of the 211 
maximum absolute value of FFNN outputs is called imax. 212 
The final mean difference meanDj was estimated as: 213 

meanDj = sign(Diffj,i max) * maxValuej,                 (4) 214 
where sign(x) is a function that returns the sign of a value x, -1 or 1. 215 
The STD of the mean difference Diffj,i is estimated for each OSSE as: 216 

STDj = std(Diffj,i ),              (5) 217 
where j is fixed, and all outputs of FFNN i are included in the estimation of STD. 218 
 219 
The time series of the mean value from 4 FFNN outputs for pCO2 were provided per biome, with the maximum 220 
and minimum values from these 4 outputs in the form of shadow cloud. Also, the time series of CO2 sea-air flux 221 
are shown in the same way as the ones for pCO2. The sea–air CO2 flux, fgCO2, was calculated after Rödenbeck et 222 
al. (2015): 223 

𝑓𝑔𝐶𝑂!	 = 𝑘𝜌𝐿(𝑝𝐶𝑂! − 𝑝𝐶𝑂!,$%&),       (6) 224 
ρ is seawater density and L is the temperature-dependent solubility (Weiss, 1974). k is the piston velocity estimated 225 
as (Wanninkhof, 1992): 226 

𝑘 = 𝛤𝑢!(𝑆𝑐81!/𝑆𝑐9:;)*<.>. 227 

The global scaling factor Γ was chosen as in Rödenbeck et al. (2014) with the global mean CO2 piston velocity 228 
equaling 16.5 cm h−1. Sc corresponds to the Schmidt number estimated according to Wanninkhof (1992). The 229 
wind speed was computed from 6-hourly NCEP wind speed data (Kalnay et al., 1996). To simplify the 230 
interpretation of results the NEMO/PISCES CO2 air-sea flux was also calculated by using formula (6) and NCEP 231 
wind speed.   232 

3 Results 233 
Figure 3 shows the Taylor Diagram (correlation coefficient between reconstructed pCO2 and model output, and 234 
Standard Deviation of reconstructed fields) of 11 OSSEs in the region of 8 biomes (pink) and in each of these 235 
biomes separately (color code corresponds to Fig. 2). The target diagrams per biomes for each OSSE are presented 236 
on Figure 4. Over regions well-covered with observations (biomes 9, 10, 11) results of different OSSEs lie close 237 
to each other. The OSSE 1 (+; Fig. 3a) that is based only on SOCAT data has a lower correlation coefficient over 238 
the whole region (0.67, pink) and per biomes (Fig. 3a). Over regions with poor observational coverage the results 239 
from OSSE 1 lie at a distance from others. OSSE 1 also shows the largest normalized RMS differences (uRMSD) 240 
(Fig. 4), as exemplified for biome 17 with uRMSD of 17.33 𝜇atm, STD of 21.11 𝜇atm (compared to 24.03 𝜇atm 241 
estimated from NEMO/PISCES data) and bias of -11.63 𝜇atm (all values in the Fig. 3 and 4 are presented in Tables 242 
3 and 4). The OSSE 2 (based on all Argo data, O) and OSSE 3 (combination of Argo and SOCAT data, X) provide 243 
comparable results (Fig. 3b and c). OSSE 3 tends to have smaller uRMSD and bias and to lie closer to the STD 244 
values from the NEMO/PISCES model (Fig. 4). OSSE 3 is based on the maximum of pseudo-observations for 245 
training and represents most likely an unrealistic endmember. However, as mentioned before, OSSE 3 is used as 246 
the benchmark to find other OSSEs with similar results and more feasible data coverage.  247 
 248 
OSSE 4 (square) and OSSE 5 (rhombus) are based on OSSE 3, the only difference being the number of Argo 249 
profiles: OSSE 3, 100%; OSSE 4, 25% and OSSE 5, 10%. The results of OSSEs 4 and 5 are similar to those 250 
obtained for OSSE 3. The largest difference is observed over biome 17 (Fig. 3, Fig. 4i): correlation coefficients 251 
are 0.85 (OSSE 3), 0.77 (OSSE 4), 0.75 (OSSE 5); biases are -0.66 𝜇atm, -2.25 𝜇atm, -4.02 𝜇atm; uRMSDs are 252 
10.18 𝜇atm, 11.75 𝜇atm, 11.8 𝜇atm (Tables 3, 4). 253 
 254 
OSSEs 6 (triangle), 7 (inverted triangle), 8 (pentahedron) were trained on SOCAT data complemented with Argo 255 
data in the Southern Hemisphere. In general, the skill scores are lower compared to OSSE 3, especially for OSSE 256 
8 (10% of Argo data in the Southern Hemisphere) where results approach those of OSSE 1 (Fig. 3). Large 257 
differences are obtained for biomes 12 and 17 (Fig. 3, Fig. 4e and i): in biome 12 and 17, correlation coefficients 258 
for OSSE 6, 7, 8 are 0.64/0.86, 0.54/0.8, 0.52/0.66, respectively, compared to 0.79/0.85 for OSSE 3; uRMSDs are 259 
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11.46/10.01 𝜇atm, 13.3/11.03 𝜇atm, 13.87/15.16 𝜇atm compared to 8/10.18 𝜇atm for OSSE 3; biases are 3.82/-260 
0.18 𝜇atm, 3.77/-1.8 𝜇atm, 2. 7/-4.12 𝜇atm compared to -0.14/-0.66 𝜇atm for OSSE 3 (Tables 3, 4). Over biome 261 
12 all OSSEs show STD values lower than the one computed for NEMO/PISCES model output (Table 3). This 262 
could result from the STD of the mean output being slightly lower than the individual STDs for 4 OSSE FFNN 263 
outputs (not shown). However, individual STDs also underestimate the NEMO/PISCES STD which might suggest 264 
that the ensemble of predictors do not allow to properly represent the variability over the Equatorial Atlantic.  265 
 266 
Reconstruction skill scores are improved by the addition of data from mooring stations to OSSEs 6, 7, and 8 in 267 
OSSEs 9 (hexagon), 10 (star) and 11 (triangle centroid) (Fig. 3 and 4, Tables 3 and 4). Over the ensemble of 8 268 
biomes the decrease in the number of Argo data goes along with a general decrease of correlation coefficients, 269 
0.88 (OSSE 9), 0.85 (OSSE 10), 0.83 (OSSE 11), and an increase of uRMSDs, 8.37 𝜇atm (OSSE 9), 8.71 𝜇atm 270 
(OSSE 10), 9.16 𝜇atm (OSSE 11) (Fig. 3, 4a, Tables 3 and 4). Statistics are slightly worse for OSSE 11 compared 271 
to OSSEs 9 and 10, which have comparable results. While OSSE 10 shows a smaller correlation coefficient over 272 
the whole region compared to OSSE 9, its STD (24.89 𝜇atm) lies closer to the NEMO/PISCES STD (25.34 𝜇atm) 273 
and it has a smaller bias (-0.39 𝜇atm). Similar results are found over other biomes: in biome 12, OSSEs 9 and 10 274 
have correlation coefficients close to each other (0.68 and 0.63, respectively) and larger than for OSSEs 6, 7 and 275 
8, while for OSSE 11 it is 0.58. The STDs are almost equal (OSSE 9, 12.98 𝜇atm and OSSE 10, 12.9 𝜇atm) and 276 
uRMSDs have a small difference compared to the one computed for OSSE 3 (8 𝜇atm) (Tables 3, 4). Thus, the 277 
remainder of the discussion will focus on OSSE 10 in comparison to OSSEs 1 and 3. OSSE 10 provides comparable 278 
results to OSSE 9 and is in good agreement with OSSE 3 while using less data for training. Figures 3 and 4 are 279 
summarized in Supplementary materials (Figure S1). 280 
 281 
Figures 5a, b and c present the differences between reconstructed pCO2 distributions (Fig.5 a – OSSE 1; b – OSSE 282 
3; c – OSSE 10) and NEMO/PISCES output. The maximum in absolute value from 4 outputs for each OSSE FFNN 283 
is shown (Eq. 4). There is a large improvement in the Southern Hemisphere for OSSEs 3 (Fig. 5b) and 10 (Fig. 284 
5c) compared to OSSE 1 (Fig. 5a): the difference varies mostly between -3 and 3 𝜇atm for OSSEs 3 and 10, and 285 
between -15 and 15 𝜇atm for OSSE 1 (Fig. 5). However, the average values of the mean over biomes are not 286 
always better for OSSE 3 (Table 5): in biome 13, OSSE 1 shows a small positive difference of 0.11 𝜇atm, while 287 
for OSSE 3 negative differences of -0.32 𝜇atm is computed, exceeding 0.11 𝜇atm in its absolute value. This is due 288 
to error compensation by averaging, the reduction of the positive difference in the middle of biome 13 in OSSE 3 289 
increases the impact of negative small differences in this region. A large improvement is obtained in biomes 16 290 
and 17: from -8.04 𝜇atm for OSSE 1 to -1.89 𝜇atm and -1.91 𝜇atm for OSSEs 3 and 10 in biome 16, and from -291 
14.9 𝜇atm for OSSE 1 to -2.05 𝜇atm and -1.55 𝜇atm for OSSEs 3 and 10 in biome 17 (Table 5). Over the whole 292 
region, 70ºW-30ºE 80ºS-80ºN, OSSE 1 has a mean difference of -6.57 𝜇atm, it is -1.7 𝜇atm and -2.34 𝜇atm for 293 
OSSEs 3 and 10. The difference between OSSEs 3 and 10 results from the Labrador Sea and Baffin Bay: OSSE 294 
10 has fewer data in this region compared to the OSSE 3. However, there is an improvement in OSSE 10 compared 295 
to OSSE 1 and 3 in the Greenland Sea (Fig. 5). It results from the addition of mooring data in the Greenland Sea 296 
region (Fig. 1c). 297 
 298 
Figures 5d, e and f present the standard deviations (STD) of differences for all 4 outputs for each OSSE FFNN 299 
(Fig.5 d – OSSE 1; e – OSSE 3; f – OSSE 10) (Eq. 5). Over most of the Atlantic Ocean STD varies between 0 and 300 
10 𝜇atm for OSSEs 3 and 10. In each case there is a strong STD along the coasts and in the Labrador Sea, as well 301 
as the Baffin Bay. In general, the mean value of STD tends to decrease (Table 5) from OSSE 1 to OSSEs 3 and 302 
10. In the Southern Hemisphere STD reaches up to 30 𝜇atm (Figures 5d, e and f)) when only SOCAT data are 303 
used in the FFNN algorithm (OSSE 1). It is significantly reduced in response to the addition of float data in OSSEs 304 
3 and 10 with also less spatial variability. The results for other OSSEs are added to the Supplementary material 305 
(Table S2, Fig. S2, S3). 306 
 307 
Figure 6 shows the correlation between the mean value of 4 OSSEs outputs and NEMO/PISCES pCO2 (a - OSSE 308 
1, b - OSSE 3, c - OSSE 10). The additional data from Argo floats and mooring stations increase the correlation 309 
coefficient from 0.68 in the case of OSSE 1 (SOCAT data only) to 0.86 and 0.85 in the case of OSSEs 3 and 10 310 
(Table 6). A higher correlation was also obtained for these two OSSEs compared to OSSE 1 over the region 311 
covering the Greenland Sea, the Norwegian Sea and Barents Sea (mostly biome 9). In the Southern Hemisphere 312 
the correlation with NEMO/PISCES pCO2 is also larger when Argo data are included, especially in biomes 16 and 313 
17: 0.7 and 0.57 for OSSE 1, 0.83 and 0.85 for OSSE 3, as well as 0.78 and 0.89 for OSSE 10 (Table 6). However, 314 
there is a low correlation along the African coasts which is in agreement with our previous results for mean 315 
difference and STD (Fig. 5). It reflects the predominantly open ocean data used for this exercise. A well-316 
pronounced decrease in correlation is observed for biome 15 (Subtropical seasonally stratified Southern Ocean). 317 
Such a decrease can result from the spatial distribution of data or from the predictor data set. We will discuss it 318 
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further in the next section. The results for other OSSEs are presented in the Supplementary material (Table S3, 319 
Fig. S4). 320 
 321 
In Figure 7, time series of pCO2 for OSSEs 1, 3 and 10 are compared to corresponding NEMO/PISCES model 322 
output. For each OSSE, the mean pCO2 from 4 FFNN outputs is shown, as well as the mean bias (OSSE - 323 
NEMO/PISCES). Figure 7a and b presents the pCO2 time series over the period of reconstruction 2008-2010 for 324 
OSSE 1, 3, 10 compared to NEMO/PISCES pCO2 used as reference (black) over all biomes. For OSSE 1 (SOCAT 325 
data only) a large difference and an underestimation of reconstructed pCO2 (blue) compared to NEMO/PISCES 326 
pCO2 (black) are found: the maximum error is up to -10 𝜇atm (Fig. 7b). To the contrary, OSSEs 3 and 10 show a 327 
good agreement with NEMO/PISCES model output. Averages of pCO2 over the 8 biomes are 372.18 𝜇atm for 328 
OSSE 3, 372.26 𝜇atm for OSSE 10 and 368.39 𝜇atm for OSSE 1, compared to 372.65 𝜇atm for NEMO/PISCES 329 
(Table 7). The experiment corresponding to the BGC-Argo distribution target over the entire Atlantic basin, OSSE 330 
4 (Fig. S7, S8), has a basin-wide average pCO2 equal to 371.8 𝜇atm (Table 7). This corresponds to a larger 331 
difference with NEMO/PISCES (-0.84 𝜇atm) compared to OSSEs 3 and 10. 332 
 333 
Panels (c) to (h) of Figure 7 illustrate time series of reconstructed pCO2 for biomes with varying data coverage. 334 
Biome 11, the Subtropical permanently stratified North Atlantic, (Figure 7c and d) is well covered by data. All 335 
three OSSEs yield pCO2 reconstructions that are in good accordance with the NEMO/PISCES reference. The 336 
amplitude and the phasing of the seasonal cycle are well reproduced. The bias varies within a range of +/-5 𝜇atm 337 
for OSSEs 3 and 10. A predominantly negative bias is found for OSSE 1 with values as high as -10 𝜇atm. The 338 
pCO2 averaged over the total biome 11 area for OSSE 10 is close to NEMO/PISCES with, respectively 389.39 339 
𝜇atm and 390.11 𝜇atm (Table 7). OSSE 1 yields a biome-averaged pCO2 equal to 387.11 𝜇atm, while it is 389.39 340 
𝜇atm for the OSSE 3. 341 
 342 
Biome 13, the Subtropical permanently stratified South Atlantic, (Figure 7e and f) corresponds to a region with a 343 
low data coverage. We observe a large difference between pCO2 reconstructed by OSSE 1 (blue) and 344 
NEMO/PISCES (black). While the phasing of the reconstructed seasonal cycle is satisfying, it is noisy with a 345 
systematic overestimation in spring by up to 18 𝜇atm (Table 7). However, the total averaged pCO2 over biome 13 346 
for OSSE 1 is close to the one of NEMO/PISCES: 391.66 𝜇atm, respectively 389.54 𝜇atm.  The preceding suggests 347 
that while the variability of the predictors (mainly SST) is sufficient to constrain at first order the biome-average 348 
pCO2 and the phasing of the seasonal cycle, an improved coverage by in situ observations is needed for a smooth 349 
reconstruction of the seasonal cycle’s amplitude. Reconstructions are largely improved by the addition of data 350 
from Argo floats (OSSE 3) and moorings (OSSE 10). Biases mostly range between -3 and 3 𝜇atm  for these OSSEs.  351 
The Southern Ocean Ice biome (biome 17) is characterized by a sparse data coverage and a bias towards the ice-352 
free season. The results for biome 17 are presented in Figure 7g and h. OSSE 1 underestimates the pCO2 in this 353 
region over the full seasonal cycle. The biome-wide average is 351.44 𝜇atm, -11.63 𝜇atm below the 354 
NEMO/PISCES reference. The reconstruction is much improved for OSSEs 3 and 10, both for the phasing and 355 
amplitude of the seasonal cycle, as well as for the biome-wide averages. The latter are 362.42 𝜇atm and 362.87 356 
𝜇atm, respectively for OSSE 3 and OSSE 10, compared to 363.08 𝜇atm computed for NEMO/PISCES (Table 7)  357 
Results for all OSSEs and for all biomes are included to the Supplementary material (Table S4, Fig. S5 - S10). 358 
 359 
Figure 8 shows the sea-air CO2 flux time series (negative, uptake of CO2 by the ocean). Over all biomes in the 360 
region 70ºW-30ºE 80ºS-80ºN the OSSEs 3 (red) and 10 (green) show a good agreement with NEMO/PISCES 361 
fgCO2: the differences vary around zero and mostly do not exceed ± 0.3 Pg/yr (Fig. 8b, d, f and h). The total 362 
averaged fgCO2 for OSSE 3 and 10 are -0.74 Pg/yr compared to -0.7 Pg/yr in NEMO/PISCES, while for OSSE 1 363 
it equals -0.99 Pg/yr (Table 8). The mean value over biome 11 is slightly better for OSSE 10 than for OSSE 3 364 
compared to NEMO/PISCES: -0.06 Pg/yr (OSSE 10), -0.07 (OSSEs 3) and -0.03 Pg/yr for NEMO/PISCES. The 365 
OSSE 1 (blue) shows again a large difference, it overestimates the ocean sink computed by the NEMO/PISCES 366 
model mostly during the whole period (Fig. 8b). In the well data-covered biome 11, OSSE 1 also has a tendency 367 
to overestimate the sea-air CO2 flux (Fig. 8d): the total averaged fgCO2 is -0.18 Pg/yr for OSSE 1 while it is -0.03 368 
Pg/yr in the model. While the phasing and amplitude of the seasonal cycle of sea-air fluxes of CO2 are well 369 
reproduced over biome 13 by OSSEs 3 and 10, the fgCO2 reconstructed by OSSE 1 is noisy with differences with 370 
respect to the model reference of up 1 Pg/yr (Fig. 8e). The biome-wide mean sea-air flux of CO2 is close to zero 371 
in NEMO/PISCES: -0.004 Pg/yr. This slight uptake of CO2 by the ocean in the model reference is not reproduced 372 
by the OSSEs which yield a source over biome 13, albeit of variable strength: 0.19 Pg/yr for OSSE 1, 0.05 Pg/yr 373 
for OSSE 3 and 0.08 Pg/yr for OSSE 10. Over the Southern Ocean biome 17 (Fig.8g and h) OSSE 1 (blue) 374 
overestimates fgCO2 by -0.65 g/yr (Table 8). OSSE 10 (green) reproduces the local maxima and minima of the 375 
fgCO2 time series slightly better than OSSE 3, with average differences equaling -0.03 Pg/yr and -0.06 Pg/yr, 376 
respectively. Results for all OSSEs and for all biomes can be found in the Supplementary material (Table S5, Fig. 377 
S11 - S16). 378 
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 379 
The relationship between the average number of Argo floats (5-day period) and the error in fgCO2 estimates (Table 380 
8, Table S5) is shown in Figure 9 for all biomes (a), biome 11 (b), biome 13 (c) and biome 17 (d). Figure 9a 381 
illustrates how the increase of the number of floats usually yields a reduction in the error of fgCO2 estimates. 382 
Considering the whole region, OSSE 10 provides the best results with less Argo floats (-0.04 PgC/yr and 48 Argo 383 
floats). At the biome-scale, the addition of floats does, however, not systematically reduce the error. This holds 384 
for biome 11 (Fig. 9b), which is well-covered by observations, but also for biome 13 with a much sparser data-385 
coverage (Fig. 9d). For biome 11, OSSE 10 has the best trade-off between error reduction and number of floats. 386 
The largest error (0.22 PgC/yr) is obtained for OSSE 2 (only Argo data). It suggests that the period chosen for this 387 
study is too short to adequately capture the seasonal variability. This hypothesis is supported by the fact that while 388 
OSSE 3 and OSSE 2 share the same number of Argo data, OSSE 3 is further constrained by SOCAT data that 389 
cover the period 2001-2010. These additional data from SOCAT introduce the information needed for the 390 
reconstruction of the seasonal cycle. For biome 13 (Fig. 9c), the combination of SOCAT data and Argo float data 391 
improves estimates of fgCO2.  The errors in OSSE 10 are comparable to OSSE 3 (benchmark), 0.08 PgC/yr (OSSE 392 
10) and 0.06 PgC/yr (OSSE 3). The error is even lower for OSSE 11 (0.04 PgC/yr), the experiment with the 393 
smallest number of Argo floats (19), than for OSSE 3. Unfortunately, results provided by OSSE 11 are less good 394 
over the remainder of the biomes. The tendency for a decrease of fgCO2 error with an increase of the number of 395 
Argo floats is confirmed for biome 17 (Fig. 9d). The additional data from mooring stations (OSSE 9, 10 and 11) 396 
improve in particular OSSEs with smaller numbers of floats. An error of -0.03 PgC/yr is computed for OSSE 10 397 
(49 floats) over biome 17. The results for other biomes can be found in the Supplementary material (Fig. S17).  398 

4 Summary and Conclusion 399 
The aim of this work was to identify an optimal observational network of pCO2 over the Atlantic Ocean. The 400 
analysis was based on results obtained with a Feed-Forward Neural Network model trained on the SOCAT 401 
database. The SOCAT database has a sparse coverage in the Southern Hemisphere. The approach consisted in 402 
adding the position of mooring data and Argo trajectories in the Atlantic Ocean to find an optimal distribution and 403 
combination of data to reconstruct pCO2 with a good accuracy. The advantage of the SOCAT database is the long 404 
time period covered by its records, which allows to reconstruct the interannual variability with a good accuray. 405 
However, its data coverage is biased towards the North Atlantic, which leads to larger reconstruction errors over 406 
the South Atlantic by the Neural Network. As a long-term perspective, the inclusion of data from Argo floats will 407 
contribute to a more homogenous data distribution and provide a better spatial coverage. The Argo floats and 408 
moorings used here do not currently provide pCO2 measurements, hence only their positions were used to build 409 
OSSEs. A series of experiments were performed using outputs from the NEMO/PISCES model. The model 410 
simulations were sub-sampled at co-localized sites of observing systems for all predictors (SSS, SST, SSH, CHL, 411 
MLD, pCO2, atm) used in the FFNN and the target (pCO2) to create pseudo-observations with a 5-day time step. 412 
These experiments should be useful for the planning of future deployments of BGC-Argo floats (Biogeochemical-413 
Argo Planning Group, 2016) and moorings equipped with the sensors to measure pCO2 or CO2 fugacity. 414 
 415 
The results suggest that the addition of data from Argo floats could significantly improve the accuracy of FFNN-416 
based ocean pCO2 reconstructions over the Atlantic Ocean and the Atlantic sector of the Southern Ocean compared 417 
to the case when only SOCAT data are used (OSSE 1). However, even with an improved coverage over the open 418 
ocean, additional observations are required in coastal regions and shelf seas which are not accessible to floats, as 419 
well as in regions with a strong seasonal variability of pCO2 and all predictors. This is exemplified by OSSE 2, 420 
the experiment based on all Argo data, which yields high RMSDs in biome 9, the Subpolar seasonally stratified 421 
North Atlantic (Fig. 3, Fig.4b, Table 4). The RMSD of 17.1 𝜇atm reflects the poor coverage of this region by Argo 422 
floats (Fig. 1b), in particular the Greenland Sea and the North Sea, with a large part of the latter not suitable for 423 
the deployment of floats. The combination of SOCAT data and Argo floats (OSSE 3) improves the reconstruction 424 
with a RMSD reduced to 9.59 𝜇atm (Fig. 4b, Table 4).     425 

The reduction of the number of Argo data used in our experiments slightly decreases the accuracy (Fig. 3 and 4, 426 
Tables 3 and 4). A lower number of Argo data corresponds, however, to a more realistic distribution of instruments 427 
and to the target of the global BGC-Argo network. The results are still comparable to OSSE 3. The best 428 
compromise between the statistics yielded by the comparison between reconstructed pCO2 and NEMO/PISCES 429 
outputs, as well as the feasibility of a future observation network is found for OSSE 10. In this experiment SOCAT 430 
data are combined with simulated mooring data and 25% of the initial distribution of Argo floats placed only in 431 
the Southern Hemisphere (around 49 floats with a 5-day sampling period). The use of only SOCAT data results in 432 
a correlation coefficient of 0.67 compared to NEMO/PISCES output and a standard deviation of 26.08 𝜇atm (25.34 433 
𝜇atm for NEMO/PISCES) over the region of study. While the successful OSSE 10 has a correlation coefficient of 434 
0.85 and a standard deviation of 24.89 𝜇atm. These results are close to the unrealistic benchmark case with total 435 
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and only Argo float distribution over 2008-2010: 0.87 and 23.79𝜇atm. The total pCO2 over the whole region is 436 
also close to NEMO/PISCES, ~370 𝜇atm and ~371 𝜇atm, respectively. The air-sea flux fgCO2 is -0.83 Pg/yr 437 
(OSSE) and -0.76 Pg/yr (NEMO). OSSE 10 shows the bias reduction of derived estimates of sea-air CO2 fluxes 438 
by 74% from OSSE 1(fgCO2 is -1.03 Pg/yr) compared to NEMO/PISCES.   439 

The OSSE 10 network could be further improved by instrumenting the Baffin Bay, the Labrador Sea, the 440 
Norwegian Sea, as well as regions along the coast of Africa (10ºN to 20ºS), all regions with pronounced biases in 441 
all OSSEs, with moorings or gliders along the shelf break and on the continental shelf.  442 
 443 
The inclusion of errors from in situ measurements is one of the next steps of this work. It will include the errors 444 
for predictor values (SSS, SST, SSH, CHL, MLD, pCO2, atm) that are measured directly or derived from remote 445 
sensing (e.g., SST, chlorophyll, SSH), as well as the errors related to the computation of pCO2 from pH and 446 
alkalinity. The new FFNN runs could provide important information on the effect of biases from observational 447 
datasets and identify predictors or targets that have large errors and that must be corrected.  448 
 449 
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 588 
Figure 1: Spatial distribution of data sets used for training (number of measurements per grid points): (a) SOCAT data 589 
(5-day time step) for the period 2001-2010; (b) Argo data (5-day time step) for the period 2008-2010; (c) mooring 590 
positions modelled for the period 2008-2010 (5-day time step). 591 

 592 
Figure 2: Map of biomes (after Rödenbeck et al., 2015; Fay and McKinley, 2014) focused on the region [70°W-30°E] 593 
and used for comparison between OSSEs. 594 
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 595 
Figure 3: Taylor Diagram of 11 OSSEs summarized in Table 2; colour code corresponds to Fig. 2: (a) - OSSE 1; (b) - 596 
OSSE 2; (c) - OSSE 3; (d) - OSSE 4; (e) - OSSE 5; (f) - OSSE 6; (g) - OSSE 7; (h) - OSSE 8; (i) - OSSE 9; (j) - OSSE 10; 597 
(k) - OSSE 11.  598 
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599 
Figure 4: Target Diagram per biome for 11 OSSEs: (a) - all 8 biomes, (b) - biome 9, (c) - biome 10, (d) - biome 11, (e) - 600 
biome 12, (f) - biome 13, (g) - biome 15, (h) - biome 16, (i) - biome 17.  601 

https://doi.org/10.5194/os-2021-17
Preprint. Discussion started: 10 March 2021
c© Author(s) 2021. CC BY 4.0 License.

anon
Comment on Text
I like the target plots, but I feel that they do not give the data priority - there is a lot of axes material compared to the data. For example, this could be achieved on a cartesian axes too? That would allow you to have only the positive uRMSD values. And without the circles, one could reduce the scale of the bias axes to -15:15, which would give the data a bit more space. 

Lastly, this might be a bit nit-picky, but would it be possible to put the markers over the axes lines?

Again, I think it would benefit the reader to have labels of the experment set up above each plot, e.g., OSSE 1: SOCAT

anon
Sticky Note
Biome 12 is very interesting. The inclusion of floats results in a larger bias... Why is this?



15 

 602 
Figure 5: Differences between OSSE FFNN outputs and NEMO/PISCES pCO2 and its standard deviation (STD) in 603 
𝜇atm: (a), (b), (c) - its maximum in absolute value (maximum bias) from 4 outputs for each OSSE FFNN, Eq. (4); (g), 604 
(h) - standard deviation of differences for all 4 outputs for each OSSE FFNN, Eq. (5). (a), (d) – OSSE 1; (b), (e) – OSSE 605 
3; (c), (f) – OSSE 10. 606 

 607 
 608 
Figure 6: Correlation coefficient between OSSE FFNN outputs and NEMO/PISCES pCO2: (a) - OSSE 1, (b) - OSSE 3, 609 
(c) - OSSE 10. 610 
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611 
Figure 7: (a), (c), (e) - mean of 4 FFNN outputs for OSSE 1 (blue), 3 (red), 10 (green); shadow is the maximum and 612 
minimum values from 4 FFNN outputs for each OSSE. Black curve - NEMO/PISCES pCO2. (b), (d), (f) - mean of 613 
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differences between OSSE 1 (blue), 3 (red), 10 (green) of 4 FFNN outputs and NEMO/PISCES pCO2; shadow is the 614 
maximum and minimum values of differences from 4 FFNN outputs for each OSSE. (a), (b) - estimates are available 615 
over all biomes presented in Figure 2 except biome 8; (c), (d) - biome 11; (e), (f) - biome 13; (g), (h) - biome 17.  616 
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 617 
Figure 8: (a), (c), (e) - mean of sea-air CO2 flux from 4 FFNN outputs for OSSE 1 (blue), 3 (red), 10 (green); shadow is 618 
the maximum and minimum values from 4 FFNN sea-air CO2 flux estimates for each OSSE. Black curve - 619 
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NEMO/PISCES fgCO2. (b), (d), (f) - mean of differences between OSSE 1 (blue), 3 (red), 10 (green) fgCO2 of 4 FFNN 620 
outputs and NEMO/PISCES fgCO2; shadow is the maximum and minimum values of differences from 4 FFNN fgCO2 621 
for each OSSE. (a), (b) - estimates are available for all biomes presented in Figure 2 except biome 8; (c), (d) - biome 11; 622 
(e), (f) - biome 13; (g), (h) - biome 17. 623 

 624 
Figure 9: Averaged number of Argo profiles per 5-day time step over 2008-2010 versus averaged differences between 625 
each OSSE fgCO2 and NEMO fgCO2 (in Pg/yr). (a) - all biomes; (b) - biome 11; (c) - biome 13; (d) - biome 17. 626 

 627 
 628 
Table 1: Information on Observation System Simulation Experiments. 629 

Data OSSE number Period for training averaged number of Argo 
floats per 5 days 

SOCAT OSSE 1 2001-2010 0 

Argo (3ºx3º) OSSE 2 2008-2010 404 

SOCAT + Argo (3ºx3º) OSSE 3 2001-2010 (SOCAT) + 
2008-2010 (Argo) 

403 

SOCAT + Argo 25% 
(3ºx3º) 

OSSE 4 2001-2010 (SOCAT) + 
2008-2010 (Argo) 

101 

SOCAT + Argo 10% 
(3ºx3º) 

OSSE 5 2001-2010 (SOCAT) + 
2008-2010 (Argo) 

40 

SOCAT + Argo South 
(3ºx3º) 

OSSE 6 2001-2010 (SOCAT) + 
2008-2010 (Argo South) 

195 

https://doi.org/10.5194/os-2021-17
Preprint. Discussion started: 10 March 2021
c© Author(s) 2021. CC BY 4.0 License.

anon
Comment on Text
I like these plots! They provide very valuable information about the sampling density. Though, the 0-line should extend the entire length of the axes. I thought it was a line denoting an average of something when first looking at the figure. 

biome label placement could be better. 



20 

SOCAT + Argo 25% 
South (3ºx3º) 

OSSE 7 2001-2010 (SOCAT) + 
2008-2010 (Argo South) 

48 

SOCAT + Argo 10% 
South (3ºx3º) 

OSSE 8 2001-2010 (SOCAT) + 
2008-2010 (Argo South) 

19 

SOCAT + Argo S + 
Moorings 

OSSE 9 2001-2010 (SOCAT) + 
2008-2010 (Argo South, 
Moorings) 

195 

SOCAT + Argo S 25% + 
Moorings 

OSSE 10 2001-2010 (SOCAT) + 
2008-2010 (Argo South, 
Moorings) 

48 

SOCAT + Argo S 10% + 
Moorings 

OSSE 11 2001-2010 (SOCAT) + 
2008-2010 (Argo South, 
Moorings) 

19 

 630 
Table 2: Biomes from Fay and McKinley (2014) used for time series comparison (Fig. 2).  631 

Number Name 

8 (Omitted) North Atlantic ice 

9 Subpolar seasonally stratified North Atlantic 

10 Subtropical seasonally stratified North Atlantic 

11 Subtropical permanently stratified North Atlantic 

12 Equatorial Atlantic 

13 Subtropical permanently stratified South Atlantic 

15 Subtropical seasonally stratified Southern Ocean 

16 Subpolar seasonally stratified Southern Ocean 

17 Southern Ocean ice 

 632 
Table 3: Correlation coefficient and Standard Deviation (𝜇atm) of 11 OSSEs from Table 2 estimated over 8 Atlantic 633 
Ocean biomes and at basin scale; the results are presented in Fig. 3.   634 

Biome 
 
OSSE 

All 
biomes 

9 10 11 12 13 15 16 17 

NEMO 
STD 

25.34 28.17 17.29 19.59 17.89 18.84 15.20 10.79 24.03 

OSSE 1 0.67/ 
26.08 

0.88/ 
27.44 

0.92/ 
16.67 

0.89/ 
18.42 

0.46/ 
12.48 

0.68/ 
16.11 

0.31/ 
15.28 

0.70/ 
11.76 

0.57/ 
21.11 

OSSE 2 0.89/ 
22.82 

0.91/ 
22.28 

0.96/ 
17.09 

0.97/ 
19.14 

0.83/ 
15.42 

0.92/ 
18.19 

0.76/ 
8.89 

0.87/ 
9.43 

0.90/ 
19.56 

OSSE 3 0.87/ 
23.79 

0.93/ 
25.78 

0.96/ 
17.00 

0.95/ 
19.03 

0.79/ 
14.33 

0.91/ 
17.91 

0.73/ 
11.21 

0.83/ 
10.55 

0.85/ 
21.06 
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OSSE4 0.82/ 
23.99 

0.92/ 
25.91 

0.95/ 
17.11 

0.93/ 
18.31 

0.70/ 
12.13 

0.88/ 
17.62 

0.63/ 
11.62 

0.80/ 
10.99 

0.77/ 
21.2 

OSSE 5 0.80/ 
24.18 

0.92/ 
26.48 

0.94/ 
17.16 

0.92/ 
18.83 

0.65/ 
11.39 

0.86/ 
16.95 

0.59/ 
11.86 

0.75/ 
11.3 

0.75/ 
20.58 

OSSE 6 0.85/ 
24.72 

0.89/ 
27.40 

0.93/ 
16.66 

0.91/ 
18.73 

0.64/ 
12.34 

0.91/ 
17.51 

0.72/ 
11.56 

0.82/ 
10.84 

0.86/ 
22.41 

OSSE 7 0.82/ 
24.48 

0.89/ 
27.87 

0.93/ 
16.32 

0.91/ 
18.19 

0.54/ 
11.17 

0.88/ 
17.33 

0.66/ 
11.71 

0.80/ 
11.12 

0.80/ 
20.90 

OSSE 8 0.77/ 
25.10 

0.89/ 
27.90 

0.93/ 
16.19 

0.91/ 
18.3 

0.52/ 
11.66 

0.86/ 
16.92 

0.57/ 
11.74 

0.79/ 
11.17 

0.66/ 
22.63 

OSSE 9 0.88/ 
24.51 

0.92/ 
28.17 

0.95/ 
16.11 

0.94/ 
17.67 

0.68/ 
12.98 

0.92/ 
17.84 

0.72/ 
11.31 

0.84/ 
10.89 

0.91/ 
21.63 

OSSE 10 0.85/ 
24.89 

0.91/ 
28.28 

0.94/ 
17.10 

0.94/ 
18.41 

0.63/ 
12.90 

0.88/ 
17.36 

0.65/ 
11.35 

0.78/ 
11.01 

0.89/ 
22.25 

OSSE 11 0.83/ 
24.67 

0.91/ 
28.39 

0.93/ 
16.4 

0.93/ 
18.10 

0.58/ 
13.20 

0.86/ 
16.79 

0.56/ 
11.29 

0.74/ 
10.96 

0.88/ 
21.92 

 635 
Table 4: Normalised RMS differences and Biases (𝜇atm) of 11 OSSEs from Table 2 estimated over 8 Atlantic Ocean 636 
biomes and at basin scale; the results are presented in Fig. 4.   637 

Biome 
 
OSSE 

All 
biomes 

9 10 11 12 13 15 16 17 

OSSE 1 14.13/ 
-4.25 

11.63/ 
-3.26 

6.32/ 
-0.39 

6.63/ 
-2.93 

15.41/ 
0.17 

12.5/ 
2.12 

15.97/ 
1.32 

8.08/ 
-5.41 

17.33/ 
-11.63 

OSSE 2 10.11/ 
0.36 

17.10/ 
-2.02 

4.21/ 
0.09 

3.94/ 
0.19 

7.26/ 
0.22 

4.98/ 
0.38 

12.63/ 
-0.43 

4.31/ 
-0.21 

10.00/ 
2.50 

OSSE 3 8.32/ 
-0.46 

9.59/ 
-0.32 

4.56/ 
-0.30 

4.24/ 
-0.71 

8.00/ 
-0.14 

5.73/ 
0.57 

11.87/ 
-0.85 

4.20/ 
-0.97 

10.18/ 
-0.66 

OSSE 4 9.40/ 
-0.84 

10.08/ 
-0.53 

5.08/ 
-0.05 

5.01/ 
-0.88 

10.41/ 
-0.29 

6.96/ 
0.85 

12.59/ 
-0.40 

4.87/ 
-0.93 

11.75/ 
-2.25 

OSSE 5 9.82/ 
-1.46 

10.43/ 
-0.83 

5.50/ 
0.50 

5.35/ 
-0.98 

11.11/ 
-0.25 

7.93/ 
0.85 

12.72/ 
-0.54 

5.71/ 
-1.69 

11.80/ 
-4.02 

OSSE 6 9.12/ 
-0.54 

11.40/ 
-2.57 

5.93/ 
0.02 

6.48/ 
-1.86 

11.46/ 
3.82 

5.75/ 
0.53 

12.06/ 
-0.51 

4.35/ 
-0.56 

10.01/ 
-0.18 

OSSE 7 9.75/ 
-1.22 

11.79/ 
-2.64 

6.16/ 
-0.10 

6.26/ 
-2.68 

13.30/ 
3.77 

6.90/ 
0.58 

11.97/ 
-0.56 

4.90/ 
-1.68 

11.03/ 
-1.80 

OSSE 8 11.36/ 
-1.89 

11.62/ 
-2.59 

6.02/ 
0.49 

5.91/ 
-2.80 

13.87/ 
2.70 

7.84/ 
0.90 

12.55/ 
-0.89 

5.42/ 
-2.03 

15.16/ 
-4.12 

OSSE 9 8.37/ 
-0.44 

10.58/ 
-2.52 

5.47/ 
-0.001 

5.13/ 
-1.33 

11.34/ 
2.91 

5.37/ 
0.41 

12.18/ 
-0.88 

4.16/ 
-0.75 

8.51/ 
0.37 

OSSE 10 8.71/ 10.79/ 5.54/ 4.94/ 12.64/ 6.82/ 12.25/ 4.89/ 8.61/ 
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-0.39 -2.35 0.79 -0.71 3.35 1.01 -0.92 -0.90 -0.21 

OSSE 11 9.16/ 
-1.18 

10.85/ 
-3.21 

5.91/ 
-0.68 

5.32/ 
-1.97 

14.28/ 
2.41 

7.59/ 
0.002 

12.49/ 
-1.18 

5.13/ 
-1.56 

9.23/ 
-0.77 

 638 

Table 5: Differences (Eq. 4) between OSSE FFNN outputs and NEMO/PISCES pCO2 and its standard deviation (STD) 639 
(Eq. 5) in 𝜇atm. 640 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

OSSE 1 -6.57/ 
14.49 

-6.57/ 
13.54 

-4.84/ 
10.17 

-1.46/ 
6.98 

-4.21/ 
7.62 

-2.03/ 
13.88 

0.11/ 
13.88 

-1.35/ 
14.96 

-8.04/ 
8.99 

-14.90/ 
20.83 

OSSE 3 -1.70/ 
8.12 

-1.50/ 
7.15 

-1.36/ 
7.52 

-0.90/ 
4.62 

-1.48/ 
4.64 

-1.49/ 
7.09 

-0.32/ 
5.58 

-1.93/ 
7.16 

-1.89/ 
4.42 

-2.05/ 
10.59 

OSSE 
10 

-2.34/ 
8.64 

-1.54/ 
7.50 

-3.54/ 
8.59 

-0.10/ 
6.18 

-1.52/ 
5.42 

1.93/ 
9.38 

-0.04/ 
6.51 

-2.15/ 
8.18 

-1.91/ 
5.21 

-1.55/ 
8.99 

 641 

Table 6: Correlation coefficient between OSSEs and NEMO/PISCES pCO2. 642 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

OSSE 1 0.68 0.67 0.88 0.92 0.89 0.46 0.68 0.31 0.70 0.57 

OSSE 3 0.86 0.87 0.93 0.96 0.95 0.79 0.91 0.73 0.83 0.85 

OSSE 
10 

0.85 0.85 0.92 0.94 0.94 0.63 0.88 0.65 0.78 0.89 

 643 

Table 7: pCO2 averaged over the region 70ºW-30ºE 80ºS-80ºN and biomes from Fig. 2 for the NEMO/PISCES model 644 
and OSSEs 1, 3 and 10, as well as the corresponding averaged differences between OSSEs and NEMO/PISCES (in 645 
𝜇atm). 646 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

NEMO 371.13 372.65 350.36 373.18 390.11 397.18 389.54 376.14 376.99 363.08 

OSSE 1 367.09/ 
-4.04 

368.39/ 
-4.25 

347.10/ 
-3.26 

372.78/ 
-0.39 

387.17/ 
-2.93 

397.36/ 
0.17 

391.66/ 
2.12 

377.46/ 
1.32 

371.58/ 
-5.41 

351.44/ 
-11.63 

OSSE 3 370.62/ 
-0.51 

372.18/ 
-0.46 

350.04/ 
-0.32 

372.88/ 
-0.30 

389.39/ 
-0.71 

397.04/ 
-0.14 

390.10/ 
0.57 

375.29/ 
-0.85 

376.02/ 
-0.97 

362.42/ 
-0.66 
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OSSE 
10 

370.14/ 
-0.99 

372.26/ 
-0.39 

348.01/ 
-2.35 

373.98/ 
0.79 

389.39/ 
-0.71 

400.53/ 
3.35 

390.55/ 
1.01 

375.22/ 
-0.92 

376.09/ 
-0.90 

362.87/ 
-0.21 

 647 
Table 8: fgCO2 averaged over the region 70ºW-30ºE 80ºS-80ºN and biomes from Fig. 2 for the NEMO/PISCES model 648 
and OSSEs 1, 3, 4 and 10, as well as the corresponding averaged differences between each OSSEs and NEMO/PISCES 649 
(in Pg/yr). 650 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

NEMO -0.76 -0.70 -2.34 -1.14 -0.03 0.53 -0.004 -0.74 -0.50 -0.52 

OSSE 1 -1.03/ 
-0.26 

-0.99/ 
-0.28 

-2.57/ 
-0.23 

-1.17/ 
-0.03 

-0.18/ 
-0.15 

0.42/ 
-0.10 

0.19/ 
0.20 

-0.68/ 
0.06 

-1.15/ 
-0.64 

-1.17/ 
-0.65 

OSSE 3 -0.80/ 
-0.04 

-0.74/ 
-0.04 

-2.36/ 
-0.02 

-1.16/ 
-0.02 

-0.07/ 
-0.03 

0.49/ 
-0.04 

0.05/ 
0.06 

-0.82/ 
-0.07 

-0.61/ 
-0.10 

-0.59/ 
-0.06 

OSSE 
10 

-0.83/ 
-0.06 

-0.74/ 
-0.04 

-2.50/ 
-0.15 

-1.09/ 
0.04 

-0.06/ 
-0.03 

0.56/ 
0.03 

0.08/ 
0.08 

-0.82/ 
-0.07 

-0.60/ 
-0.09 

-0.56/ 
-0.03 

 651 

https://doi.org/10.5194/os-2021-17
Preprint. Discussion started: 10 March 2021
c© Author(s) 2021. CC BY 4.0 License.




