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Abstract. To derive an optimal observation system for surface ocean pCOz in the Atlantic Ocean and the Atlantic
sector of the Southern Ocean eleven Observation System Simulation Experiments (OSSEs) were completed. Each
OSSE is a Feed-Forward Neural Network (FFNN) that is based on a different data distribution and provides ocean
surface pCOz for the period 2008-2010 with a 5 day time interval. Based on the geographical and time positions
from three observational platforms, volunteering observing ships (VOS), Argo floats and OceanSITES moorings,
pseudo-observations were constructed using the outputs from an online-coupled physical-biogeochemical global
ocean model with 0.25° nominal resolution. The aim of this work was to find an optimal spatial distribution of
observations to supplement the widely used Surface Ocean CO2 Atlas (SOCAT) and to improve the accuracy of
ocean surface pCO:2 reconstructions. OSSEs showed that the additional data from mooring stations and an
improved coverage of the Southern Hemisphere with biogeochemical ARGO floats corresponding to least 25% of
the density of active floats (2008-2010) (OSSE 10) would significantly improve the pCO2 reconstruction and
reduce the bias of derived estimates of sea-air CO: fluxes by 74% compared to ocean model outputs.

1 Introduction

The ocean is a major sink of anthropogenic CO: (Ciais et al., 2013; Friedlingstein et al., 2020). For the period
2010-2019 the ocean uptake was 2.5 + 0.6 GtC/yr with a strong intensification (from 1.9 to 3.1 GtC/yr) along with
increasing of COz emissions (Friedlingstein et al., 2020). The ocean carbon sink estimate is derived from Global
Ocean Biogeochemical Models (Hauck et al., 2020) and data-based reconstructions of surface ocean partial
pressures of carbon dioxide (pCOz). The data-based reconstructions rely on the interpolation of surface ocean
pCO: - derived from measurements of surface ocean CO: fugacity - by a variety of methods (e.g. Watson et al.,
2020; Gregor et al., 2019; Denvil-Sommer et al., 2019; Bittig et al., 2018; Landschiitzer et al., 2013, 2016;
Rodenbeck et al., 2014, 2015; Fay et al., 2014; Zeng et al., 2014; Nakaoka et al., 2013; Schuster et al., 2013;
Takahashi et al., 2002, 2009). These methods provide converging estimates of the global ocean carbon sink and
its variability at seasonal and interannual time scales (Rddenbeck et al., 2015; Denvil-Sommer et al., 2019). They
are, however, sensitive to the observation coverage in space and time which contributes to inconsistent results over
regions with sparse data (Denvil-Sommer et al., 2019; Rédenbeck et al., 2015) and to persistent uncertainties at
global scale (Gregor et al., 2019; Hauck et al., 2020).

The majority of observations contributing to the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) are still
obtained by underway sampling systems on board volunteering observing ships. The data density is not
homogenous, with Southern latitudes being less well sampled in space and time (Monteiro et al., 2010). Sparse
data coverage and the lack of observations covering the full seasonal cycle challenge mapping methods and result
in noisy reconstructions of surface ocean pCO: and disagreements between different models (Denvil-Sommer et
al., 2019, Rodenbeck et al., 2015). The ship-based sampling effort is progressively complemented by autonomous
observing platforms, such as biogeochemical ARGO floats equipped with pH sensors. The expansion of the
observing system to autonomous platforms is of particular relevance in regions that are undersampled either
because of the presence of fewer regular shipping lines (e.g., South Atlantic) or because adverse weather conditions



prevent year-round sampling (e.g., Southern Ocean). The benefits of combining ship-based measurements of pCO:
and data from biogeochemical ARGO floats was recently demonstrated for the assessment of Southern Ocean CO:
fluxes (Bushinsky et al., 2019). Majkut et al. (2014) and Kamenkovich et al. (2017) reported on observing system
simulations with autonomous biogeochemical profiling floats in the Southern Ocean that improve estimates of
carbon dioxide uptake and biogeochemical variables. While Majkut et al. (2014) used a coarse-resolution model
and fixed floats, Kamenkovich et al. (2017) extended this work to a more realistic case with moving floats and
high-resolution numerical simulations. Both studies showed that 150-200 floats can be sufficient to reconstruct a
seasonal climatological COz flux (Kamenkovich et al., 2017) with an error less than 0.1 PgC/yr for the Southern
Ocean uptake (Majkut et al., 2014). Based on a coupled climate carbon model and observations, Lenton et al.
(2009) proposed sampling strategies to obtain large-scale integrated CO> fluxes in the North Pacific and North
Atlantic. They show that regular sampling of ocean surface pCOz with a 3-month time step and every 6° in latitude
and 10° in longitude is sufficient to capture more than 80% of total COxz flux variability.

Here, we extended the scope to the Atlantic basin, including the Atlantic sector of the Southern Ocean. We
explored design options for a future augmented Atlantic scale observing system which would optimally combine
data streams from various platforms and contribute to reduce the bias in reconstructed surface ocean pCO:x fields
and sea-air CO2 fluxes. A series of Observation System Simulation Experiments (OSSEs) were carried out in a
perfect model framework using output from an online-coupled physical-biogeochemical global ocean model at
1/4° nominal resolution. Since all fields used by the FFNN are produced by the same model run and thus internally
consistent, the comparison between reconstructed and modelled pCO- distributions allows to assess the theoretical
skill for each experiment. Starting from measurements extracted from the SOCAT database, the goal was to
identify how and where the new data from biogeochemical ARGO floats can improve surface ocean pCO:
reconstructions and how to optimally integrate them with other existing platforms. Pseudo-observations were
obtained by sub-sampling model output at sites of real-word observations. Surface ocean pCO2 was reconstructed
from these pseudo-observations at basin scale by applying a non-linear feed forward neural network (FFNN)
(Bishop, 1995; Rumelhart et al., 1986). The choice of the FFNN for our experiments was motivated by its overall
performance reported in Denvil-Sommer et al. (2019). The architecture of the FFNN method was adapted to the
current problem and differs from the one presented in Denvil-Sommer et al. (2019).

The remainder of the article is structured into Section 2 presenting the model output, the observing systems and
observations as well as the design experiments, and the description of the statistical model. Results are presented
and discussed in Section 3. Section 4 is dedicated to the conclusion and the presentation of perspectives.

2 Data and methods

Here we present the ensemble of observing platforms that either already perform measurements to estimate pCO:
or have the possibility to be equipped with new sensors to provide biogeochemical measurements (Williams et al.,
2017). These datasets provide information on geographical, as well as time positions and hence on the distribution
of pCO2 measurements. In this section we also describe the ocean model output and how we use it in the OSSEs.
As mentioned in the introduction the data from the model co-localized with real positions of observing-systems
are called pseudo-observations.

2.1 Data

a) Observing platforms

Three observing platforms were selected for the study: (1) volunteering observing ships providing in situ
measurements of surface ocean CO: fugacity (fCO2), (2) moorings (OceanSITES), and (3) profilers (Argo). These
observations form the dataset of geographical and time positions for our experiments. Surface ocean measurements
of fCOz from multiple platforms are converted to pCO2 and compiled in the SOCAT database (Bakker et al., 2016).
Moorings are not routinely equipped with sensors of COz fugacity. We used their geographical positions to identify
possible locations for additional measurements. Biogeochemical ARGO floats are increasingly equipped with pH
sensors allowing computing pCO: from pH and SST-based alkalinity. For the design experiments, we considered
distributions of physical ARGO floats (2008-2011) from Gasparin et al. (2019) and supposed that they were
equipped with pCO: sensors.
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(1) SOCAT database v5 (Bakker et al., 2016; (https://www.socat.info/index.php/data-access/)): the database
provides a good coverage of the Northern Hemisphere. Data for the period 2001-2010 were used, representing
~60% of data in SOCAT database (Fig.1a). The use of data for the period 2001-2010 allows us to capture
interannual variability from a long historical record of SOCAT data and to explore how SOCAT data can be
enhanced by other observational platforms. It also provides more data for the training of the Neural Network.
While the data from 2001 to 2010 are used in training, the reconstruction focuses only on the years 2008 to 2010.
We used the synthesis files SOCATYVS, these are the raw data from which the gridded SOCAT product is derived.
There are 24 moorings in SOCATVS that provided CO: fugacity measurements between 2001 and 2010. These
moorings were excluded from OceanSITES data (see below).

(2) Argo profilers: We used the network of Argo (Gould et al., 2004; Argo 2000) distributions provided by
Mercator Ocean (details can be found in Gasparin et al., 2019) for the period 2008-2010. This network provides a
synthetic homogeneous distribution of 1 profiler per 3°x3° grid box per 10 days, amounting to 310-360
measurements per day (Fig.1b) based on real trajectories of Argo floats. This synthetic Argo distribution was built
based on the time, date and location of Argo profiles during the 2009-2011 period (Gasparin et al., 2019). To
provide a homogeneous coverage Gasparin et al. (2019) removed some float trajectories in well-sampled regions,
for example the Gulf Stream, or added floats in the low-sampled Tropical and South Atlantic regions. The target
for BioGeoChemical Argo (1/4 of ARGO coverage) (Bittig et al., 2018) was derived from this distribution. It is
worth noting that Argo floats provide measurements every 10 days. Floats dive to a depth of 2000 m and then rise
to the surface by measuring vertical profiles of ocean variables. In this study we use a 5-day time step (see below
section b)) which can be a limitation to apply our results to real observations as it does not represent an average
value over 5 days. We paid more attention to the spatial distribution, and we believe that with Argo measurements
recorded over a longer period our results can be applied to one-month time steps. In this case, 3 monthly
measurements can be representative of a monthly mean.

(3) OceanSITES: This dataset combines observations from open ocean Eulerian time series stations providing
data since 1999 (Fig.1c). We used all available locations of moorings (except moorings included in SOCATVS)
and added this information to the period of reconstruction 2008-2010 (http://www.oceansites.org/). It provided
318 additional positions to our data set.

For this study, the same set of predictors was used as in Denvil-Sommer et al. (2019) for training the Machine
Learning (ML) algorithm: sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH),
mixed layer depth (MLD), chlorophyll a concentration (Chl a) and atmospheric COz (pCOz2,am). These variables
are known to represent the main physical, chemical and biological drivers of surface ocean pCOz (Takahashi et
al., 2009; Landschiitzer et al., 2013).

b) Model output and pseudo-observations

Here we used the numerical output from an online-coupled physical-biogeochemical global ocean model, the
NEMO/PISCES model, at 5-day resolution. This configuration of the Nucleus for European Modelling of the
Ocean (NEMO) framework was implemented on a global tripolar grid. It coupled the ocean general circulation
model OPA9 (Madec et al., 1998), the sea ice code LIM2 (Fichefet & Maqueda, 1997), and the biogeochemical
model PISCESvI (Aumont and Bopp, 2006). Information on the simulation is given in Gehlen et al. (2020) and
Terhaar et al. (2019), including the evaluation of the modelled mean state and the seasonal cycle of sea surface
temperature and air-sea fluxes of CO2 (Gehlen et al., 2020). The geographical and time positions identified from
the data mentioned before were used to create pseudo-observations by sub-sampling NEMO/PISCES model output
at sites of real-word observations. Thus, the positions of SOCAT, Argo floats and mooring stations were chosen
over 5 days centred on the NEMO/PISCES date and sub-sampled on the model grid. The model grid coordinate
closest to the real geographical position was chosen, if several measurements were co-localized at the same grid
coordinate and same time step it is counted as one measurement. No Argo floats were added to grid cells if there
was already a measurement identified in the SOCAT database. All predictors and target pCO2 were taken from
model output at corresponding coordinates. These outputs served as the reference for validation and evaluation of
our experiments and for assessing the ML method’s accuracy. The simulation covers the period 1958 to 2010, the
last 3 years were retained for the design study.

2.2 Observational System Simulation Experiences

Table 1 summarizes experiments designed for different combinations of observing platforms.

The first test is based on individual sampling data extracted from the SOCAT database. As mentioned before these
data provide a good coverage of the Northern Hemisphere. The lesser coverage in the Southern Hemisphere results
in a larger dispersion of methods based on these observations only (Denvil-Sommer et al., 2019; Rddenbeck et al.,
2015). This has motivated experiments with additional data from Argo profilers limited to the Southern
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Hemisphere. An experiment based on the full physical ARGO network was included to evaluate the method for a
high spatial and temporal coverage (an optimal, yet unrealistic case).

We have tested combinations of SOCAT data and (1) total Argo data, (2) Argo only in the Southern Hemisphere,
and (3) 25% or (4) 10% of the initial (total) Argo distribution. Finally, these experiments were repeated with
additional mooring data. It is worth noting (Table 1) that OSSE 4 is closest to the target of the BGC-Argo program
with a BGC-Argo density corresponding to 25% of the existing Argo distribution. However, we decided to choose
OSSE 3 as a benchmark against which to evaluate individual experiments. This experiment has a high data density
and provides additional information on a potential future BGC-Argo network.

2.3 Method

We used a Feed-Forward Neural Network (FFNN) based on Denvil-Sommer et al. (2019) to reconstruct surface
ocean pCO: over the Atlantic Ocean. Compared to the previous study we skipped the first step consisting of the
reconstruction of the pCOx climatology. The reconstruction covered January 2008 to December 2010 with a 5-day
frequency and at the spatial resolution of the tripolar ORCAO025 model grid (nominal 1/4° resolution). The
approach consisted in a method that reconstructs the non-linear relationships between the target pCO2 and
predictors responsible for pCOz variability:
pCOZ,n =
f(88S,,8ST,,SSH,, Chl,,MLD,,pCO, gymmn, (1)
SSSanom,n' SSTanom,nl SSHanom,n' Chlanom,n' MLDanom,n' pCOZ,atm,anom,nlatn' longl,n' longz,n)

As in Denvil-Sommer et al. (2019), we use Keras, a high-level neural network Python library (“Keras: the Python
Deep Learning library”, Chollet, 2015; https://keras.i0) to construct and train the FFNN models. We first identified
an optimal configuration (number and size of hidden layers, the activation functions etc.) of the FFNN model.
Based on our earlier work (Denvil-Sommer et al., 2019), a hyperbolic tangent was chosen as an activation function
for neurons in hidden layers, and a linear function was chosen for the output layer. As an optimization algorithm,
the mini-batch gradient descent or “RMSprop” was used (adaptive learning rates for each weight, Chollet, 2015;
Hinton et al., 2012).

The numbers of hidden layers and parameters/weights depend on the number of data used for training. In this
work, the FFNN was applied separately for each month (one model for January, one model for February, etc.). A
sub-set of 50% of data was used for training. 25% participated in the evaluation of the model during the training
algorithm and 25% were used to validate the model after training. These data were chosen regularly in time and
space: each third grid point was kept for evaluation, each forth for validation. Tables S1 presents the numbers of
training data for each month and each OSSE. To adjust the number of FFNN parameters/weights we followed the
empirical rule that suggests limiting the number of parameters to the number of training data points divided by 10
to avoid overfitting (Amari et al., 1997). The FFNNs for all OSSEs except OSSE 2 have four layers (two hidden
layers) with 1116 parameters in total. The input layer has 15 input nodes and 20 output nodes that represent the
input for the first hidden layer. The first hidden layer has 25 output nodes and the second hidden layer — 10 output
nodes. The OSSE 2 which is based on Argo data for the period 2008-2010, has significantly less data for training
and thus, the FFNN for the OSSE 2 is different: 3 layers (one hidden layer with 20 input and 10 output nodes) with
541 total parameters.

All data have to be normalized before their use in the FFNN as exemplified for SSS:

$55—588
STD(SSS)

SSS, = )

SSS is the total mean of variable SSS, STD(SSS) is standard deviation of SSS.

Normalization is required to rank all predictors in the same scale and to avoid the possible influence of one
predictor with strong variability (Kallache et al., 2011).

Following Denvil-Sommer et al. (2019) we normalized the geographical positions (lat, long) in the following way:

lat, = sin(lat * w/180)
long, , = sin(long * m/180)

long, , = cos(long * m/180).



209
210
211
212
213
214
215
216

217

218
219
220
221
222
223
224
225

226

250

251
252
253
254
255

256

257
258
259

A K-fold cross-validation was used to evaluate and validate the FFNN architecture. The cross-validation is based
on K=4 different subsamples where 25 % of independent data are chosen for validation. In each of the 4 cases the
25% of data are different and there is no overlap. Thereby, each run has 4 outputs. Different architectures of the
FFNN were tested and the final one was chosen based on skill assessed by the root-mean-square difference
(RMSD), the 1% and the bias of 4 outputs for each architecture. To ensure a good accuracy of the method and check
that there is no overfitting, we compared the RMSD, 1* and bias estimated from the validation dataset with those
estimated from the training dataset. Denvil-Sommer et al. (2019) provide a detailed description of the model
including the accuracy of the ML method and its ability to correctly reproduce the pCO: variability.

2.4 Diagnostics

The comparison between OSSEs is done per biome, following Rédenbeck et al. (2015) (Fig. 2, Table 2). Biome
8, North Atlantic Ice, has been omitted due to poor data coverage in all OSSEs. It is expected that reconstructions
over this region will yield large biases susceptible to interfere with the interpretation of results from individual
OSSEs.

In order to simplify the comparison, we used Taylor and Target Diagrams with standard deviation, biases,
correlation and normalized RMSD (uRMSD) of the mean of 4 FFNN outputs for each OSSE. Here uRMSD is
estimated as:

uRMSD = \/mean({ [PCO; ossg — PCO5 0ssg] — [PCO2 gm0 — PCO2nEMo] 32 (3)

For each OSSE and each output of the k-fold cross-validation, we estimated a time mean difference between its
pCO2and NEMO pCO: at each grid point:
Diffj; = meant(pCO:z ossk j.i - pCO2 NEMO )L; 2t =1(PCO0; ossi jit = PCOz NEMo 0

where meanr is a time mean over the period, T is a number of time steps, j is an index of the OSSE and i is an
index of output, from 1 to 4.
Further, the maximum absolute value from 4 outputs, maxValuej,was estimated for each OSSE:

max Value; = maxi(abs(Diffj.i)),
where max; is a maximum value on i, the index of output, for each fixed j, the OSSE index. The index i of the
maximum absolute value of FFNN outputs is called imax.
The final mean difference meanD; was estimated as:

meanDj = sign(Diffj;i max) * maxValue;, 4)

where sign(x) is a function that returns the sign of a value x, -1 or 1.
The STD of the mean difference Diffj;is estimated for each OSSE as:

STD; = std(Diff;j.i), &)
where j is fixed, and all outputs of FFNN i are included in the estimation of STD.

The time series of the mean value from 4 FFNN outputs for pCO2 were provided per biome, with the maximum
and minimum values from these 4 outputs indicated by shading. The time series of COz sea-air flux are shown in
the same way as the ones for pCOz. The sea—air COz flux, fgCO:, was calculated after R6denbeck et al. (2015):

f9C0; = kpL(pCO; — pCO; 4tm), (6)
p is seawater density and L is the temperature-dependent solubility (Weiss, 1974). k is the piston velocity estimated

as (Wanninkhof, 1992):
k = ru?(Sc€%2/Scref)=05,

The global scaling factor I' was estimated following Rodenbeck et al. (2014) with the global mean CO:z piston
velocity equaling 16.5 cm h—1. Sc corresponds to the Schmidt number estimated according to Wanninkhof (1992).
The wind speed was computed from 6-hourly NCEP wind speed data (Kalnay et al., 1996). To simplify the
interpretation of results, the NEMO/PISCES CO: air-sea flux was also calculated by using formula (6) and NCEP
wind speed.

3 Results

Figure 3 shows the Taylor Diagram (correlation coefficient between reconstructed pCO2 and model output, and
Standard Deviation of reconstructed fields) of 11 OSSEs in the region of 8 biomes (pink) and in each of these
biomes separately (color code corresponds to Fig. 2). The target diagrams per biomes for each OSSE are presented



on Figure 4. Over regions well-covered with observations (biomes 9, 10, 11) results of different OSSEs lie close
to each other. The OSSE 1 (marker symbol “+”; Fig. 3a) that is based only on SOCAT data has a lower correlation
coefficient over the whole region (0.67, pink) and per biomes (Fig. 3a). Over regions with poor observational
coverage the results from OSSE 1 lie at a distance from results of all other OSSEs. OSSE 1 also shows the largest
normalized RMS differences (uURMSD) (Fig. 4), as exemplified for biome 17 with uRMSD of 17.33 patm, STD
of 21.11 patm (compared to 24.03 patm estimated from NEMO/PISCES data) and bias of -11.63 patm (all values
in the Fig. 3 and 4 are presented in Tables 3 and 4). The OSSE 2 (based on all Argo data, “O”) and OSSE 3
(combination of Argo and SOCAT data, “X”) provide comparable results (Fig. 3b and c). OSSE 3 tends to have
smaller uRMSD and bias and to lie closer to the STD values from the NEMO/PISCES model (Fig. 4). OSSE 3 is
based on the maximum of pseudo-observations for training and represents most likely an unrealistic endmember.
However, as mentioned before, OSSE 3 is used as the benchmark to find other OSSEs with similar results and
more feasible data coverage.

OSSE 4 (square) and OSSE 5 (thombus) are based on OSSE 3, the only difference being the number of Argo data:
OSSE 3, 100%; OSSE 4, 25% and OSSE 5, 10%. The results of OSSEs 4 and 5 are similar to those obtained for
OSSE 3. The largest difference is observed over biome 17 (Fig. 3, Fig. 4i): correlation coefficients are 0.85 (OSSE
3), 0.77 (OSSE 4), 0.75 (OSSE 5); biases are -0.66 patm, -2.25 patm, -4.02 patm; uRMSDs are 10.18 patm, 11.75
uatm, 11.8 patm (Tables 3, 4).

OSSEs 6 (triangle), 7 (inverted triangle), 8 (pentahedron) were trained on SOCAT data complemented with Argo
data in the Southern Hemisphere. In general, the skill scores are lower compared to OSSE 3, especially for OSSE
8 (10% of Argo data in the Southern Hemisphere) where results approach those of OSSE 1 (Fig. 3). Large
differences are obtained for biomes 12 and 17 (Fig. 3, Fig. 4e and i): in biome 12/17, correlation coefficients for
OSSE 6, 7, 8 are 0.64/0.86, 0.54/0.8, 0.52/0.66, respectively, compared to 0.79/0.85 for OSSE 3; uRMSDs are
11.46/10.01 patm, 13.3/11.03 patm, 13.87/15.16 patm compared to 8/10.18 patm for OSSE 3; biases are 3.82/-
0.18 patm, 3.77/-1.8 patm, 2. 7/-4.12 patm compared to -0.14/-0.66 patm for OSSE 3 (Tables 3, 4). Over biome
12 all OSSEs show STD values lower than the one computed for NEMO/PISCES model output (Table 3). This
could result from the STD of the mean output being slightly lower than the individual STDs for 4 OSSE FFNN
outputs (not shown). However, individual STDs also underestimate the NEMO/PISCES STD which might suggest
that the ensemble of predictors does not properly represent the variability over the Equatorial Atlantic.

Reconstruction skill scores are improved by the addition of data from mooring stations to OSSEs 6, 7, and 8 in
OSSEs 9 (hexagon), 10 (star) and 11 (triangle centroid) (Fig. 3 and 4, Tables 3 and 4). Over the ensemble of 8
biomes the decrease in the number of Argo data goes along with a general decrease of correlation coefficients,
0.88 (OSSE 9), 0.85 (OSSE 10), 0.83 (OSSE 11), and an increase of uRMSDs, 8.37 patm (OSSE 9), 8.71 patm
(OSSE 10), 9.16 patm (OSSE 11) (Fig. 3, 4a, Tables 3 and 4). Statistics are slightly worse for OSSE 11 compared
to OSSEs 9 and 10, which have comparable results. While OSSE 10 shows a smaller correlation coefficient over
the whole region compared to OSSE 9, its STD (24.89 patm) lies closer to the NEMO/PISCES STD (25.34 patm)
and it has a smaller bias (-0.39 patm). Similar results are found over other biomes: in biome 12, OSSEs 9 and 10
have correlation coefficients close to each other (0.68 and 0.63, respectively) and larger than for OSSEs 6, 7 and
8, while for OSSE 11 it is 0.58. The STDs are almost equal (OSSE 9, 12.98 patm and OSSE 10, 12.9 patm) and
uRMSDs have a small difference compared to the one computed for OSSE 3 (8 patm) (Tables 3, 4). Thus, the
remainder of the discussion will focus on OSSE 10 in comparison to OSSEs 1 and 3. OSSE 10 provides comparable
results to OSSE 9 and is in good agreement with OSSE 3 while using less data for training. Figures 3 and 4 are
summarized in Figure S1 of the Supplementary Material.

Figures 5a, b and c present the differences between reconstructed pCO: distributions (Fig.5 a— OSSE 1; b— OSSE
3; c—OSSE 10) and NEMO/PISCES output. The maximum in absolute value from 4 outputs for each OSSE FFNN
is shown (Eq. 4). There is a large improvement in the Southern Hemisphere for OSSEs 3 (Fig. 5b) and 10 (Fig.
5¢) compared to OSSE 1 (Fig. 5a): the difference varies mostly between -3 and 3 patm for OSSEs 3 and 10, and
between -15 and 15 patm for OSSE 1 (Fig. 5). However, the average values of the mean over biomes are not
always better for OSSE 3 (Table 5): in biome 13, OSSE 1 shows a small positive difference of 0.11 patm, while
for OSSE 3 negative difference of -0.32 patm is computed, exceeding 0.11 patm in its absolute value. This is due
to error compensation by averaging, the reduction of the positive difference in the middle of biome 13 in OSSE 3
increases the impact of negative small differences in this region. Error compensation also contributes to positive
biases computed for OSSEs 6-11 for biome 12 (Table 4). Additional data from Argo floats correct the negative
bias in the southern part of the biome close to the African coast (Fig. 5¢). Thus, the strong positive bias in the
northern part becomes dominant and results in a total positive bias. A large improvement is obtained in biomes 16
and 17: from -8.04 patm for OSSE 1 to -1.89 patm and -1.91 patm for OSSEs 3 and 10 in biome 16, and from -
14.9 patm for OSSE 1 to -2.05 patm and -1.55 patm for OSSEs 3 and 10 in biome 17 (Table 5). Over the whole



region, 70°W-30°E 80°S-80°N, OSSE 1 has a mean difference of -6.57 patm, it is -1.7 patm and -2.34 patm for
OSSEs 3 and 10. The difference between OSSEs 3 and 10 results from the Labrador Sea and Baffin Bay: OSSE
10 has fewer data in this region compared to the OSSE 3. However, there is an improvement in OSSE 10 compared
to OSSE 1 and 3 in the Greenland Sea (Fig. 5). It results from the addition of mooring data in the Greenland Sea
region (Fig. 1c).

Figures 5d, e and f present the standard deviations (STD) of differences for all 4 outputs for each OSSE FFNN
(Fig.5 d—OSSE 1; e — OSSE 3; f— OSSE 10) (Eq. 5). Over most of the Atlantic Ocean STD varies between 0 and
10 patm for OSSEs 3 and 10. In each case there is a strong STD along the coasts and in the Labrador Sea, as well
as the Baffin Bay. In general, the mean value of STD tends to decrease (Table 5) from OSSE 1 to OSSEs 3 and
10. In the Southern Hemisphere STD reaches up to 30 patm (Figures 5d, e and f)) when only SOCAT data are
used in the FFNN algorithm (OSSE 1). It is significantly reduced in response to the addition of float data in OSSEs
3 and 10 with also less spatial variability. The results for other OSSEs are added to the Supplementary material
(Table S2, Fig. S2, S3).

Figure 6 shows the correlation between the mean value of 4 OSSEs outputs and NEMO/PISCES pCOz (a - OSSE
1, b - OSSE 3, ¢ - OSSE 10). The additional data from Argo floats and mooring stations increase the correlation
coefficient from 0.68 in the case of OSSE 1 (SOCAT data only) to 0.86 and 0.85 in the case of OSSEs 3 and 10
(Table 6). A higher correlation was also obtained for these two OSSEs compared to OSSE 1 over the region
covering the Greenland Sea, the Norwegian Sea and Barents Sea (mostly biome 9). In the Southern Hemisphere
the correlation with NEMO/PISCES pCO:z is also larger when Argo data are included, especially in biomes 16 and
17: 0.7 and 0.57 for OSSE 1, 0.83 and 0.85 for OSSE 3, as well as 0.78 and 0.89 for OSSE 10 (Table 6). However,
there is a low correlation along the African coasts which is in agreement with our previous results for mean
difference and STD (Fig. 5). It reflects the predominantly open ocean data used for this exercise. A well-
pronounced decrease in correlation is observed for biome 15 (Subtropical seasonally stratified Southern Ocean).
Such a decrease can result from the spatial distribution of data or from the predictor data set. We will discuss it
further in the next section. The results for other OSSEs are presented in the Supplementary material (Table S3,
Fig. S4).

In Figure 7, time series of pCOz for OSSEs 1, 3 and 10 are compared to corresponding NEMO/PISCES model
output. For each OSSE, the mean pCO> from 4 FFNN outputs is shown, as well as the mean bias (OSSE -
NEMO/PISCES). Figure 7a and b presents the pCOx time series over the period of reconstruction 2008-2010 for
OSSE 1, 3, 10 compared to NEMO/PISCES pCO» used as reference (black) over all biomes. For OSSE 1 (SOCAT
data only) a large difference and an underestimation of reconstructed pCOz (blue) compared to NEMO/PISCES
pCO:z2 (black) are found: the maximum error is up to -10 patm (Fig. 7b). To the contrary, OSSEs 3 and 10 show a
good agreement with NEMO/PISCES model output. Averages of pCO: over the 8 biomes are 372.18 patm for
OSSE 3, 372.26 patm for OSSE 10 and 368.39 patm for OSSE 1, compared to 372.65 patm for NEMO/PISCES
(Table 7). The experiment corresponding to the BGC-Argo distribution target over the entire Atlantic basin, OSSE
4 (Fig. S8, S9), has a basin-wide average pCO: equal to 371.8 patm (Table 7). This corresponds to a larger
difference with NEMO/PISCES (-0.84 patm) compared to OSSEs 3 and 10.

Panels (c) to (h) of Figure 7 illustrate time series of reconstructed pCO> for biomes with varying data coverage.
Biome 11, the Subtropical permanently stratified North Atlantic, (Figure 7c and d) is well covered by data. All
three OSSEs yield pCOz reconstructions that are in good accordance with the NEMO/PISCES reference. The
amplitude and the phasing of the seasonal cycle are well reproduced. The bias varies within a range of +/-5 patm
for OSSEs 3 and 10. A predominantly negative bias is found for OSSE 1 with values as high as -10 patm. The
pCO: averaged over biome 11 for OSSE 10 is close to NEMO/PISCES with, respectively 389.39 patm and 390.11
patm (Table 7). OSSE 1 yields a biome-averaged pCO: equal to 387.11 patm, while it is 389.39 patm for the OSSE
3.

Biome 13, the Subtropical permanently stratified South Atlantic, (Figure 7e and f) corresponds to a region with a
low data coverage. This region has a dynamic similar to biome 11 in the Northern Hemisphere, however the data
coverage in biome 13 represents only 15% of data coverage in biome 11 (Fig. S5). We observe a large difference
between pCOz reconstructed by OSSE 1 (blue) and NEMO/PISCES (black). While the phasing of the reconstructed
seasonal cycle is satisfying, it is noisy with a systematic overestimation in spring by up to 18 patm (Table 7).
However, the total averaged pCO: over biome 13 for OSSE 1 is close to the one of NEMO/PISCES: 391.66 patm,
respectively 389.54 patm. The preceding suggests that while the variability of the predictors (mainly SST) is
sufficient to constrain at first order the biome-average pCO: and the phasing of the seasonal cycle, an improved
coverage by in situ observations is needed for a smooth reconstruction of the seasonal cycle and its amplitude.
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Reconstructions are largely improved by the addition of data from Argo floats (OSSE 3) and moorings (OSSE 10).
Biases mostly range between -3 and 3 patm for these OSSEs.

The Southern Ocean Ice biome (biome 17) is characterized by a sparse data coverage and a bias towards the ice-
free season. The results for biome 17 are presented in Figure 7g and h. OSSE 1 underestimates the pCOz in this
region over the full seasonal cycle. The maximum difference is obtained in September-October, which also
corresponds to the months with the lowest number of available observations (Fig. S5). The biome-wide average is
351.44 patm, -11.63 patm below the NEMO/PISCES reference. The reconstruction is much improved for OSSEs
3 and 10, both for the phasing and amplitude of the seasonal cycle, as well as for the biome-wide averages. The
latter are 362.42 patm and 362.87 patm, respectively for OSSE 3 and OSSE 10, compared to 363.08 patm
computed for NEMO/PISCES (Table 7).

Results for all OSSEs and for all biomes are included in the Supplementary material (Table S4, Fig. S6 — S11).

Figure 8 shows the sea-air CO: flux time series (negative, uptake of COz by the ocean). Over all biomes and in the
region 70°W-30°E 80°S-80°N, OSSEs 3 (red) and 10 (green) show a good agreement with NEMO/PISCES fgCO:z:
the differences vary around zero and mostly do not exceed + 0.3 Pg/yr (Fig. 8b, d, f and h). The total averaged
f2CO: for OSSE 3 and 10 are -0.74 Pg/yr compared to -0.7 Pg/yr in NEMO/PISCES, while for OSSE 1 it equals
-0.99 Pg/yr (Table 8). The mean value over biome 11 is slightly better for OSSE 10 than for OSSE 3 compared to
NEMOY/PISCES: -0.06 Pg/yr (OSSE 10), -0.07 (OSSEs 3) and -0.03 Pg/yr for NEMO/PISCES. The OSSE 1 (blue)
shows again a large difference, it overestimates the ocean sink computed by the NEMO/PISCES model mostly
during the whole period (Fig. 8b). In the well data-covered biome 11, OSSE 1 also has a tendency to overestimate
the sea-air CO: flux (Fig. 8d): the total averaged fgCO:z is -0.18 Pg/yr for OSSE 1 while it is -0.03 Pg/yr in the
model. While the phasing and amplitude of the seasonal cycle of sea-air fluxes of CO2 are well reproduced over
biome 13 by OSSEs 3 and 10, the fgCOz reconstructed by OSSE 1 is noisy with differences with respect to the
model reference of up 1 Pg/yr (Fig. 8¢). The maximum differences between OSSE 1 and NEMO/PISCES are
systematically found in January and June, the months with the lowest number of available observations for training
(Fig. S5). The biome-wide mean sea-air flux of CO:z is close to zero in NEMO/PISCES: -0.004 Pg/yr. This slight
uptake of CO:2 by the ocean in the model reference is not reproduced by the OSSEs which yield a source over
biome 13, albeit of variable strength: 0.19 Pg/yr for OSSE 1, 0.05 Pg/yr for OSSE 3 and 0.08 Pg/yr for OSSE 10.
Over the Southern Ocean biome 17 (Fig.8g and h) OSSE 1 (blue) overestimates fgCO2 by -0.65 g/yr (Table 8).
OSSE 10 (green) reproduces the local maxima and minima of the fgCO: time series slightly better than OSSE 3,
with average differences equaling -0.03 Pg/yr and -0.06 Pg/yr, respectively. Results for all OSSEs and for all
biomes can be found in the Supplementary material (Table S5, Fig. S12 - S17).

The relationship between the average number of Argo floats (5-day period) and the error in fgCO: estimates (Table
8, Table S5) is shown in Figure 9 for all biomes (a), biome 11 (b), biome 13 (c) and biome 17 (d). Figure 9a
illustrates how the increase of the number of floats usually yields a reduction in the error of fgCO: estimates.
Considering the whole region, OSSE 10 provides the best results with less Argo floats (-0.04 PgC/yr and 48 Argo
floats). At the biome-scale, the addition of floats does, however, not systematically reduce the error. This holds
for biome 11 (Fig. 9b), which is well-covered by observations, but also for biome 13 with a much sparser data-
coverage (Fig. 9d). For biome 11, OSSE 10 has the best trade-off between error reduction and number of floats.
The largest error (0.22 PgC/yr) is obtained for OSSE 2 (only Argo data). It suggests that the period chosen for this
study is too short to adequately capture the seasonal variability. This hypothesis is supported by the fact that while
OSSE 3 and OSSE 2 share the same number of Argo data, OSSE 3 is further constrained by SOCAT data that
cover the period 2001-2010. These additional data from SOCAT introduce the information needed for the
reconstruction of the seasonal cycle. For biome 13 (Fig. 9¢c), the combination of SOCAT data and Argo float data
improves estimates of fgCO». The errors in OSSE 10 are comparable to OSSE 3 (benchmark), 0.08 PgC/yr (OSSE
10) and 0.06 PgC/yr (OSSE 3). The error is even lower for OSSE 11 (0.04 PgCl/yr), the experiment with the
smallest number of Argo floats (19), than for OSSE 3. Unfortunately, results provided by OSSE 11 are less good
over the remainder of the biomes. The tendency for a decrease of fgCO: error with an increase of the number of
Argo floats is confirmed for biome 17 (Fig. 9d). The additional data from mooring stations (OSSE 9, 10 and 11)
improve in particular OSSEs with smaller numbers of floats. An error of -0.03 PgC/yr is computed for OSSE 10
(49 floats) over biome 17. The results for other biomes can be found in the Supplementary material (Fig. S18).

4 Summary and Conclusion

The aim of this work was to identify an optimal observational network of pCO2 over the Atlantic Ocean. The
analysis was based on results obtained with a Feed-Forward Neural Network model trained on the SOCAT
database. The SOCAT database has sparse coverage in the Southern Hemisphere. The approach consisted in
adding the position of mooring data and Argo trajectories in the Atlantic Ocean to find an optimal distribution and
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combination of data to reconstruct pCOz with a good accuracy. The advantage of the SOCAT database is the long
time period covered by its records, which allows to reconstruct the interannual variability with a good accuray.
However, its data coverage is biased towards the North Atlantic, which leads to larger reconstruction errors over
the South Atlantic by the Neural Network. As a long-term perspective, the inclusion of data from Argo floats will
contribute to a more homogenous data distribution and provide better spatial coverage. The Argo floats and
moorings used here do not currently provide pCO2 measurements, hence only their positions were used to build
OSSEs. A series of experiments were performed using outputs from the NEMO/PISCES model. The model
simulations were sub-sampled at co-localized sites of observing platforms for all predictors (SSS, SST, SSH, CHL,
MLD, pCOz, am) used in the FFNN and the target (pCOz) to create pseudo-observations with a 5-day time step.
These experiments should be useful for the planning of future deployments of BGC-Argo floats (Biogeochemical-
Argo Planning Group, 2016) and moorings equipped with the sensors to measure pCOz or COz fugacity. In this
study we focused on the reconstruction of short-term interannual variability (3 years: 2008-2010) of pCOz. The
results can be different for long-term variability which will strongly depend on the data availability and its
distribution over a longer period (Gloege et al., 2021).

The results suggest that the addition of data from Argo floats could significantly improve the accuracy of FFNN-
based ocean pCOz reconstructions over the Atlantic Ocean and the Atlantic sector of the Southern Ocean compared
to the case when only SOCAT data are used (OSSE 1). However, even with an improved coverage over the open
ocean, additional observations are required in coastal regions and shelf seas which are not accessible to floats, as
well as in regions with a strong seasonal variability of pCO2 and all predictors. This is exemplified by OSSE 2,
the experiment based on all Argo data, which yields high RMSDs in biome 9, the Subpolar seasonally stratified
North Atlantic (Fig. 3, Fig.4b, Table 4). The RMSD of 17.1 patm reflects the poor coverage of this region by Argo
floats (Fig. 1b), in particular the Greenland Sea and the North Sea, with a large part of the latter not suitable for
the deployment of floats. The combination of SOCAT data and Argo floats (OSSE 3) improves the reconstruction
with a RMSD reduced to 9.59 patm (Fig. 4b, Table 4).

The reduction of the number of Argo data used in our experiments slightly decreases the accuracy (Fig. 3 and 4,
Tables 3 and 4). A lower number of Argo data corresponds, however, to a more realistic distribution of instruments
and to the target of the global BGC-Argo network. The results are still comparable to OSSE 3. The best
compromise between the statistics yielded by the comparison between reconstructed pCO2 and NEMO/PISCES
outputs, as well as the feasibility of a future observation network is found for OSSE 10. In this experiment SOCAT
data are combined with simulated mooring data and 25% of the initial distribution of Argo floats placed only in
the Southern Hemisphere (around 49 floats with a 5-day sampling period). The use of only SOCAT data results in
a correlation coefficient of 0.67 compared to NEMO/PISCES output and a standard deviation of 26.08 patm (25.34
uatm for NEMO/PISCES) over the region of study. While the successful OSSE 10 has a correlation coefficient of
0.85 and a standard deviation of 24.89 patm. These results are close to the unrealistic benchmark case with total
Argo float distribution over 2008-2010: 0.87 and 23.79uatm. The total pCO: over the whole region is also close
to NEMO/PISCES, ~370 patm and ~371 patm, respectively. The air-sea flux fgCO: is -0.83 Pg/yr (OSSE 10) and
-0.76 Pg/yr (NEMO). The bias in sea-air CO> fluxes compared to NEMO/PISCES is reduced by 74% in OSSE 10
compared to OSSE 1 (fgCOz is -1.03 Pg/yr).

The OSSE 10 network could be further improved by instrumenting the Baffin Bay, the Labrador Sea, the
Norwegian Sea, as well as regions along the coast of Africa (10°N to 20°S), all regions with pronounced biases in
all OSSEs, with moorings or gliders as well as sail-drones and sail buoys along the shelf break and on the
continental shelf.

The inclusion of errors from in situ measurements is one of the next steps of this work. The real measurements
contain instrumental and representation errors. The inclusion of errors in pseudo-observations will help to estimate
the impact of observations on the reliability of OSSEs presented in this work. It will include the errors for predictor
values (SSS, SST, SSH, CHL, MLD, pCO2, am) that are measured directly or derived from remote sensing (e.g.,
SST, chlorophyll, SSH), as well as the errors related to the computation of pCO: from pH and alkalinity. The new
FFNN runs could provide important information on the effect of biases from observational datasets and identify
predictors or targets that have large errors and that must be corrected. The consistent introduction of error estimates
for each predictor will provide this information.
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Figure 1: Spatial distribution of data sets used for training (number of measurements per grid points and S-day time
step): (a) SOCAT data for the period 2001-2010; (b) synthetic Argo data for the period 2008-2010; (c) mooring positions
modelled for the period 2008-2010.
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Figure 3: Taylor Diagram of 11 OSSEs summarized in Table 2; the colour code corresponds to Fig. 2, the purple colour
represents the whole of the 8 biomes: (a) - OSSE 1: SOCAT data only; (b) - OSSE 2: synthetic Argo data only; (c) -
OSSE 3: SOCAT and synthetic Argo data; (d) - OSSE 4: SOCAT data and 25% of original synthetic Argo data; (e) -
OSSE 5: SOCAT data and 10% of original synthetic Argo data; (f) - OSSE 6: SOCAT data and synthetic Argo data in
the Southern Hemisphere; (g) - OSSE 7: SOCAT data and 25% of original synthetic Argo data in the Southern
Hemisphere; (h) - OSSE 8: SOCAT data and 10% of original synthetic Argo data in the Southern Hemisphere; (i) -
OSSE 9: SOCAT data, synthetic Argo data in the Southern Hemisphere and data from mooring stations; (j) - OSSE
10: SOCAT data, 25% of original synthetic Argo data in the Southern Hemisphere and data from mooring stations; (k)
- OSSE 11: SOCAT data, 10% of original synthetic Argo data in the Southern Hemisphere and data from mooring
stations.
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Figure 4: Target Diagram per biome for 11 OSSEs, the colour code corresponds to Fig. 2, the purple colour represents
the whole of the 8 biomes: (a) - all 8 biomes, (b) - biome 9 (Subpolar seasonally stratified North Atlantic), (c) - biome 10
(Subtropical seasonally stratified North Atlantic), (d) - biome 11 (Subtropical permanently stratified North Atlantic),
(e) - biome 12 (Equatorial Atlantic), (f) - biome 13 (Subtropical permanently stratified South Atlantic), (g) - biome 15
(Subtropical seasonally stratified Southern Ocean), (h) - biome 16 (Subpolar seasonally stratified Southern Ocean), (i)
- biome 17 (Southern Ocean ice). OSSE 1: SOCAT data only; OSSE 2: synthetic Argo data only; OSSE 3: SOCAT and
synthetic Argo data; OSSE 4: SOCAT data and 25% of original synthetic Argo data; OSSE 5: SOCAT data and 10%
of original synthetic Argo data; OSSE 6: SOCAT data and synthetic Argo data in the Southern Hemisphere; OSSE 7:
SOCAT data and 25% of original synthetic Argo data in the Southern Hemisphere; OSSE 8: SOCAT data and 10% of
original synthetic Argo data in the Southern Hemisphere; OSSE 9: SOCAT data, synthetic Argo data in the Southern
Hemisphere and data from mooring stations; OSSE 10: SOCAT data, 25% of original synthetic Argo data in the
Southern Hemisphere and data from mooring stations; OSSE 11: SOCAT data, 10% of original synthetic Argo data in
the Southern Hemisphere and data from mooring stations. OSSEs 1, 3 and 10 are in bold as we focus our detailed
comparison on these three OSSEs.
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OSSE 1 (blue), 3 (red), 10 (green) fgC0O, and NEMO/PISCES fgCO,; shading corresponds to the maximum and
minimum values of differences from 4 FFNN fgCO; for each OSSE. (a), (b) - estimates are available for all biomes
presented in Figure 2 except biome 8; (c), (d) - biome 11 (Subtropical permanently stratified North Atlantic); (e), (f) -
biome 13 (Subtropical permanently stratified South Atlantic); (g), (h) - biome 17 (Southern Ocean ice).
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Figure 9: Averaged number of Argo profiles per 5-day time step over 2008-2010 versus averaged differences between
each OSSE fgCO; and NEMO fgCO; (in Pg/yr), the colour code corresponds to Fig. 2, the purple colour represents the
whole of the 8 biomes. (a) - all biomes; (b) - biome 11 (Subtropical permanently stratified North Atlantic); (c) - biome
13 (Subtropical permanently stratified South Atlantic); (d) - biome 17 (Southern Ocean ice). OSSE 1: SOCAT data
only; OSSE 2: synthetic Argo data only; OSSE 3: SOCAT and synthetic Argo data; OSSE 4: SOCAT data and 25% of
original synthetic Argo data; OSSE 5: SOCAT data and 10% of original synthetic Argo data; OSSE 6: SOCAT data
and synthetic Argo data in the Southern Hemisphere; OSSE 7: SOCAT data and 25% of original synthetic Argo data
in the Southern Hemisphere; OSSE 8: SOCAT data and 10% of original synthetic Argo data in the Southern
Hemisphere; OSSE 9: SOCAT data, synthetic Argo data in the Southern Hemisphere and data from mooring stations;
OSSE 10: SOCAT data, 25% of original synthetic Argo data in the Southern Hemisphere and data from mooring
stations; OSSE 11: SOCAT data, 10% of original synthetic Argo data in the Southern Hemisphere and data from
mooring stations. OSSEs 1, 3 and 10 are in bold as they represent the main OSSEs of our comparisons.

Table 1: Information on Observation System Simulation Experiments.

Data OSSE number Period for training averaged number of Argo
floats per 5 days
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SOCAT OSSE 1 2001-2010 0
Argo (3°x3°) OSSE 2 2008-2010 404
SOCAT + Argo (3°x3°) OSSE 3 2001-2010 (SOCAT) + 403
2008-2010 (Argo)
SOCAT + Argo 25% OSSE 4 2001-2010 (SOCAT) + 101
(3°x39) 2008-2010 (Argo)
SOCAT + Argo 10% OSSE 5 2001-2010 (SOCAT) + 40
(3°x39) 2008-2010 (Argo)
SOCAT + Argo South OSSE 6 2001-2010 (SOCAT) + 195
(3°x39) 2008-2010 (Argo South)
SOCAT + Argo 25% OSSE 7 2001-2010 (SOCAT) + 48
South (3°x3°) 2008-2010 (Argo South)
SOCAT + Argo 10% OSSE 8 2001-2010 (SOCAT) + 19
South (3°x3°) 2008-2010 (Argo South)
SOCAT + Argo S + OSSE 9 2001-2010 (SOCAT) + 195
Moorings 2008-2010 (Argo South,
Moorings)
SOCAT + Argo S 25% + | OSSE 10 2001-2010 (SOCAT) + 48
Moorings 2008-2010 (Argo South,
Moorings)
SOCAT + Argo S 10% + | OSSE 11 2001-2010 (SOCAT) + 19
Moorings 2008-2010 (Argo South,
Moorings)
732
733 Table 2: Biomes from Fay and McKinley (2014) used for time series comparison (Fig. 2).
Number Name
8 (Omitted) North Atlantic ice
9 Subpolar seasonally stratified North Atlantic
10 Subtropical seasonally stratified North Atlantic
11 Subtropical permanently stratified North Atlantic
12 Equatorial Atlantic
13 Subtropical permanently stratified South Atlantic
15 Subtropical seasonally stratified Southern Ocean
16 Subpolar seasonally stratified Southern Ocean
17 Southern Ocean ice
734

735 Table 3: Correlation coefficient and Standard Deviation (uatm) of 11 OSSEs from Table 2 estimated over 8 Atlantic
736 Ocean biomes and at basin scale; the results are presented in Fig. 3. OSSEs 1, 3 and 10 are in bold as we focus our
737  detailed comparison on these three OSSEs.
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738

Biome All 9 10 11 12 13 15 16 17
biomes
OSSE
NEMO 25.34 28.17 17.29 19.59 17.89 18.84 15.20 10.79 24.03
STD
OSSE 1 0.67/ 0.88/ 0.92/ 0.89/ 0.46/ 0.68/ 0.31/ 0.70/ 0.57/
26.08 27.44 16.67 18.42 12.48 16.11 15.28 11.76 21.11
OSSE 2 0.89/ 0.91/ 0.96/ 0.97/ 0.83/ 0.92/ 0.76/ 0.87/ 0.90/
22.82 22.28 17.09 19.14 15.42 18.19 8.89 9.43 19.56
OSSE 3 0.87/ 0.93/ 0.96/ 0.95/ 0.79/ 0.91/ 0.73/ 0.83/ 0.85/
23.79 25.78 17.00 19.03 14.33 17.91 11.21 10.55 21.06
OSSE4 0.82/ 0.92/ 0.95/ 0.93/ 0.70/ 0.88/ 0.63/ 0.80/ 0.77/
23.99 25.91 17.11 18.31 12.13 17.62 11.62 10.99 21.2
OSSE 5 0.80/ 0.92/ 0.94/ 0.92/ 0.65/ 0.86/ 0.59/ 0.75/ 0.75/
24.18 26.48 17.16 18.83 11.39 16.95 11.86 11.3 20.58
OSSE 6 0.85/ 0.89/ 0.93/ 0.91/ 0.64/ 0.91/ 0.72/ 0.82/ 0.86/
24.72 27.40 16.66 18.73 12.34 17.51 11.56 10.84 22.41
OSSE 7 0.82/ 0.89/ 0.93/ 0.91/ 0.54/ 0.88/ 0.66/ 0.80/ 0.80/
24.48 27.87 16.32 18.19 11.17 17.33 11.71 11.12 20.90
OSSE 8 0.77/ 0.89/ 0.93/ 0.91/ 0.52/ 0.86/ 0.57/ 0.79/ 0.66/
25.10 27.90 16.19 18.3 11.66 16.92 11.74 11.17 22.63
OSSE 9 0.88/ 0.92/ 0.95/ 0.94/ 0.68/ 0.92/ 0.72/ 0.84/ 0.91/
24.51 28.17 16.11 17.67 12.98 17.84 11.31 10.89 21.63
OSSE 10 | 0.85/ 0.91/ 0.94/ 0.94/ 0.63/ 0.88/ 0.65/ 0.78/ 0.89/
24.89 28.28 17.10 18.41 12.90 17.36 11.35 11.01 22.25
OSSE 11 ] 0.83/ 0.91/ 0.93/ 0.93/ 0.58/ 0.86/ 0.56/ 0.74/ 0.88/
24.67 28.39 16.4 18.10 13.20 16.79 11.29 10.96 21.92
739
740 Table 4: Normalised RMS differences and Biases (uatm) of 11 OSSEs from Table 2 estimated over 8 Atlantic Ocean
741 biomes and at basin scale; the results are presented in Fig. 4. OSSEs 1, 3 and 10 are in bold as we focus our detailed

742  comparison on these three OSSEs.

Biome All 9 10 11 12 13 15 16 17
biomes
OSSE

OSSE 1 14.13/ 11.63/ 6.32/ 6.63/ 15.41/ 12.5/ 15.97/ 8.08/ 17.33/
-4.25 -3.26 -0.39 -2.93 0.17 2.12 1.32 -5.41 -11.63

OSSE 2 10.11/ 17.10/ | 4.21/ 3.94/ 7.26/ 4.98/ 12.63/ 431/ 10.00/
0.36 -2.02 0.09 0.19 0.22 0.38 -0.43 -0.21 2.50

OSSE 3 | 8.32/ 9.59/ 4.56/ 4.24/ 8.00/ 5.73/ 11.87/ 4.20/ 10.18/
-0.46 -0.32 -0.30 -0.71 -0.14 0.57 -0.85 -0.97 -0.66

OSSE 4 9.40/ 10.08/ | 5.08/ 5.01/ 10.41/ 6.96/ 12.59/ 4.87/ 11.75/
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743

744
745

746
747

748

-0.84 -0.53 -0.05 -0.88 -0.29 0.85 -0.40 -0.93 -2.25
OSSE 5 9.82/ 10.43/ 5.50/ 5.35/ 11.11/ 7.93/ 12.72/ 5.71/ 11.80/
-1.46 -0.83 0.50 -0.98 -0.25 0.85 -0.54 -1.69 -4.02
OSSE 6 9.12/ 11.40/ 5.93/ 6.48/ 11.46/ 5.75/ 12.06/ 4.35/ 10.01/
-0.54 -2.57 0.02 -1.86 3.82 0.53 -0.51 -0.56 -0.18
OSSE 7 9.75/ 11.79/ 6.16/ 6.26/ 13.30/ 6.90/ 11.97/ 4.90/ 11.03/
-1.22 -2.64 -0.10 -2.68 3.77 0.58 -0.56 -1.68 -1.80
OSSE 8 11.36/ 11.62/ 6.02/ 591/ 13.87/ 7.84/ 12.55/ 5.42/ 15.16/
-1.89 -2.59 0.49 -2.80 2.70 0.90 -0.89 -2.03 -4.12
OSSE 9 8.37/ 10.58/ 5.47/ 5.13/ 11.34/ 5.37/ 12.18/ 4.16/ 8.51/
-0.44 -2.52 -0.001 | -1.33 291 0.41 -0.88 -0.75 0.37
OSSE 10 | 8.71/ 10.79/ 5.54/ 4.94/ 12.64/ 6.82/ 12.25/ 4.89/ 8.61/
-0.39 -2.35 0.79 -0.71 3.35 1.01 -0.92 -0.90 -0.21
OSSE 11 | 9.16/ 10.85/ 591/ 5.32/ 14.28/ 7.59/ 12.49/ 5.13/ 9.23/
-1.18 -3.21 -0.68 -1.97 241 0.002 -1.18 -1.56 -0.77

Table 5: Differences (Eq. 4) between OSSE FFNN outputs and NEMO/PISCES pCO; and its standard deviation (STD)
(Eq. 5) in patm.

Biome | Region | All 8 9 11 12 13 15 16 17
70°W- | biomes
30°E
80°S-
OSSE 80°N
OSSE 1| -6.57/ | -6.57/ -4.84/ -1.46/ -4.21/ -2.03/ 0.11/ -1.35/ -8.04/ -14.90/
14.49 13.54 10.17 6.98 7.62 13.88 13.88 14.96 8.99 20.83
OSSE 3| -1.70/ | -1.50/ -1.36/ -0.90/ -1.48/ -1.49/ -0.32/ -1.93/ -1.89/ -2.05/
8.12 7.15 7.52 4.62 4.64 7.09 5.58 7.16 4.42 10.59
OSSE -2.34/ | -1.54/ -3.54/ -0.10/ -1.52/ 1.93/ -0.04/ -2.15/ -1.91/ -1.55/
10 8.64 7.50 8.59 6.18 5.42 9.38 6.51 8.18 5.21 8.99
Table 6: Correlation coefficient between OSSEs and NEMO/PISCES pCO.,.
Biome | Region | All 819 11 12 13 15 16 17
70°W- | biomes
30°E
80°S-
OSSE 80°N
OSSE 1| 0.68 0.67 0.88 0.92 0.89 0.46 0.68 0.31 0.70 0.57
OSSE 31 0.86 0.87 0.93 0.96 0.95 0.79 0.91 0.73 0.83 0.85
OSSE 0.85 0.85 0.92 0.94 0.94 0.63 0.88 0.65 0.78 0.89
10
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749 Table 7: pCO; averaged over the region 70°W-30°E 80°S-80°N and biomes from Fig. 2 for the NEMO/PISCES model
750 and OSSEs 1, 3 and 10, as well as the corresponding averaged differences between OSSEs and NEMO/PISCES (in
751  patm).

Biome | Region | All 8 ]9 10 11 12 13 15 16 17
70°W- | biomes
30°E
80°S-

OSSE 80°N

NEMO [ 371.13 | 372.65 | 350.36 | 373.18 |390.11 | 397.18 | 389.54 [ 376.14 |376.99 | 363.08

OSSE 1 | 367.09/ | 368.39/ | 347.10/ | 372.78/ | 387.17/ | 397.36/ | 391.66/ | 377.46/ | 371.58/ | 351.44/
-4.04 -4.25 -3.26 -0.39 -2.93 0.17 2.12 1.32 -5.41 -11.63

OSSE 3 | 370.62/ | 372.18/ | 350.04/ | 372.88/ | 389.39/ | 397.04/ | 390.10/ | 375.29/ | 376.02/ | 362.42/
-0.51 -0.46 -0.32 -0.30 -0.71 -0.14 0.57 -0.85 -0.97 -0.66

OSSE | 370.14/ | 372.26/ | 348.01/ | 373.98/ | 389.39/ | 400.53/ | 390.55/ | 375.22/ | 376.09/ | 362.87/
10 -0.99 -0.39 -2.35 0.79 -0.71 3.35 1.01 -0.92 -0.90 -0.21

752

753 Table 8: fgCO; averaged over the region 70°W-30°E 80°S-80°N and biomes from Fig. 2 for the NEMO/PISCES model
754 and OSSEs 1, 3, 4 and 10, as well as the corresponding averaged differences between each OSSEs and NEMO/PISCES
755 (in Pg/yr).

Biome | Region [ All 8|9 10 11 12 13 15 16 17
70°W- biomes
30°E
80°S-

OSSE 80°N

NEMO [ -0.76 -0.70 -2.34 -1.14 -0.03 0.53 -0.004 | -0.74 -0.50 -0.52

OSSE 1 | -1.03/ -0.99/ | -2.57/ | -1.17/ | -0.18/ | 0.42/ 0.19/ -0.68/ | -1.15/ | -1.17/
-0.26 -0.28 -0.23 -0.03 -0.15 -0.10 0.20 0.06 -0.64 -0.65

OSSE 3 | -0.80/ -0.74/ | -2.36/ | -1.16/ |-0.07/ ] 0.49/ 0.05/ -0.82/ | -0.61/ | -0.59/
-0.04 -0.04 -0.02 -0.02 -0.03 -0.04 0.06 -0.07 -0.10 -0.06

OSSE | -0.83/ -0.74/ | -2.50/ | -1.09/ |-0.06/ | 0.56/ 0.08/ -0.82/ | -0.60/ | -0.56/
10 -0.06 -0.04 -0.15 0.04 -0.03 0.03 0.08 -0.07 -0.09 -0.03
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