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 10 
Abstract. To derive an optimal observation system for surface ocean pCO2 in the Atlantic Ocean and the Atlantic 11 
sector of the Southern Ocean eleven Observation System Simulation Experiments (OSSEs) were completed. Each 12 
OSSE is a Feed-Forward Neural Network (FFNN) that is based on a different data distribution and provides ocean 13 
surface pCO2 for the period 2008-2010 with a 5 day time interval. Based on the geographical and time positions 14 
from three observational platforms, volunteering observing ships (VOS), Argo floats and OceanSITES moorings, 15 
pseudo-observations were constructed using the outputs from an online-coupled physical-biogeochemical global 16 
ocean model with 0.25º nominal resolution. The aim of this work was to find an optimal spatial distribution of 17 
observations to supplement the widely used Surface Ocean CO2 Atlas (SOCAT) and to improve the accuracy of 18 
ocean surface pCO2 reconstructions. OSSEs showed that the additional data from mooring stations and an 19 
improved coverage of the Southern Hemisphere with biogeochemical ARGO floats corresponding to least 25% of 20 
the density of active floats (2008-2010) (OSSE 10) would significantly improve the pCO2 reconstruction and 21 
reduce the bias of derived estimates of sea-air CO2 fluxes by 74% compared to ocean model outputs.  22 

 23 

1 Introduction 24 
 25 
The ocean is a major sink of anthropogenic CO2 (Ciais et al., 2013; Friedlingstein et al., 2020). For the period 26 
2010-2019 the ocean uptake was 2.5 ± 0.6 GtC/yr with a strong intensification (from 1.9 to 3.1 GtC/yr) along with 27 
increasing of CO2 emissions (Friedlingstein et al., 2020). The ocean carbon sink estimate is derived from Global 28 
Ocean Biogeochemical Models (Hauck et al., 2020) and data-based reconstructions of surface ocean partial 29 
pressures of carbon dioxide (pCO2). The data-based reconstructions rely on the interpolation of surface ocean 30 
pCO2 - derived from measurements of surface ocean CO2 fugacity - by a variety of methods (e.g. Watson et al., 31 
2020; Gregor et al., 2019; Denvil-Sommer et al., 2019; Bittig et al., 2018; Landschützer et al., 2013, 2016; 32 
Rödenbeck et al., 2014, 2015; Fay et al., 2014; Zeng et al., 2014; Nakaoka et al., 2013; Schuster et al., 2013; 33 
Takahashi et al., 2002, 2009). These methods provide converging estimates of the global ocean carbon sink and 34 
its variability at seasonal and interannual time scales (Rödenbeck et al., 2015; Denvil-Sommer et al., 2019). They 35 
are, however, sensitive to the observation coverage in space and time which contributes to inconsistent results over 36 
regions with sparse data (Denvil-Sommer et al., 2019; Rödenbeck et al., 2015) and to persistent uncertainties at 37 
global scale (Gregor et al., 2019; Hauck et al., 2020).  38 
 39 
The majority of observations contributing to the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) are still 40 
obtained by underway sampling systems on board of volunteering observing ships. The data density is not 41 
homogenous, with Southern latitudes being less well sampled in space and also in time (Monteiro et al., 2010). 42 
Sparse data coverage and the lack of observations covering the full seasonal cycle challenge mapping methods 43 
and result in noisy reconstructions of surface ocean pCO2 and disagreements between different models (Denvil-44 
Sommer et al., 2019, Rödenbeck et al., 2015). The ship-based sampling effort is progressively complemented by 45 
autonomous observing platforms, such as biogeochemical ARGO floats equipped with pH sensors. The expansion 46 
of the observing system to autonomous platforms is of particular relevance in regions that are undersampled either 47 
because of the presence of fewer regular shipping lines (e.g., South Atlantic) or because adverse weather conditions 48 
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prevent a year around sampling (e.g., Southern Ocean). The benefits of combining ship-based measurements of 49 
pCO2 and data from biogeochemical ARGO floats was recently demonstrated for the assessment of Southern 50 
Ocean CO2 fluxes (Bushinsky et al., 2019). Majkut et al. (2014) and Kamenkovich et al. (2017) reported on 51 
observing system simulations with autonomous biogeochemical profiling floats in the Southern Ocean that 52 
improve estimates of carbon dioxide uptake and biogeochemical variables. While Majkut et al. (2014) used a 53 
coarse-resolution model and fixed floats, Kamenkovich et al. (2017) extended this work to a more realistic case 54 
with moving floats and high-resolution numerical simulations. Based on a coupled climate carbon model and 55 
observations, Lenton et al. (2009) proposed sampling strategies to obtain large-scale integrated CO2 fluxes in the 56 
North Pacific and North Atlantic. They show that regular sampling of ocean surface pCO2 with a 3-month time 57 
step and every 6o in latitude and 10o in longitude is sufficient to capture more than 80% of total CO2 flux variability. 58 
 59 
This study extended the scope to the Atlantic basin, including the Atlantic sector of the Southern Ocean. It explored 60 
design options for a future augmented Atlantic scale observing system which would optimally combine data 61 
streams from various platforms and contribute to reduce the bias in reconstructed surface ocean pCO2 fields and 62 
sea-air CO2 fluxes. A series of Observation System Simulation Experiments (OSSEs) were carried out in a perfect 63 
model framework using output from an online-coupled physical-biogeochemical global ocean model at 1/4º 64 
nominal resolution. Since all fields used by the FFNN are produced by the same model run and thus internally 65 
consistent, the comparison between reconstructed and modelled pCO2 distributions allows to assess the theoretical 66 
skill for each experiment. Starting from measurements extracted from the SOCAT database, the goal was to 67 
identify how and where the new data from biogeochemical ARGO floats can improve surface ocean pCO2 68 
reconstructions and how to optimally integrate them with other existing platforms. Pseudo-observations were 69 
obtained by sub-sampling model output at sites of real-word observations. Surface ocean pCO2 was reconstructed 70 
from these pseudo-observations at basin scale by applying a non-linear feed forward neural network (FFNN) 71 
(Bishop, 1995; Rumelhart et al., 1986). The choice of the FFNN for our experiments was motivated by its overall 72 
performance reported in Denvil-Sommer et al. (2019). The architecture of the FFNN method was adapted to the 73 
current problem and differs from the one presented in Denvil-Sommer et al. (2019).  74 
 75 
The remainder of the article is structured into Section 2 presenting the model output, the observing systems and 76 
observations as well as the design experiments, and the description of the statistical model. Results are presented 77 
and discussed in Section 3. Section 4 is dedicated to the conclusion and the presentation of perspectives.  78 
 79 

2 Data and methods 80 
 81 
Here we present the ensemble of observing systems that either already perform measurements to estimate pCO2 82 
or have the possibility to be equipped with new sensors to provide biogeochemical measurements (Williams et al., 83 
2017). These datasets provide information on geographical, as well as time positions and hence on the distribution 84 
of pCO2 measurements. In this section we also describe the ocean model output and how we use it in the OSSEs. 85 
As mentioned in the introduction the data from the model co-localized with real positions of observing-systems 86 
are called pseudo-observations. 87 
 88 

2.1 Data  89 
 90 

a) Observing systems 91 
Three observing systems were selected for the study: (1) volunteering observing ships providing in situ 92 
measurements of surface ocean CO2 fugacity (fCO2), (2) moorings (OceanSITES), and (3) profilers (Argo). These 93 
observations form the dataset of geographical and time positions for our experiments. Surface ocean measurements 94 
of fCO2 from multiple platforms are converted to pCO2 and compiled in the SOCAT database (Bakker et al., 2016). 95 
Moorings are not routinely equipped with sensors of CO2 fugacity. We used their geographical positions to identify 96 
possible locations for additional measurements. Biogeochemical ARGO floats are increasingly equipped with pH 97 
sensors allowing computing pCO2 from pH and SST-based alkalinity. For the design experiments, we considered 98 
distributions of physical ARGO floats (2008-2011) from Gasparin et al. (2019) and supposed that they were 99 
equipped with pCO2 sensors.  100 
 101 
(1) SOCAT database v5 (Bakker et al., 2016; (https://www.socat.info/index.php/data-access/)): the database 102 
provides a good coverage of the Northern Hemisphere. Data for the period 2001-2010 were used, representing 103 
~60% of data in SOCAT database (Fig.1a). The use of data for the period 2001-2010 allows us to capture 104 
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interannual variability from a long historical record of SOCAT data and to explore how SOCAT data can be 105 
enhanced by other observational platforms. It also provides more data for the training of the Neural Network. 106 
While the data from 2001 to 2010  are used in training, the reconstruction focuses only on the years 2008 to 2010. 107 
We used the synthesis files SOCATv5, these are the raw data from which the gridded SOCAT product is derived. 108 
There are 24 moorings in SOCATv5 that provided CO2 fugacity measurements between 2001 and 2010. These 109 
moorings were excluded from OceanSITES data (see below). 110 
(2) Argo profilers: We used the network of Argo (Gould et al., 2004; Argo 2000) distributions provided by 111 
Mercator Ocean (details can be found in Gasparin et al., 2019) for the period 2008-2010. This network provides a 112 
synthetic homogeneous distribution of 1 profiler per 3ºx3º grid box per 10 days, amounting to 310-360 113 
measurements per day (Fig.1b) based on real trajectories of Argo floats. This synthetic Argo distribution was built 114 
based on the time, date and location of Argo profiles during the 2009–2011 period (Gasparin et al., 2019). To 115 
provide a homogeneous coverage Gasparin et al. (2019) removed some float trajectories in well-sampled regions, 116 
for example the Gulf Stream, or added floats in the low-sampled Tropical and South Atlantic regions. The target 117 
for BioGeoChemical Argo (1/4 of ARGO coverage) (Bittig et al., 2018) was derived from this distribution. It is 118 
worth noting that Argo floats provide measurements every 10 days. Floats dive to a depth of 2000 m and then rise 119 
to the surface by measuring vertical profiles of ocean variables. In this study we use a 5-day time step (see below 120 
section b)) which can be a limitation to apply our results to real observations as it does not represent an average 121 
value over 5 days. We paid more attention to the spatial distribution, and we believe that with Argo measurements 122 
recorded over a longer period our results can be applied to one-month time steps. In this case, 3 monthly 123 
measurements can be representative of a monthly mean.  124 
(3) OceanSITES: This dataset combines observations from open ocean Eulerian time series stations providing 125 
data since 1999 (Fig.1c). We used all available locations of moorings (except moorings included in SOCATv5) 126 
and added this information to the period of reconstruction 2008-2010 (http://www.oceansites.org/). It provided 127 
318 additional positions to our data set. 128 
 129 
For this study, the same set of predictors was used as in Denvil-Sommer et al. (2019) for training the Machine 130 
Learning (ML) algorithm: sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), 131 
mixed layer depth (MLD), chlorophyll a concentration (Chl a) and atmospheric CO2 (pCO2, atm). These variables 132 
are known to represent the main physical, chemical and biological drivers of surface ocean pCO2 (Takahashi et 133 
al., 2009; Landschützer et al., 2013). 134 

b) Model output and pseudo-observations 135 

Here we used the numerical output from an online-coupled physical-biogeochemical global ocean model, the 136 
NEMO/PISCES model, at 5-day resolution. This configuration of the Nucleus for European Modelling of the 137 
Ocean (NEMO) framework was implemented on a global tripolar grid. It coupled the ocean general circulation 138 
model OPA9 (Madec et al., 1998), the sea ice code LIM2 (Fichefet & Maqueda, 1997), and the biogeochemical 139 
model PISCESv1 (Aumont and Bopp, 2006). Information on the simulation is given in Gehlen et al. (2020) and 140 
Terhaar et al. (2019), including the evaluation of the modelled mean state and the seasonal cycle of sea surface 141 
temperature and air-sea fluxes of CO2 (Gehlen et al., 2020). The geographical and time positions identified from 142 
the data mentioned before were used to create pseudo-observations by sub-sampling NEMO/PISCES model output 143 
at sites of real-word observations. Thus, the positions of SOCAT, Argo floats and mooring stations were chosen 144 
over 5 days centred on the NEMO/PISCES date and sub-sampled on the model grid. The model grid coordinate 145 
closest to the real geographical position was chosen, if several measurements were co-localized at the same grid 146 
coordinate and same time step it is counted as one measurement. No Argo floats were added to grid cells if there 147 
was already a measurement identified in the SOCAT database. All predictors and target pCO2 were taken from 148 
model output at corresponding coordinates. These outputs served as the reference for validation and evaluation of 149 
our experiments and for assessing the ML method’s accuracy. The simulation covers the period 1958 to 2010, the 150 
last 3 years were retained for the design study. 151 

2.2 Observational System Simulation Experiences 152 
Table 1 summarizes experiments designed for different combinations of observing platforms. 153 
The first test is based on individual sampling data extracted from the SOCAT database. As mentioned before these 154 
data provide a good coverage of the Northern Hemisphere. The lesser coverage in the Southern Hemisphere results 155 
in a larger dispersion of methods based on these observations only (Denvil-Sommer et al., 2019; Rödenbeck et al., 156 
2015). This has motivated experiments with additional data from Argo profilers limited to the Southern 157 
Hemisphere. An experiment based on the full physical ARGO network was included to evaluate the method for a 158 
high spatial and temporal coverage (an optimal, yet unrealistic case).  159 
 160 
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We have tested combinations of SOCAT data and (1) total Argo data, (2) Argo only in the Southern Hemisphere, 161 
and (3) 25% or (4) 10% of the initial (total) Argo distribution. Finally, these experiments were repeated with 162 
additional mooring data. It is worth noting (Table 1) that OSSE 4 is closest to the target of the BGC-Argo program 163 
with a BGC-Argo density corresponding to 25% of the existing Argo distribution. However, we decided to choose 164 
OSSE 3 as a benchmark against which to evaluate individual experiments. This experiment has a high data density 165 
and provides additional information on a potential future BGC-Argo network.   166 

2.3 Method  167 
We used a Feed-Forward Neural Network (FFNN) based on Denvil-Sommer et al. (2019) to reconstruct surface 168 
ocean pCO2 over the Atlantic Ocean. Compared to the previous study we skipped the first step consisting of the 169 
reconstruction of the pCO2 climatology. The reconstruction covered January 2008 to December 2010 with a 5-day 170 
frequency and at the spatial resolution of the tripolar ORCA025 model grid (nominal 1/4º resolution). The 171 
approach consisted in a method that reconstructs the non-linear relationships between the target pCO2 and 172 
predictors responsible for pCO2 variability:  173 

𝑝𝐶𝑂!,# =	174 
𝑓(𝑆𝑆𝑆#, 𝑆𝑆𝑇#, 𝑆𝑆𝐻#, 𝐶ℎ𝑙#, 𝑀𝐿𝐷#, 𝑝𝐶𝑂!,$%&,#,     (1) 175 

𝑆𝑆𝑆$#'&,#, 𝑆𝑆𝑇$#'&,#, 𝑆𝑆𝐻$#'&,#, 𝐶ℎ𝑙$#'&,#, 𝑀𝐿𝐷$#'&,#, 𝑝𝐶𝑂!,$%&,$#'&,#𝑙𝑎𝑡#, 𝑙𝑜𝑛𝑔(,#, 𝑙𝑜𝑛𝑔!,#)	176 
 177 

As previously (Denvil-Sommer et al., 2019), we use Keras, a high-level neural network Python library (“Keras: 178 
the Python Deep Learning library”, Chollet, 2015; https://keras.io) to construct and train the FFNN models. We 179 
first identified an optimal configuration (number and size of hidden layers, the activation functions etc.) of the 180 
FFNN model. Based on our earlier work (Denvil-Sommer et al., 2019), a hyperbolic tangent was chosen as an 181 
activation function for neurons in hidden layers, and a linear function was chosen for the output layer. As an 182 
optimization algorithm, the mini-batch gradient descent or “RMSprop” was used (adaptive learning rates for each 183 
weight, Chollet, 2015; Hinton et al., 2012).  184 

The numbers of hidden layers and parameters/weights depend on the number of data used for training. In this 185 
work, the FFNN was applied separately for each month (one model for January, one model for February, etc.). A 186 
sub-set of  50% of data was used for training. 25% participated in the evaluation of the model during the training 187 
algorithm and 25% were used to validate the model after training. These data were chosen regularly in time and 188 
space: each third grid point was kept for evaluation, each forth for validation. Tables S1 presents the numbers of 189 
training data for each month and each OSSE. To adjust the number of FFNN parameters/weights we followed the 190 
empirical rule that suggests limiting the number of parameters to the number of training data points divided by 10 191 
to avoid overfitting (Amari et al., 1997). The FFNNs for all OSSEs except OSSE 2 have four layers (two hidden 192 
layers) with 1116 parameters in total. The input layer has 15 input nodes and 20 output nodes that represent the 193 
input for the first hidden layer. The first hidden layer has 25 output nodes and the second hidden layer – 10 output 194 
nodes. The OSSE 2 which is based on Argo data for the period 2008-2010, has significantly less data for training 195 
and thus, the FFNN for the OSSE 2 is different: 3 layers (one hidden layer with 20 input and 10 output nodes) with 196 
541 total parameters.  197 

All data have to be normalized before their use in the FFNN as exemplified for SSS: 198 

𝑆𝑆𝑆# 	= 	
)))*)))+++++

),-())))
     (2) 199 

𝑆𝑆𝑆88888	is the total mean of variable SSS, STD(SSS) is standard deviation of SSS.  200 

Normalization is required to rank all predictors in the same scale and to avoid the possible influence of one 201 
predictor with strong variability (Kallache et al., 2011). 202 

Following Denvil-Sommer et al. (2019) we normalized the geographical positions (lat, long) in the following way:  203 

𝑙𝑎𝑡# = 𝑠𝑖𝑛(𝑙𝑎𝑡	 ∗ 	𝜋/180)	204 
𝑙𝑜𝑛𝑔#,( = 𝑠𝑖𝑛(𝑙𝑜𝑛𝑔	 ∗ 	𝜋/180)      205 

𝑙𝑜𝑛𝑔#,! = 𝑐𝑜𝑠(𝑙𝑜𝑛𝑔	 ∗ 	𝜋/180). 206 

A K-fold cross-validation was used to evaluate and validate the FFNN architecture. The cross-validation is based 207 
on K=4 different subsamples where 25 % of independent data are chosen for validation. In each of the 4 cases the 208 
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25% of data are different and there is no overlap. Thereby, each run has 4 outputs. Different architectures of the 209 
FFNN were tested and the final one was chosen based on skill assessed by the root-mean-square difference 210 
(RMSD), the r2 and the bias of 4 outputs for each architecture. To ensure a good accuracy of the method and check 211 
that there is no overfitting, we compared the RMSD, r2 and bias estimated from the validation dataset with those 212 
estimated from the training dataset. Denvil-Sommer et al. (2019) provide a detailed description of the model 213 
including the accuracy of the ML method and its ability to correctly reproduce the pCO2 variability. 214 

2.4 Diagnostics  215 
The comparison between OSSEs is done per biome, following Rödenbeck et al. (2015) (Fig. 2, Table 2). Biome 216 
8, North Atlantic Ice, has been omitted due to poor data coverage in all OSSEs. It is expected that reconstructions 217 
over this region will yield large biases susceptible to interfere with the interpretation of results from individual 218 
OSSEs.   219 
 220 
In order to simplify the comparison, we used Taylor and Target Diagrams with standard deviation, biases, 221 
correlation and normalized RMSD (uRMSD) of the mean of 4 FFNN outputs for each OSSE. Here uRMSD is 222 
estimated as: 223 

𝑢𝑅𝑀𝑆𝐷	 = 	D𝑚𝑒𝑎𝑛({	[𝑝𝐶𝑂!	1))2 − 𝑝𝐶𝑂!	1))28888888888888] 	− [𝑝𝐶𝑂!	3241 	−	𝑝𝐶𝑂!	324188888888888888]	}!)      (3) 224 
 225 
For each OSSE and each output of the k-fold cross-validation, we estimated a time mean difference between its 226 
pCO2 and NEMO pCO2 at each grid point:   227 

Diffj,i = meanT(pCO2 OSSE j,i - pCO2 NEMO )=(
,
∑ (𝑝𝐶𝑂!	1))2	5,6,% 	− 	𝑝𝐶𝑂!	3241	%),
%	7	( , 228 

where meanT is a time mean over the period, T is a number of time steps, j is an index of the OSSE and i is an 229 
index of output, from 1 to 4. 230 
Further, the maximum absolute value from 4 outputs, maxValuej,was estimated for each OSSE: 231 

maxValuej = maxi(abs(Diffj,i)), 232 
where maxi is a maximum value on i, the index of output, for each fixed j, the OSSE index. The index i of the 233 
maximum absolute value of FFNN outputs is called imax. 234 
The final mean difference meanDj was estimated as: 235 

meanDj = sign(Diffj,i max) * maxValuej,                 (4) 236 
where sign(x) is a function that returns the sign of a value x, -1 or 1. 237 
The STD of the mean difference Diffj,i is estimated for each OSSE as: 238 

STDj = std(Diffj,i ),              (5) 239 
where j is fixed, and all outputs of FFNN i are included in the estimation of STD. 240 
 241 
The time series of the mean value from 4 FFNN outputs for pCO2 were provided per biome, with the maximum 242 
and minimum values from these 4 outputs indicated by shading. The time series of CO2 sea-air flux are shown in 243 
the same way as the ones for pCO2. The sea–air CO2 flux, fgCO2, was calculated after Rödenbeck et al. (2015): 244 

𝑓𝑔𝐶𝑂!	 = 𝑘𝜌𝐿(𝑝𝐶𝑂! − 𝑝𝐶𝑂!,$%&),       (6) 245 
ρ is seawater density and L is the temperature-dependent solubility (Weiss, 1974). k is the piston velocity estimated 246 
as (Wanninkhof, 1992): 247 

𝑘 = 𝛤𝑢!(𝑆𝑐81!/𝑆𝑐9:;)*<.>. 248 

The global scaling factor Γ was estimated following Rödenbeck et al. (2014) with the global mean CO2 piston 249 
velocity equaling 16.5 cm h−1. Sc corresponds to the Schmidt number estimated according to Wanninkhof (1992). 250 
The wind speed was computed from 6-hourly NCEP wind speed data (Kalnay et al., 1996). To simplify the 251 
interpretation of results, the NEMO/PISCES CO2 air-sea flux was also calculated by using formula (6) and NCEP 252 
wind speed.   253 

3 Results 254 
Figure 3 shows the Taylor Diagram (correlation coefficient between reconstructed pCO2 and model output, and 255 
Standard Deviation of reconstructed fields) of 11 OSSEs in the region of 8 biomes (pink) and in each of these 256 
biomes separately (color code corresponds to Fig. 2). The target diagrams per biomes for each OSSE are presented 257 
on Figure 4. Over regions well-covered with observations (biomes 9, 10, 11) results of different OSSEs lie close 258 
to each other. The OSSE 1 (marker symbol “+”; Fig. 3a) that is based only on SOCAT data has a lower correlation 259 
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coefficient over the whole region (0.67, pink) and per biomes (Fig. 3a). Over regions with poor observational 260 
coverage the results from OSSE 1 lie at a distance from results of all other OSSEs. OSSE 1 also shows the largest 261 
normalized RMS differences (uRMSD) (Fig. 4), as exemplified for biome 17 with uRMSD of 17.33 𝜇atm, STD 262 
of 21.11 𝜇atm (compared to 24.03 𝜇atm estimated from NEMO/PISCES data) and bias of -11.63 𝜇atm (all values 263 
in the Fig. 3 and 4 are presented in Tables 3 and 4). The OSSE 2 (based on all Argo data, “O”) and OSSE 3 264 
(combination of Argo and SOCAT data, “X”) provide comparable results (Fig. 3b and c). OSSE 3 tends to have 265 
smaller uRMSD and bias and to lie closer to the STD values from the NEMO/PISCES model (Fig. 4). OSSE 3 is 266 
based on the maximum of pseudo-observations for training and represents most likely an unrealistic endmember. 267 
However, as mentioned before, OSSE 3 is used as the benchmark to find other OSSEs with similar results and 268 
more feasible data coverage.  269 
 270 
OSSE 4 (square) and OSSE 5 (rhombus) are based on OSSE 3, the only difference being the number of Argo data: 271 
OSSE 3, 100%; OSSE 4, 25% and OSSE 5, 10%. The results of OSSEs 4 and 5 are similar to those obtained for 272 
OSSE 3. The largest difference is observed over biome 17 (Fig. 3, Fig. 4i): correlation coefficients are 0.85 (OSSE 273 
3), 0.77 (OSSE 4), 0.75 (OSSE 5); biases are -0.66 𝜇atm, -2.25 𝜇atm, -4.02 𝜇atm; uRMSDs are 10.18 𝜇atm, 11.75 274 
𝜇atm, 11.8 𝜇atm (Tables 3, 4). 275 
 276 
OSSEs 6 (triangle), 7 (inverted triangle), 8 (pentahedron) were trained on SOCAT data complemented with Argo 277 
data in the Southern Hemisphere. In general, the skill scores are lower compared to OSSE 3, especially for OSSE 278 
8 (10% of Argo data in the Southern Hemisphere) where results approach those of OSSE 1 (Fig. 3). Large 279 
differences are obtained for biomes 12 and 17 (Fig. 3, Fig. 4e and i): in biome 12/17, correlation coefficients for 280 
OSSE 6, 7, 8 are 0.64/0.86, 0.54/0.8, 0.52/0.66, respectively, compared to 0.79/0.85 for OSSE 3; uRMSDs are 281 
11.46/10.01 𝜇atm, 13.3/11.03 𝜇atm, 13.87/15.16 𝜇atm compared to 8/10.18 𝜇atm for OSSE 3; biases are 3.82/-282 
0.18 𝜇atm, 3.77/-1.8 𝜇atm, 2. 7/-4.12 𝜇atm compared to -0.14/-0.66 𝜇atm for OSSE 3 (Tables 3, 4). Over biome 283 
12 all OSSEs show STD values lower than the one computed for NEMO/PISCES model output (Table 3). This 284 
could result from the STD of the mean output being slightly lower than the individual STDs for 4 OSSE FFNN 285 
outputs (not shown). However, individual STDs also underestimate the NEMO/PISCES STD which might suggest 286 
that the ensemble of predictors does not properly represent the variability over the Equatorial Atlantic.  287 
 288 
Reconstruction skill scores are improved by the addition of data from mooring stations to OSSEs 6, 7, and 8 in 289 
OSSEs 9 (hexagon), 10 (star) and 11 (triangle centroid) (Fig. 3 and 4, Tables 3 and 4). Over the ensemble of 8 290 
biomes the decrease in the number of Argo data goes along with a general decrease of correlation coefficients, 291 
0.88 (OSSE 9), 0.85 (OSSE 10), 0.83 (OSSE 11), and an increase of uRMSDs, 8.37 𝜇atm (OSSE 9), 8.71 𝜇atm 292 
(OSSE 10), 9.16 𝜇atm (OSSE 11) (Fig. 3, 4a, Tables 3 and 4). Statistics are slightly worse for OSSE 11 compared 293 
to OSSEs 9 and 10, which have comparable results. While OSSE 10 shows a smaller correlation coefficient over 294 
the whole region compared to OSSE 9, its STD (24.89 𝜇atm) lies closer to the NEMO/PISCES STD (25.34 𝜇atm) 295 
and it has a smaller bias (-0.39 𝜇atm). Similar results are found over other biomes: in biome 12, OSSEs 9 and 10 296 
have correlation coefficients close to each other (0.68 and 0.63, respectively) and larger than for OSSEs 6, 7 and 297 
8, while for OSSE 11 it is 0.58. The STDs are almost equal (OSSE 9, 12.98 𝜇atm and OSSE 10, 12.9 𝜇atm) and 298 
uRMSDs have a small difference compared to the one computed for OSSE 3 (8 𝜇atm) (Tables 3, 4). Thus, the 299 
remainder of the discussion will focus on OSSE 10 in comparison to OSSEs 1 and 3. OSSE 10 provides comparable 300 
results to OSSE 9 and is in good agreement with OSSE 3 while using less data for training. Figures 3 and 4 are 301 
summarized in Figure S1 of the Supplementary Material.  302 
 303 
Figures 5a, b and c present the differences between reconstructed pCO2 distributions (Fig.5 a – OSSE 1; b – OSSE 304 
3; c – OSSE 10) and NEMO/PISCES output. The maximum in absolute value from 4 outputs for each OSSE FFNN 305 
is shown (Eq. 4). There is a large improvement in the Southern Hemisphere for OSSEs 3 (Fig. 5b) and 10 (Fig. 306 
5c) compared to OSSE 1 (Fig. 5a): the difference varies mostly between -3 and 3 𝜇atm for OSSEs 3 and 10, and 307 
between -15 and 15 𝜇atm for OSSE 1 (Fig. 5). However, the average values of the mean over biomes are not 308 
always better for OSSE 3 (Table 5): in biome 13, OSSE 1 shows a small positive difference of 0.11 𝜇atm, while 309 
for OSSE 3 negative difference of -0.32 𝜇atm is computed, exceeding 0.11 𝜇atm in its absolute value. This is due 310 
to error compensation by averaging, the reduction of the positive difference in the middle of biome 13 in OSSE 3 311 
increases the impact of negative small differences in this region. Error compensation also contributes to positive 312 
biases computed for OSSEs 6-11 for biome 12 (Table 4). Additional data from Argo floats correct the negative 313 
bias in the southern part of the biome close to the African coast (Fig. 5c). Thus, the strong positive bias in the 314 
northern part becomes dominant and results in a total positive bias. A large improvement is obtained in biomes 16 315 
and 17: from -8.04 𝜇atm for OSSE 1 to -1.89 𝜇atm and -1.91 𝜇atm for OSSEs 3 and 10 in biome 16, and from -316 
14.9 𝜇atm for OSSE 1 to -2.05 𝜇atm and -1.55 𝜇atm for OSSEs 3 and 10 in biome 17 (Table 5). Over the whole 317 
region, 70ºW-30ºE 80ºS-80ºN, OSSE 1 has a mean difference of -6.57 𝜇atm, it is -1.7 𝜇atm and -2.34 𝜇atm for 318 
OSSEs 3 and 10. The difference between OSSEs 3 and 10 results from the Labrador Sea and Baffin Bay: OSSE 319 
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10 has fewer data in this region compared to the OSSE 3. However, there is an improvement in OSSE 10 compared 320 
to OSSE 1 and 3 in the Greenland Sea (Fig. 5). It results from the addition of mooring data in the Greenland Sea 321 
region (Fig. 1c). 322 
 323 
Figures 5d, e and f present the standard deviations (STD) of differences for all 4 outputs for each OSSE FFNN 324 
(Fig.5 d – OSSE 1; e – OSSE 3; f – OSSE 10) (Eq. 5). Over most of the Atlantic Ocean STD varies between 0 and 325 
10 𝜇atm for OSSEs 3 and 10. In each case there is a strong STD along the coasts and in the Labrador Sea, as well 326 
as the Baffin Bay. In general, the mean value of STD tends to decrease (Table 5) from OSSE 1 to OSSEs 3 and 327 
10. In the Southern Hemisphere STD reaches up to 30 𝜇atm (Figures 5d, e and f)) when only SOCAT data are 328 
used in the FFNN algorithm (OSSE 1). It is significantly reduced in response to the addition of float data in OSSEs 329 
3 and 10 with also less spatial variability. The results for other OSSEs are added to the Supplementary material 330 
(Table S2, Fig. S2, S3). 331 
 332 
Figure 6 shows the correlation between the mean value of 4 OSSEs outputs and NEMO/PISCES pCO2 (a - OSSE 333 
1, b - OSSE 3, c - OSSE 10). The additional data from Argo floats and mooring stations increase the correlation 334 
coefficient from 0.68 in the case of OSSE 1 (SOCAT data only) to 0.86 and 0.85 in the case of OSSEs 3 and 10 335 
(Table 6). A higher correlation was also obtained for these two OSSEs compared to OSSE 1 over the region 336 
covering the Greenland Sea, the Norwegian Sea and Barents Sea (mostly biome 9). In the Southern Hemisphere 337 
the correlation with NEMO/PISCES pCO2 is also larger when Argo data are included, especially in biomes 16 and 338 
17: 0.7 and 0.57 for OSSE 1, 0.83 and 0.85 for OSSE 3, as well as 0.78 and 0.89 for OSSE 10 (Table 6). However, 339 
there is a low correlation along the African coasts which is in agreement with our previous results for mean 340 
difference and STD (Fig. 5). It reflects the predominantly open ocean data used for this exercise. A well-341 
pronounced decrease in correlation is observed for biome 15 (Subtropical seasonally stratified Southern Ocean). 342 
Such a decrease can result from the spatial distribution of data or from the predictor data set. We will discuss it 343 
further in the next section. The results for other OSSEs are presented in the Supplementary material (Table S3, 344 
Fig. S4). 345 
 346 
In Figure 7, time series of pCO2 for OSSEs 1, 3 and 10 are compared to corresponding NEMO/PISCES model 347 
output. For each OSSE, the mean pCO2 from 4 FFNN outputs is shown, as well as the mean bias (OSSE - 348 
NEMO/PISCES). Figure 7a and b presents the pCO2 time series over the period of reconstruction 2008-2010 for 349 
OSSE 1, 3, 10 compared to NEMO/PISCES pCO2 used as reference (black) over all biomes. For OSSE 1 (SOCAT 350 
data only) a large difference and an underestimation of reconstructed pCO2 (blue) compared to NEMO/PISCES 351 
pCO2 (black) are found: the maximum error is up to -10 𝜇atm (Fig. 7b). To the contrary, OSSEs 3 and 10 show a 352 
good agreement with NEMO/PISCES model output. Averages of pCO2 over the 8 biomes are 372.18 𝜇atm for 353 
OSSE 3, 372.26 𝜇atm for OSSE 10 and 368.39 𝜇atm for OSSE 1, compared to 372.65 𝜇atm for NEMO/PISCES 354 
(Table 7). The experiment corresponding to the BGC-Argo distribution target over the entire Atlantic basin, OSSE 355 
4 (Fig. S8, S9), has a basin-wide average pCO2 equal to 371.8 𝜇atm (Table 7). This corresponds to a larger 356 
difference with NEMO/PISCES (-0.84 𝜇atm) compared to OSSEs 3 and 10. 357 
 358 
Panels (c) to (h) of Figure 7 illustrate time series of reconstructed pCO2 for biomes with varying data coverage. 359 
Biome 11, the Subtropical permanently stratified North Atlantic, (Figure 7c and d) is well covered by data. All 360 
three OSSEs yield pCO2 reconstructions that are in good accordance with the NEMO/PISCES reference. The 361 
amplitude and the phasing of the seasonal cycle are well reproduced. The bias varies within a range of +/-5 𝜇atm 362 
for OSSEs 3 and 10. A predominantly negative bias is found for OSSE 1 with values as high as -10 𝜇atm. The 363 
pCO2 averaged over biome 11 for OSSE 10 is close to NEMO/PISCES with, respectively 389.39 𝜇atm and 390.11 364 
𝜇atm (Table 7). OSSE 1 yields a biome-averaged pCO2 equal to 387.11 𝜇atm, while it is 389.39 𝜇atm for the OSSE 365 
3. 366 
 367 
Biome 13, the Subtropical permanently stratified South Atlantic, (Figure 7e and f) corresponds to a region with a 368 
low data coverage. This region has a dynamic similar to biome 11 in the Northern Hemisphere, however the data 369 
coverage in biome 13 represents only 15% of data coverage in biome 11 (Fig. S5). We observe a large difference 370 
between pCO2 reconstructed by OSSE 1 (blue) and NEMO/PISCES (black). While the phasing of the reconstructed 371 
seasonal cycle is satisfying, it is noisy with a systematic overestimation in spring by up to 18 𝜇atm (Table 7). 372 
However, the total averaged pCO2 over biome 13 for OSSE 1 is close to the one of NEMO/PISCES: 391.66 𝜇atm, 373 
respectively 389.54 𝜇atm.  The preceding suggests that while the variability of the predictors (mainly SST) is 374 
sufficient to constrain at first order the biome-average pCO2 and the phasing of the seasonal cycle, an improved 375 
coverage by in situ observations is needed for a smooth reconstruction of the seasonal cycle and its amplitude. 376 
Reconstructions are largely improved by the addition of data from Argo floats (OSSE 3) and moorings (OSSE 10). 377 
Biases mostly range between -3 and 3 𝜇atm  for these OSSEs.  378 
 379 
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The Southern Ocean Ice biome (biome 17) is characterized by a sparse data coverage and a bias towards the ice-380 
free season. The results for biome 17 are presented in Figure 7g and h. OSSE 1 underestimates the pCO2 in this 381 
region over the full seasonal cycle. The maximum difference is obtained in September-October, which also 382 
corresponds to the months with the lowest number of available observations (Fig. S5). The biome-wide average is 383 
351.44 𝜇atm, -11.63 𝜇atm below the NEMO/PISCES reference. The reconstruction is much improved for OSSEs 384 
3 and 10, both for the phasing and amplitude of the seasonal cycle, as well as for the biome-wide averages. The 385 
latter are 362.42 𝜇atm and 362.87 𝜇atm, respectively for OSSE 3 and OSSE 10, compared to 363.08 𝜇atm 386 
computed for NEMO/PISCES (Table 7).  387 
Results for all OSSEs and for all biomes are included in the Supplementary material (Table S4, Fig. S6 – S11). 388 
 389 
Figure 8 shows the sea-air CO2 flux time series (negative, uptake of CO2 by the ocean). Over all biomes and in the 390 
region 70ºW-30ºE 80ºS-80ºN, OSSEs 3 (red) and 10 (green) show a good agreement with NEMO/PISCES fgCO2: 391 
the differences vary around zero and mostly do not exceed ± 0.3 Pg/yr (Fig. 8b, d, f and h). The total averaged 392 
fgCO2 for OSSE 3 and 10 are -0.74 Pg/yr compared to -0.7 Pg/yr in NEMO/PISCES, while for OSSE 1 it equals 393 
-0.99 Pg/yr (Table 8). The mean value over biome 11 is slightly better for OSSE 10 than for OSSE 3 compared to 394 
NEMO/PISCES: -0.06 Pg/yr (OSSE 10), -0.07 (OSSEs 3) and -0.03 Pg/yr for NEMO/PISCES. The OSSE 1 (blue) 395 
shows again a large difference, it overestimates the ocean sink computed by the NEMO/PISCES model mostly 396 
during the whole period (Fig. 8b). In the well data-covered biome 11, OSSE 1 also has a tendency to overestimate 397 
the sea-air CO2 flux (Fig. 8d): the total averaged fgCO2 is -0.18 Pg/yr for OSSE 1 while it is -0.03 Pg/yr in the 398 
model. While the phasing and amplitude of the seasonal cycle of sea-air fluxes of CO2 are well reproduced over 399 
biome 13 by OSSEs 3 and 10, the fgCO2 reconstructed by OSSE 1 is noisy with differences with respect to the 400 
model reference of up 1 Pg/yr (Fig. 8e). The maximum differences between OSSE 1 and NEMO/PISCES are 401 
systematically found in January and June, the months with the lowest number of available observations for training 402 
(Fig. S5). The biome-wide mean sea-air flux of CO2 is close to zero in NEMO/PISCES: -0.004 Pg/yr. This slight 403 
uptake of CO2 by the ocean in the model reference is not reproduced by the OSSEs which yield a source over 404 
biome 13, albeit of variable strength: 0.19 Pg/yr for OSSE 1, 0.05 Pg/yr for OSSE 3 and 0.08 Pg/yr for OSSE 10. 405 
Over the Southern Ocean biome 17 (Fig.8g and h) OSSE 1 (blue) overestimates fgCO2 by -0.65 g/yr (Table 8). 406 
OSSE 10 (green) reproduces the local maxima and minima of the fgCO2 time series slightly better than OSSE 3, 407 
with average differences equaling -0.03 Pg/yr and -0.06 Pg/yr, respectively. Results for all OSSEs and for all 408 
biomes can be found in the Supplementary material (Table S5, Fig. S12 - S17). 409 
 410 
The relationship between the average number of Argo floats (5-day period) and the error in fgCO2 estimates (Table 411 
8, Table S5) is shown in Figure 9 for all biomes (a), biome 11 (b), biome 13 (c) and biome 17 (d). Figure 9a 412 
illustrates how the increase of the number of floats usually yields a reduction in the error of fgCO2 estimates. 413 
Considering the whole region, OSSE 10 provides the best results with less Argo floats (-0.04 PgC/yr and 48 Argo 414 
floats). At the biome-scale, the addition of floats does, however, not systematically reduce the error. This holds 415 
for biome 11 (Fig. 9b), which is well-covered by observations, but also for biome 13 with a much sparser data-416 
coverage (Fig. 9d). For biome 11, OSSE 10 has the best trade-off between error reduction and number of floats. 417 
The largest error (0.22 PgC/yr) is obtained for OSSE 2 (only Argo data). It suggests that the period chosen for this 418 
study is too short to adequately capture the seasonal variability. This hypothesis is supported by the fact that while 419 
OSSE 3 and OSSE 2 share the same number of Argo data, OSSE 3 is further constrained by SOCAT data that 420 
cover the period 2001-2010. These additional data from SOCAT introduce the information needed for the 421 
reconstruction of the seasonal cycle. For biome 13 (Fig. 9c), the combination of SOCAT data and Argo float data 422 
improves estimates of fgCO2.  The errors in OSSE 10 are comparable to OSSE 3 (benchmark), 0.08 PgC/yr (OSSE 423 
10) and 0.06 PgC/yr (OSSE 3). The error is even lower for OSSE 11 (0.04 PgC/yr), the experiment with the 424 
smallest number of Argo floats (19), than for OSSE 3. Unfortunately, results provided by OSSE 11 are less good 425 
over the remainder of the biomes. The tendency for a decrease of fgCO2 error with an increase of the number of 426 
Argo floats is confirmed for biome 17 (Fig. 9d). The additional data from mooring stations (OSSE 9, 10 and 11) 427 
improve in particular OSSEs with smaller numbers of floats. An error of -0.03 PgC/yr is computed for OSSE 10 428 
(49 floats) over biome 17. The results for other biomes can be found in the Supplementary material (Fig. S18).  429 

4 Summary and Conclusion 430 
The aim of this work was to identify an optimal observational network of pCO2 over the Atlantic Ocean. The 431 
analysis was based on results obtained with a Feed-Forward Neural Network model trained on the SOCAT 432 
database. The SOCAT database has sparse coverage in the Southern Hemisphere. The approach consisted in 433 
adding the position of mooring data and Argo trajectories in the Atlantic Ocean to find an optimal distribution and 434 
combination of data to reconstruct pCO2 with a good accuracy. The advantage of the SOCAT database is the long 435 
time period covered by its records, which allows to reconstruct the interannual variability with a good accuray. 436 
However, its data coverage is biased towards the North Atlantic, which leads to larger reconstruction errors over 437 
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the South Atlantic by the Neural Network. As a long-term perspective, the inclusion of data from Argo floats will 438 
contribute to a more homogenous data distribution and provide better spatial coverage. The Argo floats and 439 
moorings used here do not currently provide pCO2 measurements, hence only their positions were used to build 440 
OSSEs. A series of experiments were performed using outputs from the NEMO/PISCES model. The model 441 
simulations were sub-sampled at co-localized sites of observing systems for all predictors (SSS, SST, SSH, CHL, 442 
MLD, pCO2, atm) used in the FFNN and the target (pCO2) to create pseudo-observations with a 5-day time step. 443 
These experiments should be useful for the planning of future deployments of BGC-Argo floats (Biogeochemical-444 
Argo Planning Group, 2016) and moorings equipped with the sensors to measure pCO2 or CO2 fugacity. 445 
 446 
The results suggest that the addition of data from Argo floats could significantly improve the accuracy of FFNN-447 
based ocean pCO2 reconstructions over the Atlantic Ocean and the Atlantic sector of the Southern Ocean compared 448 
to the case when only SOCAT data are used (OSSE 1). However, even with an improved coverage over the open 449 
ocean, additional observations are required in coastal regions and shelf seas which are not accessible to floats, as 450 
well as in regions with a strong seasonal variability of pCO2 and all predictors. This is exemplified by OSSE 2, 451 
the experiment based on all Argo data, which yields high RMSDs in biome 9, the Subpolar seasonally stratified 452 
North Atlantic (Fig. 3, Fig.4b, Table 4). The RMSD of 17.1 𝜇atm reflects the poor coverage of this region by Argo 453 
floats (Fig. 1b), in particular the Greenland Sea and the North Sea, with a large part of the latter not suitable for 454 
the deployment of floats. The combination of SOCAT data and Argo floats (OSSE 3) improves the reconstruction 455 
with a RMSD reduced to 9.59 𝜇atm (Fig. 4b, Table 4).     456 

The reduction of the number of Argo data used in our experiments slightly decreases the accuracy (Fig. 3 and 4, 457 
Tables 3 and 4). A lower number of Argo data corresponds, however, to a more realistic distribution of instruments 458 
and to the target of the global BGC-Argo network. The results are still comparable to OSSE 3. The best 459 
compromise between the statistics yielded by the comparison between reconstructed pCO2 and NEMO/PISCES 460 
outputs, as well as the feasibility of a future observation network is found for OSSE 10. In this experiment SOCAT 461 
data are combined with simulated mooring data and 25% of the initial distribution of Argo floats placed only in 462 
the Southern Hemisphere (around 49 floats with a 5-day sampling period). The use of only SOCAT data results in 463 
a correlation coefficient of 0.67 compared to NEMO/PISCES output and a standard deviation of 26.08 𝜇atm (25.34 464 
𝜇atm for NEMO/PISCES) over the region of study. While the successful OSSE 10 has a correlation coefficient of 465 
0.85 and a standard deviation of 24.89 𝜇atm. These results are close to the unrealistic benchmark case with total 466 
Argo float distribution over 2008-2010: 0.87 and 23.79𝜇atm. The total pCO2 over the whole region is also close 467 
to NEMO/PISCES, ~370 𝜇atm and ~371 𝜇atm, respectively. The air-sea flux fgCO2 is -0.83 Pg/yr (OSSE 10) and 468 
-0.76 Pg/yr (NEMO). The bias in sea-air CO2 fluxes compared to NEMO/PISCES is reduced by 74% in OSSE 10 469 
compared to OSSE 1 (fgCO2 is -1.03 Pg/yr). 470 

The OSSE 10 network could be further improved by instrumenting the Baffin Bay, the Labrador Sea, the 471 
Norwegian Sea, as well as regions along the coast of Africa (10ºN to 20ºS), all regions with pronounced biases in 472 
all OSSEs, with moorings or gliders as well as sail-drones and sail buoys along the shelf break and on the 473 
continental shelf.  474 
 475 
The inclusion of errors from in situ measurements is one of the next steps of this work. The real measurements 476 
contain instrumental and representation errors. The inclusion of errors in pseudo-observations will help to estimate 477 
the impact of observations on the reliability of OSSEs presented in this work. It will include the errors for predictor 478 
values (SSS, SST, SSH, CHL, MLD, pCO2, atm) that are measured directly or derived from remote sensing (e.g., 479 
SST, chlorophyll, SSH), as well as the errors related to the computation of pCO2 from pH and alkalinity. The new 480 
FFNN runs could provide important information on the effect of biases from observational datasets and identify 481 
predictors or targets that have large errors and that must be corrected. The consistent introduction of error estimates 482 
for each predictor will provide this information.   483 
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 641 
Figure 1: Spatial distribution of data sets used for training (number of measurements per grid points and 5-day time 642 
step): (a) SOCAT data for the period 2001-2010; (b) synthetic Argo data for the period 2008-2010; (c) mooring positions 643 
modelled for the period 2008-2010. 644 
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 645 
Figure 2: Map of biomes (after Rödenbeck et al., 2015; Fay and McKinley, 2014) focused on the region [70°W-30°E] 646 
and used for comparison between OSSEs. 647 
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 648 
Figure 3: Taylor Diagram of 11 OSSEs summarized in Table 2; the colour code corresponds to Fig. 2, the purple colour 649 
represents the whole of the 8 biomes: (a) - OSSE 1: SOCAT data only; (b) - OSSE 2: synthetic Argo data only; (c) - 650 
OSSE 3: SOCAT and synthetic Argo data; (d) - OSSE 4: SOCAT data and 25% of original synthetic Argo data; (e) - 651 
OSSE 5: SOCAT data and 10% of original synthetic Argo data; (f) - OSSE 6: SOCAT data and synthetic Argo data in 652 
the Southern Hemisphere; (g) - OSSE 7: SOCAT data and 25% of original synthetic Argo data in the Southern 653 
Hemisphere; (h) - OSSE 8: SOCAT data and 10% of original synthetic Argo data in the Southern Hemisphere; (i) - 654 
OSSE 9: SOCAT data, synthetic Argo data in the Southern Hemisphere and data from mooring stations; (j) - OSSE 655 
10: SOCAT data, 25% of original synthetic Argo data in the Southern Hemisphere and data from mooring stations; (k) 656 
- OSSE 11: SOCAT data, 10% of original synthetic Argo data in the Southern Hemisphere and data from mooring 657 
stations.  658 
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659 
Figure 4: Target Diagram per biome for 11 OSSEs, the colour code corresponds to Fig. 2, the purple colour represents 660 
the whole of the 8 biomes: (a) - all 8 biomes, (b) - biome 9 (Subpolar seasonally stratified North Atlantic), (c) - biome 10 661 
(Subtropical seasonally stratified North Atlantic), (d) - biome 11 (Subtropical permanently stratified North Atlantic), 662 
(e) - biome 12 (Equatorial Atlantic), (f) - biome 13 (Subtropical permanently stratified South Atlantic), (g) - biome 15 663 
(Subtropical seasonally stratified Southern Ocean), (h) - biome 16 (Subpolar seasonally stratified Southern Ocean), (i) 664 
- biome 17 (Southern Ocean ice). OSSE 1: SOCAT data only; OSSE 2: synthetic Argo data only; OSSE 3: SOCAT and 665 
synthetic Argo data; OSSE 4: SOCAT data and 25% of original synthetic Argo data; OSSE 5: SOCAT data and 10% 666 
of original synthetic Argo data; OSSE 6: SOCAT data and synthetic Argo data in the Southern Hemisphere; OSSE 7: 667 
SOCAT data and 25% of original synthetic Argo data in the Southern Hemisphere; OSSE 8: SOCAT data and 10% of 668 
original synthetic Argo data in the Southern Hemisphere; OSSE 9: SOCAT data, synthetic Argo data in the Southern 669 
Hemisphere and data from mooring stations; OSSE 10: SOCAT data, 25% of original synthetic Argo data in the 670 
Southern Hemisphere and data from mooring stations; OSSE 11: SOCAT data, 10% of original synthetic Argo data in 671 
the Southern Hemisphere and data from mooring stations. OSSEs 1, 3 and 10 are in bold as we focus our detailed 672 
comparison on these three OSSEs. 673 
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 674 
Figure 5: Differences between OSSE FFNN outputs and NEMO/PISCES pCO2 and its standard deviation (STD) in 675 
𝜇atm: (a), (b), (c) - its maximum and minimum values from 4 outputs for each OSSE FFNN, Eq. (4); (g), (h) - standard 676 
deviation of differences for all 4 outputs for each OSSE FFNN, Eq. (5). (a), (d) – OSSE 1: SOCAT data only; (b), (e) – 677 
OSSE 3: SOCAT and synthetic Argo data; (c), (f) – OSSE 10: SOCAT data, 25% of original synthetic Argo data in the 678 
Southern Hemisphere and data from mooring stations. Contours and numbers on maps correspond to biomes.  679 
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 680 
 681 
Figure 6: Correlation coefficient between OSSE FFNN outputs and NEMO/PISCES pCO2: (a) - OSSE 1: SOCAT data 682 
only, (b) - OSSE 3: SOCAT and synthetic Argo data, (c) - OSSE 10: SOCAT data, 25% of original synthetic Argo data 683 
in the Southern Hemisphere and data from mooring stations. Contours and numbers on maps correspond to biomes.  684 
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685 
Figure 7: (a), (c), (e) - mean of 4 FFNN outputs for OSSE 1 (blue) (SOCAT data only), 3 (red) (SOCAT and synthetic 686 
Argo data), 10 (green) (SOCAT data, 25% of original synthetic Argo data in the Southern Hemisphere and data from 687 
mooring stations); shading corresponds to the maximum and minimum values from 4 FFNN outputs for each OSSE. 688 
Black curve - NEMO/PISCES pCO2. (b), (d), (f) - mean of differences of 4 FFNN outputs between OSSE 1 (blue), 3 689 
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(red), 10 (green) and NEMO/PISCES pCO2; shading corresponds to the maximum and minimum values of differences 690 
from 4 FFNN outputs for each OSSE. (a), (b) - estimates are available over all biomes presented in Figure 2 except 691 
biome 8; (c), (d) - biome 11 (Subtropical permanently stratified North Atlantic); (e), (f) - biome 13 (Subtropical 692 
permanently stratified South Atlantic); (g), (h) - biome 17 (Southern Ocean ice).  693 
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Figure 8: (a), (c), (e) - mean of fgCO2 from 4 FFNN outputs for OSSE 1 (blue) (SOCAT data only), 3 (red) (SOCAT and 695 
synthetic Argo data), 10 (green) (SOCAT data, 25% of original synthetic Argo data in the Southern Hemisphere and 696 
data from mooring stations); shading corresponds to the maximum and minimum values from 4 FFNN fgCO2 estimates 697 
for each OSSE. Black curve - NEMO/PISCES fgCO2. (b), (d), (f) - mean of differences of 4 FFNN outputs between 698 
OSSE 1 (blue), 3 (red), 10 (green) fgCO2 and NEMO/PISCES fgCO2; shading corresponds to the maximum and 699 
minimum values of differences from 4 FFNN fgCO2 for each OSSE. (a), (b) - estimates are available for all biomes 700 
presented in Figure 2 except biome 8; (c), (d) - biome 11 (Subtropical permanently stratified North Atlantic); (e), (f) - 701 
biome 13 (Subtropical permanently stratified South Atlantic); (g), (h) - biome 17 (Southern Ocean ice). 702 

 703 
Figure 9: Averaged number of Argo profiles per 5-day time step over 2008-2010 versus averaged differences between 704 
each OSSE fgCO2 and NEMO fgCO2 (in Pg/yr), the colour code corresponds to Fig. 2, the purple colour represents the 705 
whole of the 8 biomes. (a) - all biomes; (b) - biome 11 (Subtropical permanently stratified North Atlantic); (c) - biome 706 
13 (Subtropical permanently stratified South Atlantic); (d) - biome 17 (Southern Ocean ice). OSSE 1: SOCAT data 707 
only; OSSE 2: synthetic Argo data only; OSSE 3: SOCAT and synthetic Argo data; OSSE 4: SOCAT data and 25% of 708 
original synthetic Argo data; OSSE 5: SOCAT data and 10% of original synthetic Argo data; OSSE 6: SOCAT data 709 
and synthetic Argo data in the Southern Hemisphere; OSSE 7: SOCAT data and 25% of original synthetic Argo data 710 
in the Southern Hemisphere; OSSE 8: SOCAT data and 10% of original synthetic Argo data in the Southern 711 
Hemisphere; OSSE 9: SOCAT data, synthetic Argo data in the Southern Hemisphere and data from mooring stations; 712 
OSSE 10: SOCAT data, 25% of original synthetic Argo data in the Southern Hemisphere and data from mooring 713 
stations; OSSE 11: SOCAT data, 10% of original synthetic Argo data in the Southern Hemisphere and data from 714 
mooring stations. OSSEs 1, 3 and 10 are in bold as they represent the main OSSEs of our comparisons. 715 

 716 

 717 

 718 
 719 
Table 1: Information on Observation System Simulation Experiments. 720 

Data OSSE number Period for training averaged number of Argo 
floats per 5 days 
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SOCAT OSSE 1 2001-2010 0 

Argo (3ºx3º) OSSE 2 2008-2010 404 

SOCAT + Argo (3ºx3º) OSSE 3 2001-2010 (SOCAT) + 
2008-2010 (Argo) 

403 

SOCAT + Argo 25% 
(3ºx3º) 

OSSE 4 2001-2010 (SOCAT) + 
2008-2010 (Argo) 

101 

SOCAT + Argo 10% 
(3ºx3º) 

OSSE 5 2001-2010 (SOCAT) + 
2008-2010 (Argo) 

40 

SOCAT + Argo South 
(3ºx3º) 

OSSE 6 2001-2010 (SOCAT) + 
2008-2010 (Argo South) 

195 

SOCAT + Argo 25% 
South (3ºx3º) 

OSSE 7 2001-2010 (SOCAT) + 
2008-2010 (Argo South) 

48 

SOCAT + Argo 10% 
South (3ºx3º) 

OSSE 8 2001-2010 (SOCAT) + 
2008-2010 (Argo South) 

19 

SOCAT + Argo S + 
Moorings 

OSSE 9 2001-2010 (SOCAT) + 
2008-2010 (Argo South, 
Moorings) 

195 

SOCAT + Argo S 25% + 
Moorings 

OSSE 10 2001-2010 (SOCAT) + 
2008-2010 (Argo South, 
Moorings) 

48 

SOCAT + Argo S 10% + 
Moorings 

OSSE 11 2001-2010 (SOCAT) + 
2008-2010 (Argo South, 
Moorings) 

19 

 721 
Table 2: Biomes from Fay and McKinley (2014) used for time series comparison (Fig. 2).  722 

Number Name 

8 (Omitted) North Atlantic ice 

9 Subpolar seasonally stratified North Atlantic 

10 Subtropical seasonally stratified North Atlantic 

11 Subtropical permanently stratified North Atlantic 

12 Equatorial Atlantic 

13 Subtropical permanently stratified South Atlantic 

15 Subtropical seasonally stratified Southern Ocean 

16 Subpolar seasonally stratified Southern Ocean 

17 Southern Ocean ice 

 723 
Table 3: Correlation coefficient and Standard Deviation (𝜇atm) of 11 OSSEs from Table 2 estimated over 8 Atlantic 724 
Ocean biomes and at basin scale; the results are presented in Fig. 3.  OSSEs 1, 3 and 10 are in bold as we focus our 725 
detailed comparison on these three OSSEs. 726 



23 

 727 

Biome 
 
OSSE 

All 
biomes 

9 10 11 12 13 15 16 17 

NEMO 
STD 

25.34 28.17 17.29 19.59 17.89 18.84 15.20 10.79 24.03 

OSSE 1 0.67/ 
26.08 

0.88/ 
27.44 

0.92/ 
16.67 

0.89/ 
18.42 

0.46/ 
12.48 

0.68/ 
16.11 

0.31/ 
15.28 

0.70/ 
11.76 

0.57/ 
21.11 

OSSE 2 0.89/ 
22.82 

0.91/ 
22.28 

0.96/ 
17.09 

0.97/ 
19.14 

0.83/ 
15.42 

0.92/ 
18.19 

0.76/ 
8.89 

0.87/ 
9.43 

0.90/ 
19.56 

OSSE 3 0.87/ 
23.79 

0.93/ 
25.78 

0.96/ 
17.00 

0.95/ 
19.03 

0.79/ 
14.33 

0.91/ 
17.91 

0.73/ 
11.21 

0.83/ 
10.55 

0.85/ 
21.06 

OSSE4 0.82/ 
23.99 

0.92/ 
25.91 

0.95/ 
17.11 

0.93/ 
18.31 

0.70/ 
12.13 

0.88/ 
17.62 

0.63/ 
11.62 

0.80/ 
10.99 

0.77/ 
21.2 

OSSE 5 0.80/ 
24.18 

0.92/ 
26.48 

0.94/ 
17.16 

0.92/ 
18.83 

0.65/ 
11.39 

0.86/ 
16.95 

0.59/ 
11.86 

0.75/ 
11.3 

0.75/ 
20.58 

OSSE 6 0.85/ 
24.72 

0.89/ 
27.40 

0.93/ 
16.66 

0.91/ 
18.73 

0.64/ 
12.34 

0.91/ 
17.51 

0.72/ 
11.56 

0.82/ 
10.84 

0.86/ 
22.41 

OSSE 7 0.82/ 
24.48 

0.89/ 
27.87 

0.93/ 
16.32 

0.91/ 
18.19 

0.54/ 
11.17 

0.88/ 
17.33 

0.66/ 
11.71 

0.80/ 
11.12 

0.80/ 
20.90 

OSSE 8 0.77/ 
25.10 

0.89/ 
27.90 

0.93/ 
16.19 

0.91/ 
18.3 

0.52/ 
11.66 

0.86/ 
16.92 

0.57/ 
11.74 

0.79/ 
11.17 

0.66/ 
22.63 

OSSE 9 0.88/ 
24.51 

0.92/ 
28.17 

0.95/ 
16.11 

0.94/ 
17.67 

0.68/ 
12.98 

0.92/ 
17.84 

0.72/ 
11.31 

0.84/ 
10.89 

0.91/ 
21.63 

OSSE 10 0.85/ 
24.89 

0.91/ 
28.28 

0.94/ 
17.10 

0.94/ 
18.41 

0.63/ 
12.90 

0.88/ 
17.36 

0.65/ 
11.35 

0.78/ 
11.01 

0.89/ 
22.25 

OSSE 11 0.83/ 
24.67 

0.91/ 
28.39 

0.93/ 
16.4 

0.93/ 
18.10 

0.58/ 
13.20 

0.86/ 
16.79 

0.56/ 
11.29 

0.74/ 
10.96 

0.88/ 
21.92 

 728 
Table 4: Normalised RMS differences and Biases (𝜇atm) of 11 OSSEs from Table 2 estimated over 8 Atlantic Ocean 729 
biomes and at basin scale; the results are presented in Fig. 4. OSSEs 1, 3 and 10 are in bold as we focus our detailed 730 
comparison on these three OSSEs.  731 

Biome 
 
OSSE 

All 
biomes 

9 10 11 12 13 15 16 17 

OSSE 1 14.13/ 
-4.25 

11.63/ 
-3.26 

6.32/ 
-0.39 

6.63/ 
-2.93 

15.41/ 
0.17 

12.5/ 
2.12 

15.97/ 
1.32 

8.08/ 
-5.41 

17.33/ 
-11.63 

OSSE 2 10.11/ 
0.36 

17.10/ 
-2.02 

4.21/ 
0.09 

3.94/ 
0.19 

7.26/ 
0.22 

4.98/ 
0.38 

12.63/ 
-0.43 

4.31/ 
-0.21 

10.00/ 
2.50 

OSSE 3 8.32/ 
-0.46 

9.59/ 
-0.32 

4.56/ 
-0.30 

4.24/ 
-0.71 

8.00/ 
-0.14 

5.73/ 
0.57 

11.87/ 
-0.85 

4.20/ 
-0.97 

10.18/ 
-0.66 

OSSE 4 9.40/ 10.08/ 5.08/ 5.01/ 10.41/ 6.96/ 12.59/ 4.87/ 11.75/ 
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-0.84 -0.53 -0.05 -0.88 -0.29 0.85 -0.40 -0.93 -2.25 

OSSE 5 9.82/ 
-1.46 

10.43/ 
-0.83 

5.50/ 
0.50 

5.35/ 
-0.98 

11.11/ 
-0.25 

7.93/ 
0.85 

12.72/ 
-0.54 

5.71/ 
-1.69 

11.80/ 
-4.02 

OSSE 6 9.12/ 
-0.54 

11.40/ 
-2.57 

5.93/ 
0.02 

6.48/ 
-1.86 

11.46/ 
3.82 

5.75/ 
0.53 

12.06/ 
-0.51 

4.35/ 
-0.56 

10.01/ 
-0.18 

OSSE 7 9.75/ 
-1.22 

11.79/ 
-2.64 

6.16/ 
-0.10 

6.26/ 
-2.68 

13.30/ 
3.77 

6.90/ 
0.58 

11.97/ 
-0.56 

4.90/ 
-1.68 

11.03/ 
-1.80 

OSSE 8 11.36/ 
-1.89 

11.62/ 
-2.59 

6.02/ 
0.49 

5.91/ 
-2.80 

13.87/ 
2.70 

7.84/ 
0.90 

12.55/ 
-0.89 

5.42/ 
-2.03 

15.16/ 
-4.12 

OSSE 9 8.37/ 
-0.44 

10.58/ 
-2.52 

5.47/ 
-0.001 

5.13/ 
-1.33 

11.34/ 
2.91 

5.37/ 
0.41 

12.18/ 
-0.88 

4.16/ 
-0.75 

8.51/ 
0.37 

OSSE 10 8.71/ 
-0.39 

10.79/ 
-2.35 

5.54/ 
0.79 

4.94/ 
-0.71 

12.64/ 
3.35 

6.82/ 
1.01 

12.25/ 
-0.92 

4.89/ 
-0.90 

8.61/ 
-0.21 

OSSE 11 9.16/ 
-1.18 

10.85/ 
-3.21 

5.91/ 
-0.68 

5.32/ 
-1.97 

14.28/ 
2.41 

7.59/ 
0.002 

12.49/ 
-1.18 

5.13/ 
-1.56 

9.23/ 
-0.77 

 732 

Table 5: Differences (Eq. 4) between OSSE FFNN outputs and NEMO/PISCES pCO2 and its standard deviation (STD) 733 
(Eq. 5) in 𝜇atm. 734 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

OSSE 1 -6.57/ 
14.49 

-6.57/ 
13.54 

-4.84/ 
10.17 

-1.46/ 
6.98 

-4.21/ 
7.62 

-2.03/ 
13.88 

0.11/ 
13.88 

-1.35/ 
14.96 

-8.04/ 
8.99 

-14.90/ 
20.83 

OSSE 3 -1.70/ 
8.12 

-1.50/ 
7.15 

-1.36/ 
7.52 

-0.90/ 
4.62 

-1.48/ 
4.64 

-1.49/ 
7.09 

-0.32/ 
5.58 

-1.93/ 
7.16 

-1.89/ 
4.42 

-2.05/ 
10.59 

OSSE 
10 

-2.34/ 
8.64 

-1.54/ 
7.50 

-3.54/ 
8.59 

-0.10/ 
6.18 

-1.52/ 
5.42 

1.93/ 
9.38 

-0.04/ 
6.51 

-2.15/ 
8.18 

-1.91/ 
5.21 

-1.55/ 
8.99 

 735 

Table 6: Correlation coefficient between OSSEs and NEMO/PISCES pCO2. 736 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

OSSE 1 0.68 0.67 0.88 0.92 0.89 0.46 0.68 0.31 0.70 0.57 

OSSE 3 0.86 0.87 0.93 0.96 0.95 0.79 0.91 0.73 0.83 0.85 

OSSE 
10 

0.85 0.85 0.92 0.94 0.94 0.63 0.88 0.65 0.78 0.89 

 737 
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Table 7: pCO2 averaged over the region 70ºW-30ºE 80ºS-80ºN and biomes from Fig. 2 for the NEMO/PISCES model 738 
and OSSEs 1, 3 and 10, as well as the corresponding averaged differences between OSSEs and NEMO/PISCES (in 739 
𝜇atm). 740 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

NEMO 371.13 372.65 350.36 373.18 390.11 397.18 389.54 376.14 376.99 363.08 

OSSE 1 367.09/ 
-4.04 

368.39/ 
-4.25 

347.10/ 
-3.26 

372.78/ 
-0.39 

387.17/ 
-2.93 

397.36/ 
0.17 

391.66/ 
2.12 

377.46/ 
1.32 

371.58/ 
-5.41 

351.44/ 
-11.63 

OSSE 3 370.62/ 
-0.51 

372.18/ 
-0.46 

350.04/ 
-0.32 

372.88/ 
-0.30 

389.39/ 
-0.71 

397.04/ 
-0.14 

390.10/ 
0.57 

375.29/ 
-0.85 

376.02/ 
-0.97 

362.42/ 
-0.66 

OSSE 
10 

370.14/ 
-0.99 

372.26/ 
-0.39 

348.01/ 
-2.35 

373.98/ 
0.79 

389.39/ 
-0.71 

400.53/ 
3.35 

390.55/ 
1.01 

375.22/ 
-0.92 

376.09/ 
-0.90 

362.87/ 
-0.21 

 741 
Table 8: fgCO2 averaged over the region 70ºW-30ºE 80ºS-80ºN and biomes from Fig. 2 for the NEMO/PISCES model 742 
and OSSEs 1, 3, 4 and 10, as well as the corresponding averaged differences between each OSSEs and NEMO/PISCES 743 
(in Pg/yr). 744 

Biome 
 
 
 
OSSE 

Region 
70ºW-
30ºE 
80ºS-
80ºN 

All 8 
biomes 

9 10 11 12 13 15 16 17 

NEMO -0.76 -0.70 -2.34 -1.14 -0.03 0.53 -0.004 -0.74 -0.50 -0.52 

OSSE 1 -1.03/ 
-0.26 

-0.99/ 
-0.28 

-2.57/ 
-0.23 

-1.17/ 
-0.03 

-0.18/ 
-0.15 

0.42/ 
-0.10 

0.19/ 
0.20 

-0.68/ 
0.06 

-1.15/ 
-0.64 

-1.17/ 
-0.65 

OSSE 3 -0.80/ 
-0.04 

-0.74/ 
-0.04 

-2.36/ 
-0.02 

-1.16/ 
-0.02 

-0.07/ 
-0.03 

0.49/ 
-0.04 

0.05/ 
0.06 

-0.82/ 
-0.07 

-0.61/ 
-0.10 

-0.59/ 
-0.06 

OSSE 
10 

-0.83/ 
-0.06 

-0.74/ 
-0.04 

-2.50/ 
-0.15 

-1.09/ 
0.04 

-0.06/ 
-0.03 

0.56/ 
0.03 

0.08/ 
0.08 

-0.82/ 
-0.07 

-0.60/ 
-0.09 

-0.56/ 
-0.03 

 745 


