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Abstract. CMIP6 model sea surface temperature (SST) seasonal extrema averaged over 1981-2010 are assessed against the

World Ocean Atlas (WOA18) observational climatology. We propose a mask to identify and exclude regions of large differences

between three commonly-used climatologies (WOA18, WAGHC and HadISST). The biases in SST seasonal extrema are

largely consistent with the annual mean SST biases. However, the amplitude and spatial pattern of SST bias vary seasonally

in the 20 CMIP6 models assessed. Large seasonal variations in the SST bias occur in eastern boundary upwelling regions,5

polar regions, the North Pacific and eastern equatorial Atlantic. These results demonstrate the importance of evaluating model

performance not simply against annual mean properties. Models with greater vertical resolution in their ocean component

typically demonstrate better representation of SST extrema, particularly seasonal maximum SST. No significant relationship

of SST seasonal extrema with horizontal ocean model resolution is found.

1 Introduction10

Seasonal extrema of sea surface temperature (SST) are important for the global climate system. SST seasonal maxima influence

the formation and intensity of tropical cyclones (Palmen, 1948; Dare and McBride, 2011; Holland, 1997; Sun et al., 2017) and

may be associated with marine heatwaves, which can cause damage to marine ecosystems worldwide, including biomass

decrease, bleaching of coral reefs, and deaths of marine animals (Cheung and Frölicher, 2020; Hughes et al., 2018; Jones

et al., 2018). SST seasonal minima are closely linked to formation of sea ice and determine the properties of intermediate and15

deep water. Heat loss in winter allows surface water to subduct into the deep ocean, important for thermohaline circulation.

Therefore, future projections of tropical cyclones, heatwaves, water mass formation or sea ice extent require our models to

have a realistic representation of SST seasonal extrema.

Typically, however, evaluations of climate model historical runs focus on annual or long-term mean SST, revealing common

biases across many models (Wang et al., 2014; Flato et al., 2013). Assessments of model performance in simulating SST20

seasonal cycles are less common, and are often only regional. For example, a marked seasonal variability of SST warm bias

in the eastern tropical Atlantic has been documented in Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6

(CMIP Phase 6) models (Prodhomme et al., 2019; Richter et al., 2014; Richter and Tokinaga, 2020). In these models, the

eastern tropical Atlantic warm bias is maximum in boreal summer (June-July-August), which has been attributed to the largest

wind biases occurring during spring (Richter et al., 2012; Richter and Tokinaga, 2020). Similarly, CMIP6 model SST cold25

biases in the North Pacific subtropics vary seasonally (Zhu et al., 2020). Song and Zhang (2020) suggested that the CMIP5
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multi-model mean has seasonally dependent SST biases in the northeastern Pacific Ocean, with a warm bias during summer

and a cold bias during winter, which they argued was caused by poorly simulated North American monsoon winds. Wang et al.

(2014) showed that the amplitude of CMIP5 multi-model mean SST biases varies seasonally and therefore an accurate annual

mean SST does not guarantee accurate seasonal extrema or seasonal cycle. Here we evaluate the seasonal cycle globally in30

20 state-of-the-art CMIP6 climate models, to provide a foundation for model SST bias identification and future reduction. By

presenting maps of SST bias in seasonal extrema for each model, we highlight the care needed in selecting these models for

future climate projections in particular regions.

2 Data and Methods

The historical runs of 20 models (table 1) were averaged over 1981-2010 to create monthly mean climatologies for each model.35

The first ensemble member (r1i1p1f1) is used where available; we choose r1i1p1f3 for HadGEM3-GC3-LL and HadGEM3-

GC3-MM; r1i1p1f2 for UKESM1-0-LL. The models include those incorporating biogeochemical cycling (earth system mod-

els) as well as conventional climate models. The ocean vertical coordinate is typically z-level (or the related z∗) but some

models use isopycnal, sigma or hybrid coordinates (table 1). The total number of levels and thickness of top grid cell are used

as proxies for ocean vertical resolution. The thickness of the top grid cell in other models was obtained from the references40

cited in table 1.

To examine the seasonal cycle of SST, most studies picked specific months to represent summer and winter (e.g., Zhang and

Zhao (2015); Liu et al. (2020)). However, model seasonal cycles may be out of phase with observations and observed maxima

and minima occur in different months in different regions. Instead, here we take the maximum and minimum SST of the

monthly mean climatologies (Tmax and Tmin) at each grid point, identifying which months they occur in, for both model and45

observation. Tmax and Tmin, plus the annual mean SST (Tmean) and the range of the seasonal cycle (Tcycle = Tmax −Tmin)

from the model climatologies are compared with the World Ocean Atlas 2018 (WOA18) observational climatology on a grid

spacing of 0.25◦×0.25◦ (Locarnini et al., 2018), which covers the period from 1981 to 2010. The model fields were interpolated

to the same grid as WOA18. Biases are defined as model values minus WOA18 values. For the multi-model mean, at each grid

point we average Tmax, Tmin, Tmean and Tcycle across the 20 CMIP6 models. To quantify the performance of CMIP6 models,50

we calculated the area-weighted root mean square error of Tmax, Tmin, Tmean and Tcycle of the model against WOA18

(henceforth RMSE) for global SST.

Since there is some uncertainty in observational climatologies because of sparse sampling, instrumental error, quality control

or gridding techniques, we compared three recent climatologies: WOA18, WOCE-Argo Global Hydrographic Climatology

(WAGHC)(Gouretski, 2018) (covering the time period 1985-2016), and HadISST (Rayner et al., 2003) (covering the time55

period 1981-2010). Any grid points where the maximum difference in Tmax or Tmin between the three climatologies is larger

than 2◦C are considered uncertain for that variable, and these grid points are excluded from our assessment. Any grid points

which did not have values for all 12 months for at least two climatologies are also excluded. For Tmean and Tcycle, we exclude

any points where either Tmax or Tmin is excluded. The excluded grid points are mostly located in coastal areas, a few regions
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Table 1. The 20 CMIP6 models used in this study; the horizontal resolution of their ocean com-

ponent; ocean vertical coordinate (z: traditional height coordinate; z∗: rescaled height coordinate

for more accurate representation of free-surface variations; ρ: isopycnic coordinate; σ: terrain-

following sigma coordinate; multiple symbols refer to a hybrid coordinate); total number of

ocean vertical levels; thickness of the ocean top grid cell; and references.

Model
Horizontal

resolution

Vertical

coordinate

Total

levels

Top grid

thickness
References

ACCESS-CM2 100 km z∗ 50 10 m Bi et al. (2020)

ACCESS-ESM1-5 100 km z∗ 50 10 m Law et al. (2017)

AWI-CM-1-1-MR 25 km z-σ 46 5 m Semmler et al. (2020)

BCC-CSM2-MR 50 km z 40 10 m Wu et al. (2019)

BCC-ESM1 50 km z 40 10 m Wu et al. (2020)

CESM2 100 km z 60 10 m Danabasoglu et al. (2020)

CanESM5 100 km z 45 6 m Swart et al. (2019)

E3SM-1-0 50 km z∗ 60 10 m Golaz et al. (2019)

GFDL-CM4 25 km z∗-ρ 75 2 m Held et al. (2019)

GISS-E2-1-G 100 km z 40 10 m Kelley et al. (2020)

GISS-E2-1-H 100 km z-ρ-σ 32 10 m Kelley et al. (2020)

HadGEM3-GC31-LL 100 km z∗ 75 1 m Andrews et al. (2020)

HadGEM3-GC31-MM 25 km z∗ 75 1 m Andrews et al. (2020)

INM-CM5-0 50 km σ 40 7.3 mi Volodin et al. (2017)

IPSL-CM6A-LR 100 km z∗ 75 2 m Boucher et al. (2020)

MIROC6 100 km z-σ 62 2 m Tatebe et al. (2019)

MPI-ESM1-2-HR 50 km z 40 12 m Müller et al. (2018)

NorESM2-MM 100 km ρ 53 2.5 m Seland et al. (2020)

SAM0-UNICON 100 km z 60 10 m Park et al. (2019)

UKESM1-0-LL 100 km z∗ 75 1 m Sellar et al. (2019)

i The global averaged thickness of top grid cell in INM-CM5-0 was calculated using the sigma coordi-

nates and bottom topography obtained from E.M.Volodin (personal communication).

in the Arctic and around the ACC, Agulhas Current and Benguela Current. 4%, 3%, 4% and 4% of the ocean’s surface area is60

excluded for Tmax, Tmin, Tmean and Tcycle respectively. Similarly, for the timing of Tmax and Tmin, any grid points which

did not have values for at least two climatologies or their maximum difference between climatologies in timing is larger than

2 months are excluded. In our global maps, these points are masked, and in calculations of global and regional metrics, these

points are excluded.
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3 Results and discussion65

3.1 Model representation of SST extrema

For the multi-model mean, Tmax and Tmin have larger global RMSEs than Tmean (Fig. 1), as SST biases with opposite signs

in different seasons compensate each other when calculating the annual mean. Similarly, the Tmax and Tmin global RMSEs

of the multi-model mean are smaller than the RMSEs of individual models (Figs. 1b-c, 2, 3). Therefore, a small bias in Tmean

does not guarantee a realistic Tmax or Tmin.70

The magnitudes of biases in Tmax and Tmin vary from model to model (Figs. 2, 3, 7). The multi-model mean has RMSE

less than 1◦C in both Tmax and Tmin (0.89◦C and 0.87◦C respectively). Most models have Tmax and Tmin RMSEs between

1◦C and 2◦C. Only HadGEM3-GC31-LL and GFDL-CM4 have Tmax RMSE less than 1◦C (0.94◦C and 0.93◦C respectively).

GISS-E2-1-H has the largest Tmax RMSE of 1.89◦C and MIROC6 has the largest Tmin RMSE of 1.62◦C (Figs. 2, 3). To test

the dependence of the biases found on the realisation of models, we compared the first and second ensemble members (except75

for SAM0-UNICON and GFDL-CM4 as they have only one ensemble member). The differences between ensemble members

are very small compared with the model biases (supplementary Figs. S1-4), and thus the model biases we report are robust.

In most of the models the global RMSE is larger in Tmax than in Tmin (Fig. 7a). As the bias in Tmax and Tmin is largely

consistent with Tmean bias, Tcycle RMSE is small compared to Tmax and Tmin RMSEs in most models. Different biases in

Tmax, Tmin, Tcycle and Tmean suggest that models have different performance in simulating SST seasonal variation and annual80

mean. The “best” and “worst” models depend on whether you choose SST seasonal extrema or annual mean as your metric. For

example, GFDL-CM4 and HadGEM-GC31-MM have the smallest RMSE in Tmax and thus they are best for simulating tropical

cyclones and heatwaves; SAM0-UNICON has the smallest RMSE in Tmin and thus it is best for simulating the properties of

intermediate and deep waters.

The bias in the timing of Tmax and Tmin is within one month in most of the global ocean in most models (Figs. 4, 5, 6). In85

the multi-model mean, Tmax and Tmin occur one month earlier than in WOA18 for most of the global ocean, whereas in some

parts of the Arabian Sea and equatorial regions, they occur one month later (Fig. 4). The bias in the timing of Tmax and Tmin

demonstrates that the seasonal cycles in CMIP6 models are out of phase with observations. In regions where monsoon prevails

(e.g. the northwestern Indian Ocean), the timing bias suggests a bias in the onset of summer monsoon.

Models have different performance in simulating the timing of Tmax and the timing of Tmin. All the models except90

ACCESS-ESM1-5 have smaller global RMSE in the timing of Tmax than in the timing of Tmin (Fig. 7b). HadGEM3-GC31-

MM has the smallest global RMSE in the timing of Tmax, whereas HadGEM3-GC31-LL and HadGEM3-GC31-MM have the

smallest global RMSE in the timing of Tmin.

Tmax and Tmin biases vary with latitude (Figs. 1b-c, 2, 3, 8a-b). High latitudes show larger biases than low latitudes.

Typically, the RMSE of Tmax at 30◦-80◦ is 1-2◦C larger than at low latitudes (between 30◦N and 30◦S) (Fig. 8a). For GISS-95

E2-1-H, GISS-E2-1-G, BCC-CSM2-MR, BCC-ESM1 and IPSL-CM6A-LR, Tmax RMSEs at 30◦N-80◦N are about 3◦C larger

than at low latitudes. A similar pattern is seen for Tmin, but the variation of biases with latitude is much smaller than for Tmax

(Fig. 1c, 8b). Flato et al. (2013) found a similar result for some CMIP5 models, with larger zonal mean biases in Tmean between
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Figure 1. Biases (model minus climatology) of multi-model mean in (a) Tmean (b) Tmax (c) Tmin (d) Tcycle. Black dots mark grid points

excluded from our analysis, as described in section 2. The numbers indicate the global RMSE (◦C).

5



Figure 2. (a) Tmax in WOA18 and (b-u) Tmax model biases. Black dots mark grid points excluded from our analysis, as described in section

2. The numbers on (b-u) indicate the global RMSE of Tmax. Red lines in (a) are 30◦N and 30◦S. Note that the range of bias color bar is

twice as much as in Fig. 1.
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Figure 3. As in Fig. 2, but for Tmin.
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Figure 4. Biases in the timing of (a) Tmax and (b) Tmin in the multi-model mean. Black dots mark grid points excluded from our analysis,

as described in section 2.
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Figure 5. (a) Timing of Tmax in WOA18 and (b-u) biases in the timing of Tmax in models. Black dots mark grid points excluded from our

analysis, as described in section 2.
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Figure 6. As in Fig. 5, but for timing of Tmin.
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Figure 7. The global area-weighted RMSE of the biase in (a) Tmax, Tmin, Tmean and Tcycle, (b) the timing of Tmax and Tmin.
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Figure 8. Area-weighted RMSE in 10◦ bands for (a) Tmax, (b) Tmin, (c) Tcycle.

30◦ and 70◦ than at other latitudes. The larger biases, and greater difference between Tmax and Tmin, at mid-high latitudes

(greater than 30◦ in both hemispheres) may be explained by the large seasonal cycle of mixed layer depth there. Shallower100

summer mixed layers have smaller heat capacity, thus a small error in heat fluxes or mixing processes can result in a large

bias for Tmax, though this will be modulated by any seasonal biases in mixed layer depth. The larger inter-model biases in

Tmax than in Tmin can be explained by the shallower mixed layer in summer, which can amplify SST biases due to biases in

surface heat flux. The difference between biases in Tmax and Tmin leads to biases in Tcycle (Fig. 1d). The RMSE of Tcycle at

low latitudes is typically 1◦C, whereas at mid-high latitudes it is larger, particularly in the Northern Hemisphere (Fig. 8c). The105

Tcycle RMSE in IPSL-CM6A-LR and MIROC6 reaches 4◦C at high latitudes (Fig. 8c).

In polar regions, there are very small Tmin biases (Figs. 1c, 3, 8b) except for MIROC6 in the Antarctic. Winter SSTs are

close to freezing, but cannot go below freezing because sea ice forms instead. If models have realistic freezing points, Tmin
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Figure 9. Monthly time series of area-weighted mean SST over (a) western equatorial Pacific (5◦S - 5◦N, 140◦E - 160◦W), (b) northwestern

Indian Ocean (60 - 70◦E, 10 - 20◦N), (c) subtropical Southern Hemisphere (30◦ - 40◦S), (d) subtropical Northern Hemisphere (30 - 40◦N),

(e) Arctic (70 - 80◦N), (f) Antarctic (70 - 80◦S). Y-axis range is same for (a-f).

biases will be small. Some models have salinity-dependent freezing points (Beaumet et al., 2019) in which case a salinity bias

could cause a bias in temperature. Tmin biases in the Arctic are larger than in the Antarctic (Figs. 1c, 9e-f), which suggests110

larger salinity biases in the Arctic.

In the subtropical North Pacific, the SST cold bias is typically 0.5-1◦C smaller in Tmax than Tmin, which leads to a too

large Tcycle (Figs. 1b-d, 2, 3). Zhu et al. (2020) showed a similar seasonal SST cold bias in the CMIP6 multi-model mean, but

not in the CMIP5 multi-model mean. Underestimated surface shortwave radiation and too strong westerly winds in the CMIP6

multi-model mean (Lyu et al., 2020; Li et al., 2020) are possible reasons for the year round cold bias. The shortwave radiation115

bias is likely related to the bias of low-level cloud in the subtropics (Burls et al., 2017; Li and Xie, 2012), and its associated

cold bias is smaller in winter when there is less solar radiation. The westerly winds cool the surface through latent heat flux

and southward ocean advection due to Ekman transport. The latent heat loss shows a maximum in summer (Yu, 2007), while

the ocean heat advection shows a maximum in winter when meridional SST gradients are greatest.

SST biases are seasonally dependent in the northeastern Pacific Inter Tropical Convergence Zone (ITCZ) (Figs. 1b-c, 2, 3).120

For the multi-model mean, there is a warm bias in Tmax which exceeds 2◦C and a cold bias in Tmin of 0.5-1.5◦C. Similar

seasonal biases exist in CMIP5 models and were linked to an easterly wind bias throughout the year there (Song and Zhang,

2020). A coarse atmospheric model resolution smooths out the elevation difference between mountains and oceans, which
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allows easterly trade winds to cross the mountains, leading to the easterly wind bias (Song and Zhang, 2020). An easterly bias

of annual mean wind was found in the CMIP6 multi-model mean (Li et al., 2020; Lyu et al., 2020). If the easterly bias exists125

throughout the year, it can explain the seasonal SST bias we found. During winter-spring, the northeastern Pacific ITCZ is

dominated by easterly winds, so overly strong easterly winds enhance surface evaporation and lead to cold biases. In contrast,

during summer-autumn when westerly winds dominate, the simulated wind is too weak, which causes the warm bias. The

northeastern Pacific is a region where tropical cyclones and heatwaves occur (Gilford et al., 2017; Frölicher and Laufkötter,

2018), so a warm bias of over 2◦C in Tmax may lead to overprediction of tropical cyclones and heatwaves.130

The multi-model mean has a cold bias in Tmax and a warm bias in Tmin over the Northwest Pacific, leading to a too small

Tcycle (bias of more than 2◦C) (Figs. 1b-d). The warm bias in winter can be seen in many models, especially in ACCESS-

ESM1-5, BCC-ESM1, CanESM5 and INM-CM5-0 (Fig. 3). The winter warm bias east of Japan was also found in a CMIP5

multi-model mean (Wang et al., 2018), but from our results the warm bias extends further east (Fig. 1c).

The large cold biases at northern hemisphere high latitudes in BCC-CSM2-MR, BCC-ESM1, GISS-E2-1-G and GISS-E2-1-135

H, are typically 2-5◦C smaller in Tmin than in Tmax (Figs. 2, 3, 8a-b). These cold biases are likely to be linked to cloud biases

due to the cooling radiative effect of low cloud (Myers et al., 2021). The negative cloud radiative forcing is excessive in BCC-

CSM2-MR (Wu et al., 2019) and BCC-ESM1 (cloud simulation likely to be similar to BCC-CSM2-MR), while overestimated

low-cloud cover in GISS-E2-1-G and GISS-E2-1-H (Kelley et al., 2020) blocks more of the incoming solar radiation. As solar

radiation is negligible at high latitudes in winter, the SST cold bias due to cloud bias is much smaller in winter than in summer,140

consistent with our results. Deep winter mixed layer depths and SSTs close to freezing likely also contribute to the smaller

cold biases in Tmin than in Tmax at high latitudes.

In most models there is a warm Tmean bias in the Southern Ocean, commonly attributed to excessive short wave radiation

linked to cloud process representation deficiencies (Hyder et al., 2018). MIROC6 has an underestimated mid-level cloud cover

(Tatebe et al., 2019); GISS-E2-1-G and GISS-E2-1-H have an underestimated short wave cloud radiative forcing (Kelley et al.,145

2020), and hence they have pronounced warm biases in the Southern Ocean (Figs. 2, 3). The warm bias is larger for Tmax

than Tmin (Figs. 1b-c, 2, 3, 8a-b), because the lack of incoming solar radiation in winter means cloud biases have minimal

effect on surface solar insolation. Shallower mixed layer depths in summer will also tend to enhance any bias in incoming solar

insolation. The larger warm bias in Tmax than Tmin results in a sea ice extent that is too small in most CMIP6 models, especially

in summer (Beadling et al., 2020; Shu et al., 2020). As mode and intermediate waters primarily form within the winter mixed150

layer of the Antarctic Circumpolar Current (Talley, 1999), the Tmin warm bias can influence global ocean stratification.

MIROC6 stands out with the largest warm bias in the Southern Ocean (Figs. 2m, 3m), with a Tmax RMSE between 3 and

5◦C and Tmin RMSE between 2 and 3◦C at 50-80◦ S (Fig. 8a-b). The largest biases in MIROC6 occur in regions where there

should be sea ice and where the deep ocean is ventilated. Beadling et al. (2020) found that MIROC6 has the lowest Southern

Ocean sea ice extent among CMIP6 models in both summer and winter, and Tatebe et al. (2019) revealed annual warm biases155

exceeding 2◦C in the intermediate and deep layers of MIROC6.

In eastern boundary upwelling regions (especially the Benguela and Humboldt Currents), most models have a seasonal warm

bias that is 1-5◦C smaller in Tmax than Tmin (Figs. 1b-c, 2, 3). Richter (2015) suggested that underestimation of stratocumulus
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cloud and insufficient upwelling due to overly weak winds contribute to the warm bias in eastern boundary upwelling regions.

The warm bias we found therefore is likely associated with the underestimated surface shortwave radiation and overly weak160

upwelling-favourable winds in CMIP6 models identified by Li et al. (2020). The warm bias may lead to excessive precipitation

in the Atlantic Ocean off Angola and Namibia as shown by Rouault et al. (2003). Letelier et al. (2009) showed that in the

Humboldt Current coastal region the cooling effect of upwelling is strongest in austral summer, which is consistent with the

peak of upwelling-favourable wind in December and January. A poor simulation of the seasonal cloud and upwelling processes

will contribute to the seasonality of SST biases in eastern boundary upwelling regions.165

Most models have a seasonal warm SST bias in the eastern equatorial Atlantic (Figs. 1b-c, 2 and 3). The Tmin multi-model

mean bias can be more than 2◦C larger than the Tmax multi-model mean bias. Richter and Tokinaga (2020) showed a similar

seasonal warm bias in the CMIP6 multi-model mean, which is about 1-2◦C larger during June-July-August than March-April-

May. Richter et al. (2012) argued that the warm SST bias in the eastern equatorial Atlantic during June-July-August is linked to

overly deep thermoclines caused by overly weak easterlies during March-April-May. Therefore, the warm bias can be attributed170

to overly weak easterlies in the CMIP6 multi-model mean (Li et al., 2020; Lyu et al., 2020). GISS-E2-1-G and GISS-E2-1-H

have the largest seasonality of SST warm bias in the eastern equatorial Atlantic, with Tmin biases up to 5◦C. Richter and

Tokinaga (2020) illustrated that warmer than observed SSTs in the equatorial Atlantic lead to excessive precipitation. Roxy

(2014) quantified the SST-precipitation relationship: a 1◦C SST increase corresponds to a 2 mm/day precipitation increase.

Therefore, the 5◦C Tmin warm bias in GISS-E2-1-G and GISS-E2-1-H could cause a 10 mm/day increase in precipitation.175

Although the amplitudes of biases are different in Tmax and Tmin, the global patterns and signs of Tmax and Tmin biases

are similar to each other in most models (Figs. 2, 3). Wang et al. (2014) indicated that the SST bias of the CMIP5 multi-model

mean has a pattern independent of season but did not analyse the seasonality in bias in individual models. Our results show

two exceptions: E3SM-1-0 and IPSL-CM6A-LR, which both have an overall warm bias in Tmax, but an overall cold bias in

Tmin (Figs. 2h,t 3h,t), which tend to cancel out in the annual means. The Tmax RMSE is 1.38◦C for E3SM-1-0 and 1.36◦C180

for IPSL-CM6A-LR, the Tmin RMSE is 1.39◦C for E3SM-1-0 and 1.21◦C for IPSL-CM6A-LR, whereas the Tmean RMSE

is only 1.17 ◦C for E3SM-1-0 and 0.94◦C for IPSL-CM6A-LR. In E3SM-1-0, the global annual average mixed layer depth is

generally too shallow (Golaz et al., 2019), which can contribute to the summer SST warm bias and winter SST cold bias, and

a similar process may be affecting IPSL-CM6A-LR. These results illustrate the risks involved in assessing only annual means,

as models may have greater biases than assumed, so tropical cyclone formation, for example, may be overpredicted.185

In mid-latitudes the SST seasonal cycle is well represented by an annual sinusoid whereas in equatorial and polar regions an

annual sinusoid explains little of the total SST seasonal variance (Trenberth, 1983; Yashayaev and Zveryaev, 2001). In regions

with fairly sinusoidal SST annual cycles such as the subtropics (sinusoidal signal explains 87% of the observed variances

in subtropical Northern Hemisphere and 89% of the observed variances in subtropical Southern Hemisphere), models have

realistic SST seasonal cycles with well simulated amplitude and phase of the annual cycle (Figs. 9c-d). Phase biases are mainly190

within 1 month (Figs. 4, 5, 6). In subtropical regions, seasonal SST biases are consistent with biases in Tmean. Differences

between the Tmax and Tmin biases are smaller than those in non-sinusoidal regions (Fig. 9). In regions with non-sinusoidal

SST seasonal cycles such as the western equatorial Pacific, northwestern Indian Ocean, the Arctic and the Antarctic (sinusoidal
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signal explains 33%, 23%, 58% and 46% of the observed variances), models tend to have biases in amplitudes or phases of

their SST seasonal cycles (Figs. 4, 5, 6, 9a-b,e-f).195

In the western equatorial Pacific, the SST seasonal cycle in WOA18 is modest (less than 1◦C), whereas in some models

such as MPI-ESM1-2-HR, GISS-E2-1-G, GISS-E2-1-H and especially INM-CM5-0 the seasonal cycle is much larger (Fig.

9a). In INM-CM5-0, the Tcycle is about 2◦C and there is a cold SST bias throughout the year, reaching 3◦C during September-

October-November (Fig. 9a). Similar to our analysis, Volodin et al. (2017) noted that INM-CM5-0 has a cold bias of more than

4◦C in annual mean temperature in the upper 700 m of the western equatorial Pacific. The cold bias could limit the skills of200

models in simulation of El Niño/Southern Oscillation (ENSO) and ENSO-induced teleconnections. For example, a cold bias

in the western equatorial Pacific results in a rising branch of the Walker circulation that is too far west in many coupled climate

models leading to too weak ocean-atmosphere coupling and unrealistic ENSO dynamics (Bayr et al., 2018). The associated

convective response along the equator during ENSO events is too far west leading to westward shift in the sea level pressure

response in the North Pacific and precipitation response in the subtropics (Bayr et al., 2019).205

In the northwestern Indian Ocean where the monsoon system prevails, SST has a semi-annual cycle, but most models are

unable to reproduce this with the correct amplitude and phase (Figs. 4, 5, 6, 9b). Most CMIP6 models have SST cold biases in

this region throughout the year, while the biases are generally larger during March-April-May than other months and the multi-

model mean fails to simulate the primary maximum SST (Fig. 9b). Cold SST biases in the northwestern Indian Ocean lead to a

significant reduction of the monsoon rainfall over the Indian subcontinent (Prodhomme et al., 2014; Levine and Turner, 2012).210

Thus the cold biases in the CMIP6 models are likely to lead to overly weak monsoon precipitation. Consistent with our result,

McKenna et al. (2020) found a cold SST bias over the northwestern Indian Ocean in the CMIP6 multi-model mean. Fathrio

et al. (2017) showed that the SST cold bias over the western Indian Ocean in the CMIP5 multi-model mean has a seasonal

cycle with the coldest SST bias occurring in April, whereas the coldest SST bias in our CMIP6 multi-model mean occurs

in May. GISS-E2-1-G and GISS-E2-1-H fail to simulate a realistic second minimum SST in August (Fig. 9b), which would215

lead to overly intense tropical cyclones. SST in the northwestern Indian Ocean determines the onset of the summer monsoon

(Sijikumar and Rajeev, 2012; Jiang and Li, 2011). The primary maximum SST is two months later in ACCESS-ESM1-5 than

in WOA18 (Fig. 9b), which suggests a delayed summer monsoon onset in projections using that model.

3.2 Impact of model characteristics on SST seasonal extrema

We have shown that biases in Tmax, Tmin and Tcycle are different between models. We now use the diversity in the 20 CMIP6220

models to explore the effects of different model characteristics on the magnitude of these biases as quantified by global area-

weighted RMSE for Tmax, Tmin, Tcycle and Tmean.

No significant correlation was found between the models seasonal biases and horizontal ocean resolution (supplementary

Fig. S5). Chassignet et al. (2020) used four pairs of matched low-resolution and high-resolution ocean simulations from FSU-

HYCOM, AWI-FESOM, NCAR-POP and IAP-LICOM to isolate the effect of ocean horizontal resolution, and compared225

their representation of global SST. They found that enhanced horizontal resolution does not deliver unambiguous SST bias

improvement in all regions for all models, which is consistent with our finding. Nor did we find any correlation of seasonal
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Figure 10. Global RMSE of (a) Tmax, (b) Tmin, (c) Tcycle and (d) Tmean, all against the total number of vertical levels in ocean. Circles

represent earth system models, while squares represent non earth system models. The size of the markers represents the ocean horizontal

resolution for that model, with larger markers for models with lower horizontal resolution. The black line is the line of best fit (with the least

sum of squared errors). The inter-model correlation R and p-value are shown on each panel.

biases with atmospheric resolution (supplementary Figs. S6-7), ocean grid type, ocean vertical coordinate, and inclusion (or

not) of biogeochemical processes (circles or squares in Figs. 10 and 11).

The only characteristic yielding a statistically significant relationship was the ocean vertical resolution (Figs. 10, 11). The230

importance of vertical resolution for reducing seasonal biases is not unexpected: SST is influenced by ocean stratification

and ocean vertical mixing processes, whose representation depends upon the vertical resolution. It has been found that high

resolution in the upper ocean is important for the representation of diurnal and intraseasonal SST variability in ocean general

circulation models (Misra et al., 2008; Xavier et al., 2008; Ge et al., 2017). Ideally we would have considered the number

of vertical levels in the upper ocean. However, the number of vertical levels in the upper ocean (e.g. upper 200 m) cannot be235
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Figure 11. As in Fig. 10, but against the thickness of top grid in ocean.

unambiguously determined for models using an isopycnal or sigma vertical coordinate (6 out of 20 in our study) as their level

depths vary with location and time (Bleck, 2002; Shchepetkin and McWilliams, 2005). Excluding the isopycnal and sigma

models, the remaining high vertical resolution models are mainly from the Met Office Hadley Centre family, and hence any

relationship between SST biases and vertical resolution in the upper ocean might have been overly influenced by that particular

family. Hence we use the total number of vertical levels and top grid cell thickness (table 1) as proxies for the vertical resolution.240

Our study emphasises the importance of vertical resolution for simulating seasonal extreme SST and annual mean SST.

For the 20 models, there is a decrease in bias with increasing total number of vertical levels (Fig. 10). We calculated the

inter-model correlation between global RMSE and total number of vertical levels following the method of Wang et al. (2014).

The relationship between SST biases and total number of vertical levels is significant for Tmax, Tmin, and Tmean (p-values <

0.05), with the largest correlation of -0.648 for Tmax. The higher correlation between global Tmax RMSE and ocean vertical245

resolution is likely linked to shallower mixed layer depths in summer than in winter. RMSE is also correlated with top grid
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thickness (but with smaller correlation than total number of vertical levels): models with a smaller top grid thickness tend to

have smaller biases (Fig. 11).

The impact of ocean vertical resolution on SST biases varies with latitude and season. Ocean vertical resolution is most

important for Tmax at low latitudes (supplementary Figs. S8-9). SST biases decrease with number of vertical levels in the250

Benguela, Humboldt and California upwelling regions (supplementary Figs. S10-12). Only the Canary upwelling region, which

has the smallest SST bias among the main four eastern boundary upwelling regions, does not have a good inter-model correla-

tion between SST biases and ocean vertical resolution (supplementary Fig. S13).

4 Conclusions

Using the newly-released CMIP6 models, this study provides a global view of the biases in SST extrema, identifies regions with255

large seasonal bias, and suggests a future direction to reduce these biases. To study the seasonal cycle of SST, we focuses on

Tmax and Tmin whenever they occur, rather than particular months. Global area-weighted Tmax, Tmin and Tcycle RMSEs are

typically 1-2◦C. Most models have Tmax and Tmin biases of the same sign at most locations, apart from IPSL-CM6A-LR and

E3SM-1-0 which have an overall warm bias in Tmax and an overall cold bias in Tmin. When averaged across the whole globe,

the bias in Tmean is typically consistent with Tmax and Tmin biases, but certain regions (eastern boundary upwelling regions,260

polar regions, the eastern equatorial Atlantic, the North Pacific) show significant differences between winter and summer biases.

The seasonal variation in the SST bias demonstrates the importance of evaluating model performance on Tmax and Tmin, not

just Tmean. Seasonal processes related to wind and cloud could be the main reasons for seasonal SST biases, but depend upon

region. Further investigations of wind and cloud biases in CMIP6 models for different seasons could be undertaken to better

understand the causes of seasonal SST biases. In regions with non-sinusoidal SST seasonal cycles, models tend to have biases265

in amplitudes and/or phases of their SST seasonal cycles. If there is a substantial change in the climate, it should be considered

that the pattern of biases in Tmax and Tmin may change. For the models we examined, those with increased vertical resolution

in the ocean generally had a better representation of SST extrema, particularly Tmax. This is likely related to the ability of

the higher resolution models to better represent the surface mixed layer, and particularly shallow mixed layers in summer. For

improving the accuracy of future climate projections, we suggest that as much priority (or possibly more) should be given to270

increasing vertical ocean model resolution as is given to increasing horizontal resolution.
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