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Abstract. This paper describes the new developments of the Ship Traffic Emission Assessment Model (STEAM) which 

enable modeling of pollutant discharges to water from ships. These include nutrients from black/grey water discharges as 20 

well as from food waste. Further, also the modeling of contaminants in ballast, black, grey and scrubber water, bilge 

discharges and stern tube oil leaks are described, as well as releases of contaminants from antifouling paints. Each of the 

discharges are regulated by different sections of IMO MARPOL convention and emission patterns of different pollution 

releases vary significantly. The discharge patterns and total amounts for year 2012 in the Baltic Sea area are reported and 

open loop SOx scrubbing effluent was found to be the second largest pollutant stream by volume.  The scrubber discharges 25 

have increased significantly in recent years and their environmental impacts need to be investigated in detail. 

1. Introduction 

 

Ship operations produce waste streams related to propulsion and engine operations, as well as crew and passenger activities 

(Fig 1). The waste streams related to propulsion and engine operations include bilge water from the machinery spaces, stern 30 

tube oil from lubrication of the propeller shaft, scrubber wash water from Exhaust Gas Cleaning Systems (EGCS) for 

reduction of emissions of sulphur oxides into the atmosphere, ballast water from maintaining ship stability, biocides used in 

antifouling paints to prevent hull growth, cooling water and tank cleaning residuals. Waste streams related to humans on 

board include food waste, black water (sewage), and water from galleys and showers (grey water), as well as other solid 
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waste. Operational emissions and discharges from ships are regulated through international conventions, primarily the IMO 35 

MARPOL with its six annexes, the Ballast Water Management Convention(IMO, 2004) and the Antifouling Systems 

Convention(IMO, 2001). These conventions regulate one “subsystem” at the time, such as bilge water production or 

scrubber wash water, but to assess the total impact from shipping on the marine environment it is essential to address the 

entire load of different stressors originating from different subsystem waste streams along with an assessment of load of 

species reaching the marine environment through atmospheric deposition of the shipping air pollutants. In addition to the 40 

regulation of different subsystems, some sea areas are acknowledged as Special Areas in which, for recognized technical 

reasons in relation to its oceanographical and ecological condition and to their ship traffic, special rules are applied to 

prevent sea and air pollution. In general, the scientifically published data on the waste streams from ships is scarce, both in 

terms of production rates and constituents; most available data come from different types of reports (e.g. from classification 

societies(ABS, 2018; Furstenberg et al., 2009), national authorities(IMO, 2008a) and intergovernmental 45 

organisations(HELCOM, 2014b, 2018a)), which calls for a thorough discussion on data quality. In this paper available data 

on bilge water, stern tube oil, scrubber water, ballast water, antifouling paints, food waste, black water, and grey water are 

collected and used to assess the input of different stressors from ships to the marine environment. 

1.1. Discharge inventories 

In order to proceed from assessment of discharges from individual ship to assessment of the total discharge from shipping in 50 

a geographical area, it is necessary to combine the discharge factors to the activity patterns. This has previously been done 

for emissions to the atmosphere and underwater noise using Automatic Identification System (AIS) with vessel technical 

details of the Baltic Sea fleet using the Ship Traffic Emission Assessment Model (STEAM3; Jalkanen et al., 2009, 2012, 

2018; Johansson et al., 2013, 2017) and using alternative methods for various discharges in other sea areas(Ivče et al., 2020; 

Seebens et al., 2013). The use of observed vessel traffic through AIS allows a realistic description of vessel movements and 55 

facilitates studies of vessel specific emissions which are modeled according to individual vessel features and operation. 

Previously, atmospheric emissions and underwater noise have been included in STEAM, but the current work extends the 

model capabilities to include discharges to water.  

The international conventions that regulate the waste streams into water are also important for ship emission modeling work, 

which also needs to follow the requirements of the conventions in order to reflect the real-world shipping as closely as 60 

possible. However, a strict application of international conventions in modeling work assumes that everyone follows the 

conventions, which may not always be the case (Beecken et al., 2014, 2015; Burgard and Bria, 2016; HELCOM, 2018b; 

Kattner et al., 2015). In contrast to air emissions, discharges do not necessarily occur at the same locations where they are 

generated because their release to the sea are governed by several rules and regulations. Further, some discharges are 

completely random and occur whenever various holding tanks onboard are full, which makes modeling work challenging. 65 
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Figure 1: Waste streams from ships and the constituents in terms of stressors on the marine environment. These releases are 

regulated through several international conventions, like the IMO MARPOL, Antifouling (AFS) and Ballast Water Management 

Conventions (BWMC). Releases of excess energy (noise, heat, light) to the sea are not currently regulated. 70 

 

Figure 1 contains an overview of various pollutant streams from ships as well as the regulatory references which are used to 

mitigate the environmental impacts of shipping. Various annexes of IMO MARPOL convention deal with air and water 

pollution, but separate conventions exist for antifouling paints and ballast water. There are also unregulated environmental 

pressures. These include e.g. various energy releases (noise, light, heat). Many of the existing regulations have been 75 

significantly tightened during the last decade when the shipping contribution to pollution has been quantified in detail. In the 

following sections, an overview of the contribution of various discharge streams is presented and relevant regulatory texts 

are introduced. 

1.2. Bilge water 

Bilge water accumulates in the lowest part of the ship. It has been referred to as “the mixture of water, oily fluids, lubricants 80 

and grease, cleaning fluids and other wastes that accumulate in the lowest part of a vessel from a variety of sources including 
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engines (and other parts of the propulsion system), piping, and other mechanical and operational sources found throughout 

the machinery spaces of a vessel”, (Albert and Danesi, 2011). The compounds in bilge water that are of primary concern are 

diesel fuel, glycol-based coolants, and engine-, transmission-, hydraulic oils. However, trace amounts of almost everything 

used onboard ships can be found in bilge water (Stamper and Montgomery, 2008). On board treatment of bilge water is 85 

focused on the oil content, where the maximum allowed concentration to discharge according to MARPOL Annex I, is equal 

to 15ppm. The release of bilge water to the sea is generally allowed everywhere if the IMO criterion is met, but some 

exceptions exist, like the Antarctic and coastal areas of Finland where any oily release to the sea is forbidden. 

 

1.3. Stern tube oil 90 

 

Another source of oil pollution from ships is the stern tube oil. The propeller shaft connects the main engine and the 

propeller through the stern tube which goes through the ship hull. Stern tube contains bearings, sealing and lubrication 

system. Although there are water-lubricated propeller shafts on the market, the most commonly used (~90% of the market, 

Sengottuvel et al., 2017) lubrication is still oil-based and usually contain large number of additives (Habereder, Moore and 95 

Lang, 2009)  and seal-improving agents like teflon and bentonite. Modern large propellers can weigh over 100 tonnes and 

push the propeller shaft downwards, leading to imperfect sealing and lubricant leakage, especially if propellers or shafts 

experience any damage from e.g. metal fatigue, tangled fishing nets or ice. In December 2013, Environmentally Acceptable 

Lubricants (EALs) became mandatory for large ships sailing near the American coastline, but compelling regulation of this 

kind is not currently applied to ships sailing the Baltic Sea. The main component of EALs is a biodegradable base, which is 100 

often vegetable oil, synthetic ester or polyalkylene glycol (US EPA, 2011a).  

 

1.4. Scrubber wash water 

Oil residues may also be present in scrubber wash water. Scrubbers are a type of EGCS used as an alternative to low sulphur 

fuel to reduce ships’ emissions of sulphur oxides (SOX) to the atmosphere, according to MARPOL Annex VI. Emissions of 105 

(SOX), nitrogen oxides (NOX), volatile organic compounds (VOC) and particulate matter (PM) into the atmosphere from 

shipping are substantial on local, regional and global scale, and are associated with large societal costs in terms of affected 

human health as well as environmental impact (Barregard et al., 2019; Brandt et al., 2013; Corbett et al., 2007; Endres et al., 

2018; Hassellöv et al., 2013; Jonson et al., 2015; Liu et al., 2016; Sofiev et al., 2018). Since the late 1990’s cost-benefit 

analyses of SOX emissions from shipping, has motivated establishment of SOX Emission Control Areas and in January 2020 110 

new stricter global limits came to effect ((IMO, 2016)). The regulations limit the maximum allowed fuel sulphur content 

(0.1% in SECA, 0.5% elsewhere). As an alternative to meet the stricter regulations, ships can install EGCS (often referred to 

as wet SOx scrubbers) that cleans the exhausts with a fine spray of seawater that is discharged back into the sea (open loop 



5 

 

scrubber) or a spray of recirculated freshwater with added base (closed loop scrubber).  Also wet hybrid scrubber systems 

exists, which can alternate between open loop and closed loop mode. There are also some experimental setups of dry 115 

scrubbers, which use a granulated substrate to adsorb sulphur oxides.  Wet scrubber installations are efficient in respect to 

the removal of SOX from the exhausts, but also to some extent wash out other substances, like NOX, PM, PAH:s and metals 

(Turner et al., 2017; Winnes et al., 2020; Ytreberg et al., 2019)). The long term risks for the marine environment following 

large scale use of wet scrubbers are today not well understood (Koski et al., 2017), yet there are an increasing number of 

reports arguing that scrubbers are moving an environmental impact from the atmosphere to the marine environment.  120 

 

1.5. Ballast water 

Ballast water onboard ships is used to ensure vessel stability, a proper immersion of the propeller and optimal vessel trim. 

Very large quantities of ballast water can be transferred between different marine regions by dry and liquid cargo ships, 

which take in ballast water upon cargo discharge and empty their ballast tanks when cargo is loaded to the ship. Ballast water 125 

can also be exchanged during vessel transit to reduce the risk of introducing alien species with the vessel ballast from one 

area to another. Since shipping is present in all sea areas non-indigenous species (NIS) are transferred between ports 

regardless of differences in environmental conditions. Spreading of non-indigenous species is ranked as one of the worst 

threats to the marine environment by the IMO, yet it took 13 years to get the Ballast Water Management Convention (IMO, 

2004) in place. The BWMC entered into force in September 2017 and requires ships to use approved ballast water treatment 130 

systems that neutralizes the organisms in the ballast water tanks, ensuring that viable harmful NIS are not transferred 

between ports with the ballast water. The ballast water treatment systems use either physical measures such as ultrasound or 

UV-light, or addition of chemicals to disinfect the water. The disinfection may also cause formation of unintentionally 

produced byproducts such as bromate(Werschkun et al., 2012). 

 135 

1.6. Antifouling paints 

Ballast water and vessel hull are two main vectors for introducing NIS by ships. Submerged structures offer substrate for 

various sessile organisms such as algae, hydroids, barnacles and mussels that attach and grow on the surfaces, thereby 

increasing the roughness of the hull surface. Such increased roughness in turn increases drag and significantly affects the 

fuel consumption (Schultz, 2007) and may also affect the maneuvering capability of a ship. To reduce this fuel penalty, 140 

secure maneuvering capability and prevent spreading of NIS, the hull is coated with antifouling coatings that contain and 

release toxic compounds (biocides). Modern coatings use several techniques of self-polishing polymers, contact leaching 

systems and controlled depletion polymers. The antifouling substance that currently dominates the market is copper oxide 

(Blossom, 2018). However, other substances are also used and in some coatings they are used as so-called booster biocides 

together with copper oxide (Yebra et al., 2004). Until 2007 it was allowed to use the toxic organometallic compound Tri-145 
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butyl-tin (TBT) on ships, but following the adoption of the Antifouling Systems Convention, it was banned in 2008 (Champ, 

2003). The first alarm reports regarding large scale negative effects from TBT came from the seafood industry as French 

oyster farmers lost their harvests (Alzieu, 1991; Alzieu et al., 1986). TBT is especially harmful for molluscs, inducing 

pseudo-hermaphroditism and reproduction failure, and crustaceans where TBT accumulates in fatty tissues.  

 150 

1.7. Food waste, black- and grey water 

Discharge of food waste may cause an increased biological or chemical oxygen demand as the organic matter is degraded in 

the marine environment. It may also contribute to eutrophication through its nutrient content. According to IMO MARPOL 

Annex V(IMO, 2013), food waste can be released to the sea if the ship is outside 12 nautical mile distance from shore, or if 

the waste is comminuted and passes through 25 mm mesh and is released outside 3 nautical miles from shore. In designated 155 

Special Areas, such as the Baltic Sea, all food waste must be comminuted or ground before discharge, also outside 12 

nautical mile range from the shore. Similarly, untreated sewage, or black water, produced on ships is only allowed to be 

discharged outside 12 nautical miles from the nearest land. Treated (disinfected) black water can be discharged outside 3 

nautical miles, when the ship is en route at a speed of 4 knots or greater. Inefficient wastewater treatment may lead to 

bacterial and viral contamination of fisheries and public health risk.(Copeland, 2008) 160 

In the Baltic Sea, currently the only special designated area for sewage, all discharge of sewage from passenger ships will 

require on board treatment and disinfection prior to discharge. The regulations apply to new built passenger ships as from 

2019 and will apply to all passenger ships as from 2021. For direct passages between St. Petersburg (Russia) and the North 

Sea there is an extension until 1 June 2023. Grey water consists of drainage from dishwater, showers, laundry, baths and 

washbasins and is not yet regulated through the IMO. However, sometimes black and gray water waste streams are mixed in 165 

the same tank and then the regulations for black water apply. Release of garbage, which contributes to plastic pollution of the 

seas, is prohibited, but not included in the current work, yet.  

 

1.8. Aim 

The aims of this study are to a) expand the existing STEAM ship emission model to include a description of environmental 170 

stressors of shipping discharges to the marine environment. This makes it possible to b) construct inventories for ship 

discharges using the Baltic Sea as a case study area (Figure 2).  
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Figure 2 The Baltic Sea and location of its sub basins. The blue line shows the border of territorial waters (12 nautical miles and 175 
the purple lines indicate the Exclusive Economic Zones. Black thick lines show the boundaries between different areas used to 

define antifouling classes in Table 3. Green color indicate existing (dark green) and proposed (light green) protected areas. Image 

from HELCOM, Baltic Sea protected areas map, 2008. 

 

Currently, scattered studies exist for various discharges(Ivče et al., 2020; Seebens et al., 2013), but data which could be used 180 

to assess the environmental impact of shipping are scarce. The methodology introduced in this paper includes description of 

several key pollutant streams from ships. The long-term goal of this work is to c) facilitate consecutive studies concerning air 

and water pollution, contaminants and nutrients, from ships to understand the contribution of ships in relation to other 

environmental stressors. Some of the recent work is already available for air and noise emissions (Jalkanen et al., 2018; 

Karasalo et al., 2017; Karl et al., 2019a; Raudsepp et al., 2019; Wilewska-bien et al., 2019), and regular annual reporting of 185 

discharges has been started together with the Baltic Sea countries. These efforts aim to d) provide scientific background for 

future regulation or significant change in the existing conventions concerning shipping in the Baltic Sea region. 
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2. Material and methods 

Total discharges of water pollutants from ships in the Baltic Sea area for the year 2012 were modelled using the Ship Traffic 190 

Emission Assessment Model (STEAM3; (Jalkanen et al., 2009, 2012, 2018; Johansson et al., 2013, 2017)). In the cases of  

bilge, stern tube oils, scrubber-, ballast-, black- and grey water, the discharge or leakage volume was predicted by STEAM. 

In order to obtain the mass of a specific pollutant from these waste streams, a multiplication with pollutant water 

concentration is required. These can be obtained from laboratory analyses of water samples from ships, the values used in 

this work are given in Supplementary material. Modeling the volumetric release of water from various sources facilitate the 195 

inclusion of many pollutants when used in conjunction with pollutant concentration data from water analysis. A literature 

review (see the Supplementary material) was conducted to characterize the concentrations of chemicals and nutrients in the 

different ship waste streams. The literature review included both scientific reports and reports from various other sources, 

e.g. EPA reports and IMO documents. When a specific compound was reported as “not detected” in the reports, 50% of the 

limit of detection (LOD) or 50%  the limit of quantification (LOQ) was used as the default value  as recommended by the US 200 

EPA (US EPA, 2000). In the case where neither LOD nor LOQ were reported, a value of zero was used for not detected 

compound. 

 

2.1. STEAM v3.2 

STEAM3 software predicts instantaneous vessel power consumption based on water resistance calculations and reflects the 205 

variability of ship operation based on information reported in AIS. With a detailed vessel description, it is possible to 

produce estimates of instantaneous power, fuel consumption and emissions. In contrast to emissions of atmospheric 

pollutants, the water discharges may not directly depend on vessel operation speed, but on other features like number of 

people carried onboard, wet surface area of ships’ hull and cargo capacity. For this purpose, IHS (IHS_Global, 2016) 

SeaWeb vessel database was used to extract significant data to support discharge modeling of water pollutants. Vessel 210 

activity recorded by the AIS network of the Baltic sea countries was used in this work. The data consisted of position reports 

from year 2012 (275 million records) which describe vessel location every 5-6 minutes. The data were obtained from the 

Baltic Marine Environment Protection Committee (HELCOM) AIS data archive. The changes listed in this paper bring 

STEAM to v3.2 which facilitates discharge modelling using the methodology described in this paper. 

 215 

It should be noted that the outputs of STEAM v3.2 describe water volumes for ballast, bilge, grey, black and scrubber wash 

water and further multiplication with pollutant concentrations in these discharge waters is needed to generate inventories 

which, for example, describe the copper content of scrubber wash water released to the sea. The variability of pollutant 

concentrations in the discharge waters may be significant, which will inevitably be reflected in the final data. Inclusion of 

hundreds of chemical species in various discharges was not feasible in STEAM, which necessitated the modelling of water 220 
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volumes instead of reporting directly pollutant mass flux. However, we acknowledge this and produce water volume data to 

facilitate further use in water research. Calculation examples and a review of existing pollutant concentration in various 

discharge streams are provided in Supplementary material. 

 

2.2. Bilge water 225 

Bilge water is a chemical mixture, consisting of oil residues, cleaning agents and condensed water from machinery spaces. 

Estimating the volume of bilge water produced is challenging as it is not solely related to vessel activity but may depend on 

random occurrences of crew activities and machinery incidents, which cannot be predicted reliably. It should be noted that 

also stationary vessel produces bilge water in our approach, because leaks from pipes and condensation of water on metal 

surfaces may also occur regardless of vessel movement. The IMO MARPOL Annex I regulates when and where bilge water 230 

can be released to the sea and it is challenging to describe this in emission models. In this work, each vessel has a simulated 

bilge tank and bilge water accumulated in this tank with the daily rate defined by (1a). 

 

 𝑏𝑝𝑎𝑠 = 0.1313𝑝 + 373.4  (1a) 

 𝑏𝑜𝑡ℎ𝑒𝑟 = 0.0247𝑝 + 154.4 (2b) 

 

The daily bilge water production [liters*day-1] is calculated as a function of p, the installed main engine power. The equation 235 

for bpas is used for passenger ships (RoPax, passenger ships and cruisers) and bother is used for all other vessel categories. 

According to DNV (Furstenberg et al., 2009), 75% of the produced bilge water is discharged overboard and the remaining 

share (25%) is left in port reception facilities. In the current study, this is taken into consideration by multiplying the 

estimated bilge water production of each ship with 0.75.   

 240 

This bilge tank continuously releases bilge water to the sea in areas where this is allowed by IMO MARPOL Annex I or 

national legislation (Finnish Marine Environment Protection Act 29.12.2009/1672). In reality, bilge tank is emptied more or 

less at random intervals, but realistic description of a random release is difficult to include, and we have chosen to implement 

a continuous bilge water release in this work. Based on a report by DNV (Furstenberg et al., 2009) and a study by 

Magnusson et al. (2018) for 30 vessels in total, several attempts were made to correlate daily bilge water production of 245 

different kinds of vessels to build year, vessel type, size and installed main engine power. The highest score was obtained 

with a simple linear model as a function of main engine power defined separately for two vessel categories since passenger 

vessels produce clearly more bilge water than other vessel types.   
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Currently, STEAM produces bilge water volumes as output and does not indicate the amount of oil or other contaminants 250 

released to the sea, because there are significant variations in pollutant concentrations of bilge water samples. In order to 

generate an inventory for oily releases, water volumes need to be multiplied with measured bilge water pollutant 

concentrations. Bilge water can contain, besides oil residues, metals and other organic compounds. A literature search found 

three scientific articles (McLaughlin et al., 2014; Penny and Suominen-Yeh, 2008; Tiselius and Magnusson, 2017) and a US 

EPA report (Albert and Danesi, 2011) where bilge water onboard ships has been sampled and analyzed for oil residues, 255 

metals and other organic compounds. 

 

2.3. Stern tube oil 

Oil leaking from ships’ stern tubes was modeled as volumes of oil released per day from different ship types (Table 1). This 

value was different for cargo and passenger vessels, but scant experimental evidence of actual oil release through stern tube 260 

sealing exists. Continuous oil release is assumed as a function of time, regardless of vessel activity. Although, the current 

analyses, based on Etkin (2010), are more sophisticated than the leakage of over 80 million liters estimated by Canada (IMO, 

2008b), more experimental work is needed to determine accurate stern tube oil emission levels for ships. The approach in 

this study was limited because no consideration was taken to the number of stern tubes in each vessel, age of the vessel, type 

of sealing or the lubricant used, but instead the values from Etkin (2010) were used. 265 

 

Table 1: Leakage rates of stern tube oil for different ship types. The data was gathered from Etkin (2010). 

Ship type  Discharge rate 

 (liters/day) 

RoPax Ship  6 

Container/Ro‐Ro Cargo Ship  4 

Passenger Cruise Ship  2 

Passenger Ferry  2 

Cargo Ship  6 

Refrigerated Cargo Ship  4 

Container Ship  5 

Chemical Tanker  4 

Crude Oil Tanker  4 

Oil Products Tanker  3 

LPG Tanker  3 

LNG Tanker 1 
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Fishing Vessel  2 

Vehicle Carrier  3 

 

2.4. Scrubbers 

In 2019, there were over 640 ships worldwide operating, and over 2000 vessels equipped, with open, closed or hybrid EGCS. 270 

With the STEAM3 model, EGCS wash water volumes for each individual ship equipped with a scrubber can be calculated. 

The type of equipment installed (open, closed, hybrid system) and installation date can be used as input to the model. The 

total load of e.g. metals emitted is dependent on the type of scrubber system used, the engine power and wash water volume. 

The wash water analysis data for both open loop and closed loop systems is limited. Characterization data (concentrations of 

contaminants and nutrients) of scrubber wash water during open- and closed loop operations was obtained from six reports 275 

(Hufnagl et al., 2005; IMO, 2019; Kjølholt et al., 2012; US EPA, 2011b) (MARINTEK 2006, US EPA 2011a, Kjølholt et al. 

2012, PPR 6/INF.20 2018) and one scientific article (Turner et al. 2017). 

 

2.4.1. Scrubber operation mode 

For the hybrid scrubber case, it is not known if the ship operates on open or closed mode unless the vessel travels in an area 280 

where wash water release from open loop scrubbing is not allowed (inland waters or ports in countries like Belgium, France 

and Germany). However, since the water consumption will increase dramatically in low alkaline waters, we assume that the 

open-loop operation will be insignificant in the Gulf of Bothnia. In the Baltic Proper we assume the hybrids scrubber 

operating with open loop mode and switch to closed mode occurs upon entering the Bothnian Bay, where water alkalinity is 

low because of river runoff (Beldowski et al., 2010). Different scrubber operating modes produce very different effluent 285 

flows per power unit. Scrubber effluent releases were determined by STEAM based on instantaneous power needed to propel 

the vessel at speed indicated by AIS. 

Some countries, like Germany, do not allow the use of open loop scrubber in their ports. This feature has been included in 

the modeling by allowing the use of closed loop scrubber but use of low sulphur fuel is required from vessels equipped with 

open loop scrubbers when operating in German waters. 290 

 

2.4.2. Scrubber utilization and discharge rates 

In (Johansson et al 2017) it has been described how the instantaneous fuel sulphur content (SFuel) has been modelled based on 

the local regulations and vessel technical limitations. Our key assumption in the modelling of SFuel is that the ship owners 

aim to minimize costs while complying with regulations. For the case of scrubbers, this means that the utilization level of 295 

scrubbers must depend on both the SFuel used onboard and the maximum allowed SAllowed. As an example, in an area for 
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which 1.5% SFuel is required one should not assume the same level of utilization for the scrubber than in an area in which 

0.1% is required for compliance. To take this into account in the model we define scrubber utilization level, given by (Eq 2) 

 

 
𝑆𝑐𝑟𝑢𝑏𝑏𝑒𝑟𝑈𝑡𝑖𝑙 = 𝑀𝑖𝑛 ( 

𝑆𝐹𝑢𝑒𝑙 − 𝑆𝐴𝑙𝑙𝑜𝑤𝑒𝑑

𝑆𝐺𝑙𝑜𝑏𝑎𝑙

, 𝑆𝐹𝑢𝑒𝑙) ; 𝑆𝐹𝑢𝑒𝑙 ≤ 𝑆𝐺𝑙𝑜𝑏𝑎𝑙  
(2)  

 

 300 

 

In (2), the global average (SGlobal) of 2.7 percent fuel sulphur content was assumed. For open-loop scrubbers the discharge 

rate has been set to equal 45m3 per MWh and 0.3m3 per MWh for closed loop respectively (Lloyds Register, 2012; Wärtsilä 

Corp., 2017). In the model we compute the instantaneous discharges based on the current engine power and the scrubber 

discharge rate, multiplied with the scrubber utilization rate. It should be noted that the use of scrubbers also affects the 305 

engine power predictions of STEAM3. The additional power required by scrubber pumps is modelled and vessel propulsion 

fuel consumption is increased by up to two percent (ABS, 2018), as a function of the utilization rate. 

2.5. Ballast water 

According to David & Gollasch (David, 2015), cargo ships carry ballast water amounts which correspond to 26-60 percent 

of their deadweight (DWT). Largest amounts can be found in bulk cargo carriers and tankers. The most reported values for 310 

the ballast water capacities range between 30-40 percent of DWT. However, modern cargo ships may visit several ports and 

unload only part of their cargo in any port and ballast water may be taken in or discharged during each visit. It is unlikely 

that all of the ballast water is loaded or unloaded during each of the port calls and this in particular makes the modelling of 

ballast water discharges challenging. For ballast water capacities for ships we have used ship type-dependent fractions as a 

function of vessel DWT. These fractions have been presented in Table 2. 315 
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Table 2: Estimated volume of ballast water carried by different types of vessels, indicated with a fraction of vessel Deadweight. 

Vessel type Estimated Ballast Water carried, %DWT 

RoRO/Passenger 29 % 

RoRo Cargo 13 % 

Vehicle carrier 23 % 

General Cargo 29 % 

Bulk Cargo 23 % 

Refrigerated Cargo 33 % 

Container vessels 33 % 

Chemical Tankers 40 % 

Crude Oil Tankers 35 % 

LNG Tankers 66 % 

LPG Tankers 45 % 

Oil Product Tankers 37 % 

Passenger ships 61 % 

Ferries 67 % 

Cruise ships 69 % 

 

Ballast water management systems (BWMS) are used to kill or remove organisms within ballast water. Biocides are used 

during the process, but also other chemicals associated with the system either intentionally or resulting from the treatment of 320 

ballast water can be discharged to the marine environment. Before the BWMS can be put out on the market they must pass 

an environmental risk assessment where the discharge of biocides and other chemicals to the marine environment are 

assessed. The risk assessment and authorization are handled by the Marine Environmental Protection Committee (MEPC), a 

branch of IMO. Analytical data of biocides and other chemicals present in treated ballast water from 40 different BWMS 

applications were reviewed based on measurement reports submitted to the IMO by member states during 2006-2015. This 325 

data can be found in Supplementary material. 

The modelling of ballast water discharges is challenging, and a number of safety measures are used to avoid situations where 

the discharge is modelled but does not occur in reality. Instead of aiming for accurate timing for ballast water intake and 

discharges with realistic release rates, the focus on the modelling is to obtain realistic amounts and geographical distribution 

for discharges. First, STEAM3.2 uses a global mapping of port areas (National Geospatial Intelligence Agency, 2014) which 330 
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define the areas where ballast water discharge is allowed to occur in the model. To further avoid the modelling of ballast 

water discharge that does not occur in reality, the modelled discharge is allowed to happen for vessels that are berthing, and 

the berthing duration must exceed two hours. Any vessel that has not been traveling in cruising mode between port visits is 

unable to discharge ballast water in the model. Considering these mentioned modelling rules affecting the ballast water 

discharges, the actual timing and rate of discharge cannot be estimated without additional information. Due to this we model 335 

an almost instantaneous (approx. one hour) discharge for ballast water when all the above-mentioned conditions are met. 

This is of course, not physically realistic but will prevent a partial, incomplete discharge to occur in the modelling. 

 

2.6. Modelling of antifouling paint release 

The modelling approach for biocides released from antifouling paints combined AIS data, vessel characteristics and release 340 

rates of biocides from antifouling paints. Ship wet hull surface area is calculated with STEAM3.2 as a part of the Hollenbach 

resistance calculations (Hollenbach, 1998). This allows for calculation of a ship’s underwater surface area (in m2) based on 

vessel physical dimensions and hull shape. It also facilitates further development because the method applied is linked to 

hull wet surface area, but the model can provide also estimate the friction terms involved in the hull-water interface as a 

function of vessel speed. Once the surface area is determined for a specific vessel, release rates for the mass of substances 345 

per area and time (g*m-2*s-1) are applied. Release rates are based on a compiled data set of 184 antifouling paint products 

(Gutierrez, 2015; New Zealand EPA, 2012; Ytreberg et al., 2010) and calculated in this work using the Mass-Balance 

Calculation method (ISO 2010). The following biocides were used: copper (inorganic species that release Cu2+), zinc oxide 

(released as Zn2+) and the co-biocides copper pyrithione, zinc pyrithione, 4,5-Dichloro-2-octyl-3-isothiazolone (DCOIT) and 

Zineb.  350 

Different countries have their own regulations for antifouling paint use, varying release rates were applied for the ships 

depending on which geographical area the ships were operating in according to four classes International, Kattegat, Baltic 

Proper and Gulf of Bothnia (Figure 2). For the class International, applied to all ships that also operate outside Baltic Sea 

and Kattegat, all 184 antifouling paints were used to derive average release rates of biocides. The class Kattegat is applied to 

all ships operating in both Kattegat and the Baltic Sea and release rates for antifouling paints approved for the Swedish west 355 

coast, Finnish, Polish and German market were used. For the class Baltic Proper, applied to ships operating in both Baltic 

Proper and Gulf of Bothnia, antifouling paints approved for the Swedish Baltic Sea, Finnish, Polish and German market 

were included. For the class Gulf of Bothnia, applied for ships operating in Gulf of Finland only, coatings approved for the 

Swedish Baltic Sea and Finnish market were used.   

Not all vessels use biocidal eroding or self-polishing antifouling paints, because the paint can wear off as a result of abrasion 360 

against sea ice. Vessel hulls can be kept smooth with periodic cleaning using divers and brushes. We assume that all ships 
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operating outside the Baltic Sea area carry antifouling paints, since there are no national regulations for international routes, 

and the fouling pressure in fully marine waters is more severe compared to the brackish waters in the Baltic Sea. The same 

assumption is made for ships operating outside the Baltic and Kattegat region (Figure 2).  

It has been estimated that the percentage of ships carrying antifouling paints in the Baltic Proper is 50% (Ambrosson, 2008) 365 

and in the Bothnian Bay it is 20% (Koivisto, 2003). Hence, for the antifouling paint class Baltic Proper and the Gulf of 

Bothnia an application factor of 50% and 20%, respectively, were used.  Not all paints contain all six contaminants. Hence a 

second application factor, which estimates the fraction of antifouling paints containing a specific biocide or booster biocide, 

is needed. The inorganic copper compounds and ZnO have an application factor of 100% estimating all antifouling paints to 

contain inorganic copper and ZnO. The booster biocides have an application factor of 0.2, assuming only 20% of all paints to 370 

contain one of the four different booster biocides. This implies that 20% of the coatings do not contain any booster biocide. 

In the present work, we do not know if a specific vessel is using a biocidal coating or a biocide free icebreaker coating. 

Therefore, we multiplied the regional-specific application factors with the regional-specific leaching rate to derive a generic 

leaching rate for the region-specific vessels. As a consequence of the low application factor for ships operating in the 

Bothnian Bay only (20% of the vessels are assumed to be coated with antifouling paints), the generic average leaching rate 375 

of copper is significantly lower in the this region (3.1 µg/cm2/d) as compared to the International region (24.5 µg/cm2/d), 

where 100 % of the vessels are assumed to be coated with antifouling paint (Table 3). 

 

Table 3: Antifouling paint leaching rates by sea area. All values given in µg/cm2/day. Note that ZnO and Cu(I)Oxide are reported 

as mass of Zn and Cu, which is in contrast to CuPyr, DCOIT and Zineb where the total mass or organometallic molecule is 380 
considered. 

Region Cu(I)oxide Cu pyrithione Zn oxide Zn pyrithione DCOIT Zineb 

International 24.5  0.238 4.400 0.425 0.148 0.441 

Kattegatt 15.507 0.202 4.633 0.484 0.154 0.383 

Baltic Proper 7.507 0.101 2.317 0.242 0.077 0.192 

Gulf of Bothnia 3.119 0.021 1.360 N/A N/A 0.061 

 

A more detailed review of daily release rates for various antifouling compounds can be found in Supplementary material. 

 

In STEAM3, the chosen approach requires two analysis rounds over the AIS data. In the first round, areas of operation are 385 

defined for each ship. During the second calculation round, the highest leaching rate of all the vessel operational areas is 

applied. The release rate will be multiplied with hull wet area and time to generate a map which describes the paint residue 

releases. The temporal variation of antifouling release is retained, and the maps can be used as input for ecosystem 

modelling. 
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 390 

2.7. Food waste, black- and grey water  

To assess the waste streams caused by people onboard, i.e. the amount of food waste and volumes of black and grey water 

and produced onboard ships, naturally depends on the number of persons onboard, which also includes the crew size. 

STEAM3 model uses the IHS database of vessel characteristics and the passenger capacity is one of the available 

information fields. For most vessels this field has not been specified. In such cases the number of passengers and crew size 395 

needs to be estimated. 

 

2.7.1. Passenger and crew capacity estimation 

Maximum passenger capacity values for more than 500 ships was collected using Significant Ships ((RINA, 2010)) journals. 

This publication series contains a comprehensive view on ship construction each year, including also the size of the crew 400 

onboard. Based on the collected data statistical models were assessed to predict the listed passenger capacities and crew size 

as a function of basic vessel properties. In particular, the vessel length overall (LOA) was seen to correlate strongly with the 

passenger capacity. The calculation methodology for passenger capacity of different types of passenger vessels is presented 

in Table 4. 

 405 

Table 4: Estimation rules used for maximum passenger capacity for different vessel categories. The function shows the 

computation used for passenger capacity based on L (Length overall). The ‘minimum’ asserts the minimum value for the 

estimation in case the number of cabins has been specified for the vessel. 

Type Function Minimum 

RoPaX 0.03L^2 + 3.7L 3x cabins 

Cruiser 0.0113L^2.1642 3x cabins 

Passenger/Ferry 10.5L - 

Yacht/Sail 0.25*L - 

RoRo 0.12L 3x cabins 

 

The size of crew onboard is estimated to be L/10 +1, however, for RoPaX and cruisers  the large number of passengers 410 

introduce additional work force on the vessel; based on the vessel data we increase the crew size by 0.2 times the passenger 

capacity.  
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2.7.2. Passenger count on board 

For the modelling of waste discharges such as food waste and black water the maximum passenger capacity estimate needs 415 

to be converted into passenger count estimate. There are significant differences in passenger capacity utilisation between 

seasons and only part of the total capacity may be in use. HELCOM reports passenger capacity utilisation of 90% for cruise 

ships (HELCOM, 2014a). Typically, summer and end-of-the-year holidays define peak seasons of the number of passengers 

carried on regular routes. This applies especially to RoPax ferries traveling in the Baltic Sea area. Average capacity 

utilisation was estimated by number of passengers carried by each route for two major shipping companies which 420 

concentrate on the passenger traffic in the Baltic Sea area. The routes selected were Helsinki-Tallinn, Helsinki Stockholm, 

Turku-Stockholm, Stockholm-Tallinn and Stockholm-Riga. For these routes and companies operating the vessels, quarterly 

reported passenger counts were available for year 2014.    

 

Vessels used in each route were identified and the number of ship crossings were determined from AIS data. This analysis 425 

revealed that, on an annual average, passenger capacity utilisation rate of regular traffic is about 50 percent for the vessels 

included in the analysis. During summer season and Christmas capacity utilisation is close to 100 percent, but significantly 

less than that outside the peak seasons. Due to the small sample size for passenger counts throughout the season, the 

modelling of passenger counts is based on a static 50% estimate for the capacity utilization. 

 430 

2.7.3. Food waste, Black and Grey Water volumes and nutrient content 

The generation of grey water and black water per person and per day by different ship types was obtained from DNV 

(Furstenberg et al., 2009) and is presented in Table 5.  

 

Table 5: Volumes of Grey Water (GW) and Black Water (BW) generated by different ship types. 435 

Ship types according to 

DNV*  

Ship type Estimated volume of GW 

* (L/person and day) 

Estimated volume of BW 

* (L/person and day) 

Cargo Container 119 85.9 

Passenger Cruise, ferry, RoPax 157 33.1 

Tankers Tankers 105 36.7 

Offshore Supply vessels 153 62 

*Furstenberg et al, 2009 
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Concentrations of nitrogen and phosphorus in grey water were provided by leading providers of marine equipment (Ylimaki 

J/Evac, personal communication, 2 December 2015; Wien AS/Scanship, personal communication, 2 March 2016 ) (Table 

6). The concentration of nitrogen and phosphorus in the black water could not be used directly since it was referring to the 440 

vacuum toilets. Therefore, a fixed emission factor of 16 g N and 1.6 g P per person and day was used for black water 

(average estimates from the providers of marine equipment and previous work of Huhta et al., 2007). This fixed emission 

factor is comparable to land-based estimates of 12.5 g N and 1.4 g P per person and day found in the literature (Jönsson et 

al., 2005).  

 445 

Table 6: Emission factors for nutrients used in the modeling 

Effluent P, g/(person*day), average N, g/(person*day), average 

Sewage, all ships 1.6  16  

Grey water, all ships 1.9 4.4 

Food waste, cruise ships 2.66 8.7 

Food waste, all other ships 0.5 1.7 

Total nutrients, cruise ships 6.1 29.1 

Total nutrients, other ships 4.0 22.1 

 

In addition to the nutrients listed in Table 6, Black and Grey Water discharges may also contain various contaminants, which 

are released from ships to the sea. The estimated quantities of various contaminants in Black Water were based on the 

onboard sampling and laboratory testing of cruise and passenger ships wastewater effluent in Alaska (ADEC, 2000, 2004, 450 

2005, 2006, 2007, 2008, 2011a, 2011b, 2013; US EPA, 2008) and from passenger ships in the and from passenger ships in 

the Baltic Sea (Madjidian and Rantanen, 2011). 

 

2.7.4. Discharge of Food waste, Black and Grey water 

Today, the Baltic Sea is the only designated special area under IMO MARPOL Annex IV with respect to black water 455 

discharge. In this area, passenger ships must treat their sewage prior to discharge to the sea or the sewage must be left in port 

reception facilities. The regulations apply to new built passenger ships as from 2019 and will apply to all passenger ships as 

from 2021. For direct passages between St. Petersburg (Russia) and the North Sea there is an extension until 1 st of June 

2023. In the modelling of black water for this paper, which is conducted for the year 2012, the rules did not apply and hence 

a worst-case scenario was used where all the generated sewage onboard ships were discharged to the Baltic Sea. The 460 

MARPOL regulation in Annex IV does however state that no untreated sewage can be discharged when ships operates at a 

distance of less than 12 nautical miles from the nearest land. As many ships also mix the grey water and sewage prior to 
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discharge, the assumption in the modelling presented in this paper is that neither grey water nor sewage are discharged if the 

ship is closer than 12 nautical miles from the nearest land. The same assumption was used for food waste, which according 

to MARPOL Annex V must be grinded and can only be discharged when the ship is further than 12 nautical miles from the 465 

nearest land. 

 

In STEAM3.2, waste accumulates into a virtual tank at a constant rate which is a function of people onboard, regardless of 

ship operation. When a vessel travels at slow speed or it travels near the coastline, no release is allowed and the water goes 

to a modelled tank instead. According to IMO MARPOL Annex IV, the speed limit for discharging sewage is 4 knots. Still, 470 

the speed limit of 5 knots was chosen since this is the lowest speed in Cruise mode in our AIS data setup, which was used as 

a trigger for these discharges. When the IMO requirements for release are met, tank is drained continuously to the sea at a 

rate that is significantly larger than the generation rate (50 times the generation rate).  IMO has defined (IMO, 2006) the 

maximum rate for the discharges. However, the discharges are characterized as infrequent events rather than continuous 

streams. Due to this the produced temporal and spatial distributions for food waste, grey- and black water can be crude 475 

approximations.  

 

3. RESULTS AND DISCUSSION 

To visualize the output of the STEAM3.2, the gridded datasets, maps of the annual volumes from different ship waste 

streams discharged into the Baltic Sea were produced. The maps are complemented by statistics on the monthly variation of 480 

discharge volumes, the shares of the total volumes discharged from the respective ship categories and the volumes 

discharged to the different basins in the Baltic Sea (sections 3.2-3.7). The total mass of pollutants discharged to the water 

depends on the volume of discharge and the pollutant concentrations in the waste streams. Generating dedicated inventories 

for hundreds of contaminants is not feasible, but the approach to produce waste stream discharge volumes as output in 

STEAM3.2 (Table 7) enables easier assessment of additional contaminants, as new or updated data on pollutant 485 

concentrations become available.  

 

Table 7: Volume discharges from STEAM for Baltic Sea shipping in 2012 (in tonnes), Cu concentration in discharge samples 

(micrograms per liter) and calculated total discharged mass of Cu (in tonnes) into the Baltic Sea.   

Discharge type Discharge 

volume (tons) 

Cu concentration (µg/L)  in each of 

the waste streams (95% CI) 

Total mass of Cu 

discharged,tonnes 

Ballast water 394 000 000 0 0 

Bilge water 288 000 68.4 (39.9 - 96.8) 0.02 

Scrubber wash water (Open) 1 520 000 43.0 (26.8 - 59.2) 0.07 
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Scrubber wash water (Closed) 10 700 295 (128 - 462) 0.003 

Grey Water 5 290 000 0 0 

Black Water 1 320 000 0 0 

Stern Tube Oil 2 800*  0 0 

* Converted from 3 050 000 liters using density of 0.915 kg/l (ExxonMobil_Marine, 2003) 490 

 

 

There are large variations in the literature data of the waste streams; both with respect to volumes and concentrations. For 

example a large variation can occur in generated bilge water volumes and composition, even in samples of the same vessel 

(Magnusson et al., 2017) and similarly large variations of e.g. metal content in scrubber wash water are reported (Turner et 495 

al., 2017). Clearly, ballast water discharges are the largest by volume (Table 7), however, in ballast water the concentration 

of many contaminants is significantly lower than e.g. in EGCS effluent. There are also large differences in temporal 

variation of discharges, especially concerning those which are strongly connected to passenger traffic and number of people 

carried onboard. This particularly concerns the black and grey water discharges as well as food waste.  

 500 

 

Some contaminants are present in several discharge streams, for example copper (in Table 7). The different waste streams 

have different shares of the total copper discharged from shipping the Baltic Sea. Here, it should be noted that the spatial 

distribution of the discharges can vary significantly. For example, ballast water discharges are concentrated near the port 

areas whereas the scrubber effluent discharges occur mostly along the ship lanes. The spatial features of each of the 505 

discharges are described in more detail in the following sections and a detailed breakdown of various discharges for different 

ship types is provided in the Appendix A and Supplementary material. 

 

3.1. Bilge Water 

According to the IMO, discharges of bilge water are allowed if the oil content of the discharge is below 15 ppm. However, 510 

national environmental legislation in Finland prohibits the release of oily waters within 4 nautical miles from the coastline. 

This feature is included in the discharge modeling (Figure 3). 
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Figure 3 Distribution of the annual bilge water releases for year 2012 from the Baltic Sea shipping. Discharge volumes are 515 
indicated per map grid area of 5 km2. Note, that release of bilge water is prohibited within 4 nm from the Finnish coastline. Top 

right: Share of bilge water released in various sub-basins of the Baltic Sea (INL=Inland areas, RIG=Gulf of Riga, BOT=Bothnian 

Bay and Bothnian Sea, FIN=Gulf of Finland, KAT=Kattegat, BSP=Baltic Sea Proper). Lower bar chart depicts the monthly 

variation of bilge water discharges. Upper pie chart summarizes the contribution of various ship types to bilge water releases and 

the lower pie chart the flag state shares of bilge water releases. Map background Landsat-8 image courtesy of the U.S. Geological 520 
Survey. 

 

The total volume of bilge water during year 2012 was 288 000 tonnes, of which 36% was from the RoPax class of vessels. 

According to 56 analyses of bilge water identified in literature (Albert and Danesi, 2011; McLaughlin et al., 2014; Penny and 

Suominen-Yeh, 2008; Tiselius and Magnusson, 2017)(see Appendix Table A1), the average effluent oil concentration was 525 

3.2 ppm (95% CI [0.5, 6.1]), which implies that 0.9 tonnes of oil (95% CI [0.2, 2.0]) is being discharged annually to the 

Baltic Sea via bilge water. Apart from oil, bilge water also contains various organic compounds and metals, and the average 



22 

 

concentrations of 16 different PAHs, 6 other organic compounds, 16 different metals and 3 detergents are presented in the 

Appendix Table A1.  

In reality, bilge tank is emptied more or less at random intervals, but realistic description of a random release is difficult to 530 

include, and we have chosen to implement a continuous bilge water release in this work. In principle, this will make the 

geographical distribution of bilge water release more diffuse than reality. It may also underestimate temporary local peaks in 

bilge water contaminant concentrations in the Baltic Sea. This approach does not cover the illegal discharges of untreated 

oily water, which were detected by aerial surveillance of the HELCOM member states (HELCOM, 2018a). 

 535 

3.2. Stern tube oil 

The annual discharge of stern tube oil to the Baltic Sea was calculated as 2800 tonnes (Table 7), which occurs during the 

normal operation of vessels. It should be noted that significant uncertainties may be involved. Etkin (2010) pointed out that 

aging may deteriorate the stern tube sealing, which would necessitate the inclusion of vessel or sealant age as a relevant 

modeling parameter. Nonetheless, the load of oil to the Baltic Sea is more than 3 orders of magnitude higher than what was 540 

calculated to be discharged from bilge water (0.9 tonnes). Excluding the accidental releases of oil to the sea, similar 

conclusion was made for the Mediterranean Sea in the EU Joint Research Centre study (Pavlakis et al., 2001). The approach 

taken in our study may be refined in the future, for example considering the age, number of stern tubes, type of sealing and 

lubricant used which are not currently considered. Figure 4 indicates the geographical distribution of predicted stern tube oil 

release in the Baltic Sea area during 2012.  545 
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Figure 4 Distribution of the annual stern tube oil releases for year 2012 from the Baltic Sea shipping. Discharge volumes are 

indicated in liters per map grid area of 5 km2. Top right: Share of stern tube oil released in various sub-basins of the Baltic Sea 

(INL=Inland areas, RIG=Gulf of Riga, BOT=Bothnian Bay and Bothnian Sea, FIN=Gulf of Finland, KAT=Kattegat, BSP=Baltic 550 
Sea Proper). Lower bar chart depicts the monthly variation of stern tube oil discharges. Upper pie chart summarizes the 

contribution of various ship types to stern tube oil releases and the lower pie chart the flag state shares of stern tube oil releases. 

Map background Landsat-8 image courtesy of the U.S. Geological Survey. 

 

The geographical distribution of the stern tube oil is similar to the vessels’ activity pattern. Time integration of activity will 555 

highlight areas, like ports, where ships spend significant amount of time. There exists several alternatives to stern tube oil, 

such as water lubrication (IMO, 2008b), environmentally acceptable lubricants or airguard sealing systems to eliminate the 

discharge of oil to the marine environment, but as long as mineral oil lubricants are allowed to be used it will continue to be 

a source of oil pollution to the Baltic Sea. Most of the stern tube oil leaks occur in Baltic Sea proper and there is a maximum 
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during the summer months. Dry cargo ships are the largest source, over three times larger than the contribution from any 560 

other ship type. 

3.3. Scrubber effluent 

Introduction of scrubbers on ships has attracted a lot of attention among the ship owners as an economic way of coping to the 

strict sulphur rules of the SECAs. Vessels equipped with EGCS equipment were rare until the introduction of strict 0.1% 

Sulphur limit in 2015. In 2012, there were only five vessels with EGCS installed; three with open loop and two with closed 565 

loop systems. In 2012, these five vessels were responsible for 1.5 million cubic meters of wash water discharge, of which 

>99% came from open loop systems (Figure 5 and Figure 6). A large increase of discharged water from EGCS is anticipated 

at a global level in 2020 when the new global sulphur cap of 0.5% is in force. Already in the Baltic Sea area, scrubber 

discharges have increased significantly; the 2018 estimates of scrubber discharges were estimated as 77 million tonnes from 

open loop and 0.1 million tonnes from the closed loop systems, installed in 99 vessels (Jalkanen and Johansson, 2019).  570 
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Figure 5 Annual discharge of effluent from open loop scrubbers during 2012 (left) and 2018 (right). Both images describe the 

discharge in units of cubic meters per map grid cell of 5 km2. A significant increase in open loop scrubber effluent release was 

predicted based on the activity of scrubber-enabled vessels. Map background Landsat-8 image courtesy of the U.S. Geological 575 
Survey. 
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Figure 6 Discharge of scrubber effluent from closed loop systems during 2012 (left) and 2018 (right). The values for discharges are 

reported in units of cubic meters for each map grid cell of 5 km2. Map background Landsat-8 image courtesy of the U.S. 580 
Geological Survey. 

 

This is already about 25% of the ballast water discharge of 314 million tonnes in 2018 (Jalkanen and Johansson, 2019). 

Discharge from open loop systems have raised concerns of water quality and have led to regional restrictions for operating 

open loop scrubbers. For example, German ports have prohibited the release of scrubber water and vessels should switch to 585 

low sulphur fuel instead. Similar bans have been introduced in other parts of the world (e.g China, Singapore, Malaysia), 

whereas some others (Japan, South Africa) have specifically allowed scrubber discharges from open loop systems.  

Regional rules for the Baltic Sea open loop scrubbing are included for German waters, which are visible in Figure 5. In these 

areas, vessels equipped with hybrid scrubbers are operated in closed loop mode and ships with open loop systems switch to 

low sulphur fuels. It should also be noted that open loop scrubbing becomes more difficult in the northern part of the Baltic 590 

Sea, because of the decreasing alkalinity of brackish water. Currently, low alkalinity of the seawater is only considered in the 
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scrubber effluent modeling for the Baltic Sea, but with proper oceanographic datasets this feature could also be implemented 

globally. The literature review conducted in this paper found 56 measurements of scrubber wash water when the scrubber 

was operating in open-loop mode and 14 measurements in closed-loop mode (Hufnagl et al., 2005; IMO, 2018; Kjølholt et 

al., 2012; Turner et al., 2017; US EPA, 2011b)(Appendix Tables A2 and A3). The data indicated higher concentration of 595 

most contaminants in wash water from closed-loop systems. For example, copper concentration was on average 295 µg/L 

(95% CI [128, 462] as compared to 43.0 µg/L (95% CI [26.8, 59.2] in wash water in open-loop mode (Table 7). However, 

assuming a discharge rate of 45 cubic meters per megawatt-hour for open-loop wash water and 0.3 cubic meters per 

megawatt-hour, the load of copper per MWh is significantly higher when the ship operated in open loop mode (1.9 g/MWh) 

as compared to closed-loop mode (0.06 g/MWh). Figure 7 illustrates the development of scrubber effluent discharge from 600 

ships during the time period 2006-2018 (Jalkanen and Johansson, 2019). It should be noted that the scrubber discharge 

volumes have been increased by almost two orders of magnitude, which makes them currently the second largest volumetric 

discharge from ships. 

 

 605 

Figure 7: Scrubber effluent discharge from the Baltic Sea fleet during 2006-2018. Image taken from HELCOM discharge report 

(Maritime19/13-4.INF). 

 

In December 2019, over 2000 vessels were included in the list of scrubber installations (IHS_Global, 2016). If a significant 

part of this group of vessels operates in enclosed areas, it may create problems for some marine species (Magnusson et al., 610 

2018b). The rapid adoption of scrubbers were predicted after the IMO decision on global ship sulphur fuel reduction starting 

in Jan 1st 2020 (Faber et al., 2016). 
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3.4. Ballast Water  

The total annual load of ballast water to the Baltic Sea was modelled as 394 million tons in 2012. Tankers discharge the 615 

largest volume of ballast water (146 million tons) followed by dry Cargo ships (103 million tons). Discharge pattern of 

ballast water is very different from other discharges (Figure 8), because ballast water operations occur mostly during cargo 

operations, which indicates significant discharge volumes near port areas. Water is taken in as ballast during cargo discharge 

to maintain vessel stability and proper immersion of the propeller, and to be discharged when cargo is loaded to the vessel.  

 620 



29 

 

 

Figure 8 Distribution of the annual ballast water releases for year 2012 from the Baltic Sea shipping. Discharge volumes are 

indicated in tonnes per map grid area of 40 km2. Note the change of map resolution to highlight ballast water discharge locations 

on this map. Top right: Share of ballast water released in various sub-basins of the Baltic Sea (INL=Inland areas, RIG=Gulf of 

Riga, BOT=Bothnian Bay and Bothnian Sea, FIN=Gulf of Finland, KAT=Kattegat, BSP=Baltic Sea Proper). Lower bar chart 625 
depicts the monthly variation of ballast water discharges. Upper pie chart summarizes the contribution of various ship types to 

ballast water releases and the lower pie chart the flag state shares of ballast water releases. Map background Landsat-8 image 

courtesy of the U.S. Geological Survey. 
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      630 

In this work, a description of ballast water discharge volume and pattern were identified, to facilitate future work on alien 

invasive species. However, this would require identification of the location where ships have filled their ballast tanks, which 

was not included in this work. Regardless, our results can be used to assess the risk of alien species transfer if suitable water 

analysis is available. Previous estimates of 250 million tonnes of ballast water discharge have been reported earlier, based on 

earlier traffic estimates during year 2011 (HELCOM, 2014b), whereas our modeling estimate is 1.6 times that volume. There 635 

can be several contributing factors to this discrepancy. Currently, our discharge estimate has not established the link to cargo 

flow recorded at ports by customs authorities but is rather based on vessel capacity instead. Further, the modeling assumes a 

complete discharge of all ballast water during port visits, which will lead to an estimate which is larger than in reality. 

Vessels may discharge part of their ballast water if only part of the cargo is left on port. Our current estimates of ballast 

water discharge may thus lead to a slightly higher risk of introducing alien species to the Baltic Sea area than in reality.  640 

To minimize the risk of spreading alien species via ballast water emissions, IMO adopted in 2004 the Ballast Water 

Management Convention (BWMC), which entered into force in September 2017 and requires ships to manage their ballast 

water in such manner that aquatic organisms are removed or killed prior discharge. The installation of the Ballast Water 

Management Systems (BWMS) depends on when the ship is scheduled for IOPPC (International Oil Pollution Prevention 

Certificate) renewal, but all ships must at the latest have an approved BWMC installed by 2024. The BWMS usually relies 645 

on filtration followed by UV radiation, biocidal treatment, deoxygenation and electrochlorination (King et al., 2012). Given 

that 394 million tonnes of ballast water is being discharged into the Baltic Sea annually (in 2012), the requirement to treat 

ballast water is a new waste stream of contaminants to the Baltic Sea. In this work, the concentration of contaminants in 40 

different BWMS were compiled and is presented in Supplementary information with references to original data. 

The spatial distribution of ballast water discharge indicates that these operations occur in ports. In reality, ballast water can 650 

be exchanged also during transit and should be done in quantities which are three times the required volumes to ensure 

proper tank flushing (IMO, 2004). However, the BWMC requires that water exchange is to be done in locations where the 

distance to the nearest land is at least 200 nautical miles and the depth of the sea is more than 200 meters. These 

requirements are impossible to meet in the Baltic Sea area and current HELCOM recommendation is to conduct ballast 

operations in ports. 655 

 

3.5. Antifouling Paint releases 

Over 280 tons of Cu is being released to the Baltic Sea from ships coated with antifouling paints annually (Table 8). 

According to HELCOM, the waterborne input of copper is 890 tons annually and comprises both natural and anthropogenic 

sources (antifouling paints excluded) (HELCOM, 2011). Monitoring data in Swedish coastal waters have shown 20 out of 36 660 

assessed water bodies to have copper concentration that exceed the Swedish water quality criteria used for Cu in the Baltic 

Sea (SWAM, 2018). Hence, the load of copper from ships coated with antifouling paint is thus significant.  
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Table 8: Emission totals for antifouling paints in the Baltic Sea area during 2012. These numbers contain the contribution from the 

commercial fleet. 665 

Compound Release(kilograms) Molecular mass (g/mol) CAS number 

Cu (inorganic)  * 281 000 53.546* 1317-39-1 (CuO) 

Cu pyrithione 575 315.86 154592-20-8 

Zn (inorganic) * 55 600 65.38* 1314-13-2 (ZnO) 

Zinc pyrithione 1 090 317.7 13463-41-7 

DCOIT 371 282.2 64359-81-5 

ZINEB 1 070 275.8 12122-67-7 

* Inorganic CuO and ZnO are reported as mass of Cu and Zn, not their oxides. For CuPyr, DCOIT and Zineb molecular 

masses are used in mass reporting.  

 

Another large source of copper to the Baltic Sea is antifouling contribution from leisure boats, which are not reported in this 

work, but were recently reported elsewhere (Johansson et al., 2020). The wet surface area of the Baltic Sea commercial ship 670 

fleet is about 44 million square meters while the corresponding area for boats is about 7 million square meters. Although, the 

wet surface area of a small boat is significantly smaller than that of a ship, there exist about sixty times more boats than ships 

in the Baltic Sea area. Small boats are primarily used during summer and are taken out of the water and stored for winter 

months, whereas the ship fleet operates throughout the year. Further, the activity patterns of small boats and commercially 

operated ships are different; small boats tend to move close to the shoreline whereas big ships follow the shipping lanes 675 

(Figure 9). 
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Figure 9 Geographical distribution of the emissions of Cu(I)O from ship hull antifouling paints. The values reported by the color 

scale indicate CuO releases in unit of grams per map grid cell of 5 km2. Top right bar chart indicates the share of Cu(I)O releases 680 
by sea area (INL=Inland areas, RIG=Gulf of Riga, BOT=Bothnian Sea and Bothnian Bay, FIN=Gulf of Finland, KAT=Kattegat, 

BSP=Baltic Proper). Lower bar chart describes the monthly variation of CuO releases. Upper pie chart illustrates the estimated 

share various ship types and the lower pie chart the flag state contributions to CuO releases. Map background Landsat-8 image 

courtesy of the U.S. Geological Survey. 

 685 

The spatial copper (CuO) release distribution from antifouling paints characterizes general shipping activity across the Baltic 

Sea. The emission increases gradually toward the southern Baltic Proper as shipping traffic from different ports merge into 

main shipping lines. The annual leeching of AFP along at the concentrated shipping lines ranges from 3.2 kg km-2 in 

Northern Quark strait (separates Bothnian Bay from Bothnian Sea, see Figure 2) up to 70 kg km-2 in the Øresund Strait.  

There are distinctive hotspots in and near the port areas where annual AFP releases can be an order of magnitude higher than 690 

at shipping lines.   

The AFP emission totals reported in this paper reflect the values obtained for the commercial fleet, only, and it has been 

assumed that the leaching rate of the hull paint remains constant regardless of the movement of the vessel. Strictly speaking, 
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this may underestimate the paint release rate, especially in cases where recently painted hull surface is exposed to water 

(Kojima et al., 2016). However, the leaching rates for surfaces which have been exposed to sea water stabilize over time and 695 

leaching rates of surfaces with paint layers older than one month still show some dependency on speed, but the differences 

are much smaller than in cases of fresh paints. Recent studies conducted in the Baltic Sea and the more saline Swedish West 

coast have also observed that leaching rates of copper increase with increasing salinity (Lagerström et al., 2018, 2020; 

Ytreberg et al., 2017). Temperature is another parameter known to control the leaching of copper as well as the presence of 

biofilm on the coating (Valkirs et al., 2003). The approach taken in this manuscript (and STEAM model) allows future work 700 

with primarily speed, salinity and temperature dependent antifouling paint releases. Maps for other antifouling paint residues 

can be found in Supplementary material. It should be noted, that this work does not evaluate the use of galvanic corrosion 

protection, which is also a source of copper and zinc to the marine environment(Rousseau et al., 2009).  

 

3.6. Food Waste, Black Water and Grey Water 705 

 

The spatial distribution (Figure 10) of food waste discharge is concentrated on areas outside the 12 nautical mile distance 

from shore. Over 90% of the nitrogen in food waste comes from passenger ships, which carry many people onboard. Most of 

the food waste release happens during the summer, when the cruise vessel traffic activity is high. The summer period is also 

a maximum of the air emissions from ships, and part of the nutrients enter the Baltic Sea through air. Air emissions from 710 

Baltic Sea ships have been discussed in Karl et al. (Karl et al., 2019a, 2019b) and are therefore not discussed here. 
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Figure 10 Food waste nitrogen discharges from ships during 2012 in unit of grams per map grid cell area of 5 km2. According to 

IMO rules, no discharge is allowed closer than 12 nm distance from the coastline. Upper bar chart describes the contributions by 715 
sub-basin, lower bar chart the monthly variation. Upper pie chart depicts the ship type and lower pie chart the flag state 

contributions to foodwaste nitrogen releases. Map background Landsat-8 image courtesy of the U.S. Geological Survey. 

 

 

In reality, many vessels pump their wastewater to port reception facilities, but there also exists a few of those which pumps 720 

everything into the sea. Our modelling approach is likely to result in overestimation of nutrient release to some regions of the 
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sea because of this feature. However, we have reduced the overall release rate according to the fraction of ships which leave 

their waste in ports during harbor stays. This will spread the sewage releases throughout the whole area where discharge is 

allowed, but it may lead to a more realistic description of discharge totals than the assumption where everything is released 

into the sea and nothing is left in port reception facilities (Figure 11). In reality, there exists vessel routes where all waste is 725 

left in port, but our current knowledge of vessel operations does not allow the inclusion of this feature. From 2021 onwards, 

all passenger vessels must leave their sewage in port reception facilities (HELCOM, 2014a), whereas for cargo ships waste 

release is still allowed according to the IMO regulations. 
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Figure 11 Sewage nitrogen discharges from ships during 2012 in unit of kilograms per map grid cell area of 5 km2. According to 

IMO rules, no discharge is allowed closer than 12 nm distance from the coastline. Upper bar chart describes the contributions by 

sub-basin, lower bar chart the monthly variation. Upper pie chart depicts the ship type and lower pie chart the flag state 

contributions to sewage nitrogen releases. Map background Landsat-8 image courtesy of the U.S. Geological Survey. 

 735 

 

The estimated total reduced nitrogen (M=14 g mol-1) input to the sea from black water and food waste were 556 and 82 

tonnes in 2012, respectively. From these totals, 487 and 76 tonnes were from passenger vessels. In the case of phosphorus, 
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food waste, sewage and grey water contributions were estimated as 24, 42 and 40 tonnes for the whole Baltic Sea fleet as 

reported earlier (Wilewska-bien et al., 2019). 740 

From 2021 onwards, most of the passenger ship fleet operating in the Baltic Sea area will not be able to release their sewage 

to the sea, but there exists an extension until year 2023 for vessels operating between the North Sea and St. Petersburg, 

Russia. All sewage must be discharged to the port reception facilities from that date on, but this requirement only applies to 

passenger vessels, but passenger vessels are responsible for 88% of the nitrogen in sewage and over 90% of the nitrogen in 

food waste releases to the sea. This decision alone will reduce the nitrogen release from 556 to 69 tons (reduced nitrogen) 745 

and increases the wastewater reception of ports by one million tonnes. According to Marpol Annex IV, Similar requirement 

does not apply to food waste release from ships, which would further reduce the annual nitrogen load by 76 tons. Currently, 

there is no viable enforcement practice in place to control whether these rules are followed. 

 

 750 

Figure 12: The cumulative discharges over the area of the Baltic Sea divided by the total discharges for the year 2012.  Vertical 

blue dashed lines correspond to the areas of total load of the ballast water and scrubber water discharges. AFCu=Antifouling 

paint relase CuO, AFzn=Antifouling paint release ZnO, SO+SC=Scrubber effluent release both from open and closed loop 

systems, BA=Ballast water discharge, BW=Sewage release, GW=Grey water discharge, BI=Bilge water release. 

 755 

The normalized cumulative distribution of annual discharges from different waste streams as the function of Baltic Sea 

surface area summarizes spatial distribution of the sources (Figure 12). Ballast water is discharged as point sources with the 

highest load at a single location accounting for about 4% of the total load. Total area of ballast water discharges is less than 
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500 km2 which accounts less than 0.12% of the total area of the Baltic Sea. Scrubber wash water is discharged along main 

shipping lanes without significant hotspots. This is represented by slow increase of the cumulative distribution curve at small 760 

area values. Rapid increase of the cumulative load between 500 km2 and 6300 km2 accounts for the major shipping lane 

discharges. Antifouling paint contaminants, bilge, grey water and sewage discharges consist of point sources, ship lanes and 

low traffic area distributions covering a large part of the Baltic Sea. In the case of mixed loading, approximately 50-60% of 

antifouling, bilge, black water and greywater discharge can be related to hotspots, ~25%  to the major shipping lines and the 

remaining 10-15 %  to the low traffic areas. Greywater and black water have similar spatial discharge pattern represented by 765 

overlapping curves. Similar spatial distribution holds for Cu and Zn antifoulants as all ships leach both contaminants 

simultaneously. Black water and greywater point sources represent large discharges when the ships have passed 12 nm 

restriction zone.  

4. Summary 

 770 

In this paper, we have reported the methodology which was used to add a new capability to the existing ship emission model 

STEAM; discharges of waste streams and release of antifouling paints to the marine environment. These enable new studies 

on discharges to the sea from ships, based on the realistic vessel activity and technical description. In contrast to the 

atmospheric exhaust emissions, water discharges are released directly to the sea and contain various contaminants and 

nutrients. Also, atmospheric emissions occur at places where fuel combustion occurs, which is different from discharges. 775 

There exist large group of regulations which define which releases are allowed in various areas. This complicates the 

modeling work.   

Modeling of water pollutants from ships requires an analysis of maritime environmental law in various countries, because 

several exceptions exist to the IMO requirements. The work reported here covers most of the annexes of IMO MARPOL 

convention, includes antifouling and ballast water management convention rules and enable us to extend the evaluation of 780 

environmental impact of shipping beyond atmospheric studies. Some of these exemptions concern specific areas or countries 

(bilge water releases), are address specific technologies (open loop scrubbers) or other regional rules (sewage release 

restrictions for passenger vessels). We have attempted to include these requirements in this work as much as possible, but the 

current approach assumes that all ship comply with every rule which may not always be the case. For example, compliance 

rate to the sulphur rules is high, but not necessarily one hundred percent (European Commission, 2018; Kattner et al., 2015).  785 

Strong increase of scrubber effluent releases was to be expected after the sulphur rule change in SECAs from 2015 onwards. 

This will probably happen also in global scale after the global 0.5% sulphur regulation starts. Significant increase of scrubber 

effluent release underlines the need to conduct a thorough impact assessment of this new pollution source to marine 

environment. For this purpose, ecotoxicological studies are urgently needed to get a holistic view and assess whether 

changes to sulphur reduction methods are necessary. Antifouling paints were identified as a major source of copper from 790 
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ships. Since the ban of TBT in hull paints, other organometallic compounds were developed to replace tin, but further work 

is needed to learn how big a problem high copper releases are in marine environment. 

This work fills some of the gaps in knowledge of quantities of ship generated water pollutants as we have taken first steps 

towards this direction. This paper lists discharges from the Baltic Sea ship fleet during the calendar year 2012. It also 

identifies several research topics which need further attention in the future in order to reduce the uncertainties involved in 795 

emission modeling. Some of these contributions will be reported in the following papers, like the small boat emission 

modeling, water and air dispersion studies, but others require further experimental work to reduce the uncertainties involved 

in the modeling work. 

 

Appendices: Summary tables for contaminants in various discharge streams are given in Appendices. Calculation examples 800 

are also provided for antifouling paint releases, bilge and food waste nutrient discharges. 

 

Data availability 

The data described in this paper is available for further research. These consist of gridded binary data describing all 

generated daily discharge quantities. These datasets are available from Zenodo, DOI:10.5281/zenodo.4063643.  805 

 

Supplementary material 

Additional maps, a review of water analysis results for various discharge streams and spreadsheet summary of discharge 

totals by sea area are presented as supplements to the manuscript. 
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 1080 

Appendix A: To obtain the mass of contaminants and nutrients, the water volumes from STEAM3.2 need to be multiplied 

with the results of water analysis (mass/volume). The concentration values used in this work are given in the tables below. 

 

Table A1. Concentration of contaminants and nutrients in bilge water. The complete dataset and references are 

presented in Supplementary material.  1085 

Contaminant Number of 

ships in the 

analyses 

Total number 

of analyzed 

bilge samples 

Average 

concentration 

(µg/L) 

 

Median 

concentration 

(µg/L) 

Oil index Total 18 40 6700 1720 

Oil index Fraction >C10-C12 12 17 177 61.5 

Oil index Fraction >C12-C16 12 17 578 184 

Oil index Fraction >C16-C35 12 17 6110 751 

Oil index Fraction >C35-<C40 12 17 1370 220 

naphthalene 12 17 49.6 7.73 

acenaphthylene 12 17 0.377 0.166 

acenaphthene 12 17 1.470 0.385 

fluorene 12 17 3.28 0.825 

phenanthrene 12 17 3.460 0.915 

anthracene 12 17 0.326 0.150 

fluoranthene 12 17 0.769 0.089 

pyrene 12 17 1.46 0.315 

benz(a)anthracene 12 17 0.220 0.019 

chrysene 12 17 0.227 0.041 

benz(b)fluoranthene 12 17 0.130 0.012 

benz(k)fluoranthene 12 17 0.055 0.010 

benz(a)pyrene 12 17 0.147 0.015 

dibenzo(ah)anthracene 12 17 0.050 0.010 

benzo(ghi)perylene 12 17 0.175 0.013 

indeno(123cd)pyrene 12 17 0.081 0.010 

PAH, sum 16 12 17 60.7 11.7 
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PAH, sum carcinogenic 12 17 0.613 0.109 

PAH, sum other 12 17 60.7 11.7 

PAH, sum L 12 17 50.6 8.70 

PAH, sum M 12 17 9.02 3.50 

PAH, sum H 12 17 0.718 0.119 

Anionic surfactants 15 36 5140 2330 

Cationic surfactants 7 7 909 440 

Nonionic surfactants 7 7 2530 400 

benzene 9 12 1.91 0.680 

toluene 9 12 11.2 2.54 

ethylbenzene 9 12 4.59 2.38 

m,p-xylene 9 12 21.4 14.0 

o-xylene 9 12 193 8.54 

xylenes, sum 9 12 388 31.0 

Aluminum 10 27 274 73.5 

Antimony 4 21 5.17 3.57 

Arsenic 10 27 55.2 10.4 

Barium 8 25 95.8 44.7 

Cadmium 4 21 3.75 1.00 

Calcium 10 27 89300 79200 

Chromium 9 26 20.8 3.88 

Cobalt 4 21 3.88 2.26 

Copper 10 27 126 115 

Iron 6 23 2610 1071.5 

Lead 9 26 8.62 7.5 

Magnesium 10 27 214000 183000 

Manganese 10 27 100 56.1 

Nickel 9 26 31.2 17.0 

Potassium 8 25 82600 68900 

Selenium 7 24 25.2 25.1 

Sodium 8 25 1800000 1450000 

Vanadium 5 22 53.3 38.4 

Zinc 10 27 568 151 
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Total phosphorus 7 13 5.4 4.2 

Total nitrogen 4 10 12.4 14.2 

Ammonia 3 3 2.63 1.63 

Total Kjeldahl nitrogen 3 3 0.866 0.71 
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Table A2. Concentration of contaminants and nutrients in open loop scrubber wash water. Note, that full references 

to sample analysis reports are given in the Supplementary material. 

 

#Samples 

included 

Average 

concentration 

(µg/L) 

95% CI lower 

(µg/L) 

95% CI upper 

(µg/L) 

Arsenic  41 7.9 2.6 13.2 

Barium  3 68.3 -150.4 287.1 

Cadmium  38 1.0 0.5 1.5 

Calcium  8 394875 383980 405770 

Chromium  34 14.5 9.0 20.0 

Copper  47 43.0 26.8 59.2 

Iron  1 93.0   

Litium  8 44385 -24116 112886 

Lead  44 11.8 5.1 18.6 

Manganese  1 20.0   

Magnesium  8 1223875 1186035 1261715 

Mercury  19 0.1 0.1 0.1 

Nickel  42 51.8 36.6 67.0 

Potassium  8 377750 355511 399989 

Selenium  2 97.0 58.9 135.1 

Strontium  8 3012743 -456605 6482092 

Vanadium  42 179.2 123.0 235.4 

Zinc  45 119.1 25.7 212.4 

Naphthalene 35 3.6 2.5 4.7 

Acenaphthylene   34 0.1 0.1 0.2 

Acenaphthene 34 0.3 0.2 0.4 

Fluorene    34 0.6 0.5 0.8 

Phenanthrene 35 1.8 1.3 2.3 

Anthracene    34 0.1 0.0 0.2 

Flouranthene 34 0.2 0.1 0.3 

Pyrene 34 0.4 0.2 0.6 

Benz(a)anthrancene  34 0.1 0.0 0.2 

Chrysene 34 0.2 0.1 0.3 

Benzo(a)anthracene 1 0.0   
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Benzo(b)fluoranthene 34 0.0 0.0 0.1 

Benzo(k)fluoranthene 34 0.0 0.0 0.0 

Benzo(a)pyrene  35 0.0 0.0 0.1 

Dibenzo(a,h)anthracene 34 0.0 0.0 0.0 

Benzo(g,h,i)perylene 34 0.0 0.0 0.0 

Indeno(1,2,3-c,d)pyrene 34 0.0 0.0 0.0 

EPA 16 PAH 1 6.5   

Total detected PAH  35 8.3 6.0 10.5 

 1090 

 

 

 

Table A3. Concentration of contaminants and nutrients in closed loop scrubber wash water. Note, that full references 

to sample analysis reports are given in the Supplementary material. 1095 

 

#Samples 

included 

Average 

concentration 

(µg/L) 

95% CI lower 

(µg/L) 

95% CI upper 

(µg/L) 

Arsenic  14 12.6 7.5 17.7 

Cadmium  14 0.53 0.25 0.81 

Chromium  7 2668 -2179 7514 

Copper  14 295 128 462 

Lead  14 11.6 4.7 18.3 

Mercury  9 0.07 0.05 0.10 

Nickel  14 2794 1586 4001 

Vanadium  14 11945 7254 16635 

Zinc  14 479 127 831 

Naphthalene 8 1.46 1.86 -0.10 

Acenaphthylene  7 0.03 0.02 0.01 

Acenaphthene  7 0.21 0.16 0.06 

Fluorene  7 0.74 0.66 0.13 

Phenanthrene  8 3.16 2.82 0.80 

Anthracene  7 0.04 0.04 0.00 

Flouranthene  7 0.20 0.15 0.06 

Pyrene  7 0.20 0.16 0.05 

Benz(a)anthrancene  7 0.03 0.03 0.00 

Chrysene  7 0.05 0.05 0.00 

Benzo(a)anthracene  1 1.13   

Benzo(b)fluoranthene  7 0.02 0.02 0.00 

Benzo(k)fluoranthene  7 0.01 0.01 0.00 

Benzo(a)pyrene  8 0.03 0.07 -0.02 

Dibenzo(a,h)anthracene  7 0.01 0.01 0.00 
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Benzo(g,h,i)perylene  7 0.01 0.01 0.00 

Indeno(1,2,3-c,d)pyrene  7 0.01 0.01 0.00 

Total detected PAH  7 5.12 4.19 1.24 
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Appendix B: Calculation examples for various discharges 

Calculation example for nutrients in sewage, grey water and food waste 

RoPax with 100 crew members and 1900 passenger capacity. 1100 

Average utilisation of passenger capacity: 50% 

Daily production of Phophorus in sewage, per person: 1.6 grams 

Daily production of Nitrogen in sewage, per person: 16 grams 

Daily production of Phosphorus in grey water, per person: 1.9 grams 

Daily production of Nitrogen in grey water, per person: 4.4 grams 1105 

Daily production of Phophorus in food waste, per person: 0.5 grams 

Daily production of Nitrogen in food waste, per person: 1.7 grams 

Duration of one trip: 2 h 

Number of trips each day: 6 

Daily travel time: 6 * 2 h = 12 h 1110 

Daily production of P: 100 crew * 24/24 h crew presence each day * (1.6 + 1.9 + 0.5) grams of P per each crew day + 1900 

passengers * 0.5 passenger capacity utilisation * 12/24 passenger presence each day * (1.6 + 1.9 + 0.5) grams of P per each 

crew day  =  400 + 1900 g/day = 2300 grams/day 

Annual production of P: 2300 g/day * 365 days = 840 kg/year ( and 4640 kg of N per year) 

 1115 

Calculation example for antifouling paint residue release 

A calculation example for a vessel which operates in multiple sea areas is illustrated below. Only Cu(I)Oxide releases are 

included in this example: 

Oil tanker, length 228m, breadth 32.2m, draught 14.3m coming from outside the Baltic Sea to Primorsk, Russia. Trip length 

800 nautical miles, speed 15 knots, trip duration 53h. Wet surface area 9921 m2(Wet surface calculated as described in 1120 

Schneekluth & Bertram, “Ship Design for Efficiency and Economy, Butterworth-Heineman, 1998). Highest leaching rate of 

all the areas travelled is applied.  

Leaching rate of Cu(I)pyrithione: 24.491 micrograms/(cm2 * day), 2.834 micrograms/(m2 * second) 

Paint application factor, international value: 1 

Biocide application factor, international values: 1 (Cu(I)Oxide ) 1125 

During the trip, antifouling releases are: 

Leaching rate * wet surface area * trip duration * paint application factor * biocide application factor 

m(Cu(I)Oxide)= 9921 m2 * 53 h * 3600 sec/h *2.834 microg/(m2 * sec) * 1 * 1 = 5.36 kg  

 

Calculation examples for a bilge water release from passenger and a cargo vessel 1130 

Passenger ships: 

Installed main engine power: 32580 kW 

Bilge water production, l/day: 0.131284 l/kW *32580 kW + 373.416 l = 4651 litres/day 

Oil: 4650 litres/day * 3228 micrograms/litre / 1000000 micrograms/gram= 15.012 grams/day 

PAH16: 4650 litres/day * 58 micrograms/litre / 1000000 micrograms/gram= 0.270 grams/day 1135 

Surfactants: 4650 litres/day * 9 micrograms/litre / 1000000 micrograms/gram= 0.042 grams/day 

Metals: 4650 litres/day * 545 micrograms/litre / 1000000 micrograms/gram= 2.535 grams/day 

 

Cargo ships: 

Installed main engine power: 10519 kW 1140 

Bilge water production, l/day: 0.024696 l/kW * 10519 kW + 154.4874 l = 414 litres/day 

Oil: 414 litres/day * 3228 micrograms/litre / 1000000 micrograms/gram= 1.337 grams/day 

PAH16: 414 litres/day * 58 micrograms/litre / 1000000 micrograms/gram= 0.024 grams/day 

Surfactants: 414 litres/day * 9 micrograms/litre / 1000000 micrograms/gram= 0.004 grams/day 

Metals: 414 litres/day * 545 micrograms/litre / 1000000 micrograms/gram= 0.226 grams/d 1145 

 


