
In response to the comments we received from the editor and from the reviewers we have re-written 

most of the manuscript including: 

1. Adding the dimensional vorticity equation 

2. Re-writing the entire text with  as the non-dimensional friction coefficient instead of  

3. Producing new versions of the four figures including new simulations with fixed values of the new 

friction parameter  

4. Adding a detailed description in the Discussion regarding the ramifications of our results to the 

Sverdrup solution in the interior of the basin (that drives the poleward directed transport in the WBC) 

 

A point-by-point response to the particular comments, including pointers to the text where these 

changes were implemented follows. A marked up manuscript version in which the differences between 

the new and previous versions are clearly marked is uploaded as a separated file.    

    



Subject: Authors’ response to RC1 and corresponding changes to the MS.
We thank the referee for helping us improve the quality of our paper. In the following we
address the minor comments raised in the review.

While I agree that non-dimensional equations are useful, it is unclear what
the new physical findings of this study are. Is there a change in how the vorticity
balances in the western boundary layer? The authors need to clarify that the
parameter dependence of the WBC solution is not just a result of the mathematical
formulation that the authors have chosen.

Response: While the role of damping (α or ε in our formulation) in the westward in-
tensification has been previously discussed extensively in the literature, the dependence of
the WBC’s transport on the domain aspect ratio has not been studied (save for its mention
in Bye and Veronis, 1979). The novel finding of our study is the first quantification of the
dependence of the WBC’s transport on the domain aspect ratio. This finding enables, in turn,
its application to the five known WBCs.

Clearly, the vorticity balance in the boundary layer is unaffected by our scaling but in
the interior of the basin our formulation and scaling shows that the term of the Laplacian
proportional to ∂2ψ/∂y2 can be neglected only for δ ≥ 1 (see our detailed response to the
next comment). Our concise formulation underscores features that exist in the dimensional
formulation (as in our numerical simulations) but are hard to see when dealing with five model
parameters.

(1) I would like the authors to discuss the sensitivity of the results to the
choice of the boundary current width. In terms of mass balance, the WBC simply
returns the Sverdrup interior so if the Sverdrup interior is kept constant, the
transport of the WBC will not change. The meridional velocity at the western
boundary also varies differently in the zonal direction for S48 and M50: for S48, it
decays exponentially with epsilon while for M50, a maximum occurs near epsilon.
The way the transports are estimated (Equations 4 and 8) does not seem to fully
take these differences into account.

Response: It is indeed correct that the WBC’s transport is equal in magnitude to the
Sverdrup transport in the basin’s interior. However, the Sverdrup transport itself is dependent
on the basin’s aspect ratio. The correction to the Sverdrup transport in bounded domains was
developed in Bye and Veronis (1979).

In terms of our scaling this correction can be derived by noting that since α = ε/δ2, equation
(1) of the manuscript implies:(

ε
∂2

∂x2
+

ε

δ2
∂2

∂y2

)
ψ +

∂ψ

∂x
= sin(πy)

where ε = (r/βLx) is a proxy of damping and the non-dimensional width of the WBC. Under

the assumption of small damping i.e. ε� 1, the term ε
δ2
∂2ψ
∂y2

, cannot be neglected in the interior

solution when δ2 ∼ O(ε) i.e. the Sverdrup balance becomes a function of δ in this case. As
was rightly pointed out by the referee, the WBC ‘simply returns’ this δ-dependent Sverdrup
transport.

We employed the simple scaling to obtain our ad-hoc definition of the boundary layer width
[i.e. ε = r/(βLx) for Stommel’s model and ε = [µ/(βL3

x)]
(1/3) for Munk’s model] to make the

paper more accessible to oceanographers that are inclined towards observations or numerical
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modeling. Equations (4) and (8) are of the form:

Tr =
δ

απ2
[1−O(ε)] (4′)

and
Tr = δ[1−O(ε)] (8′)

These expressions are valid for values of ε for which a WBC exists and they show that our
results are not sensitive to the precise definition of the WBC’s width. For instance, the width
of the WBC can also be defined as the value of x for which the stream function reaches an
extrema. By this definition, εS ∼ 5ε for Stommel’s and εM ∼ 2ε for Munk’s model, where ε is
the current definition of the WBC’s width in the two models. The respective transports in the
two cases are given by:

TrS =
δ

απ2
(1− pe5Aε − qe5Bε)

and

TrM = δ

(
1− e−1

[
cos(
√

3) +
1− 2ε√

3
sin(
√

3)

])
Here, we see that the two transports calculated by the new definition of WBC’s width are
also of the form (4’) and (8’), which indicates that the results presented in this paper are
independent of the precise definition of WBC’s width. We thank the referee for this comment
and we will further highlight the independence of our results to the choice of WBC’s width in
the revised manuscript.

Changes: Lines 121 - 126 in the revised version of the manuscript discuss how our re-
sults are independent of the definition of the WBC’s width.

(2) The scaling of the stream function depends on delta [γβL3
y = τπ/(ρH0βδ)].

Is the sensitivity of the WBC transport to δ a consequence of using such a scaling?
As Ly changes, so do the magnitude of the wind stress curl and the scaling of the
stream function. What is the benefit of using such scaling? To focus on the WBC,
isn’t it better to keep the wind stress curl constant and keep the Sverdrup interior
the same?

Response: No, the sensitivity of the WBC’s transport to δ is not a consequence of us-
ing our particular scaling. To appreciate this subtle dependence one should compare a square
basin, where δ = 1, with a “narrow and long channel-like” basin where δ � 1. In a square
basin, the classical approach of equating ∂ψ/∂x to sin(πy) works well since the North-South
gradient of the zonal velocity (represented by ∂2ψ/∂y2) is small and can be neglected from
the interior solution. However, in a “channel-like” ocean this quantity is large and cannot be
neglected from the balance of terms in the interior solution. Surely, an examination of the 3
vorticity terms in the interior (∂ψ/∂x, wind-stress and ∂2ψ/∂y2) clarifies that the WBC in the
“channel-like” ocean should be weaker compared to a square ocean.

As in all non-dimensional problems, the choice of scaling is not unique. We choose this
scaling to stay consistent with the one proposed in Bye and Verionis, 1979. The results are
independent of magnitude of wind-stress curl because the differential operators in the vorticity
equations of Stommel and Munk are all linear.

We thank the reviewer for this comment and we include the aforementioned example in
the revised manuscript to further elaborate the conceptual aspect of our paper. We will also
re-write the paper with ε as the damping parameter (instead of α) in both Stommel and Munk
models.
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Changes: The entire paper was re-written with ε as the damping parameter (instead of
α). Furthermore, lines 232 - 262 in the revised version of the manuscript highlight why the
conceptual aspect of this paper is not a consequence of the scaling employed. This part of the
discussion underscores the ‘physical’ meaning of the vorticity terms in the interior of the basin
in both models and presents our results in a more intuitive framework.

(3) Figure 4 shows that the transport of the East Australian Current (EAC) is
weaker than the other WBCs because of the small delta. But how was Ly deter-
mined for EAC? The meridional scale of this western boundary current appears
to be different from the spatial scale of the winds. Zero wind stress curl does not
exist around 22S (e.g. https://booksite.elsevier.com/DPO/chapterS10.html)

Response: The conflict between the geometry of the ocean basin and the overlying
wind stress in the WBCs is independent of the model used for explaining the properties of
the WBCs and hence does not affect our formulation and scaling. In appendix C of our paper
we discuss in detail how the irregular shaped basin in the world ocean were approximated to
obtain values of Lx and Ly. The error-bars along the ordinate provide a range between which
δ can vary for different choices of Ly and Lx.

Changes: No changes were made per this minor comment because addressing the issue
highlighted by the referee in this comment is beyond the scope of this study.

References:
Bye, J. A. T., and George Veronis. “A correction to the Sverdrup transport.” Journal of
Physical Oceanography 9.3 (1979): 649-651.
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Subject: Authors’ response to RC2 & RC3 and the corresponding changes to the
MS.
We thank the referee for helping us improve the quality of our paper. However, the referee’s
(single) major comment is completely irrelevant to our analysis of Stommel’s model. Further-
more, the recommendation to reject our manuscript completely ignores our (unchallenged)
analysis of Munk’s model.

While it was an enjoyable exercise to revisit the general solutions of these
classical models, I’m afraid that I am unable to recommend the manuscript
for publication as I believe the results are misleading, at least in the parts of
parameter space of most relevance to the ocean (and it is debatable that these
models are of any quantitative relevance beyond their substantial conceptual value).

We believe that the values we selected for the non- dimensional parameters in Stom-
mel’s and Munk’s model fall within the relevant ranges of values of the dimensional parameters
(see our detailed response to minor comment #6). We agree that our paper has two foci - one
“conceptual” and the other “quantitative” (i.e. related to the world ocean).

Major comment:
The solution (3) to the Stommel model is indeed the most general, but this

form rather obscures the essential physics in the physically-relevant limit of small
α (i.e. the boundary current width is much smaller than the basin width). The
authors erroneously state that in this limit, the solution becomes linear in x and
can satisfy just one boundary condition. However, a more careful expansion of the
exponential terms leads to a more complete solution.

I prefer to see this by assuming α is small and hence ∂2

∂x2
� ∂2

∂y2
. Thus (1) is well

approximated by:

α
∂2ψ

∂x2
+
∂ψ

∂x
≈ sin(πy)

the solution to which is
ψ ≈ (x− 1 + e−αx) sin(πy)

This solution consists of the Sverdrup (1947) solution in the basin interior – the
first two terms in brackets on the right-hand side – and a Stommel (1948) western
boundary current correction – the third tern in brackets on the right-hand side.

Mathematically, the dropping of the α ∂2

∂x2
term in (1) means that the particu-

lar integral is instead formed by balancing ∂ψ/∂x against the wind stress curl on
the righthand side. However, the same result can be obtained through a careful
treatment of the limit of small α in the two exponential terms in the more general
solution.

The implications are that the western boundary current transport is:

• approximately equal (and opposite) to the Sverdrup gyre transport

• independent of the linear drag coefficient, α;

• independent of the basin aspect ratio, δ.

These conclusions are at odds with those stated in the manuscript. I do accept
that in the case that α becomes larger, the boundary current transport, and indeed
the entire nature of the solution changes, but it is hard to see what relevance this
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has to a large-scale ocean basin.

Response: The assumption, ∂2

∂x2
� ∂2

∂y2
that underlies the referee’s comment, implies

that the general solution of the associated homogeneous equation is y-independent i.e. the
y-dependence of the solution is identical to that of the inhomogeneous forcing term. In our
model, this assumption translates to 1

δ2
= 0 in the Laplacian ∇2 = δ2 ∂2

∂x2
+ ∂2

∂y2
[given by (2) in

the manuscript]. While this y-independent limit can yield a fast-flowing WBC in Stommel’s
model, it completely undermines the role of basin’s aspect ratio (δ) in determining the
transport of the WBC, which is the main sermon of our paper (as is evident from the paper’s
title). For large scale circulation, typical values of δ < 0.5 yield 1

δ2
> 1 i.e. setting 1

δ2
= 0 is

inconsistent with the intended “quantitative” applications. The alternative is to employ the
general solution of equation (1) without assuming y-independence of the Laplacian, which is
precisely what we did in our paper.

Moreover, Bye and Veronis (1979) succinctly established the δ−dependence of the Sverdrup
transport. In terms of our scaling this correction can be derived by noting that since α = ε/δ2,
equation (1) of the manuscript implies:(

ε
∂2

∂x2
+

ε

δ2
∂2

∂y2

)
ψ +

∂ψ

∂x
= sin(πy)

where ε = (r/βLx) is a proxy of damping and the non-dimensional width of the WBC. Under

the assumption of small damping i.e. ε � 1, the term ε
δ2
∂2ψ
∂y2

, cannot be neglected in the

interior solution when δ2 ∼ O(ε) i.e. the Sverdrup balance becomes a function of δ in this case.
The latter two bullet points that the referee makes lead to the unacceptable result that the
strength of the WBC (that is equal in magnitude to the δ-dependent Sverdrup transport) is
not determined by either of the model parameters α (or ε) and δ!

To appreciate this subtle issue one should compare a square basin, where δ = 1, with a
“narrow and long channel-like” basin where δ � 1. In a square basin, the classical approach
of equating ∂ψ/∂x to sin(πy) works well since the North-South gradient of the zonal velocity
(represented by ∂2ψ/∂y2) is small and can be neglected from the interior solution. However, in
a “channel-like” ocean this quantity is large and cannot be neglected from the balance of terms
in the interior solution. Surely, an examination of the 3 vorticity terms in the interior (∂ψ/∂x,
wind-stress and ∂2ψ/∂y2) clarifies that the WBC in the “channel-like” ocean should be weaker
compared to a square ocean. Clearly, in the referee’s approach there is no difference between
the two oceans.

Here, we take the opportunity to thank the referee for his comment. To reconcile our
approach with the existing literature, we will re-write the paper with ε as the parameter for
damping (instead of α). We will also include the aforementioned comparison between a square
and “channel-like” basin to further emphasize the conceptual aspect of our study.

Changes: The entire paper was re-written with ε as the parameter for damping (in-
stead of α). Lines 232 - 262 in the revised version of the manuscript underscore the ‘physical’
meaning of the vorticity terms in the interior of the basin in both models. This further adds
to the conceptual aspect of this paper and presents our results in a more intuitive framework.

Minor comments:

1. I don’t understand why the authors estimate the boundary current transport
rather than simply calculate the maximum value of the streamfunction which
gives the actual western boundary transports. If I follow correctly, the authors
also invoke the Stommel scaling for the boundary layer width, but that only holds
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in the low α limit

Response: The reviewer is right in that a simpler definition could have been used to
estimate the transport. However, the definition based on the maximum point of the stream-
function gives a width of about 500 km in 10,000 km basin while our definition gives a width
of about 100 km in the same basin. Moreover, using Stommel’s scaling to obtain our ad-hoc
definition of the boundary layer width [i.e. ε = r/(βLx)] makes the paper more accessible to
oceanographers that are inclined towards observations or numerical modeling.

The expression for transport [given by (4) in the manuscript] is valid for the referee’s
definition of boundary layer width as well and the choice of the WBC’s width does not alter
the conclusions presented in our paper. We thank the referee for bringing this to our attention.
In the revised manuscript, we will further emphasize that the results are not sensitive to the
choice of WBC’s width.

Changes: Lines 121 - 126 in the revised version of the manuscript discuss how our re-
sults are independent of the definition of the WBC’s width.

2. It might be helpful to many readers to state the original equations, be-
fore nondimensionalising.

Response: We will accept an editorial decision on this matter but since both forms of
the vorticity equation – dimensional and non-dimensional – appear in so many textbooks and
research papers we thought that presenting both versions is redundant.

Changes: We accepted the editorial decision and included the original dimensional equation
— see equation (1) (line 73) in the revised version of the manuscript.

3. γ is the non-dimensional magnitude of the wind stress curl, not the wind
stress

Response: We thank the referee for pointing this out. We will correct this in the re-
vised manuscript.

Changes: Appropriate corrections were made in lines 79 and 248 of the revised manuscript.

4. In figure 1(d), why is the eastern boundary condition not satisfied? Re-
sponse: Figure 1(d), depicts the analytically obtained, non-dimensional streamfunction for
Munk’s model. In Munk’s model the stream function, given by (7), is a function of |α| = µ Lx

βL4
y

and does not vanish identically even for small |α| at either boundary (although the values of
the streamfunction at the boundaries are rather small). For large values of |α|, the value of
the streamfunction at the boundary is no longer close to 0 (as it is for smaller |α|) and we see
the less than optimal behaviour as depicted in Figure 1(d).

We thank the referee for his input and will emphasize this further in the revised manuscript.

Changes: Lines 145-147 discuss the subtlety of why the analytic stream function for
M50’s model is not well behaved for large ε. We further underscore the crudeness of the
analytic stream function in line 203.

5. I’m really struggling with the numerical and theoretical boundary cur-
rent transport scalings in figure 3, especially the upper panel for the Stommel
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gyre. I understand that the authors will state that these results support their
conclusions, but they are at odds with the basic dynamics of the low α limit (see
major comment above). The explanation in lines 194-189 of what has been done
to obtain the theoretical scalings, and why, is confusing (to me at least).

Response: The results shown in Figure 3 highlight the consistency of our theoretical/analytic
findings with (dimensional!) numerical simulations. Our response to the major comment above
provides the explanation of the consistency between our dimensional numerical simulations
and the non-dimensional analysis based on our scaling.

Changes: Figure 3 was re-drawn with ε as the abscissa and the results are consistent
with our findings.

6. Regarding figure 4, are you seriously suggesting that α = 0.5 is an appro-
priate value for the East Australian Current? This would imply the failure of
geostrophy, for example.

Response: The parameter α = rLx/(βL
2
y) for each WBC was estimated by substituting

β = 2 × 10−11 m−1s−1, Rayleigh friction coefficient r = 1/10 (days)−1 and the typical
dimensions (Lx and Ly) of the basin. Other choices of the Rayleigh friction coefficient do not
alter the results. Figure 1 below depicts the results for r = 1/20 (days)−1 and the same values
of β, Lx and Ly.

We thank the referee for suggesting this. If requested, we will be happy to include the
attached figure in the revised manuscript.

Figure 1: Alternative figure to panel (a) of Figure 4
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Changes: The alternative figure above was not used because the manuscript was re-
written with ε as the damping parameter. Figure 4 was re-drawn with ε as the abscissa and
the new figure is presented in the revised manuscript.

7. Following on from point 6, there are numerous other processes that are
likely in influence the width of real world western boundary currents ahead of
linear bottom drag and lateral friction. These include relative vorticity (Fofonoff,
1954; Charney, 1955),stratification (the deformation radius emerges as a natural
length scale), bottom topography (e.g., Hughes and de Cuevas, 2001), eddy fluxes
(e.g., Eden and Olbers, 2010).

Response: We agree. However, none of these works addressed the role of basin’s aspect
ratio in determining the transport of the WBC.

Changes: No changes were made per this minor comment because addressing the issue
highlighted by the referee in this comment is beyond the scope of this study.

References:
Bye, J. A. T., and George Veronis. “A correction to the Sverdrup transport.” Journal of
Physical Oceanography 9.3 (1979): 649-651.
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On the role of domain aspect ratio in the westward intensification of
wind-driven surface ocean circulation
Kaushal Gianchandani1, Hezi Gildor1, and Nathan Paldor1

1Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat
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Correspondence: Nathan Paldor (nathan.paldor@mail.huji.ac.il)

Abstract. The two seminal studies on westward intensification, carried out by Stommel and Munk over 70 years ago, are

revisited to elucidate the role of the domain aspect ratio (i.e. meridional to zonal extents of the basin) in determining the

transport of the western boundary current (WBC). We examine the general mathematical properties of the two models by

transforming them to differential problems that contain only two parameters — the domain aspect ratio and the non-dimensional

damping (viscous) coefficient. Explicit analytical expressions are obtained from solutions of the non-dimensional vorticity5

equations and verified by long-time numerical simulations of the corresponding time-dependent equations. The analytical

expressions as well as the simulations, imply that in Stommel’s model both the domain aspect ratio and the damping parameter

contribute equally to the non-dimensional transport of the WBC.
::::::::
However,

:::
the

::::::::
transport

::::::::
increases

::
as

::
a

:::::
cubic

:::::
power

:::
in

:::
the

:::::
aspect

::::
ratio

::::
and

::::::::
decreases

:::::::
linearly

::::
with

:::
the

::::::::
damping

::::::::::
coefficient. On the other hand, in Munk’s model the WBC’s transport

varies linear
::::::::
increases

::::::
linearly

:
with the domain aspect ratio, while the damping parameter

::::::::
coefficient

:
plays a minor role only.10

This finding is employed to explain the weak WBC in the South Pacific.
:::
The

::::::::
decrease

::
in

::::::::
transport

::
of

:::
the

::::::
WBC

:::
for

:::::
small

::::::
domain

::::::
aspect

::::
ratio

::::::
results

::::
from

:::
the

:::::::
decrease

:::
in

:::::::
Sverdrup

::::::::
transport

::
in

:::
the

::::::
basin’s

:::::::
interior

:::::::
because

:::
the

:::::::::
meridional

:::::
shear

::
of

:::
the

::::
zonal

:::::::
velocity

::::::
cannot

::
be

:::::::::
neglected

::
as

::
an

:::::::::
additional

:::::::
vorticity

:::::
term.

Copyright statement. TEXT

1 Introduction15

::
As

::::
was

:::::
noted

::
by

:::::
Henry

:::::::::
Stommel,

::
in

::
the

:::::::
opening

::::::::
sentence

::
of

::
his

:::::::
seminal

::::
1948

:::::
study

::
“Perhaps the most striking characteristic of

the surface circulation in an ocean basin is the east-west asymmetry:
:::::
feature

::
of

:::
the

:::::::
general

:::::::
oceanic

::::::::::
wind-driven

:::::::::
circulation

::
is

::
the

:::::::
intense

::::::::
crowding

::
of
::::::::::

streamlines
:::::

near
:::
the

:::::::
western

::::::
borders

:::
of

:::
the

:::::::
oceans."

::::::
These

:
strong and narrow pole-ward directed

currents
::::::::
poleward

:::::::
directed

::::::::
currents,

:
often referred to as the “western boundary currents" (WBCs)flow along the western

boundary of the ocean basins while the return equator-ward flow is
:
,
::::::::::::
counterbalance

:::
the weak and wide

::::::::::
equatorward

:::::::::
(Sverdrup)20

::::
flow

::
in

:::
the

::::::
interior

::
of

:::
the

:::::
basin. In the North Atlantic this current is the Gulf Stream, and it was known to oceanographers and

explorers for a few centuries — see Stommel (1958) for a historical review. Similar WBCs exist in other basins as well and
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these include the Kuroshio in the North Pacific and the Brazil current in the South Atlantic. These currents transport large

amount of heat from low to high latitudes, thus playing an important role in the climate system. The winds overlying, though,

are easterlies along the equator (the Trade winds) and westerlies around 40◦ N. There are no strong northward winds along the25

western boundaries of the ocean basins and, as is well understood now, the WBCs are not obviously correlated with the over-

lying wind patterns. Interestingly, two such WBCs lie in the Pacific viz. the Kuroshio and the East Australian current (EAC).

Both the Kuroshio and the EAC are centered close to 26◦ latitude in their respective hemispheres and are driven by similar

wind stresses and are adjacent to a ∼ 2000 km long coastline. Despite these structural similarities, the maximal volumetric

transport of the Kuroshio current is 55 Sv (1 Sv = 106 m3s−1) (Qiu, 2019) whereas that of the EAC is around 30 Sv (Archer30

et al., 2017). The maximum velocity that EAC attains is also substantially smaller than that of the Kuroshio (Campisi-Pinto

et al., 2020).

Henry Stommel, apparently in his first oceanography paper (Stommel, 1948, hereafter referred to as S48) was the first to

formulate a simple, yet comprehensive, mathematical model of the WBCs [see e.g. Kunzig (1999)]. S48 is now regarded as a

seminal paper in theoretical physical oceanography (e.g. http://empslocal.ex.ac.uk/people/staff/gv219/classics.d/oceanic.html).35

S48’s model probably provides the simplest explanation for the existence of WBCs: in this linear and frictional model on the

β−plane the ocean is taken to be a flat bottom rectangle forced by a cos(latitude)-dependent zonal wind pattern. Walter Munk

further extended this work to a different frictional (viscous) parameterization and a more general form of the wind stress

(Munk, 1950, hereafter referred to as M50).

In the last 70 years, both models have been modified and extended to further explore the phenomenon of westward intensi-40

fication in different settings or to evaluate the importance of different specific processes and terms in the governing equations

(Munk and Carrier, 1950; Veronis, 1966a, b; Pedlosky, 2013; Vallis, 2017, and references therein).

As in S48 and M50, a large number of these subsequent studies employed the dimensional form of the governing equations

which are the time-independent rotating linearized shallow water equations compounded by friction and forcing. These di-

mensional models include numerous parameters: the zonal and meridional extents of the basin; either the coefficient of linear45

drag (i.e. the coefficient in the Rayleigh frictional term) or the kinematic eddy viscosity (i.e. the coefficient in parameterization

of the viscous term); the amplitude (and possibly meridional structure) of the wind stress; the gradient of Coriolis frequency

(β−effect). On the other hand, a few studies (Welander, 1976; Bye and Veronis, 1979) employed the alternate, concise, ap-

proach of non-dimensionalising the governing equation (or the vorticity equation) to investigate the depth averaged wind-driven

ocean circulation. The non-dimensional approach not only simplifies the problem by reducing the number of dimensional pa-50

rameters in the model to fewer non-dimensional ones but also brings out some salient features associated with the problem

which are difficult to unveil in the dimensional formulation.

By employing a non-dimensional approach, Welander (1976) successfully identified a zonally uniform regime in both S48’s

and M50’s models of wind-driven ocean circulation and using the same approach, Bye and Veronis (1979) derived a correc-

tion to the Sverdrup transport in S48’s model. The aforementioned studies highlighted the importance of the ratio between55

meridional and zonal extents of the basin as one of the two fundamental parameters in both S48’s and M50’s models. The

aim of this study is to further elaborate on the role of the domain aspect ratio (defined here as the ratio between the basin’s
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meridional and zonal extents) in S48’s and M50’s models of westward intensification. In particular, we examine the role of

domain aspect ratio in the transport of the WBC as was first hypothesized by Bye and Veronis (1979) in the context of S48’s

model, “. . . the tendency of north-south diffusive processes to be more significant in basins with a large (small in the present60

scaling) aspect ratio makes sense physically and may play a quantitative role in the transport of the western boundary current."

We also examine the relevance of our results to the observed difference in strengths of the five WBCs in the world ocean.

The paper is organized as follows. Section 2 outlines our proposed scaling [which is slightly different from the one employed

in Welander (1976); Bye and Veronis (1979)] that reduces the number of parameters in the vorticity equations corresponding to

S48’s and M50’s models from five dimensional ones to two non-dimensional ones — one of which is the domain aspect ratio65

(the other is damping). The solution for the stream function in the two cases is outlined and using this we obtain the expression

for the non-dimensional transport of the WBC in both S48’s and M50’s models. The applicability of the analytical expression

of transport for relevant values of the model parameters is validated in Section 3 by simulating the time-dependent equations.

We discuss the results and conclude in Section 4. We also note that there were some typos in the expressions of zonal velocity

and sea surface height (but not the stream function itself) in S48 and for completeness, we list them in Appendix A. These70

typos do not change the scientific conclusions drawn in S48.

2 The two-parameter differential problems, their solutions and transport
:::
the

:::::::::
transports

:
of the WBC

2.1 S48’s non-dimensional counterpart

We begin by scaling S48’s dimensional vorticity equation for the spatial structure of the stream function
:
,
::
ψ,

::
is

:::::
given

:::
by:

r∇2ψ+β
∂ψ

∂x
= τ0

π

ρ0H0Ly
sin

(
πy

Ly

)
:::::::::::::::::::::::::::::::

(1)75

:::::
where

::
r

::
is

:::
the

::::::::
Rayleigh

::::::
friction

::::::::::
coefficient,

::
β

::
is

:::
the

::::::::::
meridional

:::::::
gradient

::
of

::::::::
Coriolis

::::::::
frequency

::::
and

::
τ0::

is
::::

the
::::::::
amplitude

:::
of

::::::::::
wind-stress.

:::
The

::::::::
operator

:::
∇2

::
is

:::
the

::::
two

::::::::::
dimensional

:::::::::
Laplacian,

:::
H0::

is
:::
the

:::::
mean

:::::
depth

:::
of

:::
the

:::::::::
barotropic

:::::
ocean

::::
with

:::::::
density

::
ρ0,

:::
Ly::

is
:::
the

::::::::::
meridional

:::::::::
dimension

::::
(and

:::
Lx ::

is
:::
the

:::::
zonal

:::::::::
dimension)

:::
of

:::
the

:::::
basin.

::::
The

:::::::
velocity

::::::::::
components

::
in

:::
the

:::::
zonal

::::
and

:::::::::
meridional

:::::::::
directions,

:
u
::::
and

::
v,

:::
are

::::::
related

::
to

:::
the

:::::
stream

::::::::
function

:::
via:

:::::::
u=

∂ψ

∂y ::::
and

:::::::::
v =−∂ψ

∂x
.

:::
We

:::::
begin

:::
by

::::::
scaling

:
(1) as follows: x (the zonal coordinate) on Lx(the basin’s zonal extent); y (the meridional coor-80

dinate) on Ly (the basin’s meridional extent) and ψ (the stream function) on γβL3
y where γ = τ0

(
π

ρ0H0βL2
y

)(
Lx
βL2

y

)
:::::::::::::::::::::
γ = τ0

π

Ly

(
Lx

ρ0H0β2L3
y

)
is the non-dimensional amplitude of the wind stress (and τ0 is the wind’s dimensional amplitude)

with β — the meridional gradient of the Coriolis frequency, H0 — the depth of the basin and ρ0 — the water density of the

3



barotropic ocean
:::
curl. With this scaling the non-dimensional form of S48’s vorticity equation is:

α
ε

δ2
::

∇2ψ+
∂ψ

∂x
= sin(πy) (2)85

where
::::

αε= r

(
Lx
βL2

y

)
r

βLx
::::

, ∇2 = δ2
∂2

∂x2
+

∂2

∂y2
. (3)

::::
From

::::
this

:::::
point

::::::::
onwards,

::::
both

:::
the

::::::::
variables

::::
and

:::
the

::::::::
operators

:::
in

:::
the

:::::::::
differential

::::::::::
equation(s)

:::
are

:::::::::::::::
non-dimensional

:::::
while

::::::::::
dimensional

::::::::
quantities

::::
will

::
be

:::::::::::
accompanied

:::
by

::
an

:::::::
asterisk

:::
(*). Here ∇2 is the

:::::::::::::
non-dimensional

:
Laplacian, δ =

Ly
Lx

is the ratio

of meridional and zonal extents of the basin (refereed to as the domain aspect ratio) and α ε
:
is the non-dimensional parameter90

(referred to as
:::::
width

::
of

:::
the

:::::
WBC

::::
(and

:::
also

::
a

:::::
proxy

::
of the damping)proportional to r∼ 1/10 — the Rayleigh friction coefficient

:
.

:::
The

::::::::
definition

::
of

:::
the

::::::::::::::
non-dimensional

::::::
stream

:::::::
function

:::::::
implies

:::
that

:::
the

:::::
zonal

:::::::
velocity

:::
and

:::
the

:::::::::
meridional

:::::::
velocity

:::
are

:::::
given

:::
by,

:::::::
u=

∂ψ

∂y :::
and

::::::::::
v =−δ ∂ψ

∂x
,
::::::::::
respectively. It is evident from (2) and (3) that the two parameters, α

:
ε and δ, govern the structure of

the flow in the basin. The no normal flow conditions at the basin’s boundaries mandate that the stream function ψ satisfies the

boundary conditions: ψ(x,0) = ψ(1,y) = ψ(x,1) = ψ(0,y) = 0.95

It should be stressed that due to the different scaling employed in the two works, our α in differs from the corresponding

coefficient of damping in Bye and Veronis (1979). Moreover, we use
::
We

::::
note

::::
that the term domain aspect ratio (δ) to refer to

the ratio between meridional to zonal dimensions of the basin which is reciprocal
::
in

:::
the

::::::
present

:::::
study,

::::::::
δ =

Ly
Lx

,
::
is

:::
the

::::::
inverse

of the domain aspect ratio defined by Bye and Veronis (1979)
:::
used

::
in
::::::::::::::::::::::::
Bye and Veronis (1979) who

::::::
derived

::
a
::::::::::::::
non-dimensional

:::::::
equation

::::::
similar

::
to (2).100

As has been stated earlier, the non-dimensional formulation lumps the five dimensional parameters in S48’s model — zonal

and meridional extent of the basin, gradient of Coriolis frequency, wind stress amplitude and Rayleigh friction coefficient —

into just two non-dimensional ones: α
:
ε and δ (that appears in the first term of

::::
both

::
of

::::::
which

::::::
appear

::::
only

::
in

:
the Laplacian

operator). The interplay between the three terms in the inhomogeneous partial differential vorticity equation, , can be easily

interpreted by repeating the procedure employed in
::::::::
Following S48to obtain the general form of solutions of . An

:
,
::
an

:
explicit105

expression for the solution
::
for

:
ψ

::
in

:
(2) is given by:

ψ(x,y) =
1

απ2

δ2

επ2
:::

sin(πy)(peAx+ qeBx− 1) (4)

where

p=
1− eB

eA− eB

q = 1− p110
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and

A=− 1

2αδ2
1

2ε
::

+
π

δ

√
1+

1

4π2α2δ2

√
1+

δ2

4π2ε2
::::::::::

,

B =− 1

2αδ2
1

2ε
::

− π

δ

√
1+

1

4π2α2δ2

√
1+

δ2

4π2ε2
::::::::::

.

As is evident from (4), the spatial structure of the stream function is controlled by both α ε
:
and δ. Fig. 1

:::::
Panels

:
(a) ,

:::
and

:
(c)

::
of

:::
Fig.

::
1 depict the stream function for two α

::::::::
functions

::
for

::::
two

:
ε-regimes of S48’s model: (i) weak damping [α≤O(1)

:::::
ε≤ δ2]115

and (ii) strong damping [α > O(1)
:::::
ε > δ2]. For α≤O(1)

:::::
ε≤ δ2, the solution ψ given by (4) becomes linear in x and thus can

satisfy only one boundary condition out of two. This solution is commonly assumed to approximate the exact solution for ψ in

the frictionless interior of the basin while a different approximation applies in the narrow, frictional, boundary layer adjacent

to x= 0. Fig. 1(a) depicts this narrow boundary layer for α= 0.1
:::::::
ε= 0.1δ2

:
where the stream function first decreases fast with

x at small x and then increases slowly with x for large x. In the range of α≥O(1)
:::
For

:::::
ε > δ2, the solution,

:
ψ
:
, is symmetric120

about x=
1

2
and can satisfy the two boundary conditions, ψ(0,y) = 0 = ψ(1,y). This is demonstrated in the symmetric stream

function depicted in Fig. 1(c) for α= 10
:::::::
ε= 10δ2. The explicit expressions of ψ in the two ranges of α

:
ε
:
are given in the

Appendix B.

Figure 1. The stream functions in different ε
:
regimes of the α parameter-space in the two

::::
S48’s

:::
and

:::::
M50’s

:
models for δ = 2π/10: (a) ,

:::
and

(b) weak damping [α≤O(1)
:::::
ε≤ δ2 in S48’s model and |α| ≤O(10−3)

:::::::::
ε≤ 0.1δ4/3 in M50’s model] — there exists a narrow fast flowing

current along the western edge of the basin; .
:
(c) ,

::
and

:
(d) strong damping [α > O(1)

:::::
ε > δ2 in S48’s model and |α|>O(10−3)

:::::::::
ε > 0.1δ4/3

in M50’s model] — the stream function is (nearly) symmetric about x= 0.5 which indicates that there is no westward intensification.
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In the non-dimensional S48’s model, the width of the WBC is given by ε= αδ2 which can be derived from the balance

between the Rayleigh friction term and the advection of planetary vorticity in the WBC i.e.
r

βLx
. The definition of the steam125

function implies that the zonal velocity and the meridional velocity are given by, u=
∂ψ

∂y
and v =−δ ∂ψ

∂x
, respectively. We

define the (non-dimensional)
::
we

:::::
define

:::
the

:
transport of the WBC as the product of its widthand the mean meridional velocity

:
,

:
ε,
::::

and
:::
the

:::::::
average

::
of

:::
the

::::::::::
meridional

:::::::
velocity,

:::::::::::
v =−δ ∂ψ

∂x
, between the western edge of the basin, x= 0, and x= ε evalu-

ated along y =
1

2
i.e. Tr = ε

1

ε

ε∫
0

−δ ∂ψ
∂x

∣∣∣∣
y= 1

2

dx

. Though the definition of the WBC’s width is somewhat arbitrary for

definitiveness we chose it to be ε. The integral in the the definition of the transport, Tr, simplifies to the product of the130

domain aspect ratio and the difference in the values of the stream function evaluated at x= 0 and x= ε along y =
1

2
, i.e.

Tr = δ

[
ψ

(
0,

1

2

)
−ψ

(
ε,
1

2

)]
. Substituting the boundary condition ψ

(
0,

1

2

)
= 0 and using the explicit solution (4) yields:

Tr =
δ3

επ2
(1− peAε− qeBε). (5)

This expression will be compared below to its counterpart in M50’s model and will be compared in section 3 with transports

calculated by numerical simulations.135

::::
Here,

:::
we

::::
note

::::
that

:::
the

:::::::::
definition

::
of

:::
the

::::::
WBC’s

::::::
width

::
is

::::::::
somewhat

::::::::
arbitrary

:::
and

:::
for

:::::::::::
definiteness

:::
we

::::::
choose

::
it

::
to

::
be

::
ε [

::
as

::
in

:::::::::::::::::::::::::::::::::::::::::::::
Welander (1976); Bye and Veronis (1979); Vallis (2017)].

::::::::
However,

:::
the

::::::::::
conclusions

::::::
drawn

::
in

:::
this

:::::
study

:::
are

:::::::::::
independent

::
of

::
the

:::::::
precise

:::::::::
definition;

::
for

::::::::
instance,

:::
the

:::::
width

:::
of

:::
the

:::::
WBC

:::
can

::::
also

::
be

:::::::
defined

::
as

:::
the

:::::
value

::
of

::
x
::
at

::::::
which

:::
the

:::::
stream

::::::::
function

::::::
reaches

::
an

:::::::::
extremum.

:::::::::
According

::
to

::::
this

::::::::
definition

:::
the

::::::
WBC’s

:::::
width,

::
ε′
::::::
equals

::::
∼ 5ε

:::
and

:::
the

::::::::::::
corresponding

::::::::
transport

:
is
:::::
given

:::
by

:::::::::::::::::::::::::::
Tr′ =

δ3

5επ2
(1− pe5Aε− qe5Bε).

:::::
Both,

:::::::::
expressions

:::
of

:::
Tr

:::
and

::::
Tr′,

:::::
yield

:::
that

:::
the

::::::::
transport

::
of

:::
the

:::::
WBC

::
in

:::::
S48’s

:::::
model

::::::
varies140

::
as

:::::
∼ δ3

ε
.
:

2.2 M50’s non-dimensional counterpart

The non-dimensional counterpart of M50’s vorticity equation, obtained by employing the scaling proposed in this study
:
in

::
a

::::::
similar

::::::
manner

::
to

::::
that

::
of

:::
S48

:
[
:::
refer

::
to
::::::::::::::
Munk (1950) for

:::
the

:::::::::::
dimensional

:::::::
equation], is given by:

α− ε
3

δ4
:::

∇4ψ+
∂ψ

∂x
= sin(πy) (6)145

where
::::

αε=−µ Lx
βL4

y

1

Lx

(
µ

β

)1/3

::::::::::

, ∇4 = δ4
∂4

∂x4
+2δ2

∂4

∂x2∂y2
+

∂4

∂y4
(7)

where µ (∼ 104 )
:
µ is the (dimensional) horizontal eddy viscosity coefficient. We note that contrary to , α in (3)

:
,
:::
the

::::
sign

::
in

::::
front

::
of

:::
the

:::
first

:::::
term

::
in (7) is negative. This dissimilarity arises because, unlike the parametrization in S48, in M50’s model the

damping is parametrized by a biharmonic function
::
the

::::
two

::::::::::
dimensional

:::::::::
bilaplacian

:::::::
operator. Also, in addition to stream function150
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vanishing at the edges of the basin another set of boundary condition has to be specified to solve the 4th order equation (6).

The additional boundary conditions employed by M50 originate from the inclusion of lateral viscosity which implies that there

should be no tangential flow at the basin’s edges i.e.
∂ψ

∂x

∣∣∣∣
x=0,1

=
∂ψ

∂y

∣∣∣∣
y=0,1

= 0. Following the mathematical steps in M50

yields the following
::::::::::
approximate

:
solution of (6):

ψ =−sin(πy)

[
1−x+ 1

λ
εeλ(x−1)(x−1)/ε

:::::
− e−λ(x/2)−(x/2ε)

:::::
ξ(λε)

]
(8)155

where λ=

(
1

−αδ4

)1/3

, and ξ(λε) =

cos(√3λx
2

√
3x

2ε
::::

)
+

1− 2/λ√
3

1− 2ε√
3

:::::

sin

(√
3λx

2

√
3x

2ε
::::

) .
Fig. 1

:::::
Panels (b) ,

:::
and (d) depicts

::
of

:::
Fig.

::
1
:::::
depict

:
the stream function for small and large damping in M50’s model. For large

damping the stream function shown in Fig. 1(d) is not entirely symmetric about x=
1

2
. Also, unlike the behavior of the stream

function in S48’s model, the stream function in M50’s model skews more towards the eastern boundary with the increase in

damping. This, less than optimal, behavior of the stream function in M50’s model occurs because the stream function does not160

vanish identically along the eastern boundary and is, instead, a function of α
:
ε itself (although, this value is not large

::
for

:::::
small

:
ε,
:::
the

:::::
zonal

:::::::
velocity

::::
there

::
is
:::::
small

:::::::::
compared

::
to

:::
the

:::
rest

::
of

:::
the

:::::
basin).

We turn now to the estimation of the WBC’s transport in M50’s model. As was done in S48’s model, this transport is also

defined as the product of the boundary layer width
:
(εgiven by (−αδ4)(1/3) ≡ (|α|δ4)(1/3) in M50’s model

:
)
:
and the mean

meridional velocity of the current between x= 0 and x= ε along y =
1

2
. Following the arguments laid out in the previous165

section [see the paragraph above (5)] an expression for transport can be obtained by multiplying the domain aspect ratio by the

difference of the stream function values between x= 0 and x= ε along y =
1

2
. Furthermore, substituting the boundary con-

dition ψ
(
0,

1

2

)
= 0 yields Tr =−δψ

(
ε,
1

2

)
. Evaluating ψ in (8) at

(
ε,
1

2

)
where

::
for

:
ε� 1 yields the following simplified

expression for the WBC’s transport in M50’s model:

Tr = δ

(
1− e(−1/2)

[
cos

(√
3

2

)
+

1− 2ε√
3

sin

(√
3

2

)])
. (9)170

In S48’s model
::
As

:::::::::
anticipated

:::
by,

:
the transport of the WBC ,

:
in
:::::
S48’s

::::::
model [given by (5), ] is governed by both damping

(α
:
ε) and domain aspect ratio (δ). This is in agreement with the findings of Bye and Veronis (1979). However, in M50’s model

the dependence of the WBC’s transport on the two parameters is strikingly different. At least to zeroth order, the WBC’s

transport in M50’s model is independent of α and is governed solely :
:::

the
::::::::

transport
::
is

::::::::
governed

::::::::
primarily

:
by δ

::
and

::
is
:::::::
weakly

::::::::
dependent

:::
on

:
ε. In the next section we validate this claim using

::::
these

::::::
claims

:::::
using

::::::::::::
(dimensional) numerical simulations and175

then apply our results to the present-day world ocean.

3 Numerical simulations and application to the world ocean

The numerical simulations described below were carried out using the time-dependent, forced-dissipative, rotating shallow

water equation (SWE) dimensional solver that was successfully used in previous studies. The solver employs the finite dif-
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ference method to solve SWEs on the β−plane and the simulations are carried out on an Arakawa C grid with leapfrog time180

difference scheme. Though the solver can include nonlinear terms, these terms were neglected in the present application. The

reader should refer to Gildor et al. (2016) and Shamir et al. (2019) for a more detailed description of the solver. The reader

should also note that dimensional variables mentioned in this section are accompanied by an asterisk (∗).
The simulations presented here were carried out in a barotropic ocean with the same characteristics as in S48 i.e. on an

equatorial β−plane (f0 = 0), forced by a wind stress that varies as −τ0 cos
(
πy∗

Ly

)
. Three of the dimensional parameters185

remained fixed in all the simulations presented below — the gradient of Coriolis frequency (given by β = 2×10−11 m−1s−1),

the zonal extent of the basin (Lx = 10000 km) and the amplitude of the prescribed forcing (τ0 = 0.2 Nm−2). The other two

dimensional parameters in the two WBC models i.e. the damping coefficients [Rayleigh friction coefficient (r) in S48’s model

and horizontal eddy viscosity (µ) in M50’s model] and the meridional extent of the basin (Ly) are varied to examine the effect

of α
:
ε and δ on the transport. We note that keeping τ0 fixed and varying Ly will yield different values of γ in the simulation,190

however, since we scale our ψ∗ on γβL3
y and only look at the non-dimensional transport we do not have to account for the

effects of changes in γ. The results are consistent with what one would obtain by keeping only β and Lx fixed and varying

τ0 along with the damping coefficients and Ly to keep γ constant. The boundary conditions are: the (dimensional) zonal and

meridional velocities vanish along the basin’s meridional and zonal boundaries respectively, i.e. u∗|y∗=0,Ly
= v∗|x∗=0,Lx

= 0.

The numerical solver is integrated until a steady state is reached. The steady state of the time-dependent simulations is defined195

as the state at which the dependent variables in the SWEs [dimensional zonal velocity (u∗), meridional velocity (v∗) and sea

surface height (η∗)] cease to evolve for sufficiently long time.

Fig. 2
:::::
Panels (a) ,

:::
and (c) depicts

::
in

:::
Fig.

::
2
:::::
depict

:
the numerically obtained, non-dimensional stream function

(
ψ =

ψ∗

γβL3
y

)
in the steady state for the dimensional parameters as in S48’s model (and the corresponding values of α

:
ε and δ are noted above

these panels) while Fig.2
:::::
panels

:
(b) ,

:::
and (d) depicts

:
in

:::::
Fig.2

:::::
depict

:
the numerically obtained, non-dimensional ψ in the steady200

state for the parameters relevant to M50’s model (and here too the corresponding values of α ε
:

and δ are noted above these

panels). The reader should note that the meridional extent (Ly) of the basin in Fig. 2
:::::
shown

::
in

::::::
panels (a) ,

:::
and

:
(b)

:
of
::::

Fig.
::
2 is

2π×1000 km, whereasin Fig. 2,
:::
the

:::::::::
meridional

::::::
extent

::
of

:::
the

::::
basin

::::::
shown

::
in

::::::
panels (c) ,

:::
and

:
(d) , Ly = π/2× 1000

::
in

:::
Fig.

::
2
::
is

::::::::::::::
Ly = π/4× 1000

:
km. In all four cases the shape of the stream function is very similar to the steady non-dimensional stream

functions shown in Fig. 1 [
:::::
panels

:
(a) ,

:::
and

:
(b)]. We note that for the given values of (α

:
ε, δ), the ψs obtained from dividing205

the numerically calculated ψ∗s by the corresponding values of γβL3
y agree very well

:::
are

::
in

:::::::::
agreement with the ψ calculated

analytically for the same values of (α
:
ε, δ) using (4) for S48’s model and (8) for M50’s model.

Fig. 2 depicts that in both S48’s and M50’s models, for a fixed value of α
:::::::
ε= 0.01

::::::::
(damping

::::
and the width of the WBC

:
),

:::
the

:::::::
gradient

::
of

:::
the

::::::
stream

:::::::
function increases with δwhile the

:
.
::::
The

:::::
higher

:::::
zonal

:
gradient of the stream function (and, in turn, the

:::
near

:::
the

:::::::
western

::::::::
boundary

::::::
yields

:
a
:::::
larger

:::::::::
meridional

::::::::
velocity,

:::
thus

:::::::::
increasing

:::
the

::::::::
transport

::
of

:::
the

:::::
WBC

::::::
(given

::
by

:::
the

:::::::
product210

::
of

:::::
width

:::
and

:::::::
average meridional velocity of the WBC)decreases with it. This indicates that .

:::::::
Clearly,

:
δ exercises a control over

the transport of the WBC and hence cannot be ignored.

Fig. 3 compares the analytic and numerically computed values of the non-dimensional transport (Tr) of the WBC in S48’s

and M50’s models as a function of |α|
:
ε for several values of δ. The solid lines denote the analytic value of Tr obtained
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Figure 2. Numerically obtained, non-dimensionalized,
::::::::::::
non-dimensional

:
stream functions

::
for

:::::::
ε= 0.01

:::
and

:::::::::::
Lx = 10,000 km.

:
(a) for S48’s

model — (α,δ) = (0.1,2π/10) and
:::
with

:::::::::
δ = 2π/10,

:
(b) for M50’s model — (α,δ) = (−2× 10−5,2π/10); panels

::::
with

:::::::::
δ = 2π/10.

:::::
Panels

(c) ,
:::
and (d) are

::
the

:
same as (a) ,

:::
and (b) but for δ = 0.5π/10

::::::::::
δ = 0.25π/10

:::
i.e.Note that ψ∗, x∗ and y∗ are scaled on γβL3

y , Lx and Ly

respectively. Also, the meridional extent of the basin (Ly)
:
is

::::::::
one-eighth

::
of

:::
that

::
in

:::
(a)

:::
and

::
(b)was chosen to be one-fourth of that .

::::
Note

:::
the

::::::
different

:::::::
colorbars

::
in

:::::
panels

:::
(a)

:::
and

::
(c).

from the expressions given by (5) and (9). The ‘numerical transport’ of the WBC is obtained by taking the product of δ and215

−
ψ∗(ε, 12 )

γβL3
y

. Here, ψ∗
(
ε,
1

2

)
is the value of the steady state dimensional stream function at

(
ε,
1

2

)
obtained from the results of

the numerical simulation for a given set of parameters which correspond to a certain (α,δ); ε= αδ2 in S48’s and ε= (|α|δ4)1/3

in M50’s model
::::
(ε,δ).

As is evident by Fig. 3(a), the analytic and numerically calculated non-dimensional transports of the WBC are in agreement

for large values of α in S48’s model. However, for small values of both α and δ the numerically calculated transport of the220

WBC is smaller than the analytic one. This is because, in S48’s model , the gradient of the stream function given by is very large

near the western edge of the basin i.e. the stream lines are ‘squished’ together, which is not the case in numerical simulations

carried out under the same setting. Fig. ??
::
are

::
in

:::::
good

:::::::::
agreement.

::::
Fig.

:
3(b) shows that the analytic transport

::::::::
transports of the

WBC is
::
in

:::::
M50’s

::::::
model

:::
are

:
nearly independent of |α| and is

:
ε
:::
and

::::
are governed primarily by δ. The numerically calculated

transport
::::::::
transports of the WBC shows a similar behavior, however, there is a notable dependence of the transport on |α| for225

small values of the parameter
:::::::
depicted

::
by

:::
the

::::::
dashed

:::::
lines

::
in

::::
Fig.

::::
3(b)

::::
show

::
a
::::::
similar

::::::::::
dependence

:::
on

:
δ
:::
but

:::
in

:::::::
contrast

::
to

:::
the

::::::::::
approximate

:::::::
analytic

:::::::::
expression

:::::
these

:::::::::
transports

::::
vary

:::::::
slightly

::::
with

:
ε. We also note that there is a discernible difference in

:::::::
between the analytically estimated and numerically calculated values of transport

::
in

:::::
M50’s

::::::
model for nearly all values of (|α|

:
ε,

9



Figure 3. Comparison between analytically (solid lines) and numerically (dots) calculated values of transport (Tr) as a function of |α|
:
ε
:
for

different values of δ in (a) S48’s and (b) M50’s models.
:::
The

:::::
dashed

::::
lines

:::::
depict

:::
the

::::
cubic

:::::
spline

:::::::::
interpolated

:::::
curves

::::::
between

:::
the

:::::::::
numerically

:::::::
calculated

::::::::
transports

:::::
(dots).

δ). This is because the value of
::::::::
expression

:::
for

:
the stream function obtained under the assumption ε� 1 does not hold for

large values of |α| and the contribution from the neglected terms becomes significant
::
for

::::::
M50’s

::::::
model, [

::
i.e.

:
(8)]

:::
only

:::::::
crudely230

:::::::::::
approximates

:::
the

:::::
actual

::::::
stream

:::::::
function.

Fig. ??
:
4
:
depicts the non-dimensional transport of the WBC in S48’s [panel (a)] and M50’s models [panel (b)] as contours

on (α, δ
::
ε,δ) plane. The contours were obtained by interpolating (using the cubic spline method) between the numerically

calculated values of the WBC’s transport as shown in Fig. ??
:
3. As is evident from Fig. ??

:
4(a), the non-dimensional transport

is a function of both α
:
ε and δ in S48’s model. On the other hand, Fig. ??

:
4(b) shows that the transport of the WBC is nearly235

independent of |α|
::::
only

::::::
weakly

:::::::::
dependent

:::
on

:
ε
:

and is governed primarily by δ (contours nearly parallel
:::
the

::::::::
contours

:::
are

:::::
nearly

::::::
parallel

::
to
:
the abscissa). The position of the different WBCs in the (α,δ) parameter space (|α|, δ) for M50’s model

::::
(ε,δ)

::::::::
parameter

:::::
space

:
is marked with different symbols and the errorbars account for the inaccuracies in the assigned values of the

10



Figure 4. The non-dimensional transport of the western boundary current (WBC) as a function of α ε
:
and δ in (a) S48’s model and (b) M50’s

model. The different WBCs in the world ocean are depicted with different symbols and the errorbars
:::
error

::::
bars denote the possible variability

of parameters that can occur because of an error in estimating the zonal and meridional extents of the basins that contain the WBC. The error

in |α|
:
ε
:
is not accounted for in (b) because the WBC’s transport in M50’s model is (nearly) independent of |α|

:
ε. The East Australian Current’s

(EAC) non-dimensional transport, as calculated from both S48’s and M50’s models, is less than the other four WBCs. The uncertainty in α

:
δ for the EAC

::::
Brazil

::::::
Current extends up to 0.9

::::
0.375

:
in S48’s model

:::
both

:::
the

:::::
models, the contours have been restricted to better resolve the

other four boundary currents. The range between which the non-dimensional transport varies is similar in both the models.

zonal and meridional extents of the basins. The details of how the irregular basins in the world ocean are approximated with

rectangles are discussed in Appendix C. The error in |α|
:
ε has been omitted from ??

:
4(b) because the WBC’s transport in M50’s240

model is nearly independent of |α|
:
ε. Despite the large uncertainty in the damping parameters (relevant in S48’s model only)

and domain aspect ratios (relevant in both S48’s and M50’s models) of the five WBCs, the non-dimensional transport of the

East Australian Current (EAC) is distinctly smaller than that of the other WBCs.

4 Summary and Discussions

Since the introduction of the S48’s and M50’s models about 70 years ago, numerous theoretical and numerical investigations245

have been carried out to further explore the characteristics of westward intensification (Munk and Carrier, 1950; Stommel,

1958; Hogg and Johns, 1995; Pedlosky, 2013; Vallis, 2017, and references therein). Both S48’s and M50’s dimensional models

clearly bring out the contribution of each source of vorticity: damping, planetary gradient and wind forcing in producing the

11



characteristic east-west asymmetry of the flow in a basin. However, it is difficult to quantify the contribution of each of the five

dimensional parameters (Lx, Ly , β, τ0 and r/µ) to the transport of WBC, using the dimensional models. A better alternative is250

to combine several dimensional parameters to yield a system with fewer non-dimensional parameters as was employed by, for

example, Welander (1976) to identify a zonally uniform regime in ocean circulation and by Bye and Veronis (1979) to identify

the correction to the Sverdrup transport in context of S48’s original model.

In this article, we address the issue raised by Bye and Veronis (1979) regarding the effect of domain aspect ratio on the

WBC’s transport by providing explicit expressions of the non-dimensional transport in both S48’s and M50’s models. These255

expressions are then benchmarked against numerical simulations of the time dependent, forced-dissipative, rotating shallow

water equations. Both the analytic expressions and steady state simulations show that the WBCs’ transports depend on both α

:
ε and δ in S48’s modeland both the parameters have a similar effect on the transport

(
Tr ∼ δ

α

)
,
::::::::
however,

::
a

::::::
change

::
in

:
δ
:::
has

::
a

:::::::
stronger

:::::
effect

::
on

:::
Tr

:::::
when

::::::::
compared

:::
to

:
a
::::::
change

::
in

::
ε
::::::::::

(
Tr ∼ δ3

ε

)
. In contrast, the transport of the WBC in M50’s model is

nearly independent of α
:
ε and is governed primarily by δ (Tr ∼ δ).260

::
In

:::
the

:::::::::
traditional

:::::::::
description

:::
of

:::
the

::::
S48

:::::
model

:::
the

:::::
flow

::
is

::::::::::
decomposed

::::
into

::::
two

:::::
parts:

::
A

:::::
slow,

:::::::::::
anti-cyclonic

::::
flow

:::
in

:::
the

:::::::::
inner-basin

:::::
where

:::
the

:::::::::
velocities

:::
are

:::
tiny

::
so

::::::::
frictional

::::::
effects

:::
can

:::
be

::::::::
neglected

::::
and

:
a
:::::
return

::::::::
boundary

::::
flow

::::::
where

:::
the

::::::::
frictional

:::::::
vorticity

:::::::::
associated

::::
with

:::
the

:::::
zonal

:::::
shear

::
of

:::
the

::::::::
poleward

:::::::
directed

::::::::
velocity,

:::::::
balances

:::
the

::::::::
planetary

::::::::
vorticity

::::::::
advected

::
by

::::
this

:::::::
velocity.

:::::::::
According

::
to

:::
this

::::::::
paradigm

:::
the

:::::
WBC

::::::
simply

::::::
returns

::
the

::::::::::
frictionless

::::::::::
equatorward

::::::::
Sverdrup

:::::::
transport

::
of
:::
the

::::::::::
inner-basin

::
so

::
its

::::::::
transport

::
is

::::::::::
independent

::
of

:::
the

::::::
friction

:::::::::
coefficient

:::
and

:::::
since

:::
the

::::::::::
(dissipation)

:::::::::
Laplacian

::::
term

::::
does

:::
not

:::::
affect

:::
the

::::::::
Sverdrup265

::::::
interior

::::
flow,

:::
the

::::::::
transport

::
of

:::
the

:::::
WBC

::::::
should

::::
also

::
be

::::::::::
independent

::
of

:::
the

:::::::
domain

:::::
aspect

:::::
ratio.

::::
The

::::::
present

:::::
study

:::::::::::
demonstrates

:::
that

:::
the

::::::::::
assumption

::
of

:::::
small

::::::::
damping,

::::::
ε� 1,

:::::::
implies

::::
that

::::
only

:::
the

::::
term

::::::
ε
∂2ψ

∂x2 ::
of

:::
the

:::::::::
Laplacian

::
in

:
(2)

:::
can

::
be

::::::::
neglected

:::
in

:::
this

::::
limit

:::::
while

:::
the

::::::
second

:::::
term,

:::::::

ε

δ2
∂2ψ

∂y2
,
::::::
cannot

::
be

:::::::::
neglected

::
in

:::
the

::::::
interior

:::::::
solution

:::::
when

:::::::::
δ2 ∼O(ε).

::::
The

:::::::::
implication

:::
of

:::
our

::::::
analysis

::
is
::::
that

:::
the

::::::::
Sverdrup

::::::
interior

::::
flow

:::::::
depends

:::
on

::
δ

::
for

::::::::::
sufficiently

:::::
small

:
δ
::::
and

::::::::
therefore

::
so

::::
does

:::
the

:::::::
(return)

:::::::
transport

:::
of

::
the

::::::
WBC.

:
270

::
To

:::::::::
appreciate

::::
this

:::::
subtle

:::::
issue

:::
one

::::::
should

::::::::
compare

::
a
::::::
square

:::::
basin,

::::::
where

:::::
δ = 1,

:::::
with

:
a
:::::::
narrow

:::
and

::::
long

:::::::::::::
“channel-like"

::::
basin

::::::
where

::::::
δ� 1.

::
In

::
a

:::::
square

::::::
basin,

:::
the

:::::::
classical

::::::::
approach

::
of

::::::::
equating

::::

∂ψ

∂x ::
to

:::::::
sin(πy)

::
in

:::
the

:::::
inner

::::
basin

::::::
works

::::
well

:::::
since

::
the

:::::::::::
North-South

:::::::
gradient

::
of

:::
the

:::::
zonal

:::::::
velocity

:::::::::::
(represented

::
by

:::::

∂2ψ

∂y2
)
::
is

:::::
small

:::
and

::::
can

::
be

::::::::
neglected

:::::
from

:::
the

::::::
interior

::::::::
solution.

::::::::
However,

::
in

:
a
:::::::::::::

"channel-like"
:::::
ocean

::::
this

:::::::
quantity

::
is

::::
large

::::
and

::::::
cannot

:::
be

::::::::
neglected

::::
from

::::
the

::::::
balance

:::
of

:::::
terms

::
in

:::
the

:::::::
interior

:::::::
solution.

:::
An

:::::::::::
examination

::
of

:::
the

:::::
three

:::::::
vorticity

:::::
terms

::
in

:::
the

:::::::
interior [

::::

∂ψ

∂x
,
::::

∂2ψ

∂y2 ::::
and

::::::::
−sin(πy)]

::::::
clarifies

::::
that

:::
the

:::::::
transport

:::
of275

::
the

::::::
WBC

:::
(as

::::
well

::
as

:::
the

:::::::::::
equatorward

::::::::
transport

::
in

:::
the

::::::::
interior)

::
in

:
a
:::::::::::::

"channel-like"
:::::
ocean

::::::
should

:::
be

::::::
smaller

:::::::::
compared

::
to

::
a

:::::
square

::::::
ocean

::::
since

:::
the

::::::::::
meridional

:::::
shear

::
of

:::
the

:::::
zonal

:::::::
velocity

::::::
lowers

:::
the

:::::::
vorticity

:::::::
induced

:::
by

:::
the

::::
curl

::
of

:::
the

:::::
wind

:::::
stress.

:::
In

::
an

:::::::
extreme

::::::::::::
“channel-like"

:::::
ocean

::::
with

:::::::

ε

δ2
� 1

:::
the

::::
only

:::::
term

:::
that

::::
can

::::::
balance

:::::

∂2ψ

∂y2 ::
is

:::

∂ψ

∂x::::
that

:::::::
implies

:
a
::::::
strong,

:::::::::::
equatorward

::::::
directed

::::::::
velocity.

::::::
Indeed,

::
as

::::
was

::::::
shown

::
by

:::::::::::::::::
Welander (1976) for

::
a

::::
small

:::::::
domain

:::::
aspect

:::::
ratio,

::
a

::::::::
boundary

::::
layer

::::::::
develops

:::::
along

::
the

::::::
basin’s

:::::::
eastern

::::::::
boundary

::
in

:::::
which

:::
the

::::::
strong

::::::
current

:::::
flows

:::::::::::
equatorward.280
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::
In

:::::
M50’s

::::::
model

:::
the

::::::::
vorticity

::::::
balance

:::
of

:::
the

::::::
interior

::
is
:::::

more
::::::::
involved

:::::
since

:::
the

:::::::::
bilaplacian

:::::::::
dissipation

::::::::
operator

::::
(∇4)

::::
has

:
3
::::::
terms,

::::
each

::
of

::::::
which

::::
with

::
a
:::::::::
coefficient

::
of

::::::::
different

::::::
power

::
of

::
δ.

:::::
Thus,

::::
the

:::::::::
distinction

:::::::
between

:::::
terms

:::::::::
associated

:::::
with

:::
the

::::
inner

:::::
basin

:::
and

:::::
those

::::
with

::::
the

::::::::
boundary

:::::::
solution

::
is

:::
not

::
as

:::::
clear

::
as

::
in

:::::
S48’s

::::::
model.

:::::::::
However,

:::::
under

:::
the

:::::::::
assumption

:::
of

:::::
small

::::::::
damping,

::::::
ε� 1,

:::
the

:::::
third

::::
term

::
in

:::
the

:::
∇4

:::::::
operator

:
[
:::::
given

::
by

:
(7)]

::::::
cannot

::
be

::::::::
neglected

:::
for

::::::::::
δ4 ∼O(ε3).

:::::::
Similar

::
to

:::::
S48’s

::::::
model,

::
the

::::::::
vorticity

::::::
balance

::
in

:::
the

:::::::
interior,

:::::
which

::
is

:::::::::
determined

::
in

::::
this

::::
limit

::
by

:::
the

::::::::
interplay

::
of

:
3
:::::
terms

:::::

∂4ψ

∂y4
,
:::

∂ψ

∂x::::
and

:::::::::
−sin(πy),

:::::
yields285

:
a
:::::::::::
δ−dependent

:::::::::::
equatorward

::::::::
transport.

::::
This

:::::::::::
δ−dependent

::::::::
transport

::
in

:::
the

::::::
interior

::
is
::::::::
balanced

::
by

:::
an

:::::
equal,

::::::::::::::::
poleward-directed,

:::::::
transport

:::::
along

:::
the

:::::::
western

:::::::::
boundary.

::::::::
Although

:::
the

:::::::
vorticity

:::::::::
associated

::::
with

:::::

∂4ψ

∂y4 ::
is

:::
not

::
as
::::::::

intuitive
::
as

::::
that

:::::::::
associated

::::
with

::::

∂2ψ

∂y2 ::
in

:::::
S48’s

:::::
model

:::
the

:::::::
change

:
it
::::::
entails

::
in

:::::::::
Sverdrup’s

::::::
interior

:::::::
solution

::
is
:::::::
similar.

:::
The

::::::
results

::::::
derived

::::
here

::::::::
highlight

:::
an

::::::::
important

:::::
effect

:::
that

::::
was

::::::::::
overlooked

::
in

:::
the

::::::::::::::::
classical/traditional

:::::
WBC

::::::
theory,

:::::::
namely,

::
the

:::::
effect

:::
of

:::
the

::::::
domain

::::::
aspect

::::
ratio

::
on

:::
the

::::::::
Sverdrup

:::::::
solution

::
of

:::
the

:::::
inner

::::
basin

::::::
which

:::::
results

:::::
from

:::
the

:::::::::
meridional

:::::
shear

::
of

:::
the290

::::
zonal

:::::::
velocity

::
in

::
a
::::::
narrow

:::::
zonal

:::::::
channel.

The non-dimensional formulation presented here does not alter the physical basis of the two
:::
S48

::::
and

::::
M50

:
models. We

emphasize that the dimensional transport (calculated from the product of the non-dimensional transport and γβL3
yH0) in S48’s

model varies linearly with the Rayleigh friction coefficient (r) while in M50’s model it is nearly independent of the eddy

viscosity (µ). On the other hand, in
::
In both models the transport varies linearly with the wind-forcing amplitude (τ0)

::
is

:::::
linear295

::::
with

::::::::
magnitude

:::
of

:::
the

:::::::::
wind-stress

::::
curl.

The application of our results to present-day ocean attributes the small transport of the EAC compared to the other WBCs to

the geometry of the South Pacific ocean. However
:
In

::::::
reality, factors other than the domain aspect ratio may also be important in

determining the transport. For instance, the Brazil current’s volumetric transport is low (especially in the northern part) because

the current is largely confined to the continental shelf (Stramma et al., 1990). Temperature-driven buoyancy fluxes can also300

affect the transport of a WBC (Hogg and Gayen, 2020).

It is highly plausible that with a different arrangement of the continents in previous geologic times, the small domain

aspect ratio that persisted in the ocean at that time could not support a strong WBC. Thus, the resulting higher pole to equator

temperature gradient might have strongly affected the Meridional Overturning Circulation. This hypothesis should be addressed

in a future work.305
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Appendix A: Typos in Stommel (1948)

There are some typos in the expression for u [
::::::
equation

::::
(21)] and η [

:::::::
equation

::::
(23)] in Stommel (1948). The correct expressions

are given as:315

u = γ (b/π)cos(πy/b)
(
peAx+ qeBx− 1

)
(A1)

η = −(F/gD)cos(πy/b)(eAxp/A+ eBxq/B)

−(fγ/g)(b/π)2 sin(πy/b)(peAx+ qBeBx− 1)

+(∂f/∂y)(γ/g)(b/π)3 cos(πy/b). (A2)

For the reader’s perusal, the variables in the aforementioned equations are the same as the ones defined in Stommel (1948).320

Fig. A1 provides excerpts from Stommel (1948) over which, the corrections have been highlighted.

Appendix B: Limiting cases of stream function ψ in S48’s model

In the limit α < O(1)
:::::
ε≤ δ2, the solution ψ tends to:

limα<O(1)ε≤δ2
:::

ψ(x,y) =
c1
απ2

c1
δ2

επ2
:::::

sin(πy)(x) (B1)

where c1 = lim
α<O(1)

A
::::::::::
c1 = lim

ε≤δ2
A is a number� 1. On the other hand, in the limit of α > O(1)

::::::
ε > δ2, the solution ψ becomes:325

limα>O(1)ε>δ2
:::

ψ(x,y) =
1

απ2

δ2

επ2
:::

sin(πy)[p(ec2x+ ec2(1−x))− 1] (B2)

where c2 = lim
α>O(1)

A=
π

δ :::::::::::::
c2 = lim

ε>δ2
A=

π

δ:
and p=

ec2 − 1

e2c2 − 1
. The function lim

α>O(1)
ψ(x,y)

:::::::::
lim
ε>δ2

ψ(x,y)
:

is symmetric about

x=
1

2
.
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Figure A1. Corrections to u and h indicated over excerpts from Stommel (1948).

Appendix C: Zonal and meridional extents of the five western boundary currents in present-day world ocean330

To determine the zonal and meridional extents of a basin containing a WBC, we identified the mean initiation and termination

latitudes of each WBC based on the available literature. The Gulf Stream begins at the tip of Florida (∼25◦ N) and runs upto

∼38◦ N where it breaks of into hot and cold rings (Hogg and Johns, 1995). The Kuroshio originates from the bifurcation of

North Equatorial current at 12 - 13◦ N, although this bifurcation point can vary between 10 - 15◦ N (Qiu and Lukas, 1996); it

separates from the Japan coast at 35◦ N as a meandering current colloquially known as the Kuroshio extension which stretches335

as far as ∼ 38◦ N (Kida et al., 2016). The East Madagascar-Agulhus
::::::::::::::::
Madagascar-Agulhas

:
current, in the South Indian ocean,

runs from 20◦ S to 40◦ S (Lutjeharms et al., 1981; Gordon, 1985; Lutjeharms, 2006) — however the current retroflects between

38◦ S to 40◦ S (Quartly and Srokosz, 1993). Moreover, the African continental landmass ends close to 35◦ S. The Brazil current

begins between 10◦ S and 12◦ S (Peterson and Stramma, 1991; Stramma et al., 1990) but the intense current attains its intense

speed characteristic of a WBC only when it crosses the Vitoria-Trindade Ridge at 20.5◦ S (Evans et al., 1983). This current340

separates from the coastline at a mean value of 36◦ S ± 1.1◦ (Olson et al., 1988). The last of the five WBCs in the world

ocean is the East Australian Current (EAC) that extends from 18◦ S to around 35◦ S (Boland and Church, 1981; Ridgway and

Godfrey, 1994) but a characteristic southward flow is evident only when EAC crosses 22◦ S (Ridgway and Dunn, 2003); the

current usually separates from the coast at 33◦ S (Archer et al., 2017).

We define the meridional extent (Ly) is defined as the distance between the initiation and termination latitudes of the345

WBC. On the other hand, to determine the zonal extent (Lx) we calculated the distances between the land masses at both the

initiation latitude and termination latitude. The average of the two distances is defined as the typical Lx for any given WBC.
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Table C1. Dimensions of the gyres that contain the five western boundary currents in the present-day world ocean.

Current Western edge of the basin Eastern edge of the basin Basin’s dimensions

Initiation Termination Initiation Termination Zonal (Lx) Meridional (Ly)

Gulf Stream 25◦ N 80◦ W 38◦ N 75◦ W 25◦ N 16◦ W 38◦ N 10◦ W 6000 ± 400 km 1500 ± 200 km

Kuroshio 13◦ N 125◦ E 35◦ N 140◦ E 13◦ N 92◦ W 35◦ N 121◦ W 12000 ± 3000 km 2500 ± 400 km

Madagascar-Agulhas 20◦ S 50◦ E 35◦ S 20◦ E 20◦ S 116◦ E 35◦ S 116◦ E 7500 ± 800 km 1700 ± 350 km

Brazil 21◦ S 40◦ W 35◦ S 54◦ W 21◦ S 13◦ E 35◦ S 19◦ E 6000 ± 400 km 1600 ± 500 km

East Australian 22◦ S 150◦ E 33◦ S 152◦ E 22◦ S 70◦ W 33◦ S 72◦ W 12500 ± 2000 km 1200 ± 250 km

For instance, the approximate initiation and termination coordinates for the Kuroshio are 13◦ N, 125◦ E and 35◦ N, 140 E

respectively, which yields Ly ≈ 2500 km. The distances to the opposite landmass, the North American continent (which forms

the eastern boundary of the basin) as calculated from the initiation coordinate and termination coordinate are ∼ 9000 km and350

∼ 15000 km respectively. Thus, the typical zonal extent of the basin is assumed to be 12000 km.

The mean dimensions Lx and Ly for all the five WBCs in the world ocean are given by Table 1. The ‘error’ in Ly accounts

for the variation between different references of the initiation and termination latitudes and the error in Lx is the deviation

of the measured zonal distances along initiation and termination latitude from the mean value. Based on these values of Lx

and Ly a range of parameters damping (α) and domain aspect ratio (δ) corresponding to every WBC was estimated and these355

values of α and δ were employed it to distinguish between the five WBCs. Typical values of Lx and Ly for the ocean basins

that contain the WBCs were also estimated using the mean streamlines in the ocean as calculated by Maximenko et al. (2009)

— these values were well within the range cited in Table C1.
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