Zonal Current Characteristics in the Southeastern Tropical Indian Ocean (SETIO)

Nining Sari Ningsih¹, Sholihati Lathifa Sakina², Raden Dwi Susanto³,², Farrah Hanifah¹

¹Research Group of Oceanography, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Indonesia
²Department of Oceanography, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Indonesia
³Department of Atmospheric & Oceanic Science, University of Maryland, USA

Correspondence to: Nining Sari Ningsih (nining@fitb.itb.ac.id)

Abstract. Zonal current characteristics in the Southeastern Tropical Indian Ocean (SETIO) adjacent to the southern Sumatra-Java coasts have been studied using 64 years (1950-2013) data derived from simulated results of a 1/8° global version of the HYbrid Coordinate Ocean Model (HYCOM). This study has revealed distinctive features of zonal currents in the South Java Current (SJC) region, the Indonesian Throughflow (ITF)/South Equatorial Current (SEC) region, and the transition zone between the SJC and ITF/SEC regions. Empirical orthogonal function (EOF) analysis is applied to investigate explained variance of the current data and give results for almost 95-98% of total variance. The first temporal mode of EOF is then investigated by using ensemble empirical mode decomposition (EEMD) for distinguishing the signals. The EEMD analysis shows that zonal currents in the SETIO vary considerably from intraseasonal to interannual timescales. In the SJC region, the zonal currents are consecutively dominated by semiannual (0.140 power/year), intraseasonal (0.070 power/year), and annual (0.038 power/year) signals, while semiannual (0.135 power/year) and intraseasonal (0.033 power/year) signals with pronounced interannual variations (0.012 power/year) of current appear consecutively to be dominant modes of variability in the transition zone between the SJC and ITF/SEC regions. In contrast, there exist dominant interannual signal (0.017 power/year) with prominent intraseasonal variability (0.012 power/year) of the current in the ITF/SEC region. In response to El Niño–Southern Oscillation (ENSO) event, El Niño (La Niña) events are favourable for an eastward (westward) zonal current. Meanwhile, an eastward (westward) anomaly of the current exists during negative (positive) Indian Ocean Dipole (IOD), which is associated with the presence of anomalous surface winds over the study area during those events. This work may contribute to further understanding of the variability of zonal current characteristics in the SETIO both in space and time as well as identification of its dominant time scales.

1 Introduction

Southeastern tropical Indian Ocean (SETIO) plays an important role in ocean and atmosphere dynamics of Indian Ocean. Several features make the SETIO region unique. This is partly due to the presence of the Indonesian Throughflow (ITF)
(Gordon, 1986; Wyrtki, 1987; Murray and Arief 1988; and references hereafter), which transfers warm and fresh Pacific waters to the Indian Ocean and contributes to variability of sea surface temperature (SST) in the SETIO, particularly that in the area off Java and Sumatra, which in turn affects the climate system both at regional and global scales (Clark et al., 2003; Saji and Yamagata, 2003). In the SETIO, the complex dynamical circulations exist due to the coexistence of South Java Current (SJC), South Java Undercurrent (SJUC), South Equatorial Current (SEC), and also the ITF originating from the outflow passages (e.g., Sunda, Lombok, and Ombai Straits, and Timor Passage) and their mutual interactions. It has been recognized that the SJC and SJUC play an important role in distributing warm and fresh water into and out of the southeast Indian Ocean and in turn influencing the global climate system (e.g., Fieux et al., 1994, 1996; Sprintall et al., 1999, 2010; Wijffels et al., 2002; Wijffels and Meyers, 2004).

Previous studies have suggested that the current dynamics in the SETIO as well as ocean circulations in the inner Indonesian seas are strongly linked to the regional Indo-Pacific and global climates from intraseasonal, seasonal, interannual, and even longer timescales (e.g., Sprintall et al., 1999; Song et al., 2004; Iskandar et al., 2006; Yuan et al., 2008; Syamsudin and Kaneko, 2013; Sprintall and Révelard, 2014; Krishnamurthy and Krishnamurthy, 2016; Susanto et al., 2016). Thus, it is important to obtain a better understanding of current characteristics as well as their variations in the SETIO adjacent to the southern coasts of Sumatra and Java both for scientific and practical reasons, such as fisheries, climate, and navigation.

Several studies of seasonal variability of SJC and its deeper undercurrent (SJUC) those exist along the coasts of western Sumatra and southern Java have been carried out by previous investigators based on observation data (e.g., Sprintall et al., 1999; 2010; Qu and Meyers, 2005). In general, their studies have revealed that the SJC is eastward during the northwest (NW) monsoon (December to February; DJF) and the eastward-flowing SJC is enhanced in the presence of semiannual coastal Kelvin waves originating in the equatorial Indian Ocean during the first (March to May; MAM) and second (September to November; SON) transitional monsoons. During the southeast (SE) monsoon (July to August; JJA), the SJC flows mostly westward. Moreover, Sprintall et al., (2010) have confirmed the extension of SJC and SJUC into Ombai Strait through Sawu Sea based on 3-year velocity measurements (2004–2006).

In addition, Iskandar et al. (2006) have confirmed the existence of intraseasonal variations of SJC and SJUC of the southern Sumatra-Java coasts using simulated data from an ocean general circulation model (OGCM) for 13 years (1990–2003). They found that the intraseasonal SJC is dominated by the 90-day variations associated with propagation of the first baroclinic Kelvin waves, which are driven by strong 90-day winds over the central equatorial Indian Ocean. Meanwhile, 60-day variations are the dominant feature in the SJUC, which are forced by intraseasonal atmospheric variability associated with the eastward movement of the Madden-Julian Oscillation (MJO) over the eastern equatorial Indian Ocean.

Moreover, like SJC, ITF also has seasonal variability. Sprintall et al. (2009) have examined the ITF transport in three exit passages, namely Lombok and Ombai Straits, and Timor passage using INSTANT (International Nusantara STratification ANd Transport) data from January 2003 through December 2006. Their results show that seasonal variations of the ITF are influenced by the monsoon climate, with maximum ITF occurs during the SE monsoon. Furthermore, interannual variability also affects the ITF transport, which strengthened (weakened) during La Niña (El Niño) (Susanto et al., 2012; Susanto and
In addition to El Niño–Southern Oscillation (ENSO) event, Pujiana, et al. (2019) have revealed that Indian Ocean Dipole (IOD) was also responsible for the anomalous ITF. They found a reduction in the ITF transport in 2016 due to an unprecedented negative IOD event. Feng et al. (2018) also reported the presence of decadal and interdecadal variations of the ITF transport, which is mostly due to the ITF responses to atmospheric forcing (trade winds) and oceanic adjustment in the Pacific (Meng et al., 2004; Feng et al., 2018).

In the offshore area of the SETIO, it has been reported that SEC in south of Java has intraseasonal variation with 60-day timescale (e.g., Quadfasel and Cresswell, 1992; Semtner and Chervin, 1992; and Bray et al., 1997). Further research carried out by Feng and Wijffels (2002) shows that baroclinic instability seems to be the main cause of intraseasonal variability in the SEC. Moreover, it is known that SEC in the southern Indian Ocean bifurcates at the east coast of Madagascar into the Northeast (NEMC) and Southeast Madagascar Currents (SEMC). Yamagami and Tozuka (2015) have investigated interannual variability of the SEC bifurcation along the Madagascar coast. Their results indicate that interannual variation of SEC bifurcation latitude and the NEMC and SEMC transports are correlated with Niño 3.4 index, with a lag of about 5–15 months. However, there is still no information concerning seasonal and interannual variations of SEC in the SETIO.

Regarding dynamics and characteristics of the SETIO, especially adjacent to the western coast of Sumatra and the southern coast of Java, all previous investigations are either based on numerical model, remote sensed data or velocity/moorings observations within the Indonesian seas or at the exit passages of Indonesian seas (Sunda, Lombok, Ombai, and Timor passages) which lead into the SETIO. There is almost no ocean current/velocity measurement within the SETIO. The observational velocity data are available only at limited points in space and time. The only velocity measurement in south of Java or in the SETIO region reported by Sprintall et al. (1999). The mooring was deployed south of Java in 200 m water depth from March 1997 to March 1998 at depths of 55 m, 115 m and 175 m velocity measurements, but only current meters at 115 m and 175 m were fully working properly (Sprintall et al., 1999). Recently, there are some moorings to measure velocity and stratification deployed in the SETIO region. However, they have not been fully recovered nor published. Hence, due to limited of in situ velocity measurements in the SETIO, the detail dynamics and characteristics of SETIO regions have not been fully explained. These are the main motivations of the present study.

In addition, many studies of the current dynamic in the SETIO adjacent to the southern coasts of Sumatra and Java, which were carried out by the previous investigators mentioned above (i.e., Sprintall et al., 1999, 2010; Qu and Meyers, 2005; Iskandar et al., 2006), have been conducted on its intraseasonal and seasonal variabilities. It is necessary to acquire better and comprehensive insights of both spatial and temporal characteristics of the current circulation in the region. To the best of our knowledge, this important subject, especially in researches concerning features of zonal currents in the regions of SJC, ITF/SEC, and transition zone between the SJC and ITF/SEC as well as their interannual variation, has so far not been extensively studied in the region, both based on observations and numerical models. Hence, the aims of this paper are: (1) to further investigate basic features and mode structures of the current vertical profile time series and their temporal variability in the SETIO adjacent to the Sumatra-Java southern coasts using 64 years (1950–2013) data derived from simulated results of a 1/8° global version of the HYbrid Coordinate Ocean Model (HYCOM), (2) to better understand intraseasonal, seasonal,
and interannual variabilities of the current circulation in the area of study by using a combination of the Empirical Orthogonal Function (EOF) analysis and the Ensemble Empirical Mode Decomposition (EEMD) method (i.e., Huang et al, 1998; Wu and Huang, 2009; Shen et al., 2017, and references thereafter), and (3) to discuss exclusively the ocean current characteristics in the SETIO and subsequently elaborate their genesis.

2 Material and Methods

The HYCOM has been successfully used by previous investigators to simulate current circulation within the Indonesian waters (e.g., Gordon et al., 2008; Metzger et al., 2010; Shinoda et al., 2012). In this study, we analysed the HYCOM simulated currents with 1/8° horizontal resolution for the period of 64 years (1950-2013). Simulation results of the HYCOM version used in this study have been verified against several data and the verifications have been documented in our earlier publications (Hanifah and Ningsih, 2016). In addition to the aforementioned comparisons, in this paper we have performed comparisons between the moored RAMA (Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction) provided by the NOAA and HYCOM currents at two points (marked by points R₁ and R₂), and also comparisons between OSCAR (Ocean Surface Current Analysis Real-time) and the HYCOM currents at three points (marked by points O₁, O₂, and O₃), as shown in Fig. 1. The RAMA and OSCAR datasets have been provided by the NOAA (https://www.pmel.noaa.gov/tao/data_deliv/deliv-nojava-rama.html) and Physical Oceanography Distributed Active Archive Center (PODAAC) (https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg), respectively. The general agreement between the HYCOM currents and those of the moored RAMA is reasonably encouraging with correlation coefficient (r) ranging from 0.40 to 0.57 at point R₁ (Figs. 1e-h) and 0.49 to 0.55 at point R₂ (Figs. 1i-k), with the 95% significance level at both points approximately ±0.04 and ±0.09, respectively. In addition, the comparisons between the HYCOM currents and the OSCAR data show general agreement as well at points O₁ (r=0.65), O₂ (r=0.59), and O₃ (r=0.60), with the 95% significance level at the three points ±0.13 (Figs. 1b-d). Further details of numerical model description of this applied HYCOM version can be found in Hanifah and Ningsih (2016).

In addition to the HYCOM simulated currents, to support analysis in this research, the Oceanic Niño and Dipole Mode Indices (ONI and DMI, respectively) were used to identify climate conditions and influences of interannual forcing associated with ENSO and IOD on interannual variability of the zonal currents in the study region. The ONI and DMI were obtained from the National Oceanic and Atmospheric Administration (NOAA) website (http://www.cpc.ncep.noaa.gov/data/indices/) and the Japan Agency for Marine Earth Science and Technology (JAMSTEC) website (http://www.jamstec.go.jp/frcgc/research/d1/iod/iod_dipole_mode_index.html), respectively. In addition, the wind fields derived from the NOAA (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html) are also used to investigate the effects of local and remote winds on zonal current variations.

An Empirical Orthogonal Function (EOF) method (i.e., Kantha and Clayson, 2000; Hannachi, 2004) was then used to investigate the mode structure of the zonal current vertical profile and its temporal variability at points A_SM, A_WJ, and A_EJ.
(Transect A), points B_{SM}, B_{WJ}, and B_{EJ} (Transect B), and points C_{SM}, C_{WJ}, and C_{EJ} (Transect C), as shown in Fig. 2. Moreover, temporal variability of the first EOF mode of zonal current was analysed by applying the EEMD method (i.e., Huang et al., 1998; Wu and Huang, 2009; Shen et al., 2017) for decomposing a signal into a series of intrinsic mode functions and investigating the zonal current variability in the SETIO region adjacent to the southern coasts of Sumatra-Java. Furthermore, a power spectral analysis (Emery and Thomson, 2001) was applied to the EEMD results to identify dominant periods of the zonal current variability in the study area.

3 Results

3.1 Distinctive Features of Zonal Currents in the Study Area

As we are interested in investigating characteristics of main ocean currents those exist in the SETIO adjacent to the Sumatra-Java southern coasts, such as SJC, ITF, and SEC, in this study we only considered major component of those currents, namely the zonal current component in which it was analysed from surface to 800 m. The maximum depth of 800 m was chosen to capture the presence of prevailing ocean currents in the area of study and the surrounding regions, such as cores of the SJUC. For example, these cores in the Ombai Strait exist at about 400–800 m depth (Sprintall et al., 2010). Furthermore, based on monthly averaged surface currents over 64 years period (1950–2013), we analysed the zonal currents at three transects, namely Transects A, B, and C, which represent coastal region, transition zone between coastal and offshore regions, and the offshore one, respectively (Fig. 2). Transects A and C were selected with respect to the prevalence of ocean currents in the area of interest, representing near shore (SJC) and offshore (ITF/SEC) areas, respectively (Qu and Meyers, 2005; Fang et al., 2009; Ding et al., 2013). Moreover, in the present study, we have performed additional analyses of current characteristics on Transect B as the transition zone between the SJC region (Transect A) and ITF/SEC region (Transect C) due to the existence of distinctive features of zonal currents along the three transects (A, B, and C), as shown in Fig. 2.

To support our reasons for assigning the three transects, we have provided Fig. 3 (as an example), which clearly shows the distinctive features of near-surface zonal currents along the three transects. Dynamics of zonal surface currents on Transect A (Fig. 3c), especially along the southern coasts of Sumatra-Java (98° E–114° E), show a complex interplay between remote wind forcings from both the equatorial Indian and Pacific Oceans and local wind. In general, there exist eastward-flowing currents during MAM and SON, which are probably attributed to Kelvin wave passage. Seasonal characteristic of zonal currents associated with local wind, which is eastward (westward) during DJF (JJA), especially along the southern coast of Java, can be clearly seen after 6–12 months band-pass filtering (figure not shown). In contrast, westward currents are dominant along Transect C (Fig. 3e). Meanwhile, although westward currents are quite dominant along Transect B, eastward currents are also present, especially at longitudes 95° E to 107° E (Fig. 3d).

Moreover, we also presented meridional sections of zonal current along the three longitudes (yellow lines in Fig. 2) to justify the selection of the locations for analysing zonal current characteristics, as shown in Fig. 4 (as an example). Figure 4 clearly shows the distinctive features of near-surface zonal currents along the three meridional sections, namely the coastal (SJC) area...
(0° S – −2.5° S at 98° E; −2° S – 8.5° S at 107° E; and −8° S – 9.5° S at 113° E), the transitional zone (−2.5° S – 9° S at 98° E; −8.5° S – 10° S at 107° E; and −9.5° S – 10.5° S at 113° E); and the offshore (ITF/SEC) area (−9° S – 12° S at 98° E; −10° S – 12° S at 107° E; and −10.5° S – 12° S at 113° E).

Furthermore, because we are specifically interested in zonal current characteristics off southern waters of Sumatra and Java, we selected three points on each transect, namely points A_{SM}, A_{WJ}, and A_{EJ} on the Transect A; points B_{SM}, B_{WJ}, and B_{EJ} on the Transect B; and points C_{SM}, C_{WJ}, and C_{EJ} on the Transect C with respect to the distinctive features of zonal currents shown in Fig. 2, Figs. 3c-e, and Fig. 4. Here, the subscripts SM, WJ, and EJ of the nine selected points represent regions close to Sumatra, West Java, and East Java, respectively.

3.2 Climatological Current Fields

Figure 5 shows seasonal depth profiles of zonal current velocity and its average (the climatological current field) over the period of 64 years (1950–2013). Seasonal variations of the zonal currents were analysed during DJF, MAM, JJA, and SON at the nine observation points (Transects A to C), as shown in Fig. 2. It can be clearly seen in Fig. 5 that there are distinctive characteristics of the mean zonal currents on each transect (denoted by black lines in the Fig. 5). In the following subsections, we analysed the climatological current fields of each transect.

3.2.1 Vertical Structure of Zonal Current along Transect A

On average, for the period 1950 through 2013, zonal climatological currents on the Transect A generally flow eastward from the sea surface to 100 m depth (Figs. 5a-f) and reach their maximum values of about 0.03 m s^{-1} (A_{SM}), 0.12 m s^{-1} (A_{WJ}), and 0.16 m s^{-1} (A_{EJ}). It is suggested that the average zonal currents along this transect are mainly attributed to SJC and they show seasonal variations. During the SE monsoon (JJA), the strength of climatological eastward SJC off the southern coast of Java in the upper 20 m reduced (Figs. 5d-f). Meanwhile, during the NW monsoon (DJF), the currents along the Transect A (Figs. 5a-f) flow eastward in response to the prevailing northwesterly winds, namely in the upper 18 m (A_{SM}), 45 m (A_{WJ}), and particularly at point A_{EJ} the eastward current likely being present from the surface to 800 m (Fig. 5c).

Moreover, Fig 5d-f show that during the NW monsoon the eastward currents at A_{EJ} are stronger than those at A_{SM} and A_{WJ}. The stronger current at A_{EJ} may exist as a consequence of the stronger mean NW monsoon at A_{EJ} compared with those at A_{SM} and A_{WJ} (Fig. 7). In general, the mean eastward currents along Transect A during DJF were attributed to winds. Wind-driven currents appear to be a reasonable cause for the eastward currents at A_{SM} and A_{WJ}, at which the currents are evident at depths < 100 m. Interestingly, however, at A_{EJ}, the eastward current occurs up to ~800 m. Other physical processes may account for the eastward currents at A_{EJ}, particularly those at depth beneath 100 m. The SJC and SJUC are defined as the surface current in the upper 150 m and the subsurface current beneath 150 m down to 1000 m, respectively (Iskandar et al., 2006) and they are attributed to the arrival of a downwelling Kelvin wave at the south coast of Java (e.g., Sprintall et al., 1999, 2000; Iskandar
Downwelling Kelvin waves originating in the equatorial Indian Ocean during the transitional monsoons propagate along the coasts of western Sumatra and southern Java with phase speeds ranging from 1.5 to 2.9 m s\(^{-1}\) (e.g., Sprintall et al., 2000; Syamsudin et al., 2004; Iskandar et al., 2005). These phase speeds indicate that the downwelling Kelvin waves will arrive at A\(_{\text{EJ}}\) in 21 – 41 days. In this case, downwelling Kelvin waves generated during the monsoon transition period in November may arrive at A\(_{\text{EJ}}\) in December/January. Therefore, in addition to the local eastward winds, the downwelling Kelvin waves may also contribute to the eastward currents at A\(_{\text{EJ}}\) during the NW monsoon, including those at depth beneath 100 m.

At a depth of 100 m, there is a maximum westward current at A\(_{\text{WJ}}\) during DJF with velocity of about 0.1 m s\(^{-1}\) (Figs. 5b and 5e). Here, we suggest that ITF is the cause of the westward current at 100 m at A\(_{\text{WJ}}\) during the DJF. In regard to the ITF, Fig. 3 of Sprintall et al. (2010) shows cores of subsurface maximum ITF extending from 100 m to 250 m depth in the northern part of the Ombai Strait and from 100 m to 800 m depth at the southern part of the strait during DJF. Meanwhile, the influence of ITF on the zonal current at A\(_{\text{EJ}}\) at 100 m is weaker as a consequence of the stronger NW monsoon at A\(_{\text{EJ}}\) compared with those at A\(_{\text{WJ}}\), so that the current flows rather eastward at A\(_{\text{EJ}}\) during DJF (Figs. 5b-c, 5e-f, and Fig. 7).

To further investigate which one is more influential between the ITF and the NW monsoon to force the zonal current at both points (each at depth of ~100 m) and each the NW zonal wind and the zonal current representing subsurface (~200 m) maximum ITF in the southern Ombai Strait (Table 1). Here, the ITF in the southern part of the Ombai Strait was chosen for carrying out the correlation because the ITF flows mainly through the southern part of the passage (Sprintall et al., 2010). It is found that the subsurface maximum ITF during DJF exists at a depth of about 200 m in both the northern and southern parts of the Ombai Strait and it is stronger during DJF than JJA in both parts of the strait (Fig. 3 of Sprintall et al., 2010). In this study, the DJF zonal currents in the period of 2004 through 2006 in the southern Ombai Strait derived from the INSTANT program (http://www.marine.csiro.au/~cow074/instantdata.htm) were used for the correlation analysis.

It is found that during DJF the zonal current at A\(_{\text{WJ}}\) at 100 m shows high correlation with the subsurface (~200 m) maximum ITF in the southern Ombai Strait, whereas its correlation with the NW zonal wind is weak (Table 1). Moreover, although during DJF the correlations between the zonal current at A\(_{\text{EJ}}\) at 100 m and each NW zonal wind and subsurface (~200 m) maximum ITF in the southern Ombai Strait are below the significance level, the NW zonal wind is more influential to force variation of zonal current at A\(_{\text{EJ}}\) at 100 m than the ITF. Hence, during DJF we suggest that the westward current simulated at A\(_{\text{WJ}}\) at 100 m is ITF-related, whereas that at A\(_{\text{EJ}}\) is relatively NW zonal wind-related. As already discussed, in addition to the local eastward winds during DJF, it is suggested that the arrival of downwelling Kelvin waves in December/January at A\(_{\text{EJ}}\) may contribute to a net eastward current across the water column, which in turn reducing the influence of ITF at this point.

Our simulation shows that during the monsoon transitions (MAM and SON), SJC is eastward and intensified by the propagation of coastal Kelvin waves associated with the Wyrtki Jet (WJ) in the equatorial Indian Ocean, which is forced by the local equatorial zonal winds during both monsoons. These waves propagate along the Sumatra-Java coast (i.e., Sprintall et al., 2000; Druskha et al. 2010, Iskandar et al. 2009) and some portions propagate northward into the Lombok and Makassar Straits (Susanto et al., 2000; 2012; Pujiana et al., 2013), whereas the remaining parts continue eastward (Syamsuddin et al., ...
Furthermore, the present study shows that the eastward current during SON is stronger than that during MAM, which is consistent with mooring observation in the Makassar Strait (Susanto et al., 2012; their Fig. 3). The stronger eastward current during SON was supposed to be attributed to the faster and more intense climatological WJ during SON than that during MAM (Knox, 1976; McPhaden, 1982; Han et al., 1999; Qiu et al., 2009; McPhaden et al., 2015; Figs. 1d and 2e of Duan et al., 2016) and also associated with the stronger wind forcing over the eastern equatorial Indian Ocean during the SON compared with the MAM period (figure not shown), which is responsible for the WJ. The eastward current during SON reaches its maximum velocity of about 0.05 m s\(^{-1}\) (\(A_{SM}\)), 0.23 m s\(^{-1}\) (\(A_{WJ}\)), and 0.20 m s\(^{-1}\) (\(A_{EJ}\)) at ~30-50 m depths (cyan lines in Figs. 5d-f). Furthermore, results of this study show that a maximum value of the eastward current forced by a Kelvin wave is found at a certain depth (at ~30-50 m depths; Figs. 5a-f) and it is supposed to be attributed to a baroclinic Kelvin wave. The baroclinic Kelvin wave propagating vertically and horizontally along its waveguide can exert energy the most at a certain depth (Drushka et al., 2010; Pujiana et al., 2013). According to laboratory experiment observation conducted by Codiga et al. (1999) and Hallock et al. (2009), Kelvin wave can be trapped in a slope and propagates along an isobath. This phenomenon is known as slope-trapped baroclinic Kelvin wave. Moreover, Kelvin wave which propagates along continental slope with strong stratification can cause strong current velocity. Codiga et al. (1999) also found that this slope Kelvin wave is formed after encountering a canyon-like bathymetry. Meanwhile, Pujiana et al. (2013) shows that Kelvin wave propagation from Lombok Strait to Makassar Strait, across Sunda continental slope, is along isobaths at depths greater than 50 m. In this present study, eastward current along the Transect A has maximum current velocity at depth ~30–50 m. Therefore, it is suggested that this maximum eastward current at ~30–50 m depth associated with slope-trapped Kelvin wave, which propagates at that depth along the southern coasts of Sumatra and Java.

3.2.2 Vertical Structure of Zonal Current along Transect B

In the transition region (Transect B), average zonal current (the climatological current field) shows different characteristics at each point (denoted by black lines in Figs. 5g-l). The average current at \(B_{SM}\) is eastward, while at points \(B_{WJ}\) and \(B_{EJ}\) it is westward. During NW and transitional periods of the monsoon, zonal current at \(B_{SM}\) flows eastward and reaches its maximum velocity of about 0.12 m s\(^{-1}\) at a depth of 40 m within the period of SON (Fig. 5j). Meanwhile, during SE monsoon, the zonal current at this point flows westward. In contrast to the mean zonal currents along Transect A, it seems that the average zonal current field at \(B_{SM}\) is not attributed to SJC. The reason is the \(B_{SM}\) location, which is far from the coasts of Mentawai Islands and Enggano Island off the western coast of Sumatra by 430 km. This distance is more than Rossby radius of deformation at this latitude (~90 km). Thereby, Kelvin waves, which affect the SJC variations, do not exist at this point. We suggest that the current variability at \(B_{SM}\) is influenced by tropical current systems in the Indian Ocean, such as the Equatorial Counter Current (ECC), Southwest Monsoon Current (SWMC), and WJ. Here, we displayed seasonal averaged surface currents over 64 years (1950–2013) and schematics of the tropical current systems in the Indian Ocean as supporting evidence (Fig. 6).
Figure 6 shows that BSM is located at an area, which is affected by the ECC, SWMC, and WJ. It can be seen in the Fig. 6a that during DJF, surface currents along the equatorial Indian Ocean is dominated by the westward North Equatorial Current (NEC) and the eastward ECC. Meanwhile, during JJA (Fig. 6c), the NEC disappears and the ECC becomes absorbed into the SWMC, which dominantly flows eastward in the northern Indian Ocean (Tomczak and Godfrey, 1994). In addition, during the transitional periods (MAM and SON), the WJ is generated and it causes a strengthening of eastward flows along the equatorial Indian Ocean (Figs. 6b and 6d). This explains the cause of climatological current at BSM flows eastward and reaches its maximum velocity during SON and MAM. These currents (the ECC, SWMC, and WJ) flow eastward before they turn and some part of their flow feed into the SEC in the southern Indian Ocean.

Furthermore, it is suggested that the mean westward currents at the points BWJ and BEJ are more dominated by the ITF (shown by black lines in Figs. 5h-i and 5k-l). Based on observation in the exit passages (Lombok Strait, Timor Passage, and total ITF along exit passages), ITF in JJA is stronger than that in DJF (e.g., Sprintall et al., 2009). In this study, however, it is found that westward currents at the points BWJ and BEJ are stronger during DJF than JJA. This anomaly of the ITF seasonality at both points is also found in the Ombai Strait as documented by Sprintall et al. (2009, their Table 3; 2010, their Fig. 3). Moreover, Sprintall et al. (2010) found cores of subsurface maximum ITF during DJF extending from 100–250 m (100–800 m) depth at the northern (southern) part of the strait. In this study, this seasonal feature of the subsurface maximum ITF is also found at both BWJ and BEJ in which the corresponding westward currents at these points reach their maximum values at ~100 m depth and the maximum westward currents are stronger during DJF than JJA (Figs. 5h-i and 5k-l). Hence, we suggest that the primary driver for zonal westward current at BWJ and BEJ is the ITF coming from the Ombai Strait. To confirm the above relation, we have calculated the correlation between zonal westward currents at ~100 m at these points and those representing subsurface (~200 m) maximum ITF in the southern Ombai Strait (Sprintall et al., 2010). The correlation coefficient between the zonal westward currents at ~100 m at BWJ and those of the southern Ombai Strait is 0.77, while it is 0.58 for the BEJ with the 95% significance level approximately ±0.33. This study shows that the zonal westward currents at 100 m depth at both BWJ and BEJ have a strong correlation with the subsurface (~200 m) maximum ITF in the southern Ombai Strait, confirming that the ITF flowing from the Ombai Strait is the primary driver for zonal westward current at both BWJ and BEJ. Nevertheless, the cause of the anomalous behaviours of seasonality of the ITF in the Ombai Strait and of the corresponding westward currents at BWJ and BEJ, in which the ITF and currents are stronger during DJF than JJA, is still unclear. Therefore, further study is required to increase our understanding of this challenging matter.

3.2.3 Vertical Structure of Zonal Current along Transect C

Current characteristics in the offshore region of the study area (Transect C) generally show similarities at all points (CSM, CWJ, and CEJ), as shown in Figs. 5m-r. The current at these points flows westward throughout the year and has average velocity around 0.20–0.35 m s\(^{-1}\) in the upper 100 m. Under such characteristics we supposed that the westward current on the Transect C is the SEC, which encounters with the ITF flowing out from the Lombok and Ombai Straits, and Timor Passage.
HYCOM westward currents along the Transect C (Figs. 5m-r) are stronger during JJA than DJF, which are associated with seasonal characteristics of the ITF in Lombok Strait, Timor Passage, and of the total ITF through the Lombok and Ombai Straits, and Timor Passage (Potemra, 1999; Sprintall et al., 2009). The westward current on the Transect C (Figs. 5p-r) reaches its maximum value of about 0.42 m s\(^{-1}\) (C\(_{SM}\)), 0.48 m s\(^{-1}\) (C\(_{WJ}\)), and 0.31 m s\(^{-1}\) (C\(_{EJ}\)).

3.3 Zonal Current Variability

EOF analysis gives vertical mode structures (spatial mode) and their normalized temporal mode variabilities relative to the mean which influence zonal current variability in the study area. Before performing the EOF analysis, the average value of the current data has been removed (solid black lines in the Figs. 5a-r). Table 2 displays dominant variances at the nine observation points. From the Table 2, the first three modes at each point already represent ≥ 95% of the total variance. In fact, the first two modes at each point (except at points A\(_{SM}\) and A\(_{EJ}\)) already represent ≥ 91% of the total variance. In this paper, we only consider the first modes of EOF analysis since their percent variances (except at point A\(_{SM}\)) are more than 50% of the total variance. Temporal variability of the first EOF mode (EOF1) was then analysed by using the EEMD method to decompose the signal. In this study, the EOF and EEMD analyses of currents are only conducted at one point on each transect, namely A\(_{WJ}\) (Transect A), B\(_{SM}\) (Transect B), and C\(_{EJ}\) (Transect C). The A\(_{WJ}\), B\(_{SM}\), C\(_{EJ}\) points were chosen to investigate SJC variability, interannual variability in the open SETIO, and SEC and ITF variabilities, respectively.

The EEMD analysis of the first temporal EOF mode provides 10 modes/signals in which the first signal of the EEMD result is the summation of the second to tenth signals, which is the same as the EOF first temporal mode of zonal currents. Meanwhile, the second–sixth signals of the EEMD result vary from intraseasonal to interannual variabilities. The remaining signals of EEMD result show the long-term trend.

3.3.1 Intraseasonal, Semiannual, and Annual Variations

Figures 8a–b show vertical structure and temporal variability of the EOF1 (58% of total variance) at A\(_{WJ}\), respectively. In order to see more clearly temporal variation of the EOF1 in Fig. 8b, we have provided the last eight-year period of the EOF first temporal mode (Fig. 8c, as an example). Current velocity variability relative to the mean flow can be obtained by multiplying the vertical mode structure (Fig. 8a) with the temporal variability (Fig. 8b).

Intraseasonal, semiannual, and annual variabilities of the EOF first temporal mode at A\(_{WJ}\) as results of the EEMD analysis are displayed in Figs. 8d-f, where their power spectra (left) show maximum energy at 3-month, 6-month, and 12-month periods, respectively. At this point, the highest power spectrum occurs at semiannual variability (Fig. 8e). In this figure (right), the semiannual variability of the EOF first temporal mode at A\(_{WJ}\) clearly shows the presence of an eastward anomaly of the zonal current during the MAM and SON, which may be forced by Kelvin waves associated with the WJ in the equatorial Indian Ocean (Wyrtki, 1973; Quadfasel and Cresswell, 1992; Sprintall et al., 2000, 2010). Meanwhile, the anomaly of the zonal
current at AWJ is westward during JJA in response to the prevailing southeasterly local winds during the SE monsoon. On the other hand, during DJF, the anomaly of the zonal current at AWJ is not associated with the prevailing northwesterly local winds during the NW monsoon, where the current anomaly is westward during this monsoon (Fig. 8e). As already discussed in Sect. 3.2 (Table 1 and Fig. 7), this may be attributed to the ITF that has more influence on variation of zonal current at AWJ during DJF than the NW local wind.

Similar to AWJ, the first mode of EOF vertical structure and its temporal variability (64% of total variance) at BSM show seasonal pattern (Figs. 9a-c). It is also found that signal with 6-month (semiannual) period is quite dominant at BSM (Fig. 9e). In order to see more clearly the seasonal variation, we have provided a probability distribution function of the EOF1 of zonal currents for each of the NW, SE, and transition seasons at BSM at a depth of ~40 m (Fig. 12). The 40 m depth was selected as an example because the most obvious seasonal variation of currents presents at this depth. It is found that variation of zonal current at BSM is dominantly eastward during DJF (Fig. 12a) and this eastward current is enhanced during MAM and SON (Figs. 12b and d), which may be attributed to the tropical current systems in the Indian Ocean (ECC, SWMC, and WJ). Meanwhile, during JJA (Fig. 12c), the dominance of eastward current reduces, and the current tends to be dominantly westward.

Figures 10a-c show the first mode of EOF vertical structure and its temporal variability (72% of total variance) at C_EJ. In general, anomaly of the zonal current at C_EJ is westward, which is supposed to be associated with the meeting of SEC driven by trade winds and the ITF at this region. The EEMD analysis of the EOF1 of zonal current at C_EJ also shows intraseasonal-interannual variabilities (Figs. 10d-g), where it is found that interannual timescale dominates the zonal current variation at C_EJ (0.017 power/year).

To obtain a better understanding of the zonal current characteristics at AWJ, BSM, and C_EJ, we have summarized maximum energy density of zonal currents at intraseasonal, semiannual, annual, and interannual timescales that exists at each point based on power spectrum calculation in Figs. 8-10 (Table 3). It is shown that the zonal currents at AWJ are consecutively dominated by semiannual, intraseasonal, and annual signals, while interannual signal is weaker than them at this point. Furthermore, although semiannual and intraseasonal signals are dominant at BSM, there is pronounced interannual variation of the zonal current at this point. In contrast, the zonal current variability at C_EJ is dominated by interannual signal.

Furthermore, based on the power spectrum calculation shown in Fig.10 (Table 3), it is found that intraseasonal variability of the SEC (zonal current at C_EJ) is also prominent (about 0.012 power/year) in addition to the interannual signal (about 0.017 power/year). Meanwhile, based on sea level anomaly data in the period of October 1992 to the end of 1998 (about 6 years), Feng and Wijffels (2002) suggested that the strongest intraseasonal variability in the SETIO occurs in the SEC during the July-September season and baroclinic instability seems to be the leading cause. On the other hand, in this study, we found that the strongest intraseasonal variability occurs in the SJC (zonal current at AWJ). This different result seems due to differences in the length of data used in this study (64 years) and that in Feng and Wijffels (2002) (6 years). In addition, in this study, we analyzed intraseasonal variability from the signal of the EOF first temporal mode of zonal currents (accounting for 58%, 64%, and 72% of total variance at AWJ, BSM, and C_EJ, respectively), whereas Feng and Wijffels (2002) analyzed the intraseasonal variation...
from standard deviation of the 6-year sea level anomaly data based on the 100-day high-pass filtered altimeter data during the four seasons (January-March, April-June, July-September, and October-December). Moreover, some of the difference may also be due to the fact that altimeter data do not resolve coastal processes well. However, further study is required to address this issue.

3.3.2 Interannual Variations

In this study, it is found that the most energetic zonal current variations of EOF1 at \(A_W\), \(B_{SM}\), and \(C_{EJ}\) exist at \(<30\) m depth (Figs. 8a, 9a, and 10a). To investigate exclusively the ocean currents at interannual timescale, lagged correlation analyses have been applied between the zonal currents at a depth of about 30 m at points \(A_W\), \(B_{SM}\), and \(C_{EJ}\) and each of the climatic indices (e.g., ONI and DMI), as shown in Table 4. The ONI and DMI indices from 1950 to 2013 used in this study are shown in Fig. 11.

The analysis of lagged correlation shows that the currents at \(B_{SM}\) and \(C_{EJ}\) show positive correlations with the ONI, namely \(r(18)=0.24\) and \(r(4)=0.27\), respectively, with the 95% significance level approximately \(\pm 0.07\), indicating that an El Niño (La Niña) event is favorable for an eastward (westward) currents at these points (Figs. 9g and 10g) and also pointing out that ITF transport is lower (higher) during El Niño (La Niña) events (Fieux et al., 1996; Meyers, 1996; Gordon and Susanto, 1999; Ffield et al., 2000; Susanto et al., 2001; Susanto and Gordon, 2005; Susanto et al., 2012; Liu et al., 2015; Susanto and Song, 2015; and Zhang et al., 2016). ENSO events seem to have a strongest influence on the zonal current variability at \(C_{EJ}\) (Table 4), which is located close to the exits of the ITF. The ENSO signals penetrate into the SETIO mainly through the equatorial Pacific and coastal ocean Indonesian waveguides (Wijffels and Meyers, 2004; Zhang et al., 2016). Meanwhile, the present study shows that the correlation between the zonal current at \(A_W\) and ONI is weak and below the significance level.

Furthermore, negative correlation is found between IOD and zonal currents at \(A_W\) \([\text{DMI}−U]: r(9)=-0.09\), \(B_{SM}\) \([\text{DMI}−U]: r(1)=-0.28\], and \(C_{EJ}\) \([\text{DMI}−U]: r(11)=-0.13\). The correlation analysis indicates that IOD is most influential to force interannual variation of the zonal currents at \(B_{SM}\), with the IOD leading the zonal currents by 1 month. The influence of interannual phenomenon at \(B_{SM}\), such as IOD, is stronger and relatively instantaneous than that at points \(C_{EJ}\) and \(A_W\). This may due to the location of \(B_{SM}\), which is close to the center of eastern pole of the IOD (100° E, 5° S; Saji et al., 1999). In contrast to ONI, there is IOD signals at \(A_W\) although the IOD signals at this point are weak compared to \(B_{SM}\) and \(C_{EJ}\) (Table 4). This indicates that some of the IOD signals are coastally trapped.

Table 5 lists extreme and neutral years and their concurrent events through 1950-2013. To further investigate interannual variation of zonal current, we summarized presence of major climate modes (ENSO and/or IOD) and the corresponding current anomalies at the points of \(B_{SM}\) and \(C_{EJ}\) (Table 6) based on the lagged correlation analyses in Table 4 and the interannual variations of zonal current (Figs. 9g and 10g), and the ONI and DMI (Fig. 11), respectively. In the Table 4, the ONI-\(U\) and DMI-\(U\) correlations are independent of IOD and of ENSO, respectively. Meanwhile, the current anomalies, which are attributed to the presence of major climate modes (ENSO and/or IOD) shown in the Table 6, could be forced by the influences...
of ENSO or IOD, or the combined effect of them. In this study, the amounts of respective contribution values of ENSO and IOD, or the combined effect of them on the current anomalies shown in the Table 6 are still unknown. Further studies are thus required to more quantitatively determine the contribution values of each of climate modes on zonal current variations in the study area as well as their possible teleconnection. The last mode (Figs. 8h, 9h, and 10h) represents long-term trend which may be associated with long-term internal variability within the Indian Ocean or remote forcing from the Pacific Ocean and it may discuss in detail in future paper.

3.3.3 Relationship of the Zonal Current Variations at AWJ, BSM, and C_EJ to Both Remote and Local Wind Forcings

To confirm possible influences of wind forcings on dominant variations of zonal current at AWJ, BSM, and C_EJ, we have calculated the correlation between them. In this study, it is found that the zonal currents at AWJ (close to the shore) are dominated by semiannual signal (0.140 power/year; Table 3). The semiannual variations of the zonal current at AWJ show the presence of an eastward anomaly of the zonal current during MAM and SON, which may be associated with Kelvin waves forced by winds over the equatorial Indian Ocean (Wyrtki, 1973; Quadfasel and Cresswell, 1992; Sprintall et al., 1999, 2000, 2010). Furthermore, we have calculated the correlation between zonal currents in the upper layer (30 m) at AWJ and zonal winds for the semiannual signals extracted using the EEMD method (Fig. 13). The 30 m upper layer flows at AWJ show a strong positive correlation with the zonal winds over the equatorial Indian Ocean, with the winds leading the current by approximately one month. The positive correlation indicates that the flows are to the east when the winds blow from the west to the east, and vice-versa for the easterly wind. The one-month lag of the flows at AWJ with the zonal winds in the equatorial Indian Ocean is in agreement with the expected arrival time of Kelvin waves at this point, suggesting that it is of about 18 – 35 days with phase speeds ranging from 1.5 to 2.9 m s\(^{-1}\) (e.g., Sprintall et al., 2000; Syamsudin et al., 2004; Iskandar et al., 2005). Interestingly, there is also a weaker positive correlation of the 30 m upper layer flows at AWJ at lag of about one month with zonal trade winds in the western equatorial Pacific Ocean (WEPO) at semiannual timescale, indicating that a strengthening (weakening) of easterly trade winds over the WEPO is favourable for anomalous westward (eastward) currents at AWJ. The strengthening of easterly trade winds over the WEPO will increase sea level in the northern waters of West Papua and New Guinea, enhancing eastward pressure gradient across the Indonesian seas and forcing strengthened ITF transport. Since the currents at AWJ are strongly correlated to the ITF (Table 1), it is suggested that this possible dynamic could result in anomalous westward currents at AWJ, and vice-versa for the weakening winds over the WEPO.

Semiannual (0.135 power/year) signal of current variations is also dominant at BSM but it is weaker than that at AWJ. In addition, there is pronounced interannual (0.012 power/year) variation of the zonal current at BSM (Table 3 and Fig. 9g), in which IOD is most influential to force interannual variation of currents at this point (at 30 m), (Table 4). Like at AWJ, we also look for the relationships of the upper layer flow (30 m) at BSM with the zonal winds but for the interannual signal obtained using the EEMD method (Fig. 14). At interannual timescale, the 30 m upper layer flows at BSM show a strong positive correlation with the zonal winds over the eastern tropical Indian Ocean, in which the response of the flows to the zonal winds are relatively
instantaneously at a lag of about one month (Fig. 14). Location of the zonal winds affecting interannual variations of the upper layer flows at BSM is in accord with the eastern pole region of IOD (90°E-110°E, 10°S-0°S; Saji et al. 1999).

Furthermore, as already explained, the zonal current variability at CEJ (close to the exits of the ITF) is dominated by interannual (0.017 power/year) signal in which the influence of ENSO is strongest at this point at depth of 30 m (Table 4). To enhance our understanding of possible relationship of zonal currents at CEJ to wind forcings at interannual timescale, we have also calculated the correlation between the upper layer flow (30 m) at CEJ and the zonal winds, particularly in the Pacific Ocean. Like at BSM, the interannual signals of both flow and winds are extracted using the EEMD method. At interannual timescale, the flows at CEJ at 30 m show a significant positive correlation with the local winds and the remote winds over the equatorial Pacific Ocean, in which the response of the flows to the zonal winds are about 4 to 6 months. In addition, we also found that the 4-month lag signals are stronger than the signals with the 5 to 6 months of lag. Figure 15 shows a correlation map between the Pacific winds and the currents at CEJ in the case of a 4-month lag.

4 Conclusions

Basic features of zonal currents and their temporal variability in the SETIO region adjacent to the Sumatra-Java southern coasts have been studied using global HYCOM output over the course of 1950 – 2013. There exist distinctive features of zonal currents in coastal (the SJC) region, offshore (the ITF/SEC) region, and transition zone between coastal and offshore regions of the SETIO. In general, surface zonal currents on Transect A (the SJC region), especially along the southern coasts of Sumatra-Java (98° E-114° E), show seasonal characteristics, which are eastward (westward) during DJF (JJA). Moreover, the eastward-flowing currents are enhanced during MAM and SON associated with the propagation of coastal Kelvin waves. On the other hand, westward currents are dominant along Transect C (the ITF/SEC region). Meanwhile, although westward currents are quite dominant along Transect B (the transition zone between the SJC region and ITF/SEC region), eastward currents are also present, especially on longitudes 95° E to 107° E.

In the period of 1950 through 2013, the mean (climatological) current velocity of SJC on Transect A is dominantly eastward. We found that both remote and local wind forcings as well as seasonal conditions are necessary to explain the current variability in the study area. During JJA, the strength of climatological eastward SJC reduced and the SJC in the upper 100 m along the southern coast of Java, at a certain period of time, flowed westward in response to the prevailing southeasterly local winds during those months. At the depth 100 m, there is a maximum westward current at AWJ during DJF with velocity of about 0.1 m s⁻¹, in which the current at the AWJ shows high correlation with the subsurface (200 m) maximum ITF in the southern Ombai Strait (remote forcing), whereas its correlation with the NW local wind is weak. Otherwise, it is found that the NW zonal wind is more influential to force variation of zonal current at AEJ than the ITF. Therefore, it is suggested that the westward current simulated at AWJ at 100 m during DJF is ITF-related, whereas that at AEJ at 100 m is relatively NW zonal wind-related.

Moreover, it is found that the average (climatological) current at BSM is eastward, while at points BWJ and BEJ it is westward, suggesting that the mean eastward current at BSM is influenced by tropical current systems in the Indian Ocean, such as the
ECC, SWMC, and WJ, whereas the mean westward currents at the points B_{WJ} and B_{EJ} are more dominated by the ITF. In contrast, current characteristics on Transect C (offshore region) generally show similarities at all points (C_{SM}, C_{WI}, and C_{EJ}), where the current along this transect flows westward throughout the year, confirming that Transect C is the SEC/ITF region. Seasonality of the westward current on the Transect C agrees well with that of ITF in Lombok Strait, Timor Passage, and through the three exit passages (the total ITF through the Lombok and Ombai Straits, and Timor Passage) that it is stronger during JJA than DJF.

In this study, the predominant variation content of the zonal current anomalies in the region is quantitatively identified, varying from intraseasonal to interannual timescales. The analysis indicates that the zonal currents at A_{WJ} (close to the shore) are consecutively dominated by semiannual (0.140 power/year), intraseasonal (0.070 power/year), and annual (0.038 power/year) signals, in which interannual (0.003 power/year) signal is weaker than them at this point. Moreover, although semiannual (0.135 power/year) and intraseasonal (0.033 power/year) signals are dominant at B_{SM} (close to the center of eastern pole of the IOD), there is pronounced interannual (0.012 power/year) variation of the zonal current at this point. In contrast, the zonal current variability at C_{EJ} (close to the exits of the ITF) is dominated by interannual (0.017 power/year) signal. Nevertheless, in addition to the interannual signal, the power spectrum analysis shows that intraseasonal variability of the zonal current (SEC) at C_{EJ} is also prominent (0.012 power/year). This may be attributed to the baroclinic instability, which seems to be the main cause of the prominent intraseasonal variation at C_{EJ} (Feng and Wijffels, 2002).

The lagged correlation analysis shows that there are positive correlations between ENSO and current anomalies at B_{SM} \([r(18)=0.24]\) and at C_{EJ} \([r(4)=0.27]\), indicating that an El Niño (La Niña) event is favourable for an eastward (westward) current at these points. In response to IOD events, the analysis shows that IOD has negative correlations with current anomalies at B_{SM} \([r(1)=-0.28]\) and at C_{EJ} \([r(11)=-0.13]\), pointing out that there exists an eastward (westward) anomaly of the currents during negative (positive) DMI, which is associated with northwesterly (southeasterly) wind over the study area. Moreover, it is found that IOD is most influential to force interannual variation of the zonal current at B_{SM} since it is located close to the center of eastern pole of the IOD, while ENSO events seem to have a strongest influence on the zonal current variability at C_{EJ}, probably due to its location near the exits of the ITF.

This study has quantified changes in variability of zonal current anomalies in the SETIO on timescales ranging from intraseasonal to interannual. Nevertheless, it is necessary to perform future work, which includes detailing the forcing mechanisms as well as investigating decadal variability and determining the cause of the long-term signals to gain a better understanding of these interesting topics.

Data Availability

The data used in this study are deposited at https://www.oceanography.fitb.itb.ac.id/member/NSN/
Author Contribution

Primary author NSN formulated research goals and aims, developed methodology, conducted investigation process, designed model, and prepared the published work. SLS maintained research data, prepared data presentation, and drafted the initial manuscript. RDS supervised the research project and EEMD methodology. FH designed model simulation and validated the model results.

Competing Interest

The authors declare that they have no conflict of interest.

Acknowledgements

The authors would like to gratefully acknowledge data support from the following institutions. The moored RAMA current is provided by the NOAA (https://www.pmel.noaa.gov/tao/data_deliv/deliv-nojava-rama.html), while the INSTANT current is available at the INSTANT Web site (http://www.marin.info/instandata.htm). The wind fields are obtained from the NOAA (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html). The ONI is provided by the NOAA/CPC at http://www.cpc.ncep.noaa.gov/data/indices/. The DMI is from the JAMSTEC at http://www.jamstec.go.jp/frg/research/d1/iod/iod/dipole_mode_index.html. Meanwhile, the HYCOM simulation results are available at Research Group of Oceanography-ITB, Faculty of Earth Sciences and Technology, Bandung Institute of Technology (https://www.oceanography.fitb.itb.ac.id/member/NSN/). We would like to thank the support given by the DIKTI under Basic Research Grant 2019 and Program of World Class Professor (WCP) 2018, for funding this works and making the writing of this paper possible. R. Dwi Susanto is supported WCP-2018 and National Aeronautics and Space Administration (NASA) grant #80NSSC18K0777 and Jet Propulsion Laboratory-NASA subcontract #1554354 to the University of Maryland. We appreciate the valuable suggestions, comments, and corrections from anonymous reviewers.

References

Hannachi, A.: A Primer for EOF Analysis of Climate Data, Department of Meteorology, University of Reading. UK, 2004.

Table 1. Correlation coefficients between zonal currents at 100 m depth at both AWJ and AEJ and each the local NW zonal wind and subsurface (200 m) maximum ITF in the southern Ombai Strait during DJF in the period of 2004 through 2006.

<table>
<thead>
<tr>
<th>Points</th>
<th>U-SMITF</th>
<th>U-NWZW</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWJ</td>
<td>0.76</td>
<td>-0.32 (b)</td>
</tr>
<tr>
<td>AEJ</td>
<td>-0.13 (b)</td>
<td>0.30 (b)</td>
</tr>
</tbody>
</table>

(a) The 95% significance level is approximately ± 0.33. U: zonal currents at 100 m depth; SMITF: subsurface (200 m) maximum ITF in the southern Ombai Strait; NWZW: northwesterly zonal wind.

(b) Correlation below the significance level.

Table 2. Dominant variances at the nine observation points.

<table>
<thead>
<tr>
<th>Mode</th>
<th>ASM</th>
<th>AWJ</th>
<th>AEJ</th>
<th>BSM</th>
<th>BWJ</th>
<th>BEJ</th>
<th>CSM</th>
<th>CWJ</th>
<th>CEJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>58</td>
<td>60</td>
<td>64</td>
<td>84</td>
<td>76</td>
<td>88</td>
<td>87</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>33</td>
<td>29</td>
<td>27</td>
<td>12</td>
<td>18</td>
<td>9</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>96</td>
<td>95</td>
<td>97</td>
<td>96</td>
<td>98</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

Table 3. Maximum energy density at intraseasonal, semiannual, annual, and interannual timescales at points AWJ, BSM, and CEJ.

<table>
<thead>
<tr>
<th>Points</th>
<th>IS</th>
<th>SA</th>
<th>AN</th>
<th>IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWJ</td>
<td>0.070</td>
<td>0.140</td>
<td>0.038</td>
<td>0.003</td>
</tr>
<tr>
<td>BSM</td>
<td>0.033</td>
<td>0.135</td>
<td>0.007</td>
<td>0.012</td>
</tr>
<tr>
<td>CEJ</td>
<td>0.012</td>
<td>0.008</td>
<td>0.012</td>
<td>0.017</td>
</tr>
</tbody>
</table>

IS: Intraseasonal; SA: Semiannual; AN: Annual; IA: Interannual.
Table 4. Lag correlation between the zonal currents at 30 m and each the ONI and DMI.

<table>
<thead>
<tr>
<th>Points</th>
<th>ONI - U</th>
<th>DMI - U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation Coefficients (r) and Time Lag (TL)</td>
<td>Correlation Coefficients (r) and Time Lag (TL)</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>TL (months)</td>
</tr>
<tr>
<td>A_WJ</td>
<td>0.02</td>
<td>2</td>
</tr>
<tr>
<td>B_SM</td>
<td>0.24</td>
<td>18</td>
</tr>
<tr>
<td>C_EJ</td>
<td>0.27</td>
<td>4</td>
</tr>
</tbody>
</table>

a) The 95% significance level is approximately ± 0.07. U: zonal currents at 30 m. Positive correlation coefficients between the currents and the ONI indicate existence of an eastward (westward) anomaly of the currents during El Niño (La Niña). Meanwhile, negative correlation coefficients between the currents and the DMI indicate existence of an eastward (westward) anomaly of the currents during negative (positive) IOD. A positive (negative) lag indicates that the variability in a former variable (e.g., ONI or DMI) leads (lags) that in the latter variable (the zonal current).

b) Correlation below the significance level.

Table 5. ENSO, IOD, and neutral events during the 1950 – 2013 periods.

<table>
<thead>
<tr>
<th></th>
<th>El Niño</th>
<th>NR-ENSO</th>
<th>La Niña</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1981</td>
</tr>
</tbody>
</table>

NR-ENSO: neutral ENSO (-0.5 °C < ONI < +0.5 °C); El Niño (ONI > +0.5 °C); La Niña (ONI < -0.5 °C); P-IOD: Positive IOD (DMI > +0.36 °C); NR-IOD: neutral IOD (-0.36 °C < DMI < +0.36 °C); N-IOD: negative IOD (DMI < -0.36 °C). The classification of ENSO events is determined by ONI (http://www.ESRL.noaa.gov/). Meanwhile, DMI is used for the classification of IOD events, with criterion according to Yuan et al. (2008).
Table 6. Summary of major climate modes (ENSO and/or IOD) and the corresponding current anomalies through 1950 – 2013.

<table>
<thead>
<tr>
<th>Points</th>
<th>Events</th>
<th>Current Speed (m s⁻¹)</th>
<th>Observation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR-ENSO (Jan. 2004) and NR-IOD (Jun. 2005)</td>
<td>-0.21</td>
<td>Jul. 2005</td>
</tr>
<tr>
<td></td>
<td>NR-ENSO (Dec 1980) and P-IOD (May 1982)</td>
<td>-0.19</td>
<td>Jun. 1982</td>
</tr>
<tr>
<td></td>
<td>NR-ENSO (Aug. 1962) and N-IOD (Jan. 1964)</td>
<td>-0.28</td>
<td>Feb. 1964</td>
</tr>
<tr>
<td></td>
<td>El Niño (Feb. 1998) and P-IOD (Jul. 1999)</td>
<td>-0.35</td>
<td>Aug. 1999</td>
</tr>
<tr>
<td></td>
<td>El Niño (Oct. 2009) and P-IOD (Apr. 2011)</td>
<td>-0.18</td>
<td>May 2011</td>
</tr>
<tr>
<td></td>
<td>La Niña (Dec. 1995) and P-IOD (Jul. 1997)</td>
<td>-0.50</td>
<td>Aug. 1997</td>
</tr>
<tr>
<td></td>
<td>La Niña (Aug. 2007) and P-IOD (Feb. 2009)</td>
<td>-0.16</td>
<td>Mar. 2009</td>
</tr>
<tr>
<td></td>
<td>La Niña (Feb. 1995) and N-IOD (Jul. 1956)</td>
<td>-0.24</td>
<td>Aug. 1956</td>
</tr>
<tr>
<td></td>
<td>La Niña (Oct. 1955) and NR-IOD (Mar. 1957)</td>
<td>-0.13</td>
<td>Apr. 1957</td>
</tr>
<tr>
<td></td>
<td>NR-ENSO (Oct. 2001) and NR-IOD (Feb. 2001)</td>
<td>-0.18</td>
<td>Jan. 2002</td>
</tr>
<tr>
<td></td>
<td>NR-ENSO (May. 1978) and P-IOD (Oct. 1977)</td>
<td>-0.46</td>
<td>Sep. 1978</td>
</tr>
<tr>
<td></td>
<td>NR-ENSO (Mar. 1960) and N-IOD (Aug. 1959)</td>
<td>0.41</td>
<td>Jul. 1960</td>
</tr>
<tr>
<td></td>
<td>El Niño (Aug. 1953) and P-IOD (Jan. 1953)</td>
<td>0.96</td>
<td>Dec. 1953</td>
</tr>
<tr>
<td></td>
<td>El Niño (Nov. 1991) and P-IOD (Apr. 1991)</td>
<td>0.45</td>
<td>Mar. 1992</td>
</tr>
<tr>
<td></td>
<td>El Niño (Nov. 2009) and P-IOD (Apr. 2009)</td>
<td>0.69</td>
<td>Jan. 2010</td>
</tr>
<tr>
<td></td>
<td>El Niño (Jul. 1997) and N-IOD (Dec. 1996)</td>
<td>0.78</td>
<td>Nov. 1997</td>
</tr>
<tr>
<td></td>
<td>La Niña (May. 1988) and P-IOD (Oct. 1987)</td>
<td>-0.46</td>
<td>Sep. 1988</td>
</tr>
<tr>
<td></td>
<td>La Niña (Sep. 1998) and P-IOD (Feb. 1998)</td>
<td>-0.59</td>
<td>Jan. 1999</td>
</tr>
<tr>
<td></td>
<td>La Niña (Nov. 2011) and P-IOD (Apr. 2011)</td>
<td>-0.61</td>
<td>Mar. 2012</td>
</tr>
<tr>
<td></td>
<td>La Niña (Aug. 1954) and NR-IOD (Jan. 1954)</td>
<td>-0.70</td>
<td>Dec. 1954</td>
</tr>
<tr>
<td></td>
<td>La Niña (Sep. 1988) and NR-IOD (Feb. 1988)</td>
<td>-0.43</td>
<td>Jan. 1989</td>
</tr>
</tbody>
</table>

NR-ENSO: neutral ENSO; P-IOD: Positive IOD; NR-IOD: neutral IOD; N-IOD: negative IOD. The classification criterion for ENSO and IOD events can be seen in Table 5.
Figure 1. Validation of HYCOM zonal currents with OSCAR and RAMA datasets: (a) Locations of validation points: Points O₁ (8°S, 116°E), O₂ (7°S, 98°E), and O₃ (11.5°S, 113°E) for the OSCAR data, while R₁ (0°S, 90°E) and R₂ (8.5°S, 106.75°E) for the RAMA data. (b)-(d) Time series of the zonal currents observed by the HYCOM (blue lines) and the OSCAR (red lines) at a depth of 0.5 m at point O₁, O₂, and O₃, respectively. Meanwhile (e)-(h) are the time series of zonal currents observed by the HYCOM (blue lines) and the moored RAMA (red lines) at point R₁ at depths of 50, 150, 250, and 350 m, sequentially. Meanwhile, (i)-(k) are the same as (e)-(h), except for point R₂ and depths of 40, 80, and 120 m, respectively. In the Figures 1e-h (point R₁), a monthly low-pass filter has been applied before plotting.
Figure 2. The area of study interest in the SETIO region adjacent to the Sumatra-Java southern coasts. The blue arrows show climatological (yearly mean) surface (1 m) current field over 64 years from 1950 to 2013. Yellow lines are the meridional sections along the three longitudes (98°E, 107°E, and 113°E), while red lines are the three selected transects: A, B, and C. Green, yellow, and cyan circles are the locations in which the zonal currents are analysed, namely points A_SM, A_WJ, A_EJ (on the Transect A); points B_SM, B_WJ, and B_EJ (on the Transect B); and points C_SM, C_WJ, and C_EJ (on the Transect C). The subscripts SM, WJ, and EJ denote regions which close to Sumatra, West Java, and East Java.
Figure 3. Time-longitude profiles of: (a) the ONI, (b) the DMI; and monthly averages of surface (1 m) zonal currents along (c) Transect A, (d) Transect B, and (e) Transect C. Positive (negative) values of the zonal currents indicate eastward (westward). Meanwhile, green dash lines denote longitudes of the nine selected points.
Figure 4. The zonal surface (1 m) currents along three meridional sections (yellow lines in Figure 2): (a) 98°E, (b) 107°E, and (c) 113°E. Positive (negative) values of the zonal currents indicate eastward (westward). Meanwhile, green dash lines denote latitudes of the nine selected points and SL is shoreline.
Figure 5. Mean and seasonal depth profiles of zonal current velocity derived from the HYCOM simulation results for the period of 1950 through 2013, at points: (a) A_SM, (b) A_WJ, (c) A_EJ, (g) B_SM, (h) B_WJ, (i) B_EJ, (m) C_SM, (n) C_WJ, and (o) C_EJ. Meanwhile, (d)-(f), (j)-(l), and (p)-(r) are the same as (a)-(c), (g)-(i), and (m)-(o), respectively, except for depths of 0-100 m.

Figure 6. Seasonal averaged surface (1 m) currents over 64 years (1950-2013) and schematics of the tropical current systems in the Indian Ocean during (a) DJF, (b) MAM, (c) JJA, and (d) SON. Current branches indicated by colour arrows (not black) are the North Equatorial Current (NEC), Equatorial Counter Current (ECC), South Equatorial Current (SEC), South Java Current (SJC), Wyrtki Jet (WJ), South West Monsoon Current (SWMC), and Indonesian Throughflow (ITF). The dashed line represents thermocline current.
Figure 7. Mean NW monsoon for the period of 1950 to 2013 (climatological wind field during the DJF).
Figure 8. (a) Vertical structure and (b) its associated temporal variability of EOF1 (58% of total variance) at the point A_WJ. (c) As (b), except for the last eight-year period of the EOF1. The EEMD (i.e., Huang et al., 1998; Shen et al., 2017) is then applied to the EOF temporal structure to decompose temporal variability: (d) intraseasonal, (e) semiannual (f) annual, and (g) interannual variabilities with their corresponding red spectrum as a reference for 95% confidence limit (left panel), whereas (h) represents the long-term trend.
Figure 9. Same as in Figure 8, except for the point B_{SM} with the temporal variability of EOF1 accounting for 64% of total variance.
Figure 10. Same as in Figure 8, except for the point CEJ with the temporal variability of EOF1 accounting for 72% of total variance.
Figure 11. (a) ONI and (b) DMI indices from 1950 to 2013
Figure 12. A probability distribution function of the EOF1 of zonal currents for each of the NW (a), SE (c), and transition (b and d) seasons at BSM at a depth of ~40 m.
Figure 13. A correlation map between zonal wind and zonal currents (at 30 m) at AWJ for the semiannual signals extracted using the EEMD method. The 99% significance level is approximately ± 0.07.

Figure 14. As in Figure 13, but at BSM and for interannual signal.
Figure 15. As in Figure 13, but at C_{EJ} and for interannual signal.