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Abstract. The Arctic Ocean is at the frontier of the fast changing climate in the northern latitudes. As the first study, we

assess the different mass and steric
::::::
validate

:::
and

::::::
assess

:::
the components of the observed sea level trend from both absolute sea

level (ASL) from altimetry and tide gauges
::::
(TG), without using gravimetric observations from the GRACE satellites

::::::
Gravity

::::::::
Recovery

:::
and

:::::::
Climate

::::::::::
Experiment

:::::::::
(GRACE). This approach permits a longer time series and avoids problems with errors

from leakage effects in GRACE-products. The ASL is equal to the mass-driven sea level and the steric sea level , while tide5

gauge based sea level is also affected by
::::::::
associated

::::
with

::::::::
GRACE.

::::::
Steric

:::
and

::::::::::
manometric

::::
sea

::::
level

::::::
change

::
is
::::::::::::
reconstructed

:::
and

::
is

:::::::::
combined

::::
into

::
an

::::::
Arctic

::::
sea

::::
level

::::::::
estimate,

::::
that

::
is

:::::::::::
independent

::::
from

::::
any

::::::::
observed

:::
sea

:::::
level

:::::::
change.

:::::::
Relative

::::
sea

::::
level

::::::::
observed

:::
by

::
12

:::::::
selected

::::
tide

:::::::
gauges

::
is

::::::::
corrected

::::
with

:::::
novel

:
vertical land movement , which is in this study correct

by novel estimates . Calculations of the mass component from present-day deglaciation, shows that deglaciation rises Arctic

sea level with more than 1
::::::
(VLM)

::::::::
estimates

:::::::::
accounting

:::
for

::::
past

:::
and

::::::::::::
contemporary

:::::::::::
deglaciation.

:::
The

:::::::::::
calculations

:::::
shows

::::
that10

:::::::::::
contemporary

::::::::::
deglaciation

:::::
alters

:::
the

:::::
Arctic

:::::::
absolute

:::
sea

:::::
level

:::::::
between

:
0
:::
and

::
2 mm y−1, while the steric contribution is between

-5 and 15
:::::::::::
salinity-driven

:::::::::
halosteric

:::
sea

::::
level

:::::
trend

::
is

::::::::::
dominating

:::
the

:::
sea

:::::
level

::::
trend

:::::
with

::::::::
variations

:::::::
between

:::
-7

:::
and

:::
10

:
mm

y−1with large spatial variability and dominated by the halosteric signal. A dynamic mass contribution is derived from the

Estimating Circulation and Climate of the Oceans (ECCO)-model (version 4, release 4), which varies between -1 and 2 mm

y−1. The combined mass and steric product
:
.15

:::::
Large

::::::::::
uncertainties

::::::::
originate

::::
from

::::::
limited

::::
data

::
to

::::::::
constrain

:::
the

:::::
steric

::::
data

::
in

::::
some

:::::::
regions

::
of

:::
the

:::::
Arctic

:::::
while

::::
also

::::::::
altimetry

:
is
::::::
visibly

:::::::::
challenged

::
in

:::
sea

:::
ice

:::::::
covered

:::::
areas.

:::
The

::::::::::::
reconstructed

:::
sea

::::
level

:::::::
estimate agrees (within uncertainty) with ASL-trends

observed
::
the

::::::::
observed

:::
sea

::::
level

:
from altimetry in 99

::
98% of the Arctic , although large uncertainties originate from poor data

coverage in the steric data and large variability in the dynamic product. A comparison with ASL trends observed at tide gauges

agree with mass+steric at
:::
and

:::
for 11 of 12 tide gauge sites.

::::
TGs.

::::
The

::::::::::
correlation

:::::::
between

:::
the

::::::::::::
reconstructed

:::::::
estimate

::::
and20

:::::::
altimetry

::::::::
(R=0.50)

::::::
clearly

::::::::::
outperforms

::
a
::::::
similar

:::::
study

:::::
using

:::::::::::::::
GRACE-estimates.

::::
The

::::::
results

::::::
confirm

::
a
::::
large

::::::::
negative

:::::::
absolute

:::
sea

::::
level

::::
trend

::::::
shown

:::
by

::::
other

::::::
studies

::
in

:::
the

::::::
eastern

:::::::
Siberian

::::::
Arctic,

::::
that

::
is

::
in

:::::::
contrast

::
to

:::
the

::::::::
significant

:::
sea

:::::
level

:::
rise

::::::::
observed

::
in

:::
the

::::
area

:::
by

::::
TGs

1



1 Introduction

The Arctic is globally the region with the fastest changing climate and is warming twice the rate of the global average25

::::::::::::::
(Box et al., 2019). The resulting

:::::::
enhanced

:
deglaciation of landand sea ice ,

::::
sea

::
ice

::::::
cover

:::::::
decrease

:
and ocean freshening all

changes the
:::
has

::::::
several

:::::
affects

:::
on

:
sea level, hence understanding sea level in the Arctic Ocean paramount for mapping conse-

quences of climate change.
::
At

:::
the

::::
same

:::::
time,

::::::::::::
oceanographic

::::::
in-situ

:::::::::::
observations

:::
and

:::::::
satellite

:::::::::::
observations

::
of

:::
the

::::::
Arctic

:::
are

:::::
prone

::
to

:::::::::
challenges

::::
from

::
an

:::::
harsh

:::::::::::
environment,

:::
sea

:::
ice

:::::
floats

:::
and

::::
lack

::
of

::::::
spatial

::::::::
coverage

::::::::::::::::
(Smith et al., 2019).

:

Spatial assessments of the sea level budget of the Arctic has in previous studies
:::::::
Satellite

::::::::
altimetry

:::
has

:::::
been

:::::::::
measuring30

::
the

::::::
Arctic

::::::
Ocean

::::
since

:::::
1991

::::
with

::::::
ESA’s

::::::::
European

:::::::
Remote

:::::::
Sensing

:::::::
(ERS)-1

:::::::
satellite

:::::
being

:::
the

::::
first

:::::::
reaching

:::::
polar

::::::::
latitudes.

::::::::::::::::
(Laxon et al., 2003)

::::
were

:::
the

::::
first

::
to

:::::
study

::::::
Arctic

:::
sea

::::
level

:::::
from

:::
the

:::::::
ERS-1/2

::::::::
satellites

::
to

:::::::
produce

::::::
sea-ice

:::::::::::
thicknesses.

:::::
Since

:::
then

:::::
many

::::
have

::::::::
followed

:::
e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Peacock and Laxon, 2004; Prandi et al., 2012; Cheng et al., 2015; Rose et al., 2019)

:
,
:::
but

::::::::::
uncertainties

::
in

::::::::
particular

::
in

:::
sea

::::::::::
ice-covered

::::::
regions

:::
are

:::
still

:::::::
present

::::::::::::::::::::::::::::::::::::::::::::::
(Armitage et al., 2016; Rose et al., 2019; Raj et al., 2020)

:
.

::::::::::::
Reconstructing

:::
sea

:::::
level

::::::
change

::::
with

::::
the

:::
sea

::::
level

::::::
budget

::
is
::::::

useful
::::
both

::
to
::::::::

constrain
::::

sea
::::
level

:::::::::::
observations

:::
and

::::::::
separate35

::::::::::
steric-driven

::::
and

::::::::::
manometric

:::
sea

::::
level

::::::
change

:::::::::::::::::::
(Gregory et al., 2019)

:::
and

:::::
hence

:::::::
quantify

:::
the

::::::
origins

:::
of

:::
sea

::::
level

:::::::
change.

::::
The

:::
sea

::::
level

::::::
budget

:::
has

::::
been

:::::::
assessed

::
on

::::::
global

:::
and

:::::::::
basin-wide

:::::
scales

:::::
since

:::
the

::::
19th

::::::
century

:::
by

::::
using

::
a

::::::::::
combination

::
of

:::::
in-situ

:::::
data,

::::::
satellite

:::::::::::
observations

:::
and

::::::::::
probabilistic

:::::::
analysis

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Church and White, 2011a; WCRP, 2018; Dangendorf et al., 2019; Royston et al., 2020; Frederikse et al., 2020)

:
,
:::
but

::::
these

::::::
studies

:::::
tends

::
to

::::::
neglect

:::
the

:::::
polar

::::::
region.

:::::::
Previous

:::::::
attempts

::
to
::::::::::
reconstruct

:::
sea

::::
level

::
in
:::
the

::::::
Arctic

:::
has

:
shown to be difficult (Henry et al., 2012; Armitage et al., 2016;40

Carret et al., 2017; Ludwigsen and Andersen, 2020; Raj et al., 2020), because both satellite observations and in-situ obser-

vations are less consistent than in low and mid-latitudesand challenged by the Arctic environment and fast-changing climate.

Observations from the Gravity Recovery And Climate Experiment (GRACE) offer the only direct Arctic-wide measurements

of the mass component, but
:::::::::
manometric

:::
sea

:::::
level

::::::
change

:::::
since

:::::::::
mid-2002.

::::::::
However,

:
discrepancies of over 10 mm y−1

::

−1

(Ludwigsen and Andersen, 2020) exist among different GRACE-products (Wiese et al., 2016; Save et al., 2016; Luthcke et al.,45

2013), and previous studies often
:::
tend

::
to
:
choose the solution that fits the altimetric results (Carret et al., 2017; Raj et al., 2020)

. A cross-comparison of different combinations of GRACE, steric products and altimetry (Ludwigsen and Andersen, 2020)

, showed that the
:::
has

:::
the

::::
best

:::::::::
agreement

:::::
with

:::
the

:::::::
absolute

::::
sea

::::
level

::::::::
observed

:::
by

::::::::
altimetry

::::
and

::::::::
modeled

:::::
steric

:::
sea

:::::
level

:::::::::::::::::::::::::::::
(Carret et al., 2017; Raj et al., 2020).

:

::
In

:::
this

::::::
paper,

::
we

:::::::
attempt

::
to

::::::
assess

:::
the

::::::
satellite

::::
and

:::
tide

::::::
gauge

::::::::
observed Arctic sea level budget using an interpolated DTU50

steric product and a mass-product from the GRACE-satellites (GRACE JPL mascons (Wiese et al., 2016)) for 2003 to 2015

agreed well spatially with an altimetry-product from CPOM (Armitage et al., 2016).
:::::
trends

::::
from

:::::::::
1995-2015

:::
by

::::::::::::
reconstructing

::
the

::::
sea

::::
level

::::::::
response

::
to
::::::::::::

contemporary
::::

land
::::

ice
::::
loss,

::::::
glacial

:::::::
isostatic

:::::::::
adjusment

::::::
(GIA)

::::
and

::::::::::
atmospheric

::::::::
pressure

:::::::
(inverse

:::::::::
barometer,

:::
IB)

::::
and

::::::
thereby

::::::::
mapping

::::
the

::::::::
long-term

:::::::::::
manometric

:::
sea

::::
level

:::::::
change

:::::::
without

::::::::
GRACE.

::::
The

::::
time

:::::
series

:::
of

:::
21

::::
years

::
is
::::::::
generally

::
8
:::::
years

:::::
more

::::
than

::::::::::
assessments

:::::
using

::::::::
GRACE

:::::::::::::::::::::::::::::::::::::::::::::::
(Armitage et al., 2016; Carret et al., 2017; Raj et al., 2020)

:
.55

::::
This

:::
has

:::
the

:::::::::
advantage,

:::
that

::::::::::
non-secular

::::
and

::::::::::
inter-annual

:::::::
dynamic

:::::::
effects,

:::::
which

:::
are

::::::
mainly

::::::
driven

::
by

:::
the

::::::
Arctic

::::::::::
Oscillation,

::::::::::::::::::::::::::::::::::
(Henry et al., 2012; Armitage et al., 2018)

:::
are

:::::::
reduced.
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Changes in

2
:::::::
Method

:::
Sea

::::
level

:::::::::::
observations

:::::
from

::::::
satellite

::::::::
altimetry

:::
are

:::::::::
measured

::::::
relative

:::
to

:
a
::::::::
terrestrial

::::::::
reference

::::::
frame

:::
and

::
is
::::::
called

:::::::::
geocentric60

::
or absolute sea level (ASL)can be divided into two main contributions; changed water column density .

:::::
Tide

::::::
gauges

:::::
(TG)

:::::::
measures

:::
the

:::
sea

:::::
level

:::::
while

:::::
being

::::::::
grounded

::
to

:::
the

:::::
coast,

:::
and

::
is

:::::::
affected

::
by

:::::::
vertical

::::
land

::::::::
movement

:::::::
(VLM).

::::
The

::::
ASL

:::::::
(similar

::
to

::::::::
altimetry)

:::
can

:::
be

:::::::::::
reconstructed

::
by

::::::
adding

:::::::
vertical

::::
land

:::::::::
movement

::::::
(VLM),

:::::::
defined

::::
with

::::::
respect

::
to

:::
the

:::::
same

::::::::
reference

:::::
frame

::
as

::::::::
altimetry,

::
to

:::
tide

::::::::::::::
gauge-measured

::::::
relative

:::
sea

:::::
level

::::::
(RSL).

ASL = RSL + VLM
::::::::::::::::

(1)65

:::::::
Changes

::
of

::::
ASL

::::::
( ˙ASL)

::::::::
originates

:::::
either

::::
from

:::::::
changed

:::::
ocean

::::::
density

::::::
(steric,

::̇
η)

:
due to changes in salinity or temperature

::::::::::
(halosteric)

::
or

::::::::::
temperature

::::::::::::
(thermosteric)

::
or

:::::
from

:::::::
changes

::
in
::::::

ocean
:::::
mass, which is called steric change and mass change (also called

::::::
defined

::
as

::::::::::
manometric

::::::::
sea-level

::::::
change,

:::
Ṁ

::::::::::::::::::
(Gregory et al., 2019)

:
).

:::::::::
According

::
to

::::::::::::::::::
(Gregory et al., 2019),

::::::::::
manometric

:::
sea

:::::
level

::::::
change

:::
can

::
be

:::::::
referred

::
to

::
as

:::
the

::::::::::
’non-steric’

:::
sea

:::::
level

::::::
change

:::
and

::
is

:::::::::
indifferent

::
to

:::
the

:::::::::
commonly

::::
used

:
Ocean Bottom Pressure

) due to changes of
:::::
(OBP).

:
70

˙ASL = η̇+ Ṁ
:::::::::::

(2)

::
As

:::::::
already

:::::::::
mentioned,

:::
the

:::::
steric

:::
sea

::::
level

::::::
change

::::
can

::
be

::::
split

::::
into

::::::::
halosteric

::::
(η̇S)

:::
and

:::::::::::
thermosteric

::::
( ˙ηT )

:::
sea

::::
level

:::::::
change:

η̇ = η̇S + η̇T
::::::::::

(3)

:::
The

::::::::::
manometric

::::::::::
component

:
is
::::::
further

:::::::
divided

:::
into

:::::::::::
contributions

:::::
from

:::::::
changes

::
in the gravitational field,

::
G

:::
that

:::::::
together

::::
with

::
a

:::::
spatial

:::::::
uniform

::::::::
constant,

::
c,

::::::::
composes

:::
the

:::::::::::
gravitational

:::
sea

::::
level

:::::::::
fingerprint

:::
(N )

::::
due

::
to

:::::::
different

:
land-to-ocean water mass flux75

and dynamic changesfrom changing wind stress and atmospheric pressure.

˙ASL = ˙Steric + ˙Mass

::::
mass

:::::::
changes,

::
i,

:::::
which

::
in

:::
this

:::::
study

::::::::
originates

:::::
from

:::::
either

:::::::
different

::::::
sources

::
of

::::
land

:::
ice

:::::::::
(Greenland

::::::
(GRE),

::::::::
Northern

::::::::::
Hemisphere

::::
(NH)

::::::::
Glaciers

:::
and

:::::::::
Antarctica

:::::
(Ant)

::
+
::::::::
Southern

:::::::::::
Hemisphere

::::
(SH)

::::::::
glaciers)

::
or

:::::
GIA.

:::::::
Change

::
in

:::
IB

::
is

::::
also

::::
part

::
of

:::
the

:::::
total

::::::::::
manometric

:::
sea

::::
level

:::::::
change,

::
Ṁ.

:
80

Ṁ =
∑
i

Ṅi + ˙IB , where Ṅi = Ġi + ċi

::::::::::::::::::::::::::::::::::

(4)

Tide gauges (TG) gives direct measurements of sea level relative to the solid earth - called relative sea level (RSL). ASL

measured by satellite altimetry is measured relative to the Earth’s center. The difference between ASL and RSL is defined
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by the deformation of the solid Earth - called vertical land movement (VLM).
:::::
VLM

::
is

::::
split

::::
into

:::
the

::::::::::
viscoelastic

::::
solid

:::::
earth

::::::::::
deformation

::::::
caused

::::
from

::::
past

:::::::::
millennial

:::
ice

:::::::::::
(un-)loading,

:::::
GIA,

:::
and

::::
the

:::::
elastic

::::::::::
adjustment

::::
from

::::::::::::
contemporary

:::::::::::
(1995-2015)85

::::::
change

::
in

:::
ice

:::::::
loading,

::::::
VLMe,

::::::
which,

::
as

:::
G,

:
is
::
a
::::::::
composite

:::
of

:::
the

:::::
elastic

::::::::
response

::::
from

:::::::
different

::::::
origins

:::
of

::::
land

::
ice

:::
(i).

:

ASL ˙VLM = RSL ˙GIA + VLM
∑
::

˙VLMei (5)

GRACE was first launched in mid 2002. Bypassing GRACE makes it possible to extend the time series to 21 years from

1995-2015, which generally is 8 years more than assessments using GRACE (Armitage et al., 2016; Carret et al., 2017; Raj et al., 2020)

This has the advantage, that non-secular and non-seasonal effects of the Arctic Oscillation, which tends to dominate the90

dynamic mass contribution (Henry et al., 2012; Armitage et al., 2018) gets smaller.
::
By

::::::::::
substituting

::::
eq.

:
4
::::

and
:::
eq.

::
3

::::
into

:::
eq.

::
2,

::
we

:::::::
achieve

:::
the

::::::::::::
reconstruction

::
of

:::::::
absolute

::::
sea

::::
level,

::::::
ASLr,

::::
that

::
is

:::::::::
comparable

:::::
with

:::
the

:::::::
observed

:::::
ASL

::
by

:::::::
satellite

::::::::
altimetry

:::::::
(denoted

::
as

:::::::
ASLA):

˙ASLr =
∑

(Ġi + ċi) + ˙IB + η̇S + η̇T
::::::::::::::::::::::::::::::

(6)

3 Altimetry95

::::::
Thirdly,

::
a
::::::::
TG-based

::::
ASL

::::::::
estimate,

:::::::
ASLTG,

::
is

:::::::
achieved

:::
by

::::::
adding

:::
eq.

:
5
::
to

:::
eq.

::
1:

:

˙ASLTG = ˙RSLTG + GIA +
∑

˙VLMei
::::::::::::::::::::::::::::::

(7)

3
::::
Data

::::
This

::::
study

::::::::
combines

:::::::
various

:::::
in-situ

::::
data

:::::::::::
(temperature

:::
and

::::::
salinity

:::::
(T/S)

::::::
profiles

:::
and

:::::::::
TG-data),

::::::
satellite

::::::::
(GRACE

:::
and

:::::::::
altimetry)

:::
and

:::::
model

::::
data

::::::::::::
(VLM-model

:::
and

::::::::::
ECCOv4r4)

::
to
::::::::::
reconstruct

:::
the

:::::
Arctic

:::
sea

:::::
level

:::::::
change.

::
In

:::
this

::::::
section

:::::::
follows

:
a
::::::::::
description100

::
of

:::
the

:::::::
different

:::::::
datasets

:::
and

::::
how

::::
they

:::
are

::::::::
obtained.

3.1
::::::::
Altimetry

The DTU/TUM Arctic altimetric dataset
:::::
Ocean

:::
Sea

:::::
Level

::::::::
Anomaly

::::::
(SLA)

::::::
record (Rose et al., 2019) provides an independent

estimate of ASL change . For the 1995-2015 period, both
:::::::
(ASLA).

:::
The

::::::::
altimetric

:::::
time

:::::
series

::
is

:::::::
covering

:::
the

::::::
whole

::::::::
altimetric

::
era

:::::
given

::
as
::::::::
monthly

::::
grids

:::::
from

:::::::::
September

::::
1991

::
to

:::::::::
September

:::::
2018,

::::::::
covering

:::
65◦

::
N

::
to

::::::
81.5◦N

::::
and

::::::::::::::
180◦W–179.5◦E.

:
105

:::
The

:::::::
product

:
is
::::::::
corrected

:::
by

::::::::::
geophysical

:::::::::
corrections

::::
such

::
as

:::::
tides

:::
and

::::::::::
atmospheric

::::::
delays.

:::::
Leads

:::::::
(cracks

::
in

::
the

:::
sea

:::
ice

::::::
cover)

:::
and

::::
open

:::::
ocean

:::
are

::::::
located

::::
and

::::::::
separated

::::::::
according

::
to

:::
the

:::::::
different

:::::::::::
classification

::
of

::::
their

::::::::
surfaces.

:::
The

::::::::
detection

::
of

:::::
leads

::
is

:::
not

:::::::
flawless,

:::
and

::::
their

::::::
sparse

::::::::::
distribution

::
in

:::
the

:::
sea

:::
ice

:::::
cover,

:::
and

:::
the

::::::::::
uncertainty

::
of

:::
the

:::
the

::::::
applied

::::::::::
geophysical

::::::::::
corrections

::
in

:::
the

:::::
Arctic

:::::::::::::::::::::::::::::::::::
(Stammer et al., 2014; Ricker et al., 2016)

:::::
makes

:::
the

:::
sea

::::
level

::::::::
estimates

:::::
more

::::::::
uncertain

::
in

:::
the

:::
sea

::
ice

:::::::
covered

::::::
region.

:

4



:::
The

::::::::
altimetric

::::::
record

:::::::
includes

::::
data

:::::
from

::::
four

::::
ESA

::::::::
satellites:

:
ERS-1

::::::::::
(1991-1995), ERS-2

::::::::::
(1995-2003), Envisat (limited to110

81.5°N
::::::::
2002-2010) and CryoSat-2 (limited to 88°N)is used

:::::::::
2010-2018). It combines results of different retrackers as well as

conventional and SAR-altimetry, which may lead to biases (Rose et al., 2019). In particular ERS-1/2 has a relative
:::::::
relatively

:
low

spatial resolution and thereby limiting the measurements from leads (open-ocean inbetween the sea ice floes) in sea ice. Also

difficulties to distinguish between melt ponds on top of
:
,
::::
while

:::
the

:::::
SAR

:::::::
altimeter

:::
on

::::::::
CryoSat-2

::
is

:::::
made

::
to

:::::::
measure

::::
over the sea

ice and leads were shown to be difficult. The used DTU
:::::
cover,

::::::
which

::::::::
decreases

:::
the

:::::::::
uncertainty

:::::::::::::::
(Rose et al., 2019)

:
.
:::
The

:::::::
applied115

::::::
version

::
of

:::
the

::::::::::
DTU/TUM

:
altimetry product is not corrected for IB and is spatially limited southward to 65°N

:::::::::
atmosphere

:::::::
pressure

::::::
loading

:::
to

::
be

::::
able

:::
to

:::::::
compare

::
to
::::

the
:::
tide

:::::::
gauges. The altimetric sea level trend is shown in the right map

:::::
results

::::::
section

:::
(the

::::::
middle

:::::
panel

:
of figure 5

:
).

4 Tide Gauge data

Tide gauges120

3.1
:::

Tide
:::::::
Gauges

::::
and

:::::::
Vertical

:::::
Land

::::::::::
Movement

:::::::
TG-data

:
is
::::::::
obtained

::::
from

:::
the

:::::::::
Permanent

::::::
Service

:::
of

:::
Sea

:::::
Level

:::::::::::::::
(PSMSL)-database

::::::::::::::::::
(Holgate et al., 2012)

:::::
given

::
as

:::::::
monthly

:::::
SLA.

:::
TGs

:
with a consistent time series are few and unevenly distributed in the Arctic (Henry et al., 2012; Limkilde Svendsen et al.,

2016). Locations with both TG and GNSS to measure VLM is even rarer. As a substitute for GNSS-measurements, we correct

TG with the
::::::
Usually,

:::::::::::
TG-observed

:::::
RSL

::
is

::::::
aligned

:::
to

::::
ASL

:::
by

:::::::
utilizing

:::::::
vertical

::::::::
velocities

::::
from

::
a
::::::
nearby

::::::
Global

::::::::::
Navigation125

:::::::
Satellite

::::::
System

:::::::
(GNSS)

::::::::
receiver.

:::::::::
Restricting

::::
TGs

:::
to

::::::::
locations

::::
with

::::::
usable

:::::
GNSS

:::::::::::
significantly

:::::
limits

:::
the

::::::::
selection

:::::::
further.

::::::::
Therefore,

:::
an

::::::::::
Arctic-wide VLM-model described in (Ludwigsen et al., 2020a) , which offers accurate VLM predictions for the

Arctic area
:::::::::::::::::::::
(Ludwigsen et al., 2020a)

:
as
::
a
::::::::
substitute

:::
for

:::::
GNSS

::
is
:::::::
applied

::::::
(figure

::
1).

Twelve TG’s are selected in the Arctic region from the PSMSL-database (Holgate et al., 2012) (displayed in
:::
The

:::::::::::
VLM-model

:
is
:::::::::
composed

::::
from

:::
eq.

:::
5.

:::
The

::::::::::::::
GIA-component

::
is

:::::
based

:::
on

:::
the

:::::::::
Caron2018

::::::::::
GIA-model

::::::::::::::::
(Caron et al., 2018)

:
,
:::::
which

:::::::
includes

:::
an130

:::::::::
uncertainty

::::::::
estimate.

:::::::
Reported

:::::::::::
discrepancies

:::::
from

::::
other

:::::::::::
GIA-models

:
in
::::::
central

:::::
North

::::::::
America

:::
and

:::::::::
Greenland

::::::::::::::::::::::::::::::::::::
(Caron et al., 2018; Ludwigsen et al., 2020a)

:::
has

::::
little

:::::
affect

::
at

:::
the

::::::::
locations

::
of

::::
TGs

:::
of

:::
this

:::::
study.

:::::::
Annual

::::
rates

:::
of

:::::
VLMe

::
is
:::::::::

estimated
::::
from

:::
the

::::::::::
1995-2015

:::::
annual

:::::::
change

::
of

::::
land

::
ice

:::::
using

:::
the

::::::::
Regional

::::::
Elastic

:::::::
Rebound

:::::::::
Calculator

:::::::
(REAR)

:::::::::::::::::
(Melini et al., 2015).

::::::
REAR

::::
also

:::::::
provides

:::
the

:::::::::::
gravitational

:::::::
response

::
G

::
to
::::
land

:::
ice

:::::::
change

::::
used

:::
for

:::::::::
estimating

:::
the

::::::::::
manometric

:::
sea

:::::
level.

:::::::::::
Uncertainties

:::
of

:::
the

:::::
elastic

::::::::::::::
VLM-estimates

:::
are

::::::
mainly

:::
due

::
to

:::::::::::
uncertainties

::
of

:::
the

:::::::
applied

::::
land

:::
ice

:::::::
change.

:::
An

::::::::
additional

:::::
10%

::
of

:::
the

:::::::::::
VLM-signal

:::::
(after

:::::::::::::::
Wang et al. (2012)

:
)135

:
is
::::::
added

::
to

::::::::
represent

:::::::::::
uncertainties

::::::::
associated

:::::
with

:::
the

::::::::
REF6371

:::::
Earth

:::::
model

:::::::::::::::::::::
(Kustowski et al., 2007)

:::::
applied

:::
in

::::::
REAR.

::::
The

::::
VLM

:::::::::::
contribution

::::
from

:::::::
non-tidal

:::::
ocean

:::::::
loading

::::::
(NOL)

:::::::::::::::::::
(van Dam et al., 2012)

::
and

::::::::
rotational

::::::::
feedback

::::
(RF)

::::::::::::::::
(King et al., 2012)

::
are

::
in
:::::
total

::
of

::
an

:::::
order

::
of

:::::
±0.3

:::
mm

::::
y−1

:::
and

:::
are

::::::::
included

::
in

:::
the

:::::::::::::::
VLM-contribution

::::
from

::::::::
Northern

::::::::::
Hemisphere

:::::::
glaciers.

:

::
12

::::
TGs

:::
are

:::::::
selected

:::::::::::
(geographical

::::::::
locations

::::::
shown

::
in

:
figure 1) . The selection is based on visual inspection of the monthly

time series and to ensure that as many regions of the Arctic is represented as possible. A 3-month averaged time series from140

:::
and

:::::
linear

:::::
trend

::
of

:::
TG

::::::::
observed

:::
sea

:::::
level

:::::::
(RSLTG)

::::
and

:::::::::::::
VLM-corrected

:::
sea

::::
level

::::::::
(ASLTG)

::::
from

:
1995-2015 of every TG and
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Figure 1. Left: 1995-2015 RSL trend [mm y−1] and location of the selected tide gauges of this study. Right: 1995-2015 VLM-trend [mm

y−1] from the model of Ludwigsen et al. (2020b). The VLM-trend from the GNSS-sites at Reykjavik and Ny-Ålesund is
::

are shown with

squared
::::
color

::::
coded

:
markers.

the linear trend is shown in figure 2
:
.
:::
The

::::::
annual

:::::::::::
VLM-model

::
is
::::::::::
interpolated

:::::
onto

:::
the

:::
TG

::::
time

:::::
series

::::
and

:::
the

:::::
linear

:::::
trend

::
is

:::::::::
determined

::::
with

:::::::::::
least-squares

:::::::
method

::::
using

:::::::
months

::::
with

::::::::
available

:::
data

::::::::
between

::::
1995

:
and is corrected for VLM by using the

:::::
2015.

::
In

::::::::
particular,

:::
the

::::::::
Alaskian

:::
and

:::::::
Siberian

::::
TGs

::::
have

::::::
months

::::
with

:::
no

::
or

::::::::
unreliable

::::
data

:::::::
(flagged

::
by

::::::::
PSMSL).

::::::::
However,

:::::
there

:
is
:::
no

::::::
evident

::::::::::
seasonality

::
in

:::
the

:::::::
missing

::::::
months

:::
and

::::::::
therefore

::::
does

::::
not

::::::::::
significantly

:::::
affect

:::
the

:::::::::::::
trend-estimates

::::
with

:
a
::::::::
seasonal145

::::
bias.

::::::::::
Ny-Ålesund

:::
and

:::::::::
Reykjavik

:::
TG

::::::::::
experience

:::::::::::
extraordinary

:::::
VLM

::::
that

::
is

::::::
caused

::
by

:::::::::
substantial

:::::::::::
deglaciation

::::::
during

:::
the

:::::
Little

::
Ice

::::
Age

::::::
(LIA)

:::::::::
(Svalbard)

:::
and

::::
low

::::::
mantle

:::::::::
viscosities

::
in

::::::
Iceland

::::
and

:::::::::
Greenland.

::::
This

::
is
::::

not
:::::::
captured

::
in

:::
the

::::::::
spatially

:::::::
uniform

::::::::
REF6371

::::
earth

::::::
model.

:::::::::
Therefore,

:::
the

:::
two

::::
sites

:::
are

::::::::
corrected

::::
with

:::::
nearby

::::::
GNSS

::::::
(Global

::::::::::
Navigation

:::::::
Satellite

:::::::
System)

::::::
instead

::
of

::
the

::::::::::::
VLM-model.

:::::
GNSS

::
is

::::::::
uncertain

::
at

:::::::
Prudhoe

::::
Bay,

::::::
where

:
it
::::::::
measures

::
a

::::::::
significant

::::::::::
subsidence,

::::
that

::
is

::::::::::
considerably

::::::::
different150

::::
from

:::
the

:
VLM-model(Ludwigsen et al., 2020b) or , as in the case for Ny-Alesund and Reykjavik, using nearby GNSS for

VLM (see figure 1)
:
.
::::
This

:
is
:::::
likely

::::::
caused

:::
by

:::::::
near-by

::::::::::
construction

::
or

:::
oil

::::::::
depletion

::::
sites.

::::::::
However,

:::
the

::::
tide

:::::
gauge

::
is

::::::
located

:::
on

:
a
::::::::
peninsula

:::::::
reaching

::::
into

:::
the

:::::::
Beaufort

::::
Sea

:::
10

:::
km

::::
away

:::::
from

::
the

::::::::::::::
GNSS-location,

:::::
which

::
is

::::
why

:::
the

::::::::::
VLM-model

::
is

::::::
trusted

::::
over

::
the

:::::::::::::::::
GNSS-measurement.

Reykjavik (64.2°N), Nome (64.5°N), and Rorvik (64.9°N) are located off the edge of the DTU/TUM Arctic altimetry dataset155

(Rose et al., 2019)
:::::::
altimetric

::::
data, which only extends to 65°N, but are nevertheless included to extend the spatial distribution

of the TG-sites.

TG-trends are determined with least-squares method using months with data between 1995 and 2015 and the VLM-correction

is interpolated onto the monthly TG-time series. From figure 2, we see that trends
::
the

::::::::::
RSL-trends

:
in the Arctic vary with
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Figure 2. Relative sea level [m] from 1995-2015 registered at the 12 tide gauge from the PSMSL-database (Holgate et al., 2012)]. Blue

line represents the 3-month running average, while the thick line is the linear trend (trend estimate [mm y−1] shown in legend). Yellow line

represents the absolute sea level and trend, equal to the blue line corrected for VLM with a VLM-model (Ludwigsen et al., 2020b) (except

Ny-Ålesund and Reykjavik that are corrected with GNSS).
::
The

::::::
vertical

::::
lines

:::::::
indicate

:::::
where

:::::::::
observations

:::
are

::::::
missing

:::
and

:::
the

:::
sea

::::
level

::
is

:::::
linearly

::::::::::
interpolated

:::
from

:::::::
adjacent

::::::
months.

nearly +/- 1 cm y−1, with Ny-Ålesund on Svalbard having a negative sea level trend
:::::::::
RSL-trend

:
of -7.45 mm y−1, while160

Kostelnyi Island between the Laptev and East Siberian Sea shows a positive trend of 7.67 mm y−1.
::::::::
However,

::::
after

::::::::
applying

::
the

:::::::::::::::
VLM-correction,

::::
does

:::
all

::::
TGs

:::::
show

:
a
:::::::
positive

:::::::::
ASL-trend

::::::
within

::
a
:::::
range

::
of

:::
0.3

::::
mm

:::

−1
::::::::
(Prudhoe

::::
Bay)

::::
and

:::
6.5

::::
mm

:::

−1

::::::::::
(Kostelnyi).

3.2
::::
Steric

::::
sea

::::
level

:::
The

:::::
DTU

:::::
steric

:::
sea

::::
level

::::::
change

::
is
:::::::::
computed

::
as

::::::::
described

::
in

:::::::::::::::::::::::::::
Ludwigsen and Andersen (2020)

:
.
:::
The

:::::
steric

:::
sea

:::::
level

::::::
change

::
is165

::::::::
computed

::::
from

::
a
::::
three

:::::::::::
dimensional

:::::::
T/S-grid

:::
that

::
is
::::::::::
interpolated

:::::
from

:
a
::::
over

:::::::
300.000

::::
T/S

::::::
profiles

::::
and

:::
thus

:::
not

::::::::::
constrained

:::
by

:::
any

::::::
satellite

:::::::::::
observations.

:
The VLM-model utilizes the Caron2018 GIA-model (Caron et al., 2018) which is added to an annual

elastic VLM-model from 1995-2015 change in present-day ice loading (PDIL). As shown in Ludwigsen and Andersen (2020)

, Ny-Ålesund and Reykjavik experience extraordinary VLM, caused by substantial deglaciation during the Little Ice Age

(Svalbard) and low mantle viscosities (Iceland and Greenland), that is not restored in the VLM-model. Therefore, are the170

two sites corrected with nearby GNSS instead of the VLM-model. GNSS is uncertain at Prudhoe Bay, where it measures a

significant subsidence, that is significantly different from the VLM-model. This is probably caused by near-by construction
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or oil depletion sites. However, the tide gauge is located on a peninsula reaching into the Beaufort Sea 10 km away from the

GNSS-location, which is why the VLM-model is trusted over the GNSS-measurement.

4 Steric contribution175

The DTU
::::::::::
independent steric sea level change is computed as described in Ludwigsen and Andersen (2020). Salinity and

temperature measurements
::::::
estimate

::
is

::
in

:::::::
contrast

::
to

::::::::::::::::::
Morison et al. (2012)

::
and

::::::::::::::::::::::::::
Armitage and Davidson (2014),

::::
that

:::
use

:
a
::::::::
difference

:::::::
between

:::::::
altimetry

::::
and

:::::::
GRACE

::
to

:::::::
estimate

:::::
steric

:::::::
heights.

::::::::::
T/S-profiles from buoys, ice-tethered profiles and ship expeditions in the Arctic Ocean are spatial and temporal unevenly

distributed and also depends on seasonal accessibility (Behrendt et al., 2017). Especially, the data density is poor in the shallow180

seas along the Siberian Coast (Ludwigsen and Andersen, 2020), which is cause to large uncertainties. Temperature and salinity

data are interpolated by kriging into a monthly 50x50 km spatial grid on 41 depth levels. If values are more than 3σ away from

the mean of neighbouring grid cells, values from the same month in adjacent years is used.

Following the notion of Gill and Niller (1973); Stammer (1997); Calafat et al. (2012); Ludwigsen and Andersen (2020), the

change in steric heights, η, are
::
sea

::::
level

::
is

:
calculated as the sum of halosteric heights (the contribution from salinity change)

:::
sea185

::::
level, ηS and thermosteric heights

:::
sea

::::
level, ηT .

η̇ = η̇S + η̇T

Depth profiles from
:::::::
(equation

:::
3).

:::::
From

:::
the

::::::
depth

::::::
profiles

:::
of the temperature and salinity grids are used for computing the

right-hand side of equation 3
::::
grid,

::
ηS::::

and
:::
ηT :::

are
::::::::
calculated:

ηS = − 1

ρ0

0∫
−H

βS′dz (8)190

ηT =
1

ρ0

0∫
−H

αT ′dz (9)

where H denotes the minimum height (maximum depth (z)). S′ and T ′ are defining salinity and temperature anomalies, with

reference values
::
(as

:
used in Ludwigsen and Andersen (2020)

:
)
:
are 0 C°and 35psu

:
,
::::::::::
respectively. β is the saline contraction

coefficient and α is the thermal expansion coefficient. The opposite sign of ηS is needed since β represents a contraction

(opposite to thermal expansion). α and β are functions of absolute salinity, conservative temperature and pressure, and is195

determined with help from the freely available TEOS-10 software (Roquet et al., 2015). Map of η̇S and η̇T :::
Sea

::::
level

::::::
trends

::
of

::
ηS::::

and
::
ηT:

from 1995-2015 is
:::
are shown in figure 3.
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Figure 3. Halo- and thermosteric sea level trend [mm y−1] from 1995-2015 derived from the DTU
::::
Steric

:::
sea

::::
level product which was used

in Ludwigsen and Andersen (2020).

4 Mass contribution

3.1
::::::::::

Manometric
:::
sea

:::::
level

:::::::::::
contributions

Maps of the individual contributions to change in ocean mass is
:::::
(from

:::::::
equation

::
4)

::
to

:::::::
changes

::
in

::::::::::
manometric

:::
sea

::::
level

:::
are

:
shown200

in figure 4. We divide the mass contributions into changes caused by changes in surface loading Ṅ , from Greenland ṄGRE ,

Northern Hemisphere glaciers ṄGNH , Antarctica ṄANT and GIA ṄGIA, and atmospheric pressure (IB) and a dynamic

contribution ( ˙DM ).

˙Mass = ṄGRE + ṄGNH + ṄANT + ṄGIA + ˙IB+ ˙DM

Similar to the VLM-product (Ludwigsen et al., 2020a), the Regional Elastic Rebound Calculator (REAR ) (Melini et al., 2015)205

is used to estimate elastic gravitational changes,
::::
The

::::::::::
gravitational

::::::
change

::
(Ġ, while gravitational changes

:
)
::
of

::::::::::::
contemporary

9



::::::
changes

:::
in

:::
ice

::::::
loading

:::::::::
(equation

::
4)

::
is

:::::::
(similar

::
to

:::
the

::::::
elastic

:::::::::::::::
VLM-component)

:::::::::
computed

:::::
using

:::
the

::::::
elastic

::::::
greens

::::::::
functions

::
by

::::::
REAR

:::::::::::::::::
(Melini et al., 2015).

::::
The

:::::::::::
gravitational

::::::
change from GIA is derived from the Caron2018-model. Ṅ

:::
The

:::
sea

:::::
level

::::::::
fingerprint

::::::
(figure

:::::
4a-d) is retrieved by adding the spatially

:::::::
invariant constant c to the change of the geoid, Ġ,

Ṅ = Ġ+ c210

c
:::::::::
(barystatic

:::
sea

::::
level

:::::::
change)

::
to
:::
the

:::::::::::
gravitational

::::::
change

::::
and is equal to the contribution to global mean sea level (Spada,

2017), and
:
.
::::::::
Following

:::::::::::
Spada (2017)

:
,
:
c
:
is defined as

ci = −MIρw
AO

Miρw
AO

:::::

−
〈
Gi −UVLMi

:::::

〉
(10)

The used ice model with massMI , is a combined high resolution model for glacial estimates (Marzeion et al., 2012; Ludwigsen et al., 2020a)

and Greenland ice caps and is here an extended version of the model used for calculations of VLM,U , in (Ludwigsen et al., 2020a)215

. ,
::::::
where

:::
Mi::

is
:::
the

::::
mass

::::::
change

:::
of

::
the

:::
ice

::::::
model,

:
AO is the global area of the ocean , while

::::
total

:::::
ocean

::::
area,

:
ρw is the average

density of ocean water .
::
and

:

〈
...
〉
, denotes the average of the ocean surface.

The geoid perturbation of non-tidal ocean loading (NOL) (van Dam et al., 2012) and rotational feedback (RF) (King et al., 2012)

is not shown since it is below 0.05 mm
:::
For

::::::::::
calculating

::
ci,:::

Gi::::
and

::::::
VLMi :::

for
::::::
glaciers

:::::
with

::::::
REAR,

:::::::::
individual

::::::
glacial

:::::
mass

:::::::
estimates

::::
are

::::::::
combined

::::
into

:
a
:::::

high
::::::::
resolution

::::::
model

:::
for

:::
ice

::::::
height

::::::
change

:::::::::::::::::::::::::::::::::::::::
(Marzeion et al., 2012; Ludwigsen et al., 2020a)

:
.220

:::::
These

::::::::
estimated

:::
are

::::::::
combined

::::
with

:::
ice

::::::
models

:::
for

:::::::::
Greenland

::::::::::::::::
(Khan et al., 2016)

:::
and

:::::::::
Antarctica

::::::::::::::::::
(Schröder et al., 2019)

:
.
:::::
From

::::
1995

::
to

:::::
2015,

:::
the

::::::::
estimated

:::
ice

:::
loss

::
is

:::
142

:::
Gt y−1

::
for

:::::::::
Greenland,

::::
206

::
Gt

::::
y−1

:::
for

:::::::
Northern

::::::::::
Hemisphere

:::::::
glaciers

:::
and

::::
105

::
Gt

::::
y−1

::
for

:::::::::
Antarctica

:::
and

::::::::
Southern

::::::::::
Hemisphere

:::::::
glaciers,

::::::::
consistent

::::
with

::::::
recent

::::::
studies

::
by

:::::::::::::::::::::::::::::::::::::::
Zemp et al. (2019); Shepherd et al. (2018, 2020)

:
.

:::
The

::::::::::::
contemporary

::::::
change

::
in

:::
ice

:::::
mass,

:::
Mi, but is included in ṄGNH . The change in surface mass, MI , is zero for GIA, RF225

and NOL. The GIA contribution to global mean sea level (
::::
hence

:::
the

:::::::::
barystatic

::::
GIA

::::::::::
contribution

::::::
defined

:::::
from

:::
the

::::
right

::::
part

::
of

:::::::
equation

:::
10. c )

::
for

::::
GIA

:
is 0.3 mm y−1 consistent with other studies (Peltier, 2009; Spada, 2017).

:::
The

::::::::::
gravitational

:::::::
change

::
of

::
RF

::::
and

::::
NOL

::::::
(<0.05

::::
mm

::::
y−1)

:::
are

:::::::
included

:::
in

::
the

::::::::
Northern

::::::::::
Hemisphere

::::::
glacial

::::::::::
contribution

:::
to

::
G.

:

Mass contributions to Arctic Sea Level mm y−1from 1995-2015. The top four maps shows the geoid pertubations (Ndot/Ṅ )

due to changes in surface mass loading or ocean bottom changes. Third row left is the sum of the top four maps. Right is230

atmospheric loading or Inverse Barometer (IB). Bottom left is the modeled ocean bottom pressure from ECCO and left is the

difference between OBP and Ndot + atm. loading from third row.

Inverse Barometer (IB)
:::
The

::::::::::
manometric

::::
sea

::::
level

::::::
change

:::
is

:::::::::
completed

::::
with

:::
the

:::::::
loading

:::::
from

::::::::::
atmospheric

::::::::
pressure,

:::
IB

:::::
(figure

::::
4e).

:::
IB is estimated by the simple relationship derived from the hydro-static equation (Naeije et al., 2000; Pugh and

Woodworth, 2014). Monthly averaged pressure estimates from National Center for Environmental Prediction (NCEP) are used235

for the change in surface pressure
::::::
surface

:::::::
pressure

::::::
change

:
∆p:

IB = −9.948 [mm/mbar] ∆p (11)
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Figure 4.
::::::::::
Contributions

::
to
:::
the

:::::
Arctic

:::::::::
manometric

:::
sea

::::
level

::::
trend

:
[
:::
mm

::::
y−1]

:::
from

:::::::::
1995-2015.

:::
a-d

:::::
shows

::
Ṅ

:::
(eq.

::
4)
:::

for
:::::::
different

::::::
sources

::
of

::::::::::
land-to-ocean

::::
mass

::::::
changes

::::
with

::
the

::::::::
barystatic

::
sea

::::
level

:::::::::
contribution

:::
(ċ)

:::::
written

::
in

:::::::
brackets:

::::::::
Greenland

::::
(incl.

::::::
pherical

:::::::
glaciers)

:::
(a),

:::::::
Northern

:::::::::
Hemisphere

::::
(NH)

::::::
glaciers

:::
(b),

::::::::
Antarctica

:::::
(Ant)

:
+
:::::::

Southern
::::::::::

Hemisphere
::::
(SH)

::::::
glaciers

:::
(c),

:::
and

::::
GIA

:::
(d).

:::
The

::::::::
estimated

::::::
Inverse

::::::::
Barometer

::::
trend

:::
(e).

:::
The

::::
sum

::
of
:::

a-e
::::

and
:::::
hence

:::
the

::::
total

::::::::::
reconstructed

:::::::::
manometric

:::
sea

:::::
level

::::
trend

:::
(f).

::::::::
Modelled

:::::::::::
OBP-estimate

::::
from

:::::::::
ECCOv4r4

:::::::::::::::::
(Fukumori et al., 2019)

:::
(g).

::::::::
Difference

::::::
between

::
g

:::
and

:
f
:::
(h).
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Figure 4 also shows the mass-trends derived from
:::
The

::::
total

::::::::::
manometric

:::
sea

:::::
level

::::::
change

:::
(Ṁ,

::::::
figure

::
4f)

::
is
:::::::::::
reconstructed

:::
as:

:

Ṁ = ṄNHG + ṄGRE + ṄSH + ṄGIA + ˙IB
::::::::::::::::::::::::::::::::

(12)

:::::
Figure

:::
4g

:::::
shows

:::
the

:::::::::
OBP-trend

:::::
from

:::
the

:::::::::::::::
ECCOv4r4-model

:
(Estimating the Circulation and Climate of the Ocean (ECCO)240

version 4 release 4)
:
(Forget et al., 2015; Fukumori et al., 2019), which is used to estimate the dynamic contribution to sea level

. The dynamic mass change is mainly a wind-driven effect that significantly changes the spatial distribution of ocean mass

(Calafat et al., 2012; Dangendorf et al., 2014; Armitage et al., 2018) - also on secular time scales.
:
a
::::::
model

:::::::
estimate

::
of

:::
Ṁ.

::::
The

::::::::
difference

:::::::
between

::::::
ECCO

:::
and

:::
Ṁ

::
is

::::::::
displayed

::
in

:::
4h.

Because the ECCO-model is among other forced by wind (Forget et al., 2015), we use the difference between ECCO and245

4
::::::
Results

::::::::
Generally,

:::
the

:::::
steric

:::
(in

::::::::
particular

:::
the

:::::::::
halosteric)

:::
sea

::::
level

:::::
trend

:
is
::::::::::
dominating

:::
the

::::::
spatial

::::::::
variability

:::
of the sum of Ṅ and IB as

an estimate of the dynamic contribution to mass ( ˙DM , bottom right map of figure 4
:::::::::::
reconstructed

:::
sea

::::
level

:::::
trend

:::::::
(ASLr),

::::
with

:::
over

:::
10

::::
mm

:::
y−1

::
in

:::
the

::::::::
Beaufort

::::
Gyre

::::
and

::
-7

:::
mm

::::
y−1

::
in

:::
the

:::::::
Russian

:::::
Arctic

::::::
(figure

::
3).

5 Comparison of estimates of the Arctic Absolute Sea Level Trend250

Two derived trend estimates of the ASL budget is created from steric + mass (η̇ + Ṅ + ˙IB) (without the dynamic component)

and steric + mass (ECCO), where ECCO is used as the mass component and hence includes dynamic mass changes
:
In

::::::::
contrast,

:
is
:::
the

:::::::::::
reconstructed

::::::::::
manometric

:::
sea

:::::
level

::::
trend

::::
(Ṁ )

::::::
varying

:::::::
between

::
0
:::
and

::
2

:::
mm

::::
y−1,

::::
with

::::::
smaller

::::::
spatial

:::::::::
variability.

::::
This

::
is

::
in

::::::::
alignment

::::
with

:::
the

:::::::::
2003-2015

::::::::::::
OBP-estimates

::::
from

::::::::
GRACE

:::
JPL

:::::::
mascons

:::::::::::::::::
(Wiese et al., 2016)

:::
used

::
in
:::::::::::::::::::::::::::
Ludwigsen and Andersen (2020)

:
,
::
but

::::
way

::::::
smaller

::::
than

:::
the

::::::::
estimates

::::
from

:::::
GSFC

::::::::
mascons

::::::::::::::::::
(Luthcke et al., 2013)

::::
used

::
by

::::::::::::::
Raj et al. (2020)

:::
and

::::
CSR

:::::::::::::::
(Save et al., 2016)255

::::
used

::
by

::::::::::::::::
Carret et al. (2017).

:

:::::
Figure

::::
4a-c

::::::
shows

::::
that

:::
the

:::::::::::
contributions

:::::
from

:::::::::::
contemporary

:::
ice

:::::::
loading

:::
has

::
a
:::::::::
(compared

::
to
::::::

steric)
:::::
small

::::::::::
contribution

:::
to

:::::
spatial

:::
sea

:::::
level

:::::::::
variability,

:::
but

:::
the

:::
sea

:::::
level

::::::::::
fingerprints

::::
from

::::::::::
deglaciation

:::
of

:::::::::
Greenland

:::
and

:::::::
glaciers

:::
are

:::::::
however

:::
til

::::::
clearly

:::::
visible

:::::
with

:
a
:::::::
absolute

::::
sea

::::
level

:::
fall

:::
of

:::
0.5

::
to

::
1
::::
mm

::::
y−1,

:::::
which

::::::
seems

::
to

:::
be

::
in

:::::::::
agreement

::::
with

::::::
global

:::
sea

:::::
level

:::::::::
fingerprint

::::::
studies

::
of

::::::::::::::::::::::::::::::::::::::::::::::::::::
Bamber and Riva (2010); Spada (2017); Frederikse et al. (2018).

:::
In

::::
total,

:::
the

:::::
three

::::::
figures

:::::
sums

::
to

::
a

:::
sea

::::
level

::::
rise260

::
of

::::::
around

:
1
::::

mm
::::
y−1

::
in

:::::
most

::
of

:::
the

::::::
Arctic,

::::::
except

:::::
close

::
to

:::::
areas

::::
with

::::::::::
deglaciation

:::::
(like

:::::::::
Greenland

:::
and

::::::::
Svalbard). They are

compared to the independent estimates of ASL change from TG corrected for VLM and altimetry

:::::
Figure

:::
4g

:::::
shows

::::
that

::::::
ECCO

:::
has

:
a
::::::
higher

::::::::::
manometric

:::
sea

::::
level

::::::
change

:::
in

:::
the

::::::
interior

::
of

:::
the

::::::
Arctic

::::::
Ocean,

:::::
while

:::
the

::::::
coastal

:::::
zones,

::::::
except

:::
east

:::::::
Siberia,

:::
are

:::::
lower

::::
than

::
Ṁ.

The two derived ASL-trend estimates are shown
:::::::::::
ECCO-model

::::
does

:::::::
attempt

::
to

:::::::
include

::::
term

::::::::
dynamic

:::
sea

:::::
level

:::::::
changes265

::::::::
associated

::::
with

:::::::::::
wind-forcing

::::
and

:::::
ocean

:::::::
currents

::::
into

::::
their

::::::::::::
OBP-estimate

:::::::::::::::::
(Forget et al., 2015).

:::::
Those

::::::::
changes

:::
are

:::
not

:::
part

:::
of

::
Ṁ

:::
and

::
is

:::::::::
probably

:::
the

::::
main

::::::
reason

:::
for

:::
the

::::::::
difference

:::::::
between

::::::
ECCO

::::
OPB

::::
and

:::
Ṁ.
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Figure 5. Absolute sea level trend
:
of

:::
the

::::::::::
reconstructed

::::::
product

::::::
( ˙ASLr)::::

(left)
:::
and

:
from 1995-2015

::::::::
DTU/TUM

::::::::
Altimetry

::::::
( ˙ASLA)

:::::::
(middle)

:::
from

:::::
1995

::
to

::::
2015 [mm y−1]. Left shows pertubation of the geoid + steric contribution, in the middle is OBP from ECCO combined with

steric and right is altimetric sea level from Rose et al. (2019). The circles indicate
:::
show

:
the absolute sea level trend of

::
the

::
12

::::::::::::
VLM-corrected

tide gauges
::::::
( ˙ASLTG).

::::
Right

:::
plot

:::::
shows

::::::::
timeseries

::
of

::::
ASLA::::

and
::::
ASLr:::

for
:::
two

::::::
selected

::::
areas

:::::::
(marked

::
in

::
the

:::::::::
DTU/TUM

:::::::
Altimetry

:::::
map).

4.1
:::::::::
Comparing

:::::::::::::
reconstructed

::::
ASL

::::
with

:::::::::
altimetry

:::
The

::::::::::::
reconstructed

::::
ASL

:::::::
(ASLr)

:::::
trend

::
is

::::::::
compared

:::
to

:::
the

::::::::
altimetric

:::::
ASL

:::::
trend

:::::::
(ASLA)

:
in figure 5. Since ECCO is partly

assimilated with altimetry, only the mass contribution without the dynamic component is truly independent from altimetry. On270

the scale shown in figure 5, we see that the differences are hardly recognizable,
:::::
while

:::::::::
TG-based

::::
ASL

:::::::
(ASLTG ::::

trend
::
is

::::::::
indicated

::::
with

::::
dots.

:::::
Table

:
1
::::
and

:::::
figure

:
6
::::::
shows

:::
the

:::
sea

::::
level

:::::::::::
contributions

::::::::
estimated

::
at

::::
each

::::
tide

:::::
gauge.

::::::
There

:
is
:::
an

::::::
overall

:::::::::
agreement

::
of

::
the

::::
sea

::::
level

::::
trend

::::::
pattern

:::
in

::::
both

:::::
ASLr :::

and
::::::
ASLA :::

The
:::::
main

:::::::
obvious

::::::::
difference

:::::::
between

:::
the

::::::
spatial

:::
sea

::::
level

::::::
pattern

:::
of

:::::
ASLr

:::
and

:::::
ASLA::

is
:::
the

:::::
larger

:::
sea

:::::
level

:::
rise

::
in

:::
the

:::::::
Beaufort

::::
Sea

:::
and

:::
sea

:::::
level

:::
fall

::
in

:::
the

:::::::::::
East-Siberian

::::
seas

::
of

:::::
ASLr.

Because of
::::::
Before

:::
the

:::
era

::
of

::::
SAR

::::::::
altimetry

:::::
(from

:::::::
October

::::::
2010),

:::
the

:::::
ability

::
to
::::::::

separate
:::
the

::::
leads

::::
and

:::
the

:::
sea

::
ice

::::
was

:::::
more275

::::::
difficult

::::
due

::
to

::
the

:::::
larger

::::::::
footprint

::
of

:::
the

::::::::::
conventional

::::::::
satellites.

:::::::::
Therefore,

::
in

:::::
areas

::::
with

:
a
:::::
dense

:::
sea

:::
ice

::::
cover

::::
(like

:::
the

::::::::
Beaufort

::::
Sea),

:::::
more

::::::::
altimetric

::::::::::
observations

:::::
exist

:::::
during

:::
the

:::
sea

::::
level

::::
high

:::
of

::
the

:::::::
autumn

:::
and

:::::
fewer

::::::
during

:::::::::::
winter/spring

:::::
where

:::
sea

:::::
level

:
is
:::::
lower

::::
(i.e.

:::::::::::::::::::
Armitage et al. (2016)

:
).

::::
This

::::::
creates

::
a

:::::::
seasonal

::::
bias

:::
that

::
is
:::::

more
::::::::::
pronounced

::::::
before

:
the sea ice bias before the

launch of CryoSat-2 in end-2010,
::::::::
CryoSat-2

::::
era,

:::::::
because

::
of

:::
the

::::::
lower

::::::::
resolution

::
in
:

the values before 2011 are likely to be

overestimated, which results in a
:::::::
pre-SAR

::::
era.

::::
This

::::
bias

:::
can

::::::
explain

:::
the

:
’flattening’ of the trend . In particular, this seems to280

be the case in the Beaufort Sea (see
:::
seen

::
in
:
figure 5), where altimetry and the derived mass+steric product agree on the spatial

extent of the dooming of the Beaufort Gyre , but altimetry is 5 mm y−1 lower than the mass + steric estimate
:::::
ASLA :::::

shows
::
a

::::::
smaller

::::::
doming

:::
of

:::
the

:::::::
Beaufort

::::
Gyre

::::
than

::::::
ASLr.

:::::
From

:::
the

::::
time

:::::
series

:::::
(right

::::
panel

:::
of

:::::
figure

::
5)

::
is

:
it
:::::::
evident

:::
that

:::::
ASLA::

is
::::::
higher

:::
than

::::::
ASLr ::::

from
:::::::::
2003-2009

::::
and

::::
then

:::::
shifts

::
to

:
a
::::::

lower
::::
level

::::
after

:::::
2010.

::::
The

:::::
same

::::::::
difference

:::::::
between

::::::
ASLr :::

and
::::::
ASLA ::

is
:::
not
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:::::::
observed

::
in

::
a
::::::::::::
predominately

::::::::
non-SAR

::::::
region

::
of

:::
the

::::::::::
Norwegian

:::
Sea. Another altimetry product from Armitage et al. (2016)285

has
:::::
based

::::::::::::
SLA-estimate

::::
from

::::::::::
2003-2015

::::::::::::::::::
(Armitage et al., 2016)

:
,
::::::::
observes a larger trend in the Beaufort Gyre in alignment

with the steric+mass products
:::::
values

::
of

:::::
ASLr.

1995-2015 sea level trends mm y−1of each contribution at the 12 tide gauge locations. The values (except VLM) represent a

100 km radius around the tide gauge. For VLM a 5 km radius is used and for Ny-Alesund and Reykjavik, VLM is taken from

GNSS. The columns in bold indicate the estimates of Absolute Sea Level (ASL).290

Components of sea level trend mm y−1for each tide gauge from 1995-2015. The three bars in the middle (Steric+geoid+dyn,

ASL (altimetry) and ASL (tide gauge)) are independent estimates of absolute sea level. The errorbars indicate one standard

error (combined error from each component when relevant). The VLM component ’Local (GNSS-VLM)’ is only relevant at

Reykjavik and Ny Ålesund, because significant local properties causes VLM that is not present in the VLM-model (Ludwigsen et al., 2020b)

. Glacier component of VLM includes the effect of rotational feedback, ocean loading, and Antarctica which are less than 0.5295

mm y−1 combined.

In the altimetric product
:::::::
estimate

::::::
(middle

:::::
panel

:::
of

:::::
figure

::
5)

:
a positive sea level trend extends in the Norwegian Sea until it

reaches the average sea ice boundary, which (intentionally) coincides with the SAR-boundary of CryoSat-2. From altimetry it

is unclear if this signal is a real physical signal or due to bias when different satellites and
::::::::
altimetric

:::::::::::
observations

::::::::
(different

:::::::
satellites

:::
and

::::::::::::::
SAR/non-SAR),

:
sea ice and open ocean regions are aligned in the DTU/TUM product . We see from the derived300

mass+steric product, that
::
or

::
an

::::
error

:::
in

:::
the

:::::::::
SAR-based

:::::::::::
DTU18MSS

::::::::::::::::::::
(Andersen et al., 2018)

:::
that

:
is
:::::

used
::
as

::
a

::::::::
reference

::
in

:::
the

:::::::
altimetry

:::::
data.

::::
From

:::
the

::::::
ASLr some of the positive sea level trends are

:
is

:
restored in the Norwegian Sea by

:
a
:::::::::::
combination

::
of

the thermosteric contribution (figure 3) , thus is a warming of the ocean cause to sea level rise in the region
::
and

:::
the

::::::::
negative

::::::::::
gravitational

::::::::::
contribution

:::::
from

::::::::
Greenland

::::::
(figure

:::
4a). The boundary between sea ice and open ocean is however less significant

::
in

:::::
ASLr :::

and
:
a
::::::
spatial

::::
bias

::
in

::::::::
altimetry

::::::
cannot

::
be

::::::::
excluded.305

Obviously, does tide gauges

4.2
:::::::::

Comparing
:::::::::::
ASL-trends

::
at

::::
tide

:::::
gauge

::::::::
locations

:::
TGs

:
only measure sea level in coastal areas, and

:::
are therefore not useful when analyzing spatial sea level trend patterns of the

Arctic Ocean. Furthermore, is the coastal location often disturbed by the local environment that might be unknown (e.g. small

river outflow, local construction, packing of sea ice etc.), which can influence both sea level measurements from tide gauge and310

altimetry.

In figure 6 and table 1, we quantify the contributions to sea level change explained in this chapter at
:::::
ASLr ::

is
::::::::
quantified

::
at

:::
the

::::::
location

::
at
:

each of the 12 tide gauge locations using a surrounding average of 100 km radius
::::::
twelve

::::
TGs

::
by

::::::
taking

:::
the

:::::
mean

::::
trend

::
of

::
a
:::::
radius

:::
of

::
50

:::
km

:
(5 km for GIA and elastic VLM). This radius ensures, that Rorvik, Nome and Reykjavik reaches

:::::::
overlaps the altimetric data, but few data points ,

:::
the

:::::
fewer

::::::
number

::
of

::::
data

::::::
points might cause the data to be more variable and315

hence increase the uncertainty
::::::::
(estimated

::
as

:::::::
standard

:::::
error,

:::
σ).

The Norwegian tide gauges (Rorvik, Tromso, Vardo) are considered the most stable . The derived product
:::
and

::::
also

:::::
show

::
the

::::::
lowest

:::::
error

:::::::
estimate

:::::::
(together

:::::
with

:::::::::::
Ny-Ålesund).

:::::
ASLr:

is in good agreement with the tide gauge and has for Tromso and
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˙RSLTG VLM (model/GNSS) ˙ASLTG IB Ṅ Ṁ η̇ (η̇S + ˙ηT ) ˙ASLr
˙ASLA

NOME 2.0 ± 9.0 -1.1 ± 0.9 0.9 ± 9.1 0.1 1.1 ± 0.7 1.2 ± 0.7 1.7 ± 12.9 2.8 ± 12.9 0.2 ± 4.9

PRUDHOE BAY 1.7 ± 7.4 -1.4 ± 1.3 0.4 ± 7.5 0.4 1.0 ± 0.9 1.4 ± 0.9 5.7 ± 14.2 7.1 ± 14.2 1.1 ± 5.2

REYKJAVIK 3.8 ± 3.1 0.0 ± 0.3 3.8 ± 3.1 1.0 0.3 ± 1.5 1.3 ± 1.5 -0.4 ± 2.8 0.9 ± 3.1 2.3 ± 2.8

RORVIK -0.7 ± 5.1 4.3 ± 1.8 3.6 ± 5.4 0.3 1.3 ± 0.7 1.5 ± 0.7 2.0 ± 5.2 3.5 ± 5.3 2.4 ± 2.4

NY-ALESUND -7.4 ± 3.7 8.0 ± 0.5 0.5 ± 3.7 0.6 0.1 ± 3.4 0.7 ± 3.4 -2.0 ± 2.2 -1.3 ± 4.0 1.1 ± 1.4

TROMSO -0.1 ± 4.1 2.3 ± 1.7 2.2 ± 4.4 0.1 1.1 ± 0.9 1.3 ± 0.9 -0.1 ± 1.9 1.2 ± 2.1 2.2 ± 1.9

VARDO -0.0 ± 3.8 2.5 ± 1.4 2.5 ± 4.0 -0.1 1.2 ± 0.9 1.1 ± 0.9 0.6 ± 3.2 1.7 ± 3.3 4.1 ± 1.9

AMDERMA 4.9 ± 4.7 0.2 ± 1.1 5.1 ± 4.9 -0.1 1.1 ± 0.8 1.0 ± 0.8 3.9 ± 11.1 4.9 ± 11.2 -0.8 ± 4.5

IZVESTIA TSIK 2.7 ± 4.6 2.3 ± 1.5 5.0 ± 4.8 0.2 1.1 ± 1.1 1.3 ± 1.1 -5.2 ± 8.0 -3.9 ± 8.0 1.0 ± 5.5

GOLOMIANYI 0.0 ± 3.5 2.8 ± 2.3 2.8 ± 4.2 0.6 0.9 ± 2.1 1.5 ± 2.1 -5.4 ± 7.9 -3.9 ± 8.2 -0.7 ± 6.0

KOTELNYI 7.7 ± 5.4 -1.1 ± 0.8 6.5 ± 5.4 0.2 1.1 ± 0.7 1.4 ± 0.7 -7.5 ± 15.3 -6.1 ± 15.3 -0.8 ± 5.7

KIGILIAH 1.7 ± 4.8 -0.9 ± 0.7 0.8 ± 4.9 -0.1 1.2 ± 0.7 1.0 ± 0.7 -7.9 ± 14.8 -6.8 ± 14.8 -1.6 ± 5.1
Table 1.

::::::::
1995-2015

::
sea

::::
level

:::::
trends

:
[
::
mm

::::
y−1]

:
at
:::

the
:::
12

:::
tide

:::::
gauge

:::::::
locations.

::::
The

:::::
trends

:::::::::::
(least-squares)

:::
are

:::::::
generally

:::::
based

::
on

:
a
::::::

annual

::::::::
mean-value

::
of
::
a
::
50

:::
km

:::::
radius

:::::
around

:::
the

:::
tide

:::::
gauge.

:::
For

:::::
VLM

:
a
:
5
:::
km

:::::
radius

::
is

::::
used,

:::::
except

:::
for

:::::::::
Ny-Alesund

:::
and

::::::::
Reykjavik

:::::
where

::::
VLM

::
is

::::
based

::
on

:::::::::::::::::
GNSS-measurements.

:::
The

:::::::
columns

:
in
::::
bold

::::::
indicate

:::
the

::::
three

:::::::
estimates

::
of

:::::::
Absolute

:::
Sea

::::
Level

:::::::
( ˙ASLTG,

:::::
˙ASLr :::

and
::::::
˙ASLA).

Vardo
::
is

:::
for

::::::
Rorvik

:::
and

:::::
Vardo

:::
in better alignment with the TG-data than altimetry

::::::
ASLTG::::

than
::::::
ASLA. This is also the region

with highest density of hydrographical data and thus most reliable
::
the

::::::
region

::::
with

:::
the

::::
most

:::::::
reliable

::::
steric

::::::::
estimate. We see that320

for Vardo and Rorvik, the sea level change is split between a steric and
:
a
:
mass contribution of roughly the same size, which

is similar to the share of the global sea level trend (Church and White, 2011b; WCRP, 2018). At Tromso a negative halosteric

signal
::::
trend

:
(more saline water) is lowering the sea level trend.

:::::
ASLr.

::::::::
However,

:::::
ASLr::::::

around
:::::::

Tromso
:::::::
(50-200

::::
km)

:::::
yields

::
a

:::::
better

::::::::
agreement

::::
with

:::
the

::::::::
observed

::::::
ASLTG::::

and
::::::
ASLA.

Along the Siberian coast ,325

:::
The

:::::::
Siberian

:::::
coast

:::
has multiple river outlets contributes to a freshening

:::
that

::::::::::
contributes

::::
with

:::::::::
freshwater of the Arctic Ocean

(Morison et al., 2012; Armitage et al., 2016), which is reflected by the positive halosteric trend
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Proshutinsky et al., 2004; Morison et al., 2012; Armitage et al., 2016)

:
.
:
A
:::::::
positive

::::::::
halosteric

:::
sea

:::::
level

::::
trend

::
is

::::::
visible

::
at

:::
the

::::
coast

::
of

:::
the

::::::
Bering

:::
and

:::::
Kara

::::
Sea,

:::::
where

:::
the

::::
river

:::
OB

:::
has

::
a

:::::
major

::::::
outflow.

At Amderma TG, which is located on the coast between the Barents and Kara Sea, there is however no nearby major river

outlet, but
:::
but

:::
not

::::
near

:::
any

:::::
major

:::::::
outflow,

:
a significant halosteric signal is still present which matches the tide gauge-measured330

sea level
::::
trend

::
is

::::::::::
recognized

::
by

:::
the

::::::::::::
TG-measured

:::
sea

:::::
level,

::::::
despite

::::::
rather

::::
large

:::::::::::
uncertainties. Ice loss from Novaya Zemlya

contributes with over 1 gigaton of freshwater to the Kara Sea every year
:::
and

:::
the

:::
ice

::::
loss

:::
has

::::
been

:::::::::::
accelerating (Melkonian

et al., 2016), but it is unclear if this is the reason for the halosteric sea level rise at Anderma, or if the halosteric signal is

::
the

:::::::::::
contribution

::
is

:::::
small

::::::::
compared

::
to

:::
the

:::::
+500

::
Gt

:::::::
coming

::::
from

:::
the

:::::
rivers

:::::
every

:::::
year.

:::
The

:::::::::
halosteric

:::::
signal

:::::
could

:
(falsely)

::
be

extrapolated from the gulf of Ob which has mayor
:::::
major

:
river outlets and the match with tide gauge

::::::::
agreement

::::
with

:::::::
ASLTG335

is accidental. The altimetric signal reflects the mass contribution, which together with low hydrographic data density in the

region, could indicate that both the tide gauge and
::
So

:::
the

::::::
reason

:::
for

::::
this halosteric sea level trends are overestimated.

:::
rise

::
at
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Figure 6.
:::::::::

Components
::
of

:::
sea

::::
level

::::
trend [

:::
mm

:::
y−1]

:::
for

:::
each

::::
tide

:::::
gauge

::::
from

::::::::
1995-2015.

::::
The

::::
three

:::
bars

::
in
:::

the
::::::
middle

::::::
(ASLr ,

:::::
ASLA :::

and

::::::
ASLTG)

:::
are

::
the

:::::
three

:::::::::
independent

:::::::
estimates

::
of
:::::::

absolute
:::
sea

:::::
level.

:::
The

::::
error

::::
bars

::::::
indicate

:::
one

:::::::
standard

::::
error

:::::::::
(combined

::::
error

::::
from

::::
each

::::::::
component

::::
when

::::::::
relevant).

:::
The

::::
VLM

:::::::::
component

:::::
’Local

::::::::::::
(GNSS-VLM)’

:
is
::::
only

::::::
relevant

::
at

::::::::
Reykjavik

:::
and

:::
Ny

:::::::
Ålesund,

::::::
because

::::::::
significant

:::
local

::::::::
properties

:::::
causes

:::::
VLM

:::
that

:
is
:::
not

::::::
present

:
in
:::
the

:::::::::
VLM-model

:::::::::::::::::::
(Ludwigsen et al., 2020b)

:
.
::::::
Glacier

::::::::
component

::
of

::::
VLM

:::::::
includes

::
the

:::::
effect

:
of
::::::::

rotational
:::::::
feedback,

:::::
ocean

::::::
loading,

:::
and

::::::::
Antarctica

:::::
which

:::
are

:::
less

:::
than

:::
0.5

:::
mm

::::
y−1

::::::::
combined.
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:::::::
Anderma

::
is
:::::::
remains

:::::::
unclear.

::
In

:::
any

::::
case,

::::
both

::::::
ASLTG::::

and
:::::
ASLr::

is
::
in

::::::::
opposition

::
to
::::::::
altimetry

:::::::::::
observations

:::
that

:::::
shows

::
a

:::::::
negative

:::::::::
ASL-trend.

:

The four other tide gauges
::::::
Further

::::
east along the Siberian coast

::
the

::::
four

::::
TGs

:::::::
(Izvestia

:::::
Tsik,

::::::::::
Golomianyi,

::::::::
Kotelnyi,

::::::::
Kigiliah)340

all show a pattern, where mass+steric has
:::::
rising

:::::
ASL,

:::::
while

::::
both

::::::
ASLA::::

and
::
in

::::::::
particular

::::::
ASLr::::::

shows a negative trend ,

altimetry has a slight negative or positive trend and the tide gauge has a clear positive trend . Due to
:
in

:::
the

::::::
region.

:::::
Even

::::::
though

::
the

::::::
ECCO

:::::
OBP

::
is

:::
1-2

::::
mm

::::
y−1

::::::
higher

::::
than

:::
the

::::::::::
manometric

::::::::
estimate

::::::
(figure

::
4)

::
it

::
is

:::
not

:::::::
enough

::
to

::::::
explain

::::
the

::::::::::
discrepancy

:::::::
between

::::::
ASLTG::::

and
:::::
ASLr:::

but
::::::::
explains

::::
some

:::
of

:::
the

:::::::::::
ASLA/ASLr:::::::::

difference.
::::::
Figure

::
3

:::::
shows

::::
that

::
a

:::::::
negative

::::::::
halosteric

::::
sea

::::
level

::::
trend

::
is
::::::::::
dominating

:::
the

:::::::::::
reconstructed

:::
sea

::::
level

:::::
trend

::
in

:::
the

::::::
region,

:::
but

:::
the poor hydrographic coverage along the Siberian345

coast (Ludwigsen and Andersen, 2020) it is difficult to estimate the ’true’ sea level . The positive
:::::
makes

:::
the

::::::::::
uncertainty

::
of

:::
the

::::::::
halosteric

::::
trend

:::::
large.

::::
This

:::::::
negative

:::::
steric

:::
sea

::::
level

:::::
trend

:
is
::::::::
however

::::::::
supported

::
by

:::
the

::::::
results

::
of

::::::::::::::::::::::::::
Armitage and Davidson (2014)

::::
from

:::::::::
combining

:::::::
GRACE

::::
with

::::::::
altimetry.

:::::
They

:::::::
estimate

::
a
:::::
steric

:::
sea

::::
level

::
in

:::
the

:::::::
Siberian

::::::
Arctic

:::::::::
(excluding

:::
the

:::::::
Barents

::::
Sea)

::
in

::
the

:::::
order

::
of

::
-5
::::
mm

::::
y−1

::::
from

:::::
2003

::
to

:::::
2014,

:::::
which

::
is

:::::
same

::::
order

::
of

:::
the

:::::::::
estimated

::::
steric

:::::
trend

::
of

::::
this

::::
study

::
in
:::
the

::::::
region.

:

:::
The

:::::::
positive

::::
ASL

:
trend among tide gauges in the Siberian Seas

:::::
eastern

:::::::
Russian

::::::
Arctic is however consistent and has been350

recognized in other studies using an extended set of Siberian
::::::
Russian

:
tide gauges (Proshutinsky et al., 2004; Henry et al.,

2012). Remarkably is that the TG-trend at Kotelnyi and Kigiliah differ with almost 6 mm y−1
::
(in

:::::
total

::
12

:::
cm

:::::::::
difference

::::
over

::
the

::::
time

:::::
span

::
of

:::
this

::::::
study) despite being less than 250 km apart. This difference is only realistic

:::::::
gradient

:
is
:::::
only

:::::::::
reasonable,

:
if

local circumstances is affecting the RSL .
:::
that

:::::
affects

:::
the

::::
RSL

::
is

::::::::::
considered.

:::::
Local

::::::
coastal

:::::::::
subsidence

:::
not

:::::::::
associated

::::
with

::::
land

::
ice

::::::::
loss/gain,

:::
i.e.

::::::
caused

:::
by

:::::::
thawing

::
of

:::::::::
permafrost

::
or

:::
oil

::::::::
depletion,

::
is

::
a

:::::::
possible

::::::::::
explanation.355

Nome and Prudhoe Bay in Alaska both show a positive steric trend which is not reflected in sea level trends from altimetry

or the tide gauge,
::::
thus

::::::::
resulting

::
in

:
a
:::::
rather

:::::
large

::::::::::
discrepancy

:::::::
between

::::::
ASLr :::

and
::::::::
ASLA/TG. The strong halosteric trend of the

Beaufort Gyre, might be extrapolated towards the Alaskan coastline . Altimetry agrees reasonably well with the tide gauge

trend.
:::
and

::::
into

:::
the

::::::
Bering

:::::
Strait

::
in

:::
the

:::::
DTU

:::::
steric

::::::
model.

:::::
There

::
is
:::
no

::::::::
evidence

::
in

:::
the

::::::::
literature

:::
for

:
a
::::::
extent

::
of

:::
the

::::::::
Beaufort

::::
Gyre

:::::::
doming

::
as

::::::
shown

::::
from

:::
the

::::::::
halosteric

:::::
trend,

::::::
which

::::::::
indicates,

::::
that

:::
the

:::::::
weighted

::::::
spatial

:::::::::::
interpolation

::
in

:::::::::::
combination

::::
with360

:::::
higher

:::::::::::
hydrographic

::::
data

::::::
density

::
in
:::
the

::::::::
Beaufort

:::
Sea

::::::
creates

::::
this

::::::::
widening

::
of

:::
the

:::::::
Beaufort

:::::
Gyre.

:

Maps of uncertainty (1 standard error) of the 1995-2015 trend mm y−1for combined steric, combined Ṅ + dynamic mass

+ IB, altimetry and combined VLM contributions. Few hydrographic data around Reykjavik, makes the steric sea level rather

uncertain as well. A negative halosteric contribution causes the steric+mass product to be to low compared to TG-data and

altimetry.365

At Ny-Ålesund on Svalbard, which like the other Norwegian TG-sites has good hydropgraphic data density, is the mass

+ steric contribution in agreement with the TG-trend. Ny-Ålesund
::
on

::::::::
Svalbard

:
is dominated by a large VLM caused by

deglaciation in recent years and after the Little Ice Age that ended in the 19th century (Rajner, 2018; Ludwigsen et al., 2020a)

:::::
recent

::::::::::
deglaciation. This uplift completely mitigates the large sea level fall measured by the tide gauge . A small mass upward

trend is countered by a smaller steric downward trend, which in total agrees with the tide gauge measured sea level trend.370

Altimetry shows a slightly higher trend.
:::
and

::::::
results

::
in

:::::
small

::::
rise

::
of

:::::::
ASLTG.

:::
In

::::::::::::::::::::::
(Ludwigsen et al., 2020a)

:
it

::
is

::::::
argued

::::
that

::
the

:::::::::::
discrepancy

:::::::
between

::::::
GNSS

::::
and

:::
the

:::::::::::
VLM-model

::
in

:::::
large

:::::::::
originates

::::
from

::::::
VLM

:::::::
because

::
of

::::::::
post-LIA

:::::::::::
deglaciation

:::
on
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:::::::
Svalbard

::::::::::::
(Rajner, 2018)

:
.
::::
This

::::::::::
viscoelastic

::::::::
GIA-like

:::::::::
LIA-effect

::::
will

::::::::
certainly

::::
also

::::
have

::
a
:::::::::::
gravitational

:::
sea

:::::
level

:::::::::
fingerprint

:::
(Ṅ )

::::
that

::::::
should

::
be

:::::
added

:::
to

:::
the

::::::::::
manometric

:::
sea

::::
level

::::::
change

:
Ṁ.

::::
This

::::
can

::::::
explain

:::::
some

::
of

:::
the

:::::::::
difference

:::::::
between

:::::
ASLr::::

and

::::::::
ASLA/TG.

::
A

:::::::
possibly

:::::::
positive

:::::::
dynamic

:::::::::
Ṁ-change

:::::
(from

:::
the

::::::
(ECCO

:::::::::
OBP)−Ṁ

:::::::::
difference

::
in

:::::
figure

:::
4h)

:::::
could

::::::
further

:::::
close

:::
the375

:::::::::::::
ASLr−ASLA/TG::::

gap.
:

::::
From

::::
the

::::::::::
calculations

::
of

::::
the

::::::::::
gravitational

::::::::::
fingerprint,

:::::
none

::
of

:::
the

::::::::
TG-sites

::
in
::::

this
:::::
study

::::::::::
experience

:
a
:::
net

::::
sea

::::
level

::::
fall

::::
from

::::::::::::
contemporary

::::::::::
deglaciation

:::
and

:::::
GIA

:::
(Ṅ

::
in

::::
table

::
1)
::::

and
::::
only

::::::::::
Ny-Ålesund

:::::
(-0.4

::::
mm

::::
y−1)

:::
and

:::::::::
Reykjavik

:::::
(-0.2

:::
mm

:::::
y−1)

:::
will

:::::::::
experience

::
a
:::::
small

:::
sea

:::::
level

:::
fall

:::::
from

:::::::::::
contemporary

:::::::::::
deglaciation

:::::
alone.

:::
So

:::::
even

::::::
though

:::
the

::::::
Arctic

::
is

::::::
heavily

:::::
prone

:::
to

::
ice

:::::
mass

::::
loss

:::
and

::::
thus

::
a
:::::::
smaller

::::::::::
gravitational

:::::
pull,

:::
the

:::::
Arctic

:::
as

:
a
::::::
region

::
is

:::
not

:::::::::::
experiencing

::
a
:::::::
absolute

:::
sea

:::::
level

:::
fall

:::::
from380

::::::::::::
comtemporary

:::::::::::
deglaciation.

:::
On

:::
the

::::::::
contrary,

::
it

::::::
causes

:::
the

:::
sea

:::::
level

::
to

::::
rise

::::
with

::::::
around

::
1
::::
mm

::::
y−1

::
in

:::::
most

::
of

:::
the

:::::::
Arctic.

::::::::
However,

::
by

:::::::::
accounting

:::
for

:::
the

::::::::::
deglaciation

:::::
effect

:::
on

:::::
VLM,

:::
the

:::::::::::
RSL-change

::::
from

:::::::::::
contemporary

:::::::::::
deglaciation

:::
will

:::
be

:::::::
negative

::
in

::::
large

:::::
areas

::
of

:::
the

::::::
Arctic.

5
::::::::::
Uncertainty

::::
and

::::::::::
assessment

::
of

::::::::::
ASL-trends

:::
The

:::::::::::
uncertainties

::
of

:::
the

:::::
trend

::::::::
estimates

:::
for

:::::::
RSLTG,

:::::
VLM,

:::::::::::
gravitational

:::::::::
fingerprint

::::
(N ),

:::::
steric

:::
(η)

::
in

:::::
table

:
1
::::
and

:::::
figure

::
6

:::
are385

::::::
derived

::
as

:::
the

:::::::
standard

:::::
error

:::
(σ)

::
of

:::
the

::::::::
detrended

:::::::::
timeseries

::
of

:::
the

::::::
annual

::::
mean

::::::
values.

:::::
GIA

::::::::::::::::
(Caron et al., 2018)

:::
and

::::::::
altimetry

:::::::::::::::
(Rose et al., 2019)

:::
has

:
a
:::::::::
associated

:::::::::
uncertainty

::::
that

:
is
:::::
used.

::
In

:::
the

::::
case

::
of

::::
VLM

::
a

::::
10%

::::
error

::
is

:::::
added

::
to

::::::
account

:::
for

:::::::::::
uncertainties

::
of

:::
the

::::
earth

::::::
model

:::::::::::::::
(Wang et al., 2012)

:
.

Generally
::::
The

:::::
spatial

::::::::::
distribution

::
of

:::
the

:::::::::::
uncertainties

:::
are

::::::
shown

::
in

:::::
figure

::
7.
:::::::::
Generally,

:
the largest uncertainties (estimated

as standard error of the trend) are found along the Siberian coast and in the interior of the Arctic where the largest sea level390

trend is present(see figure 7). The steric uncertainty , which
:
is in most cases is the largest source of uncertainty , is computed

as the standard deviation of the detrended and deseasoned time series, which
:::::
(figure

:::
6).

::::
The

:::::::
standard

:::::
error naturally reflects

if
::
the

:
steric heights are unstable and poorly constrained . This method requires in principal

::
(if

:::
for

:::::::
example

:::::
there

:::
are

::::
few

:::::::::::
hydro-graphic

:::::
data).

:::
In

::::::::
principle,

::::
this

::::::
method

:::::::
requires

:
temporal independence, which is not entirely true, since

::::::
outliers

:::
are

:::::::
replaced

::::
with data from adjacent yearsare used instead of outliers. Furthermore, large influence by the non-periodic and non-395

linear Arctic Oscillation, would enhance the uncertainty, even though this is a real physical signal.
::::::
Thereby

::
is
:::
the

:::::::::
estimated

::::
error

:
a
:::::::::
composite

::
of
:::::::::::

uncertainties
::::::::::
originating

::::
from

:::
the

::::
way

:::
the

:::
sea

:::::
level

:::::::::
component

::
is
::::::::::
constructed

::::
and

:::::
from,

:::
the

:::::::::
sometimes

::::
large,

::::::::::
interannual

:::::::::
variability.

:

The mass contribution and VLM has naturally the largest uncertainties close to glaciated areas. Glacial ice loss on Baf-

fin Island is poorly constrained in the ice model, which is reflected in
::::
with

:
large uncertainties in this area. A significant400

uncertainty also originates in the dynamic mass loss, which probably also can be attributed to the Arctic Oscillation, which

significantly changes wind patterns. Since no uncertainties are associated with the ECCO-product, we also here assume no

temporal correlation , and calculate the standard deviation of the time series, even though the model likely has inter-annual

correlations.
:::
The

:::::::::
uncertainty

:::
of

::::::::
altimetry

:
is
:::::::::

reflecting
:::
the

::::
data

:::::::::
availability

:::
of

::::
areas

:::::
with

:::
sea

:::
ice

:::::::
contrary

:::
the

:::::::
ice-free

::::::
ocean,

::::
while

:::
the

::::::
largest

:::::::::::
uncertainties

::
of

:::
the

::::
TGs

:::
are

:::::
those

::::
with

:::::
largest

::::::::::
interannual

:::::::::
variability.

:
405

18



Figure 7. Map in the top row shows the absolute difference between altimetry and the steric+mass
::::::
Standard

::::
error

:
(no dynamic contribution

:
1

:
σ) product (left column) and altimetry and

::
of the

::::::::
1995-2015

::::
trend [

::
mm

::::
y−1]

::
for

:::::::
combined steric+mass from the ECCO-model (right column).

Bottom row, shows the absolute difference relative to the combined uncertainty (σ). The dots show the difference to VLM-corrected tide

gauges. At the tide gauges marked with black
:
Ṅ , is the difference larger than the

::::::
ASLA/TG:::

and
:

combined uncertainty
::::
VLM

::::::::::
contributions.

:::
Left

:::::
map

::
of

::::::
figure

:
8
::::::

shows
:::
the

:::::::::
difference

::::::::
between

:::::
ASLr::::

and
::::::::
ASLA/TG.

::::
The

:::::::
pattern

::::::::
somehow

:::::::::
resembles

:::
the

:::::
trend

:::
of

::
the

:::::::::
halosteric

:::::::::::
contribution,

:::::
which

:::::::
reflects

:::
the

::::::::
halosteric

::::::::::
dominance

::
of

:::
the

::::::
spatial

:::::::::
variability.

::::
The

:::::::::
correlation

:::::::::
coefficient

::::
(R)

:::::::
between

:::::
ASLr::::

and
:::::
ASLA::

is
:::::::
R=0.50

:::::::
(R=0.23

:::::::
without

:::
the

:::::::::
halosteric

:::::::::::
contribution)

:::
and

:::::::
R=0.53

:::::
when

:::::
using

:::
the

::::::
ECCO

:::::
OBP

:::::::
estimate

::::::
instead

::
of

:::
the

:::::::::::
reconstructed

::::::::::
manometric

:::
sea

:::::
level.

:::
The

:::::::::
correlation

::
is
:::::
better

::::
than

:::
the

:::::::::
correlation

::::::::::
coefficients

::::::
reached

:::
by

:::::::::::::::::::::::::::
(Ludwigsen and Andersen, 2020),

::::::
where

::::
they

::::
used

:::::::
different

:::::::
datasets

::
of

:::::::
GRACE

::::::::::::
(R=0.19-0.40)

::::::::
combined

::::
with

:::
the

:::::
same

:::::
steric410

:::
and

::::::::
altimetric

::::::::
datasets.

:::::
From

:::
the

::::::
middle

:::::
panel

::
in

:::::
figure

::
8

:::
we

:::
see

:::
that

:::
for

:::::
most

::
of

:::
the

::::::
Arctic

:::::
(78%)

::::
and

:::
for

:
8
:::
of

::
12

:::::
TGs,

:::
the

:::::::
absolute

::::::::
difference

::
is
::::
less

::::
than

:::
half

:::
of

:::
the

::::::::
combined

:::::::
standard

:::::
error

:::
and

::
in

:::::
98%

::
of

:::
the

::::
area,

::
is

:::::
ASLr::

in
:::::::::
agreement

::::
with

::::::
ASLA

:::::
within

:::
the

:::::::::
associated

::::::::::
uncertainty,

:::::
which

::::::::
indicates

:::
that

:::
the

:::::
error

::
is

:
a
:::::::::::
conservative

:::::::
estimate.

:::::
Only

:::
the

:::
TG

:::::::
Izvestia

::::
Tsik

:::::
shows

::
a

:::::
larger

::::::::
difference

:::::::
between

::::::::
observed

::::::::
(ASLTG)

:::
and

:::::::::::
reconstructed

:::
sea

:::::
level

::::::
(ASLr)

::::
than

:::
the

:::::::::
associated

:::::::
standard

:::::
error.
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Figure 8.
:::
Left

::::
map

:::::
shows

:::
the

::::::::
difference

::::::
between

:::::
ASLr :::

and
:::::::
ASLA/TG.

::::::
Middle

:::
map

::
is
:::
the

::::::
absolute

::::::::
difference

::::::
divided

::
by

:::
the

:::::::
standard

::::
error

:::
from

::
7
::::::::
(combined

::::::::::
uncertainty).

::::
Right

::::
panel

:::::
shows

::
a
::::::::
correlation

:::::
matrix

::::::
between

:::::
ASLr:::

and
:::::::
ASLA/TG.

::::
The

::::
color

:::::::
indicates

::
the

::::::
number

::
of

::::
data

:::
grid

::::
cells

:::::
falling

:::
into

:::
bin

:::
size

::
of

:::
0.5

:::
mm

::::
y−1.

::::
96%

::
of

::
the

::::
grid

:::
cells

::::
with

:::
data

::
is
::::::
covered

:::::
within

:::
the

::::::
bounds

:
of
:::

the
:::::
matrix

:::::::::::
(Ntotal=18150).

::::
The

::
red

:::
line

::
is
:::::
where

:::::
ASLr :

is
:::::
equal

:
to
::::::::

ASLA/TG.

:::
The

::::
right

:::::
panel

::
of

::::::
figure

:
8
::::::
shows

:::
the

:::::::::
correlation

::::::
matrix

:::::::
between

:::::::
observed

:::::
ASL

:::::::::
(ASLA/TG)

:::
and

:::::::::::
reconstructed

:::::
ASL

:::::::
(ASLr).415

:::
The

::::::
matrix

::::::
shows

:::
that

:::::
ASLr::::

and
:::::
ASLA::::

are
::::::
largely

:::::::::
correlated.

:::::
There

::
is

:::::
large

:::::::::::
accumulation

::::::
around

::
2
::::
mm

::::
y−1,

::::
with

:::::::
slightly

:::::
higher

::::::
ASLA ::::

than
:::::
ASLr.

:::::
This

::::::::
originates

:::::
from

:::
the

::::::::::::
underestimate

::
of

:::
the

:::::::::::::::::
ASL-reconstruction

:::
(see

::::::
figure

::
8)

::
in

:::
the

::::::::::
Norwegian

:::
Sea

:::
and

:::
the

:::::::::
difference

:::::
agrees

::::
with

:::
the

::::::
ECCO

:::::::
OBP-Ṁ

:::::::::
difference

:::::
(figure

::::
4h)

:::
and

::::
thus

:::::
likely

::::::::
explained

:::
by

:::
the

::::::
missing

::::::::
dynamic

:::
sea

::::
level

::::::::::
contribution

::
of

:::
Ṁ.

:::::::
Evident

:::
are

::::
also

:::
the

::::
large

:::::::
positive

:::::::::::
ASLr-trends

::::
from

:::
the

::::::::
Beaufort

:::
Sea

::::
and

:::::::
negative

:::::::::::
ASLr-trends

::::
along

:::
the

::::::::
Siberian

:::::
Coast

:::
that

::
is

:::
not

:::::::
reflected

::
in
:::::::
ASLA.420

6 Conclusion

All significant contributions to the sea level change from 1995-2015 in the Arctic Ocean have been
::::
were

:
mapped and assessed

at 12 tide gauges located throughout the Arctic ,
::::::
Ocean.

::::
This

::::
was

::::
done

:::
for

:::
the

::::
first

:::::
time without the use of GRACE data

or modeled steric data. Thereby are we able to attribute effects on Arctic Sea Level
:::::::::
reconstruct

:::
the

::::::
Arctic

:::::::
absolute

:::
sea

:::::
level

::::::
change

:::
and

:::::::
attribute

:::
the

:::::::
changes to their origin and thus understand the causes behind the observed

:::::::
altimetry

::::
and

:::::::::::
TG-observed425

sea level trend. By using a VLM-model
:
, that includes both GIA and elastic uplift, the TG-data

::::::::::
TG-observed

::::
sea

::::
level can be

utilized in locations if
:::::
where no reliable GNSS-data is present.

From figure 5 we clearly see that the general spatial pattern of altimetry
:::::::
observed

:::
sea

:::::
level

:::::::
(ASLA)

:
is restored in the

derived steric estimate and in the mass product.
::::::::::
reconstructed

::::::::::::
ASL-estimate

:::::::
(ASLr).

::::
The

:::::::::
correlation

::::::::
(R=0.50)

:::::::::::
outperforms
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::::::::::::
GRACE-based

:::
sea

::::
level

::::::
budget

::::::::::
assessments

::::
from

::::::::::::::::::::::::::::
(Ludwigsen and Andersen, 2020)

::::::::::::
(R=0.19-0.40). Figure 6 and 7 shows

::::
show430

that steric sea level dominates the spatial variabilityand .
::::
This

:
is also the main source of uncertainty,

:::::
while

:::::::::::
manometric

:::
sea

::::
level

::::::
change

::::
has

:
a
:::::
more

:::::::
uniform

::::
and

::::::
smaller

:::::::::::
contribution

::
to

::::
ASL. Some areas, in particular

:
, the Norwegian Seaand more

interior of the Arctic Ocean, seems to be rather well constrained and understood from ,
::::
has

::::
more

:::::::::::
observations

:::::
(from

:::::
both

:::::::
altimetry

::::
and

:::::::::::
hydrographic

::::
data)

::::
and

::::
thus

:::
can

:
the individual contributions

::
be

:::::::::
estimated

::::
with

:::::
lower

:::::::::
uncertainty. The Siberian

seas,
:::
Seas

:
are however poorly constrained

:::
with

:::::::::::
observations

:
and both the steric product, altimetry and tide gauges show435

large uncertainty
::::::::::
uncertainties. Figure 8 shows the spatial agreement between altimetry/tide gauges and the steric+mass or

steric+mass(ECCO) product
:::::::
observed

:::
sea

::::
level

::::::::::
(ASLA/TG)

:::
and

:::
the

::::::::::::
reconstructed

::::
ASL

::::::::
estimate within the combined uncer-

tainty. Without the use of ECCO, the derived product
::::
The

:::::::::::
reconstructed

::::::::::::
ASL-estimate agrees with altimetry at

:
in

:
98% of the

area , while only 5 out of 12 of the TG-data agree with derived product. For the steric+mass(ECCO) product, the products

agree at 99% of the area and at
:::
and 11 out of

::
of

::
the

:
12 TG’s. The areas of disagreement in the Norwegian Sea can be explained440

by the very low altimetric uncertaintyin the area
::::
TGs

:::::
within

:::
the

::::::::::
uncertainty.

Our results show
:::
The

:::::::::
correlation

:::::::
between

:::
the

:::::::::::
reconstructed

:::
sea

::::
level

:::
and

::::::::
altimetry

::
is

::::::::
significant

::::::::
(R=0.50),

:::
but

::::
also

:::::
shows

:
that

the sea level budget is not closed or completely understood everywhere
::
in

:::
the

:::::
Arctic - likely because of poorly constrained steric

data and
:
a
:
uncertain dynamic contribution . however, from

:::
that

::
is
:::::::
difficult

::
to

::::::::::
reconstruct.

::::::::
However,

:::
the

:::::::::::
reconstructed

:::
sea

:::::
level

:::::::
confirms

:::
the

:::::::
negative

::::::::::::::
halosteric-driven

:::
sea

::::
level

::::
trend

:::::
along

:::
the

:::
east

::::::::
Siberian

::::
coast

::::::::
identified

::
by

::::::::::::::::::::::::::
(Armitage and Davidson, 2014)445

:
,
:::::
which

::
is

::
in

::::::
contrast

::
to
:::
the

:::::::::::
TG-observed

:::
sea

:::::
level

::
in

::
the

::::::
region.

::::::
Large

::::::::
variations

::::::
among

::::
TGs

::
in

::::
East

::::::
Siberia

::::::
indicate

::::
very

:::::
local

::::
VLM

::::::::
affecting

:::
the

:::::::::::
TG-observed

:::::
RSL.

::::
From

:
figure 8 we see that the uncertainties are in most of the Arctic

:::
are significantly larger than the difference between

a derived product and altimetry,
:::
the

:::::::::::
reconstructed

:::
sea

:::::
level

:::
and

:::::::::
altimetry.

::::
This

::
is including most of the Siberian Seas. More

precise
:
,
::::::::
indicating

::::
that

:::
the

:::::::::
uncertainty

::
of

:::
the

::::::::::
components

::
of

::::
this

:::::
study

::
of

:::
the

:::
sea

::::
level

:::::
trend

:::::
might

::
be

::
a

::::::::::
conservative

::::::::
estimate.450

:::::
Better

::::::::::
constrained

:
estimates of both the mass and steric product

:::::::::
manometric

::::
and

:::::
steric

:::
sea

:::::
level

:
are necessary to get at

:
a

complete understanding of what changes Arctic sea level and
::
to validate sea level trends observed by altimetry, which is

:::
are

not necessarily more accurate than the derived ASL-estimates.

Code and data availability. Tide gauge sea level timeseries is available at psmsl.org, the VLM-model available at data.dtu.dk/articles/dataset/

Arctic_Vertical_Land_Motion_5x5_km, DTU Steric is available at ftp.space.dtu.dk/pub/DTU19/STERIC/, the REAR-software is available455

at github at github.com/danielemelini/rear.git.
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