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Abstract. The Korea Strait (KS) is a major navigation passage linking the Japan Sea (JS) to the East China Sea and Yellow 

Sea. Almost all existing studies on the tides in the KS employed either data analysis or numerical modelling methods; thus, 

theoretical research is lacking. In this paper, we idealize the KS-JS basin as three connected uniform-depth rectangular areas 10 

and establish a theoretical model for the tides in the KS and JS using the extended Taylor method. The model-produced K1 and 

M2 tides are consistent with the satellite altimeter and tidal gauge observations, especially for the locations of the amphidromic 

points in the KS. The model solution provides the following insights into the tidal dynamics. The tidal system in each area can 

be decomposed into two oppositely travelling Kelvin waves and two families of Poincaré modes, with Kelvin waves 

dominating the tidal system. The incident Kelvin wave can be reflected at the connecting cross-section, where abrupt increases 15 

in water depth and basin width occur from the KS to JS. At the connecting cross-section, the reflected wave has a phase-lag 

increase relative to the incident wave by less than 180°, causing the formation of amphidromic points in the KS. The above 

phase-lag increase depends on the angular frequency of the wave and becomes smaller as the angular frequency decreases. 

This dependence explains why the K1 amphidromic point is located farther away from the connecting cross-section in 

comparison to the M2 amphidromic point. 20 

1 Introduction 

The Korea Strait (KS, also called the Tsushima Strait) connects the East China Sea (ECS) on southwest and the Japan Sea (the 

JS, also called the East Sea, or the Sea of Japan) on northeast. It is the main route linking the JS to the ECS and Yellow Sea 

and is thus an important passage for navigation. The strait is located on the continental shelf, and it has a length of 

approximately 350 km, a width of 250 km, and an average water depth of approximately 100 m. The JS, which is adjacent to 25 

the KS, is a vast deep basin that has an average depth of approximately 2000 m and a depth of more than 3000 m at its deepest 

part. A sharp continental slope separates the KS and the JS, and it presents abrupt depth and width changes (Fig. 1). Such 

topographic characteristics create the unique tidal waves that occur in the KS. 
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Ogura (1933) first conducted a comprehensive study of the tides in the seas adjacent to Japan using data from the tidal 

stations along the coast and gained a preliminary understanding of the characteristics of the tides, including amphidromic 

systems in the KS. Since then, many researchers have investigated the tides in the strait via observations (Odamaki, 1989a; 

Matsumoto et al., 2000; Morimoto et al., 2000; Teague et al., 2001; Takikawa et al., 2003) and numerical simulations (Fang 

and Yang, 1988; Kang et al., 1991; Choi et al., 1999; Book et al., 2004). The results of these studies show consistent structures 5 

of the tidal waves in the KS. Fig. 2 displays the distributions of the K1 and M2 tidal constituents based on the global tidal model 

DTU10, which is based on satellite altimeter observations (Cheng and Andersen, 2011). The figures show that the amplitudes 

of the diurnal tides are smaller than the semidiurnal tides. The peak amplitude of the semidiurnal tide appears on the south 

coast of South Korea, and lower amplitudes occur along the southern shore of the strait from the ECS to the JS. Distinguishing 

features include (1) K1 and M2 amphidromic points in the strait that appear in the northeast part of the KS close to the southern 10 

coast of the Korean Peninsula; and (2) the M2 amphidromic point appears further northeast and closer to the shelf break relative 

to the K1 tide.  

However, almost all previous studies have employed either data analysis or numerical modelling methods; thus, theoretical 

research is lacking. In particular, the existence of amphidromic points in the northeast KS for both diurnal and semidiurnal 

tides has not been explained based on geophysical dynamics. In this paper, we intend to establish a theoretical model for the 15 

K1 and M2 tides in the KS-JS basin using the extended Taylor method. The model idealizes the KS-JS basin into three connected 

uniform-depth rectangular areas, with the effects of bottom friction and Coriolis force included in the governing equations and 

with the observed tides specified as open boundary conditions. The extended Taylor method enables us to obtain analytical 

solutions consisting of a series of Kelvin waves and Poincaré modes. 
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Figure 1: Map of the Korea Strait and its neighbouring areas. (SYS- Soya Strait, TGS- Tsugaru Strait, KS- Korea Strait, ECS-East 

China Sea). Isobaths are in metres (based on ETOPO1 from US National Geophysical Center). 

 
Figure 2: Tidal charts of the KS and its neighbouring areas based on DTU10 (Cheng and Andersen, 2011) for the (a) K1 tide and (b) 5 

M2 tide. Solid lines represent the Greenwich phase lag (in degrees), and dashed lines represent amplitude (in metres). 
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2 The extended Taylor method and its application to multiple rectangular areas 

The Taylor problem is a classic tidal dynamic problem (Hendershott and Speranza, 1971). Taylor (1922) first presented an 

analytical solution for tides in a semi-infinite rotating rectangular channel of uniform depth to explain the formation of 

amphidromic systems in gulfs and applied the theory to the North Sea. The classic Taylor problem was subsequently improved 

by introducing frictional effects (Fang and Wang, 1966; Webb, 1976; Rienecker and Teubner, 1980) and open boundary 5 

conditions (Fang et al., 1991) to study tides in multiple rectangular basins (Jung et al., 2005; Roos and Schuttelaars, 2011; 

Roos et al., 2011) as well as to solve tidal dynamics in a strait (Wu et al., 2018). 

The method initiated by Taylor and developed afterwards is called the extended Taylor method (Wu et al., 2018). This 

method is especially useful in understanding the tidal dynamics in marginal seas and straits because the tidal waves in these 

sea areas can generally be represented by combinations of the Kelvin waves and Poincaré waves/modes (e. g., Taylor, 1922; 10 

Fang and Wang, 1966; Hendershott and Speranza, 1971; Webb, 1976; Fang et al., 1991; Carbajal, 1997; Jung et al., 2005; 

Roos and Schuttelaars, 2011; Roos et al., 2011; Wu et al., 2018). 

2.1 Governing equations and boundary conditions for multiple rectangular areas 

A sketch of the model geometry is shown in Fig. 3, and it consists of a sequence of 𝐽𝐽 rectangular areas with length 𝐿𝐿𝑗𝑗, width 

𝑊𝑊𝑗𝑗 and uniform depth ℎ𝑗𝑗 for the 𝑗𝑗th rectangular area (denoted as Areaj, 𝑗𝑗=1, …, 𝐽𝐽). For convenience, the shape of the study 15 

region shown in Fig. 3 is the same as that for the idealized KS–JS basin, which will be described in the next section. In 

particular, Area1 represents the KS, which is our focus area in this study. 

 
Figure 3: Model geometry. 

 20 

Consider a tidal wave of angular frequency 𝜎𝜎  and typical elevation amplitude H. We assume 𝐻𝐻/ℎ ≪ 1 , and the 

conservation of momentum and mass leads to the following depth-averaged linear shallow water equations on the 𝑓𝑓 plane: 
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⎨
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𝜕𝜕𝜐𝜐�𝑗𝑗
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,                                                                      (1) 

where 𝑥𝑥 and 𝑦𝑦 are coordinates in the longitudinal (along-channel) and transverse (cross-channel) directions; 𝑡𝑡 represents 

time; 𝑢𝑢�𝑗𝑗 and 𝜐𝜐�𝑗𝑗 represent the depth-averaged flow velocity components in the 𝑥𝑥 and 𝑦𝑦 directions, respectively, with the 

subscript j indicating the area number; 𝜁𝜁𝑗𝑗  represents the free surface elevation above the mean level; 𝛾𝛾𝑗𝑗  represents the 

frictional coefficient, which is taken as a constant for each tidal constituent in each area; 𝑔𝑔 =9.8 ms−2  represents the 5 

acceleration due to gravity; and 𝑓𝑓𝑗𝑗 represents the Coriolis parameter, which is also taken as a constant based on the average 

of the concerned area. The equations in (1) for each j are two-dimensional linearized shallow water equations on an 𝑓𝑓-plane 

with the momentum advection neglected. For any 𝑗𝑗, the equations are the same as those used in the work of Taylor (1922) 

except that bottom friction is now incorporated, such as in Fang and Wang (1966), Webb (1976), Rienecker and Teubner (1980), 

etc. When a monochromatic wave is considered, �𝜁𝜁𝑗𝑗,𝑢𝑢�𝑗𝑗 , 𝜐𝜐�𝑗𝑗� can be expressed as follows: 10 

�𝜁𝜁𝑗𝑗 ,𝑢𝑢�𝑗𝑗 , 𝜐𝜐�𝑗𝑗� = Re�𝜁𝜁𝑗𝑗 ,𝑢𝑢𝑗𝑗, 𝜐𝜐𝑗𝑗�e𝑖𝑖𝑖𝑖𝜕𝜕 ,                                                                     (2) 

where Re stands for the real part of the complex quantity that follows, �𝜁𝜁𝑗𝑗 ,𝑢𝑢𝑗𝑗, 𝜐𝜐𝑗𝑗� are referred to as complex amplitudes of 

�𝜁𝜁𝑗𝑗 ,𝑢𝑢�𝑗𝑗 , 𝜐𝜐�𝑗𝑗�, respectively, i≡√−1 is the imaginary unit, and 𝜎𝜎 is the angular frequency of the wave. For this wave, Eq. (1) can 

be reduced as follows: 

⎩
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⎨
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+
∂𝜐𝜐𝑗𝑗
∂𝜕𝜕
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,                                                                      (3) 15 

in which 

𝜇𝜇𝑗𝑗 =
𝛾𝛾𝑗𝑗
𝑖𝑖

   and  𝜈𝜈𝑗𝑗 =
𝑓𝑓𝑗𝑗
𝑖𝑖

 .                                                                         (4) 

Provided that the j-th rectangular area, denoted as Areaj, has a width of 𝑊𝑊𝑗𝑗, a length of 𝐿𝐿𝑗𝑗, and ranges from 𝑥𝑥 = 𝑙𝑙𝑗𝑗 to 𝑥𝑥 =

𝑙𝑙𝑗𝑗+1 (𝑙𝑙𝑗𝑗+1 = 𝑙𝑙𝑗𝑗 + 𝐿𝐿𝑗𝑗) in the x direction and from y = 𝑤𝑤𝑗𝑗,1 to y = 𝑤𝑤𝑗𝑗,2 (𝑤𝑤𝑗𝑗,2 = 𝑤𝑤𝑗𝑗,1 + 𝑊𝑊𝑗𝑗) in the y direction, the boundary 

conditions along the sidewalls within 𝑥𝑥 ∈ [𝑙𝑙𝑗𝑗 , 𝑙𝑙𝑗𝑗+1] are taken as follows: 20 

𝜐𝜐𝑗𝑗 = 0 at 𝑦𝑦 = 𝑤𝑤𝑗𝑗,1 and 𝑦𝑦 = 𝑤𝑤𝑗𝑗 ,2.                                                                  (5) 

Along the cross-sections, such as 𝑥𝑥 = 𝑙𝑙𝑗𝑗, various choices of boundary conditions are applicable depending on the problem: 

𝑢𝑢𝑗𝑗 = 0,                                                                                        (6) 

if the cross-section is a closed boundary; 

𝑢𝑢𝑗𝑗 = ±�
𝑔𝑔

(1−𝑖𝑖𝜇𝜇𝑗𝑗)ℎ𝑗𝑗
𝜁𝜁𝑗𝑗,                                                                              (7) 25 

if the free radiation in the positive/negative 𝑥𝑥 direction occurs on the cross-section; 

𝜁𝜁𝑗𝑗 = 𝜁𝜁𝑗𝑗,                                                                                        (8) 

if the tidal elevation is specified as 𝜁𝜁𝑗𝑗  along the cross-section; and 

�
𝜁𝜁𝑗𝑗 = 𝜁𝜁𝑗𝑗+1,      

𝑢𝑢𝑗𝑗ℎ𝑗𝑗 = 𝑢𝑢𝑗𝑗+1ℎ𝑗𝑗+1,                                                                               (9) 

if the cross-section is a connecting boundary of the areas 𝑗𝑗 and 𝑗𝑗 + 1, with each having a different uniform depth of ℎ𝑗𝑗 and 30 

ℎ𝑗𝑗+1. 

Equation (9) is matching conditions accounting for sea level continuity and volume transport continuity. The individual Eqs.  
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(6) to (9), or their combination, may be used as boundary conditions for the cross-sections. The relationship between 𝑢𝑢𝑗𝑗 and 

𝜁𝜁𝑗𝑗  shown in Eq. (7) is based on the solution for progressive Kelvin waves in the presence of friction, which will be given in 

Eqs. (10) and (11) below. 

2.2 General solution 

For the j-th rectangular area, that is, for 𝑥𝑥 ∊ [𝑙𝑙𝑗𝑗 , 𝑙𝑙𝑗𝑗+1] and 𝑦𝑦 ∊ [𝑤𝑤𝑗𝑗,1,𝑤𝑤𝑗𝑗,2], the governing equations in Eq. (3) only have the 5 

following four forms satisfying the sidewall boundary condition of Eq. (5) (see, e. g., Fang et al. 1991): 

�

𝜐𝜐𝑗𝑗,1 = 0,                           
𝑢𝑢𝑗𝑗,1 = −𝑎𝑎𝑗𝑗  exp�𝛼𝛼𝑗𝑗𝑦𝑦 + i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗��,     

𝜁𝜁𝑗𝑗,1 =
𝛽𝛽𝑗𝑗
𝑖𝑖
ℎ𝑗𝑗𝑎𝑎𝑗𝑗 exp[𝛼𝛼𝑗𝑗𝑦𝑦 + i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗�] ;    

                                                         (10) 

�

𝜐𝜐𝑗𝑗,2 = 0,                             
𝑢𝑢𝑗𝑗,2 = 𝑏𝑏𝑗𝑗  exp�−𝛼𝛼𝑗𝑗𝑦𝑦 − i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗��,       

𝜁𝜁𝑗𝑗,2 =
𝛽𝛽𝑗𝑗
𝑖𝑖
ℎ𝑏𝑏𝑗𝑗  exp�−𝛼𝛼𝑗𝑗𝑦𝑦 − i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗�� ;    

                                                       (11) 

⎩
⎨

⎧ 𝜐𝜐𝑗𝑗,3 = ∑ 𝜅𝜅𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 exp[−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑥𝑥 − 𝑙𝑙𝑗𝑗�],                       

𝑢𝑢𝑗𝑗,3 = ∑ 𝜅𝜅𝑗𝑗,𝑛𝑛�𝐴𝐴𝑗𝑗,𝑛𝑛 cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐵𝐵𝑗𝑗,𝑛𝑛 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦� exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑥𝑥 − 𝑙𝑙𝑗𝑗��,∞
𝑛𝑛=1      

𝜁𝜁𝑗𝑗,3 =
𝑖𝑖ℎ𝑗𝑗
𝑖𝑖
∑ 𝜅𝜅𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 �𝐶𝐶𝑗𝑗,𝑛𝑛 cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐷𝐷1,𝑛𝑛 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦� exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑥𝑥 − 𝑙𝑙𝑗𝑗��;   

                                (12) 

and 10 

⎩
⎨

⎧ 𝜐𝜐𝑗𝑗,4 = ∑ 𝜆𝜆𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑙𝑙𝑗𝑗+1 − 𝑥𝑥��,                      

𝑢𝑢𝑗𝑗,4 = ∑ 𝜆𝜆𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 �𝐴𝐴𝑗𝑗,𝑛𝑛

′ cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐵𝐵𝑗𝑗,𝑛𝑛
′ sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦� exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑙𝑙𝑗𝑗+1 − 𝑥𝑥��,    

𝜁𝜁𝑗𝑗,4 =
𝑖𝑖ℎ𝑗𝑗
𝑖𝑖
∑ 𝜆𝜆𝑗𝑗,𝑛𝑛�𝐶𝐶𝑗𝑗,𝑛𝑛

′ cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐷𝐷𝑗𝑗,𝑛𝑛
′ sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦�∞

𝑛𝑛=1 exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑙𝑙𝑗𝑗+1 − 𝑥𝑥��.  
                                (13) 

where 𝛼𝛼𝑗𝑗, 𝛽𝛽𝑗𝑗, 𝑟𝑟𝑗𝑗,𝑛𝑛 and 𝑠𝑠𝑗𝑗,𝑛𝑛 are equal to the following: 

𝛼𝛼𝑗𝑗 =
𝜈𝜈𝑗𝑗

�1−i𝜇𝜇𝑗𝑗�
1/2 𝑘𝑘𝑗𝑗,                                                                               (14) 

𝛽𝛽𝑗𝑗 = �1 − 𝑖𝑖𝜇𝜇𝑗𝑗�
1/2𝑘𝑘𝑗𝑗,                                                                            (15) 

𝑟𝑟𝑗𝑗,𝑛𝑛 = 𝑛𝑛π
W𝑗𝑗

 ,                                                                                    (16) 15 

and 

𝑠𝑠𝑗𝑗,𝑛𝑛 = �𝑟𝑟𝑗𝑗,𝑛𝑛
2 + 𝛼𝛼𝑗𝑗2 − 𝛽𝛽𝑗𝑗2�

1
2,                                                                        (17) 

in which 𝑘𝑘𝑗𝑗 = 𝜎𝜎 𝑐𝑐𝑗𝑗⁄  is the wave number, with 𝑐𝑐𝑗𝑗 = �𝑔𝑔ℎ𝑗𝑗 being the wave speed of the Kelvin wave in the absence of friction. 

The parameters 𝑠𝑠𝑗𝑗,𝑛𝑛 in Eq. (17) are of fundamental importance in determining the characteristic of the Poincaré modes. If 

Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2)1/2 < 𝜋𝜋/𝑊𝑊𝑗𝑗, all Poincaré modes are bound in the vicinity of the open, connecting or closed cross-sections (see 20 

Fang and Wang, 1966; Hendershott and Speranza, 1971 for in absence of friction); while if Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2)1/2 > 𝑛𝑛𝜋𝜋/𝑊𝑊𝑗𝑗, the n-

th and lower-order Poincaré modes are propagating waves. In the present study, the inequality Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2)1/2 < 𝜋𝜋/𝑊𝑊𝑗𝑗 holds 

for both the idealized KS and JS, so that all Poincaré modes in the present study appear in a bound form. The parameter 𝑠𝑠𝑗𝑗,𝑛𝑛 
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has two complex values for each 𝑛𝑛, and here,we choose the one that has a positive real part. To satisfy the equations in Eq. 

(3), (𝐴𝐴𝑗𝑗,𝑛𝑛,𝐵𝐵𝑗𝑗,𝑛𝑛,𝐶𝐶𝑗𝑗,𝑛𝑛,𝐷𝐷𝑗𝑗,𝑛𝑛) and (𝐴𝐴𝑗𝑗,𝑛𝑛
′ ,𝐵𝐵𝑗𝑗,𝑛𝑛

′ ,𝐶𝐶𝑗𝑗,𝑛𝑛
′ ,𝐷𝐷𝑗𝑗,𝑛𝑛

′ ) should be as follows: 

𝐴𝐴𝑗𝑗,𝑛𝑛 =
��𝜇𝜇𝑗𝑗+𝑖𝑖�

2
+𝜈𝜈𝑗𝑗

2�𝑟𝑟𝑗𝑗,𝑛𝑛𝑠𝑠𝑗𝑗,𝑛𝑛

�𝜇𝜇𝑗𝑗+𝑖𝑖�
2
𝑟𝑟𝑗𝑗,𝑛𝑛
2 +𝜈𝜈𝑗𝑗

2𝑠𝑠𝑗𝑗,𝑛𝑛
2 𝑠𝑠𝑗𝑗,𝑛𝑛,                                                                     (18) 

𝐵𝐵𝑗𝑗,𝑛𝑛 =
𝜈𝜈𝑗𝑗�𝜇𝜇𝑗𝑗+𝑖𝑖��𝛼𝛼𝑗𝑗

2−𝛽𝛽𝑗𝑗
2�

�𝜇𝜇𝑗𝑗+𝑖𝑖�
2
𝑟𝑟𝑗𝑗,𝑛𝑛
2 +𝜈𝜈𝑗𝑗

2𝑠𝑠𝑗𝑗,𝑛𝑛
2  ,                                                                        (19) 

𝐶𝐶𝑗𝑗,𝑛𝑛 = 𝑟𝑟𝑗𝑗,𝑛𝑛 − 𝑠𝑠𝑗𝑗,𝑛𝑛𝐴𝐴𝑗𝑗,𝑛𝑛,                                                                           (20) 5 

𝐷𝐷𝑗𝑗,𝑛𝑛 = −𝑠𝑠𝑗𝑗,𝑛𝑛𝐵𝐵𝑗𝑗,𝑛𝑛,                                                                              (21) 

𝐴𝐴𝑗𝑗,𝑛𝑛
′ = −𝐴𝐴𝑗𝑗,𝑛𝑛,                                                                                 (22) 

𝐵𝐵𝑗𝑗,𝑛𝑛
′ = 𝐵𝐵𝑗𝑗,𝑛𝑛,                                                                                   (23) 

𝐶𝐶𝑗𝑗,𝑛𝑛
′ = 𝐶𝐶𝑗𝑗,𝑛𝑛,                                                                                   (24) 

and 10 

𝐷𝐷𝑗𝑗,𝑛𝑛
′ = −𝐷𝐷𝑗𝑗,𝑛𝑛                                                                                  (25) 

Equations (10) and (11) represent Kelvin waves propagating in the −𝑥𝑥 and 𝑥𝑥 directions, respectively; and Eqs. (12) and (13) 

represent two families of Poincaré modes bound along the cross-sections 𝑥𝑥 = 𝑙𝑙𝑗𝑗  and 𝑙𝑙𝑗𝑗+1  in the j-th rectangular area, 

respectively. Coefficients (𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 , 𝜅𝜅𝑗𝑗,𝑛𝑛 , 𝜆𝜆𝑗𝑗,𝑛𝑛) determine amplitudes and phase lags of Kelvin waves and Poincaré modes. These 

coefficients must be chosen to satisfy the boundary conditions, using preferably the collocation approach. 15 

2.3 Defant’s collocation approach 

The collocation approach was first proposed by Defant in 1925 (see Defant, 1961), and is convenient in determining the 

coefficients (𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 ,𝜅𝜅𝑗𝑗,𝑛𝑛, 𝜆𝜆𝑗𝑗,𝑛𝑛). In the simplest case, that is, if the model domain contains only a single rectangular area, then 

𝐽𝐽 =1 and the index j has only one value: 𝑗𝑗 = 1, the calculation procedure can be as follows. First, we truncate each of the two 

families of Poincaré modes in Eqs. (12) and (13) at the 𝑁𝑁1-th order so that the number of undetermined coefficients for two 20 

families of Poincaré modes is 2𝑁𝑁1 and the total number of undetermined coefficients (plus those for a pair of Kelvin waves) 

is thus 2𝑁𝑁1 + 2. To determine these unknowns, we take equally spaced 𝑁𝑁1 + 1 dots, which are called collocation points, 

located at 𝑦𝑦 = 𝑤𝑤1,1 + 𝑊𝑊1
2(𝑁𝑁1+1)

,  𝑤𝑤1,1 + 3𝑊𝑊1
2(𝑁𝑁1+1)

, … ,  𝑤𝑤1,1 + (2𝑁𝑁1+1)𝑊𝑊1
2(𝑁𝑁1+1)

 on both cross-sections 𝑥𝑥 = 𝑙𝑙1 and 𝑙𝑙2. At these points, 

one of the boundary conditions given by Eqs. (6) to (8) should be satisfied, which yields 2𝑁𝑁1 + 2 equations. By solving this 

system of equations, we can obtain 2𝑁𝑁1 + 2 coefficients (𝑎𝑎1, 𝑏𝑏1, 𝜅𝜅1,𝑛𝑛, 𝜆𝜆1,𝑛𝑛). Because the high-order Poincaré modes, which 25 

have great values of n and 𝑠𝑠1,𝑛𝑛 in Eqs. (12) and (13), decay from the boundary very quickly, it is generally necessary to retain 

only a few lower-order terms. In the above single-rectangle case, the spacing of collocation points is equal to ∆y = 𝑊𝑊1/(𝑁𝑁1 +

1).  

For 𝐽𝐽 > 1, that is, the model contains multiple rectangular areas connected one by one, we can treat the approach in the 
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following way. First, we may choose a common divisor of 𝑊𝑊1,𝑊𝑊2, … , 𝑊𝑊𝐽𝐽 as a common spacing, which is denoted by ∆y, 

for all areas. For the 𝑗𝑗th rectangle (Fig. 3), we may select the collocation points at 𝑦𝑦 = 𝑤𝑤𝑗𝑗,1 + ∆𝜕𝜕
2

, 𝑤𝑤𝑗𝑗,1 + 3∆𝜕𝜕
2

, …  , 𝑤𝑤𝑗𝑗,2 −
∆𝜕𝜕
2

 

on the cross-sections 𝑥𝑥 = 𝑙𝑙𝑗𝑗 and 𝑥𝑥 = 𝑙𝑙𝑗𝑗+1, where 𝑤𝑤𝑗𝑗,2 = 𝑤𝑤𝑗𝑗,1 + 𝑊𝑊𝑗𝑗. The number of collocation points on each cross-section 

in this area is equal to 𝑊𝑊𝑗𝑗/∆𝑦𝑦. Thus the number of undetermined coefficients for the Poincaré modes is selected to be 

𝑁𝑁𝑗𝑗 = (𝑊𝑊𝑗𝑗/∆𝑦𝑦) − 1. Accordingly, there will be in total ∑ (2𝑁𝑁𝑗𝑗 + 2)𝐽𝐽
𝑗𝑗=1  collocation points in J areas. Note that on the cross-5 

section connecting Areaj and Area(j+1), the collocation points that belong to Areaj and those that belong to Area(j+1) are 

located at the same positions. For the points located on the open or closed boundaries, Eqs. (6) to (8) are applicable, while for 

the points located on the cross-sections connecting two areas, Eq. (9) should be applied. From these ∑ (2𝑁𝑁𝑗𝑗 + 2)𝐽𝐽
𝑗𝑗=1  equations, 

we can obtain ∑ (2𝑁𝑁𝑗𝑗 + 2)𝐽𝐽
𝑗𝑗=1  coefficients (𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 , 𝜅𝜅𝑗𝑗,𝑛𝑛, 𝜆𝜆𝑗𝑗,𝑛𝑛), in which 𝑗𝑗 = 1, 2, … , 𝐽𝐽 and 𝑛𝑛 = 1, 2, … 𝑁𝑁𝑗𝑗. 

3 Tidal dynamics of the Korea Strait 10 

As noted by Odamaki (1989b), the co-oscillating tides are dominant in the JS, which is mainly induced by inputs at the opening 

of the KS rather than those through the TGS and SYS. Furthermore, our study focuses on the KS, in which influences of the 

tide-generating force and the inputs from the TGS and SYS are negligible. Therefore, we idealize the KS-JS basin as a semi-

enclosed basin with a sole opening connected to the ECS and study the co-oscillating tides generated by the tidal waves from 

the ECS through the opening. 15 

3.1 Model configuration and parameters for the Korea Strait and Japan Sea 

To establish an idealized analytical model for the KS–JS basin, we use three rectangular areas as shown in Fig. 4 to represent 

the study region. The first rectangle, designated as Area1, represents the KS, which is our area of focus. According to the shape 

of its coastline, we use two rectangles designated as Area2 and Area3 to represent the JS. We place the x-axis parallel to but 

200 km away from the southeast sidewall of the KS (that is, 𝑤𝑤1,1 in Fig. 3 is equal to 200 km), and the y-axis is in the direction 20 

perpendicular to the x-axis through the opening of the KS (Fig. 4). The selected depths are the mean depths calculated based 

on the topographic dataset ETOPO1. The K1 and M2 angular frequencies are equal to 7.2867 × 10−5s−1 and 1.4052 ×

10−4s−1, respectively. The details of the model parameters can be found in Table 1. 
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Figure 4: Idealized model domain fitting the Korea Strait and Japan Sea. The dashed line represents open boundary, and the solid 

lines represent closed boundaries. A, B, … , J indicate the localities of the points used in Fig. 6 for model-observation comparison. 

Numbered red dots are tidal gauge stations where the observed harmonic constants are used for model validation in Table 2. 

Based on the depths listed in Table 1, the wavelengths of the K1 Kelvin waves in these three areas are 2686 km, 12189 km, 5 

and 11398 km, respectively, and those of the M2 Kelvin waves are 1393 km, 6321 km, and 5911 km, respectively. Because the 

widths of the areas are all smaller than half the corresponding Kelvin wavelengths, the inequality Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2) < 𝜋𝜋/𝑊𝑊𝑗𝑗 as 

stated in the subsection 2.2 is satisfied (see also Godin, 1965; Fang and Wang, 1966; Wu et al., 2018), Thus the Poincaré modes 

can only exist in a bound form. 

 10 

Table 1. Parameters used in the model.  

Parameter Area1 Area2 Area3 

𝑊𝑊𝑗𝑗  (km) 230 700 350 

𝐿𝐿𝑗𝑗  (km) 350 950 400 

𝑤𝑤𝑗𝑗,1 (km) 250 200 550 

𝑓𝑓𝑗𝑗  (10-5s-1) 8.28 9.24 10.10 

ℎ𝑗𝑗 (m) 99 2039 1783 

𝑁𝑁𝑗𝑗 22 69 34 

 

In addition to the parameters listed in Table 1, we need to estimate the parameters 𝜇𝜇M2  and 𝜇𝜇K1 as defined by Eq. (4). 

Since M2 has the largest tidal current in the KS (Teague et al., 2001), and we assume that the tidal currents are rectilinear, the 

linearized frictional coefficient for M2 is approximately equal to the following, after Pingree and Griffiths (1981), Fang (1987) 15 

and Inoue and Garrett (2007), 
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𝛾𝛾𝑀𝑀2 ≈
𝐶𝐶𝐷𝐷
ℎ

8
3𝜋𝜋
𝑈𝑈𝑀𝑀2 �1 + 3

4
∑ 𝜖𝜖𝑖𝑖2𝑖𝑖=2,3,… � ,                                                              (26) 

where 𝐶𝐶𝐷𝐷 is the drag coefficient and 𝑈𝑈𝑀𝑀2  is the tidal current amplitude of M2, 𝜖𝜖𝑖𝑖 = 𝑈𝑈𝑖𝑖/𝑈𝑈𝑀𝑀2 , with 𝑈𝑈𝑖𝑖 representing the tidal 

current amplitude of the constituent i (here, we designate i=1 for M2 and i=2, 3, … for any constituents other than M2). 

According to Fang (1987) and Inoue and Garrett (2007), the linearized frictional coefficient for the non-dominant constituent 

i is approximately equal to the following: 5 

𝛾𝛾𝑖𝑖 ≈
𝐶𝐶𝐷𝐷
ℎ

4
𝜋𝜋
𝑈𝑈𝑀𝑀2 �1 + 𝜖𝜖𝑖𝑖

2

8
+ 1

4
∑ 𝜖𝜖𝑘𝑘2𝑘𝑘=2,3,…

𝑘𝑘≠𝑖𝑖    
� ,                                                            (27) 

Inserting Eqs. (26) and (27) into Eq. (4), we can obtain the parameter 𝜇𝜇. Teague et al. (2001) provided tidal current harmonic 

constants at 10 mooring stations along two cross-sections in the KS. The averaged values of the major semi-axes of the tidal 

current ellipses at these stations are 0.154, 0.119, 0.101 and 0.062 m/s for M2, K1, O1 and S2, respectively. Here, we use these 

values and 𝐶𝐶𝐷𝐷 ≈ 0.0026 to estimate the parameters in Eqs. (26) and (27). Then, after inserting these values into Eq. (4), we 10 

obtain rough estimates of 𝜇𝜇𝑀𝑀2  and 𝜇𝜇𝐾𝐾1 for the KS (Area1), which are approximately 0.05 and 0.09, respectively. Since the 

JS is much deeper and has much weaker tidal currents than the KS, we simply let 𝜇𝜇𝐾𝐾1 = 𝜇𝜇𝑀𝑀2 = 0 for both Area2 and Area3. 

For the collocation approach, we take 10 km as the spacing between collocation points. Thus in this model, a total of 198 

collocation points are used to establish 256 equations, and the parameters of 3 pairs of Kelvin waves and 125 pairs of Poincaré 

modes can be obtained. Along the open boundary of the KS, the open boundary condition Eq. (8) is employed, with the value 15 

of 𝜁𝜁 equal to the observed harmonic constants from the global tide model DTU10 (Cheng and Anderson, 2011). Along the 

cross-sections connecting Area1 with Area2 and Area2 with Area3, the matching conditions Eq. (9) are applied. Along the 

solid cross-sections, condition Eq. (6) is used. 

3.2 Model results and validation 

The obtained analytical solutions of the K1 and M2 tides using the extended Taylor method are shown in Fig.5a and 5b, 20 

respectively. The maximum amplitude of the K1 tide is 0.34 m, which appears at the southwest corner of the KS. The amplitude 

decreases from southwest to northeast, and a counter-clockwise tidal wave system occurs in the northeast part of the KS, with 

amplitudes less than 0.05 m near the amphidromic point. A co-tidal line with a phase lag of 210° runs from the amphidromic 

point in the KS into the southwest JS. 
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Figure 5: Comparison of tidal system charts. (a) K1 and (b) M2 tides from the present analytical model; and (c) K1 and (d) M2 tides 

from DTU10 (Chen and Andersen, 2011). 

 

Figure 6: Comparison of model results (blue) and observations based on DTU10 (orange) along the coasts. (a) K1 amplitudes; (b) K1 5 
phase lags; (c) M2 amplitudes; and (d) M2 phase lags. The locations of the points A, B, … , J are shown in Fig. 4. 

 

The maximum amplitude of the M2 tide is 1.02 m, which appears at the westernmost corner of the KS. The amplitude 

decreases gradually from southwest to northeast along the direction of the strait, and the amphidromic point occurs at the 

junction of the KS and JS. The amplitudes near the amphidromic point are lower than 0.1 m, and the phase lags in the most 10 

part of the JS vary from 150° to 210°. The comparison with the tidal charts based on data from DTU10 (Fig.5c, d) shows that 

the model-produced tidal systems agree fairly well with the observations. 
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To quantitatively validate the model results, we first extract the data along the solid boundary of the model for comparison 

as shown in Fig.6. For the K1 tide, the model-produced amplitudes and phase lags along the boundary in the JS both agree well 

with the observed data, although small differences occur at the northern corner of the JS. For the M2 tide, the greatest phase-

lag errors are approximately 70° at the northernmost corner of the JS due to the existence of a degenerated amphidromic point 

near this area (Fig. 2b). 5 

For further validation, we select 16 tide gauge stations where harmonic constants are available from the International 

Hydrographic Bureau (1930). The station locations are shown in Fig. 4. The result of the comparison is given in Table 2, which 

also shows that the model results are consistent with the data obtained from gauge observations: the RMS (root mean square) 

differences of amplitudes of K1 and M2 are 0.014 and 0.031 m, respectively; and those of the phase lags are 7.4° and 6.4°, 

respectively. 10 

Table 2. Comparison between harmonic constants from the observations and models at coastal tide gauge stations.  

No Station Name 

K1 M2 

Amplitude (m) Phase lag (°) Amplitude (m) Phase lag (°) 

obs model obs model obs model obs model 

1 Reisui Ko 0.21 0.20 50 38 1.02 0.93 357 10 

2 Toei Ko 0.16 0.11 46 38 0.80 0.77 355 2 

3 Takesiki Ko, Aso Wan 0.12 0.11 83 87 0.66 0.66 1 6 

4 Aokata 0.23 0.23 90 85 0.80 0.81 356 358 

5 Konoura, Uku Sima 0.20 0.22 92 88 0.78 0.79 354 2 

6 Usuka Wan, Hirado Sima 0.19 0.21 102 97 0.74 0.78 2 7 

7 Kottoi 0.12 0.13 174 157 0.32 0.33 31 32 

8 Sitirui 0.04 0.05 206 213 0.06 0.03 152 156 

9 Nakai Iri,Hoku Wan 0.06 0.05 215 216 0.07 0.06 172 169 

10 Ryotu Ko, Sado 0.05 0.06 211 217 0.05 0.06 181 172 

11 Kamo Ko 0.06 0.06 211 217 0.07 0.07 174 173 

12 Akita 0.06 0.06 220 217 0.05 0.07 174 174 

13 Hamamasu 0.05 0.06 211 220 0.05 0.08 185 179 

14 Zyosin Ko 0.06 0.05 227 226 0.08 0.05 187 194 

15 Sokcho 0.04 0.05 236 228 0.07 0.05 189 199 

16 Uturyo To 0.04 0.05 222 226 0.04 0.04 194 193 

RMS difference 0.014 7.4 0.031 6.4 
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Although the theoretical model greatly simplifies the topography and boundary, the amplitude and phase-lag differences of 

these two tidal constituents are very small in the KS and its surroundings and the basic characteristics of the tidal patterns are 

well retained (Fig. 5). These findings show that the simplification of the model is reasonable and the extended Taylor method 

is appropriate for modelling the tides in the KS-JS basin. Therefore, it is meaningful to use the model results for theoretical 

analysis. 5 

3.3 Tidal waves in the Korea Strait 

To reveal the relative importance of the Kelvin waves versus Poincaré modes in the modelled Korea Strait, the superposition 

of Kelvin waves and that of the Poincaré modes are given in the upper panels of Fig.7 for K1 and in the upper panels of Fig.8 

for M2. 

For the K1 tide in the KS, the superposition of the incident (northeastward) and the reflected (southwestward) Kelvin waves 10 

appears as a counter-clockwise amphidromic system, with the amphidromic point located near the middle of the strait, but 

closer to the southeast coast of Korea (Fig.7a). The highest amplitude of the superposed Kelvin waves is 0.3 m, and the mean 

difference from the observations is less than 0.03 m. The superposition of all Poincaré modes has amplitudes of approximately 

0.1 m near the cross-sections on both left and right sides, and a counter-clockwise amphidromic point exists nearly at the centre 

of the strait (Fig. 7b). Since the amplitudes of the superposed Poincaré modes are significantly smaller than those of the 15 

superposed Kelvin waves, the latter can basically represent the total tidal pattern, including the counter-clockwise amphidromic 

system. 

For the M2 tide, the highest amplitude of the superposition of two Kelvin waves is approximately 0.96 m, which appears at 

the southwest corner of the strait (Fig. 8a). The amplitude decreases from southwest to northeast along the strait, and the 

amphidromic point appears near the cross-section connecting to the JS, where a topographic step exists. The maximum 20 

deviation of the amplitudes of the superposed Kelvin waves from the observations is 0.06 m, and the structure of the superposed 

Kelvin waves is consistent with the observation. The amplitudes of the superposed Poincaré modes are generally less than 0.2 

m on both left and right sides of the KS, and they decay rapidly towards the middle of the strait, thus forming a counter-

clockwise amphidromic system structure (Fig. 8b). Therefore, the M2 tide in the KS is also mainly controlled by Kelvin waves. 

The above results show that the Poincaré modes only exist along the open boundary and the connecting cross-section and 25 

their amplitudes quickly approach to zero away from these cross-sections. In fact, these properties of the Poincaré wave are 

inherent in any narrow strait. Therefore, in the following, we will focus on Kelvin waves and analyze the characteristics of the 

incident (northeastward) and reflected (southwestward) Kelvin waves. 

The incident and reflected K1 Kelvin waves are shown in Figs. 7c and 7d, respectively. The area-mean amplitude of the 

incident Kelvin wave in the KS is 0.253 m, and that of the reflected Kelvin wave is 0.196 m, which is 77% of the incident 30 
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Kelvin wave. On the connecting cross-section, the section-mean amplitude of the incident Kelvin wave is 0.249 m, and the 

section-mean phase lag is 151.3°. The section-mean amplitude of the reflected Kelvin wave is 0.199 m, which is 80% of the 

incident Kelvin wave. The section-mean phase lag is 294.2°, indicating that the phase lag increases by 142.9° when the wave 

is reflected. The amphidromic point of the superposed Kelvin wave is 145 km away from the step and close to the northwest 

shore of the KS. 5 

The incident and reflected M2 Kelvin waves are shown in Figs. 8c and 8d, respectively. The area-mean amplitude of the 

incident Kelvin wave in the KS is 0.466 m, and that of the reflected Kelvin wave is 0.443 m, which is 95% of the incident 

Kelvin wave. This ratio is larger than the K1 tide because the bottom friction of M2 is smaller and less energy is lost in the 

propagation process. On the connecting cross-section, the mean amplitude of the incident Kelvin wave is 0.457 cm, and the 

phase lag is 97.7°. The mean amplitude of the reflected Kelvin wave is 0.452 m, which is 99% of the incident Kelvin wave, 10 

and the phase lag is approximately 266.8°, with a phase-lag increase of 169.1°, which is closer to 180° as compared to the 

corresponding value of the K1 tide. Accordingly, the M2 amphidromic point of the superposed Kelvin wave shifts to 

approximately 20 km away from the step. A comparison between Fig. 7a and Fig. 8a shows that the amphidromic point of K1 

is located west of that of M2. This result reproduces well the observed phenomenon as seen from Fig. 2. 

The above results indicate that the relation of the amplitudes and phase lags of the reflected Kelvin wave with the incident 15 

wave plays a decisive role in the tidal system in the KS, especially in the formation of amphidromic points, for both the K1 

and M2 tides. 
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Figure 7: Decomposed charts for the model-produced K1 tide in the Korea Strait: (a) contribution of Kelvin waves; (b) contribution 

of Poincaré modes; (c) northeastward (incident) Kelvin wave; and (d) southwestward (reflected) Kelvin wave. 

 

Figure 8: Same as in Fig. 7 but for M2. 5 
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4 Discussion on the formation mechanism of amphidromic points 

To explore the tidal dynamics of the KS–JS basin, especially the formation mechanism of amphidromic points, we consider 

the simplest case: a one-dimensional tidal model in channels. In the one-dimensional case, the amphidromic point is equivalent 

to the wave node. As previously mentioned, an important feature of the topography of the KS–JS basin is that there is a sharp 

continental slope between the KS and JS, and to northeast of this slope, the JS is much deeper and wider than the KS. Thus, 5 

the channel is idealized to contain two areas, with the first one (Area1) having uniform depth ℎ1 and uniform width 𝑊𝑊1 and 

the second one (Area2) having uniform depth ℎ2 and uniform width 𝑊𝑊2. Therefore, the idealized channel contains abrupt 

changes in depth and width at the connection of these two areas. An incident wave enters the first area and propagates toward 

the second area passing over the topographic step. For simplicity, we neglect friction. 

Dean and Dalrymple (1984) have presented a solution for a tidal waves travelling in such a channel; however, in their study, 10 

the wave was allowed to radiate out from the second area freely, which implies that the second area is assumed to be semi-

infinitely long. Their solution shows that a part of the wave is reflected at the connecting point and another part is transmitted 

into the second area. The amplitude of the transmitted wave is 

𝐻𝐻𝑇𝑇 = 𝜅𝜅𝑇𝑇𝐻𝐻𝐼𝐼 ,                                                                                  (28) 

where 𝐻𝐻𝐼𝐼  is the amplitude of the incident wave and 𝜅𝜅𝑇𝑇 is called the transmission coefficient, which is equal to 15 

𝜅𝜅𝑇𝑇 = 2
1+𝜌𝜌

 ,                                                                                   (29) 

where 

𝜌𝜌 = 𝑐𝑐2𝑊𝑊2
𝑐𝑐1𝑊𝑊1

= �ℎ2
�ℎ1

𝑊𝑊2
𝑊𝑊1

                                                                             (30) 

with 𝑐𝑐𝑗𝑗 = �𝑔𝑔ℎ𝑗𝑗   representing the wave speed in the j-th area, 𝑗𝑗 = 1, 2. 𝑐𝑐𝑗𝑗 is in fact proportional to �ℎ𝑗𝑗. The amplitude of 

the reflected wave 𝐻𝐻𝑅𝑅 is 20 

𝐻𝐻𝑅𝑅 = 𝜅𝜅𝑅𝑅𝐻𝐻𝐼𝐼                                                                                   (31) 

where 𝜅𝜅𝑅𝑅 is called the reflection coefficient, and is equal to the following: 

𝜅𝜅𝑅𝑅 = 1−𝜌𝜌
1+𝜌𝜌

                                                                                    (32) 

If ρ > 1, namely, if �ℎ2𝑊𝑊2 > �ℎ1𝑊𝑊1, then 𝜅𝜅𝑅𝑅 < 0, (32) can be rewritten in the form 

𝜅𝜅𝑅𝑅 = 𝜌𝜌−1
𝜌𝜌+1

exp (−𝑖𝑖𝜋𝜋).                                                                           (33) 25 

The above equation indicates that at the connecting point, the reflected wave changes its phase lag by 180°. Therefore, the 

superposition of incident and reflected waves in Area1 has the minimum amplitude at the connecting point. This theory 

explains how the reflected wave can be generated by abrupt increases in water depth and basin width, and why the reflected 

wave there has a phase lag opposite to the incident wave. 
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The complete solution for this case is as follows (see Appendix for derivation): 

�

 
𝜁𝜁(𝑥𝑥) = 𝐻𝐻𝐼𝐼 �exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]} + 𝜌𝜌−1

𝜌𝜌+1
exp {−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 𝜋𝜋]}� , 𝑙𝑙1 ≪ 𝑥𝑥 ≪ 𝑙𝑙2

𝜁𝜁(𝑥𝑥) = 2
1+𝜌𝜌

𝐻𝐻𝐼𝐼 exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2) + 𝜒𝜒1 + 𝜃𝜃1]},                                      𝑙𝑙2 ≪ 𝑥𝑥
          (34) 

where 𝜃𝜃1 represents the phase lag of the incident wave at the opening of Area1; 𝑘𝑘𝑗𝑗 = 𝜎𝜎/𝑐𝑐𝑗𝑗 is the wave number, with 𝑐𝑐𝑗𝑗 =

�𝑔𝑔ℎ𝑗𝑗 representing the wave speed in Areaj, j=1, 2; and 𝜒𝜒1 = 𝑘𝑘1𝐿𝐿1. This solution for the K1 and M2 constituents for h1=99 m, 

L1=350 km, W1=230 km, h2=2039 m, and W2=700 km is plotted with the blue curves in Fig. 9. 5 

However, Sect. 3.3 shows that the phase-lag changes of the reflected waves relative to the incident waves are not exactly 

equal to 180° but rather are smaller than 180°, and the discrepancy increases with the decreasing angular frequency. To explain 

this discrepancy, we improve the above theory by introducing the reflected wave in the second area. In fact, the JS is represented 

with a semi-closed area in the two-dimensional model (Sect. 3.1), namely, all boundaries except those connected to KS are 

solid ones (Fig. 4). Therefore, in the following one-dimensional model, the second area is closed at its right end so that the 10 

reflection will occur at this end. In this case, the solution becomes more complicated and is dependent on the length of the 

second area 𝐿𝐿2. The reflection coefficient 𝜅𝜅𝑅𝑅 now has the following form (see Appendix for derivation): 

𝜅𝜅𝑅𝑅 = exp(−𝑖𝑖2𝛿𝛿).                                                                              (35) 

in which 𝛿𝛿 is determined by the following equations: 

�
cos δ = 1+cos2𝜒𝜒2

[(1+cos 2𝜒𝜒2)2+(𝜌𝜌 sin 2𝜒𝜒2)2]1/2 ,

sin δ = 𝜌𝜌 sin2𝜒𝜒2
[(1+cos2𝜒𝜒2)2+(𝜌𝜌 sin 2𝜒𝜒2)2]1/2 ,

                                                               (36) 15 

where 𝜒𝜒2 = 𝑘𝑘2𝐿𝐿2.  

The complete solution for this case is as follows: 

�
 

𝜁𝜁(𝑥𝑥) = 𝐻𝐻𝐼𝐼(exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]} + exp {−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 2𝛿𝛿]}),                 𝑙𝑙1 ≪ 𝑥𝑥 ≪ 𝑙𝑙2
𝜁𝜁(𝑥𝑥) = 𝜖𝜖𝐻𝐻𝐼𝐼(exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]} + exp{−𝑖𝑖[−𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(2𝜒𝜒2 + 𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]}), 𝑙𝑙2 ≪ 𝑥𝑥 ≪ 𝑙𝑙3

 

                                                                                            (37) 

where ε = 2𝐸𝐸−1. 𝐸𝐸 and 𝜙𝜙 are determined by the following relations: 20 

�𝐸𝐸 cos𝜙𝜙 = (𝜌𝜌 + 1) − (𝜌𝜌 − 1) cos 2𝜒𝜒2 ,
𝐸𝐸 cos𝜙𝜙 = (𝜌𝜌 − 1) sin 2𝜒𝜒2.                                                                      (38) 

The first terms on the rhs (right-hand side) of the two equations in Eq. (37) represent the waves propagating in the positive 

x direction, and the second terms are those propagating in the negative x direction. This solution for the K1 and M2 constituents 

for the case h1=99 m, L1=350 km, W1=230 km, h2=2039 m, L2=1150 km, and W2=700 km is plotted with the red curves in Fig. 

9. 25 

Equation (35) indicates that the amplitude of the reflected wave in the first area is equal to that of the incident wave. This 

result is natural because friction is not considered and no dissipation is present during wave propagation. Equation (35) also 

indicates that the phase lag of the reflected wave at the connecting point is greater than that of the incident wave at the same 
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point by 2𝛿𝛿. Since the node of the superposition of the incident and reflected waves appears at the place where the phase lags 

of these two waves are opposite, the first node should appear at ∆𝑥𝑥 away from the connecting point with 

∆𝑥𝑥 = (π − 2δ)/(2𝑘𝑘1).                                                                          (39) 

The above relationship can also be obtained from the first equation of Eq. (37). The dependence of 2𝛿𝛿 on σ for the case 

h1=99 m, L1=350 km, W1=230 km, h2=2039 m, L2=1150 km, and W2=700 km is plotted in Fig. 10. This figure shows that 5 

2𝛿𝛿 = 0 when σ = 0 and 2𝛿𝛿 increases with increasing σ, although it is always less than 180°. In particular, 2𝛿𝛿 = 167.7° 

when 𝜎𝜎 = 𝜎𝜎𝐾𝐾1 and 2𝛿𝛿 = 176.2° when 𝜎𝜎 = 𝜎𝜎𝑀𝑀2. Based on this theory, the M2 and K1 amphidromic points should be located 

at 7.4 and 45.9 km away from the connecting point, respectively. Compared with the two-dimensional model results given in 

Sect. 3.3, this theory roughly explains one third of the changes. The remaining two third of the changes can be attributed to 

the effect of Coriolis force. The solution of phase-lag changes at the cross-section in the two-dimensional rotating basin 10 

involves interactions among three Kelvin waves (an incident and a reflected Kelvin waves in Area1 and a transmitted Kelvin 

wave in Area2) and two families of Poincaré modes at the connecting cross-section (one family in each area). Taylor (1922), 

Fang and Wang (1966), and Thiebaux (1988) have studied the Kelvin-wave reflection at the closed cross-section of semi-

infinite rotating two-dimensional channels. In their studies, only two Kelvin waves and one family of Poincaré modes were 

involved. In comparison to their studies, the present problem is much more complicated. Because of the complexity of the 15 

problem, we will presently leave it for a future study. 

 

 

Figure 9: Amplitude distribution along the channel. (a) K1 and (b) M2. Blue/red curves are solutions for semi-infinite/finite Area2. 

The red arrow indicates the position of the connecting point between the Korea Strait and the Japan Sea. Amplitudes are given as 20 
ratios to the incident wave in Area1. 
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Figure 10: Phase-lag increase of the reflected wave relative to the incident wave as a function of the angular frequency at the 

connecting point. See the text for details. 

5 Summary 

In this paper, we establish a theoretical model for the KS-JS basin using the extended Taylor method. The model idealizes the 5 

study region as three connected flat rectangular areas, incorporates the effects of the Coriolis force and bottom friction in the 

governing equations and is forced by observed tides at the opening of the KS. The analytical solutions of the K1 and M2 tidal 

waves are obtained using Defant’s collocation approach. 

The theoretical model results are consistent with the satellite altimeter and tidal gauge observations, which indicates that the 

model is suitable and correct. The model well reproduces the K1 and M2 tidal systems in the KS. In particular, the model-10 

produced locations of the K1 and M2 amphidromic points are consistent with the observed ones. 

The model solution provides the following insights into the tidal dynamics in the KS. (1) The tidal system in each rectangular 

area can be decomposed into two oppositely travelling Kelvin waves and two families of Poincaré modes, with Kelvin waves 

dominating the tidal system due to narrowness of the area. (2) The incident Kelvin wave from the ECS through the opening of 

the KS travels toward the JS and is reflected at the connecting cross-section between the KS and JS, where abrupt increases 15 

from the KS to JS in water depth and basin width occur. (3) The phase lag of the reflected wave at the connecting cross-section 

increases by less than 180° relative to that of the incident wave, thus enabling the formation of the amphidromic points in the 

KS. (4) The phase-lag increase of the reflected wave relative to the incident wave is dependent on the angular frequency of the 

wave and becomes smaller as the angular frequency decreases. This feature explains why the K1 amphidromic point is located 

farther away from the connecting cross-section in comparison to the M2 amphidromic point. 20 

  A one-dimensional model is also given in this paper to reveal the underlying basic dynamics of tides in the KS. 
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Appendix: Tidal wave propagation in channels with abrupt depth/width changes. 

a. Basic Equations 

We study tidal wave propagation in channels with abrupt depth/width changes. To be specific, we consider a one-dimensional 

problem corresponding to the model shown in Fig. 3. For simplicity, Area3 is combined into Area2, and the Coriolis force and 

friction are neglected, then Eqs. (10) and (11) in the Sect. 2.2 of the text can be simplified as follows: 5 

𝑢𝑢1,−(𝑥𝑥) = −𝑎𝑎1 exp[𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                  (A1) 

𝜁𝜁1,−(𝑥𝑥) = 𝑝𝑝1𝑎𝑎1 exp[𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                  (A2) 

𝑢𝑢1,+(𝑥𝑥) = 𝑏𝑏1 exp[−𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                  (A3) 

𝜁𝜁1,+(𝑥𝑥) = 𝑝𝑝1𝑏𝑏1 exp[−𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                (A4) 

𝑢𝑢2,−(𝑥𝑥) = −𝑎𝑎2 exp[𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                                 (A5) 10 

𝜁𝜁2,−(𝑥𝑥) = 𝑝𝑝2𝑎𝑎2 exp[𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                                 (A6) 

𝑢𝑢2,+(𝑥𝑥) = 𝑏𝑏2 exp[−𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                                 (A7) 

𝜁𝜁2,+(𝑥𝑥) = 𝑝𝑝2𝑏𝑏2 exp[−𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                               (A8) 

where 𝑘𝑘𝑗𝑗 = 𝜎𝜎/𝑐𝑐𝑗𝑗 is the wave number, with 𝑐𝑐𝑗𝑗 = �𝑔𝑔ℎ𝑗𝑗 representing the wave speed in Areaj, j=1, 2; 𝑝𝑝𝑗𝑗 = �ℎ𝑗𝑗/𝑔𝑔; 𝑙𝑙1 is the 

𝑥𝑥 coordinate at the opening of Area1; and 𝑙𝑙2 = 𝑙𝑙1 + 𝐿𝐿1 is the 𝑥𝑥 coordinate of the connecting point of Area1 and Area2, 15 

where an abrupt change in depth and/or width occurs. In Eqs. (A1) to (A8), we have changed the notations 𝑢𝑢𝑗𝑗,1, 𝜁𝜁𝑗𝑗,1, 𝑢𝑢𝑗𝑗,2 and 

𝜁𝜁𝑗𝑗,2 from Eqs. (10) and (11) to 𝑢𝑢𝑗𝑗,−, 𝜁𝜁𝑗𝑗,−, 𝑢𝑢𝑗𝑗,+, and 𝜁𝜁𝑗𝑗,+ (j=1, 2), respectively, to indicate the directions of wave propagation. 

That is, 𝜁𝜁𝑗𝑗,+(𝑥𝑥) and 𝑢𝑢𝑗𝑗,+(𝑥𝑥) represent the complex amplitudes of tidal level and tidal current of the tidal waves that travel in 

the positive x direction in Areaj, respectively; and 𝜁𝜁𝑗𝑗,−(𝑥𝑥) and 𝑢𝑢𝑗𝑗,−(𝑥𝑥) represent those travelling in the negative x direction 

in Areaj, respectively.  20 

The open boundary condition at 𝑥𝑥 = 𝑙𝑙1 can be specified as follows: 

𝜁𝜁1,+(𝑙𝑙1) = 𝐻𝐻𝐼𝐼exp (−𝑖𝑖𝜃𝜃1),                                                                       (A9) 

where 𝐻𝐻𝐼𝐼  and 𝜃𝜃1 represent the amplitude and phase lag of the incident wave at the opening of Area1, respectively. From Eqs. 

(A9) and (A4) we obtain 

𝑝𝑝1𝑏𝑏1 = 𝐻𝐻𝐼𝐼exp (−𝑖𝑖𝜃𝜃1),                                                                        (A10) 25 

and 

𝜁𝜁1,+(𝑥𝑥) = 𝐻𝐻𝐼𝐼exp{−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]}.                                                          (A11) 

Therefore, 

𝜁𝜁1,+(𝑙𝑙2) = 𝐻𝐻𝐼𝐼exp [−𝑖𝑖(𝜒𝜒1 + 𝜃𝜃1)],                                                                (A12) 

where 30 

𝜒𝜒1 = 𝑘𝑘1𝐿𝐿1.                                                                                 (A13) 
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The matching conditions at 𝑥𝑥 = 𝑙𝑙2 = 𝑙𝑙1 + 𝐿𝐿1 are as follows: 

𝜁𝜁1,+(𝑙𝑙2) + 𝜁𝜁1,−(𝑙𝑙2) = 𝜁𝜁2,+(𝑙𝑙2) + 𝜁𝜁2,−(𝑙𝑙2),                                                         (A14) 

and 

�𝑢𝑢1,+(𝑙𝑙2) + 𝑢𝑢1,−(𝑙𝑙2)�ℎ1𝑊𝑊1 = [𝑢𝑢2,+(𝑙𝑙2) + 𝑢𝑢2,−(𝑙𝑙2)]ℎ2𝑊𝑊2.                                            (A15) 

To use the relationship among tidal elevations instead of tidal currents, we multiply Eq. (A15) by 𝑝𝑝1/ℎ1𝑊𝑊1 and obtain 5 

𝜁𝜁1,+(𝑙𝑙2) − 𝜁𝜁1,−(𝑙𝑙2) = 𝜌𝜌[𝜁𝜁2,+(𝑙𝑙2) − 𝜁𝜁2,−(𝑙𝑙2)],                                                      (A16) 

where 

𝜌𝜌 = 𝑝𝑝1ℎ2𝑊𝑊2
𝑝𝑝2ℎ1𝑊𝑊1

= �ℎ2𝑊𝑊2
�ℎ1𝑊𝑊1

 .                                                                        (A17) 

b. Solution for the case with semi-infinite Area2 

Here, we first investigate a simpler case that has been previously studied by Dean and Dalrymple (1984). In this case, Area2 10 

is assumed to be semi-infinitely long so that the wave can propagate freely in the positive x direction without reflection, 

meaning that 𝑎𝑎2 = 0. Thus, the terms 𝜁𝜁2,− in Eqs. (A6), (A14) and (A16) are all equal to zero. From Eqs. (A14) and (A16) 

with 𝜁𝜁2,−(𝑙𝑙2) = 0 we obtain 

𝜁𝜁1,−(𝑙𝑙2) = 𝜅𝜅𝑅𝑅𝜁𝜁1,+(𝑙𝑙2),                                                                        (A18) 

and 15 

𝜁𝜁2,+(𝑙𝑙2) = 𝜅𝜅𝑇𝑇𝜁𝜁1,+(𝑙𝑙2),                                                                         (A19) 

where 𝜅𝜅𝑅𝑅 and 𝜅𝜅𝑇𝑇 are called reflection and transmission coefficient respectively. These coefficients are equal to the following: 

𝜅𝜅𝑅𝑅 = 1−𝜌𝜌
1+𝜌𝜌

 ,                                                                                 (A20) 

and 

𝜅𝜅𝑇𝑇 = 2
1+𝜌𝜌

 ,                                                                                 (A21) 20 

If ρ > 1, namely, if �ℎ2𝑊𝑊2 > �ℎ1𝑊𝑊1, then 𝜅𝜅𝑅𝑅 < 0. It is more desired to write Eq. (A20) in the following form: 

𝜅𝜅𝑅𝑅 = 𝜌𝜌−1
𝜌𝜌+1

exp (−𝑖𝑖𝜋𝜋),                                                                          (A22) 

which is Eq. (33) in the text. 

  From Eqs. (A2), (A12), (A18) and (A22) we obtain 

𝜁𝜁1,−(𝑥𝑥) = 𝜌𝜌−1
𝜌𝜌+1

𝐻𝐻𝐼𝐼exp{−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 𝜋𝜋]},                                              (A23) 25 

and from Eqs. (A8), (A12), (A19) and (A21) we obtain 

𝜁𝜁2,+(𝑥𝑥) = 2
1+𝜌𝜌

𝐻𝐻𝐼𝐼 exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2) + 𝜒𝜒1 + 𝜃𝜃1]}.                                                    (A24) 

Finally, we obtain the following solution: 
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�

 
𝜁𝜁(𝑥𝑥) = 𝐻𝐻𝐼𝐼 �exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]} + 𝜌𝜌−1

𝜌𝜌+1
exp {−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 𝜋𝜋]}� , 𝑙𝑙1 ≪ 𝑥𝑥 ≪ 𝑙𝑙2,

𝜁𝜁(𝑥𝑥) = 2
1+𝜌𝜌

𝐻𝐻𝐼𝐼 exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2) + 𝜒𝜒1 + 𝜃𝜃1]},                                      𝑙𝑙2 ≪ 𝑥𝑥,
        (A25) 

which is Eq. (34) in the text. 

c. Solution for the case with finite Area2 

In the following, we investigate a more complicated case that is more suitable to the KS-JS basin. In this case, Area2 is closed 

at its right end, and a boundary condition is thus involved: 5 

𝑢𝑢2,+(𝑙𝑙2 + 𝐿𝐿2) + 𝑢𝑢2,−(𝑙𝑙2 + 𝐿𝐿2) = 0.                                                               (A26) 

From Eqs. (A5) to (A8), we see that Eq. (A26) is equivalent to the following: 

𝜁𝜁2,+(𝑙𝑙2 + 𝐿𝐿2) − 𝜁𝜁2,−(𝑙𝑙2 + 𝐿𝐿2) = 0.                                                               (A27) 

This further gives us 

𝑏𝑏2 = 𝑎𝑎2 exp (𝑖𝑖2𝜒𝜒2),                                                                          (A28) 10 

where 

𝜒𝜒2 = 𝑘𝑘2𝐿𝐿2.                                                                                 (A29) 

Hence we have 

𝜁𝜁2,−(𝑙𝑙2) = 𝜁𝜁2,+(𝑙𝑙2)exp (−𝑖𝑖2𝜒𝜒2).                                                                (A30) 

Therefore, Eqs. (A14) and (A16) can be rewritten in the following respective forms: 15 

𝜁𝜁1,+(𝑙𝑙2) + 𝜁𝜁1,−(𝑙𝑙2) = [1 + exp(−𝑖𝑖2𝜒𝜒2)]𝜁𝜁2,+(𝑙𝑙2),                                                   (A31) 

and 

𝜁𝜁1,+(𝑙𝑙2) − 𝜁𝜁1,−(𝑙𝑙2) = 𝜌𝜌[1 − exp(−𝑖𝑖2𝜒𝜒2)]𝜁𝜁2,+(𝑙𝑙2).                                                  (A32) 

Eliminating 𝜁𝜁2,+(𝑙𝑙2) in above two equations results in 

𝜁𝜁1,−(𝑙𝑙2) = [1+exp(−𝑖𝑖2𝜒𝜒2)]−𝜌𝜌[1−exp(−𝑖𝑖2𝜒𝜒2)]
[1+exp(−𝑖𝑖2𝜒𝜒2)]+𝜌𝜌[1−exp(−𝑖𝑖2𝜒𝜒2)]

𝜁𝜁1,+(𝑙𝑙2).                                                    (A33) 20 

A few steps of algebra give us 

1−exp(−𝑖𝑖2𝜒𝜒2)
1+exp(−𝑖𝑖2𝜒𝜒2)

= 𝑖𝑖sin 2𝜒𝜒2
1+cos 2𝜒𝜒2

 .                                                                     (A34) 

Substitution of Eq. (A34) in Eq. (A33) yields 

𝜁𝜁1,−(𝑙𝑙2) = 1+cos 2𝜒𝜒2−𝑖𝑖𝜌𝜌sin 2𝜒𝜒2
1+cos 2𝜒𝜒2+𝑖𝑖𝜌𝜌sin 2𝜒𝜒2

𝜁𝜁1,+(𝑙𝑙2).                                                            (A35) 

Let 25 

�
cos δ = 1+cos2𝜒𝜒2

[(1+cos 2𝜒𝜒2)2+(𝜌𝜌 sin 2𝜒𝜒2)2]1/2 ,

sin δ = 𝜌𝜌 sin 2𝜒𝜒2
[(1+cos2𝜒𝜒2)2+(𝜌𝜌 sin2𝜒𝜒2)2]1/2 ,

                                                             (A36) 

then (A35) reduces to 
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𝜁𝜁1,−(𝑙𝑙2) = 𝜁𝜁1,+(𝑙𝑙2) exp(−𝑖𝑖2𝛿𝛿),                                                                 (A37) 

which is an equivalent form of Eq. (34) in the text. 

From Eqs. (A4) and (A10) we have 

𝜁𝜁1,+(𝑥𝑥) = 𝐻𝐻𝐼𝐼exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]},                                                          (A38) 

and from Eqs. (A12) and (A37) we have 5 

𝜁𝜁1,−(𝑙𝑙2) = 𝐻𝐻𝐼𝐼 exp[−𝑖𝑖(𝜒𝜒1 + 𝜃𝜃1 + 2𝛿𝛿)].                                                            (A39) 

Meanwhile, Eq. (A2) gives us 

𝜁𝜁1,−(𝑙𝑙2) = 𝑝𝑝1𝑎𝑎1 exp(𝑖𝑖𝜒𝜒1).                                                                      (A40) 

Comparison of Eq. (A40) with Eq. (A39) gives 

𝑝𝑝1𝑎𝑎1 = 𝐻𝐻𝐼𝐼 exp[−𝑖𝑖(2𝜒𝜒1 + 𝜃𝜃1 + 2𝛿𝛿)].                                                             (A41) 10 

On substituting Eq. (41) into Eq. (A2) we have 

𝜁𝜁1,−(𝑥𝑥) = 𝐻𝐻𝐼𝐼 exp{−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 2𝛿𝛿]}.                                               (A42) 

  From Eqs. (A31) and (A32) we obtain 

𝜁𝜁2,+(𝑙𝑙2) = 2[(𝜌𝜌 + 1) − (𝜌𝜌 − 1) cos 2𝜒𝜒2 + 𝑖𝑖(𝜌𝜌 − 1) sin 2𝜒𝜒2]−1𝜁𝜁1,+(𝑙𝑙2).                                  (A43) 

Let 15 

�𝐸𝐸 cos𝜙𝜙 = (𝜌𝜌 + 1) − (𝜌𝜌 − 1) cos 2𝜒𝜒2 ,
𝐸𝐸 sin𝜙𝜙 = (𝜌𝜌 − 1) sin 2𝜒𝜒2,                                                                     (A44) 

and 

ε = 2𝐸𝐸−1,                                                                                   (A45) 

then (A43) reduces to 

𝜁𝜁2,+(𝑙𝑙2) = εexp (−𝑖𝑖𝜙𝜙)𝜁𝜁1,+(𝑙𝑙2).                                                                  (A46) 20 

Inserting Eq. (A12) into Eq. (A46) yields 

𝜁𝜁2,+(𝑙𝑙2) = ε𝐻𝐻𝐼𝐼exp [−𝑖𝑖(𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)].                                                            (A47) 

From Eq. (A8), we know that 𝑝𝑝2𝑏𝑏2 = 𝜁𝜁2,+(𝑙𝑙2), thus we further have 

𝜁𝜁2,+(𝑥𝑥) = ε𝐻𝐻𝐼𝐼exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]}.                                                 (A48) 

Likewise, we can obtain the following solution for 𝜁𝜁2,−(𝑥𝑥) from Eqs. (A6) and (A47): 25 

𝜁𝜁2,−(𝑥𝑥) = ε𝐻𝐻𝐼𝐼exp{−𝑖𝑖[−𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(2𝜒𝜒2 + 𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]}.                                          (A49) 

Finally from Eqs. (A38), (A42), (A48) and (A49), we obtain the solution for 𝜁𝜁(𝑥𝑥): 

�
 

𝜁𝜁(𝑥𝑥) = 𝐻𝐻𝐼𝐼(exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]} + exp {−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 2𝛿𝛿]}),                   𝑙𝑙1 ≪ 𝑥𝑥 ≪ 𝑙𝑙2,
𝜁𝜁(𝑥𝑥) = 𝜖𝜖𝐻𝐻𝐼𝐼(exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]} + exp{−𝑖𝑖[−𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(2𝜒𝜒2 + 𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]}),     𝑙𝑙2 ≪ 𝑥𝑥 ≪ 𝑙𝑙3,

 

                                                                                           (A50) 

which is Eq. (37) in the text. 30 
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  We have also solved the problem with the channel containing three areas corresponding to the idealized domain shown in 

Fig. 3. The solution is quite cumbersome and does not show significant differences from the above two-area solution (for 

example, it gives 2𝛿𝛿 = 167.8° when 𝜎𝜎 = 𝜎𝜎𝐾𝐾1; and 2𝛿𝛿 = 176.3° when 𝜎𝜎 = 𝜎𝜎𝑀𝑀2); therefore, the details of the solution are 

not given here. 

 5 
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