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Author's response 

 

Part 1 

Response to Dr. David Webb by Guohong Fang and Di Wu 

 

Overview 

This is a classic semi-analytical study of a partially enclosed tidal system. The mathematics is fairly 

straightforward but the authors use the results to obtain a better physical understanding for the position 

of the amphidromes in the strait between Korea and Japan. The paper is well laid out and easy to read 

and understand. I think that in principal it should be published. 

 

Reply: We sincerely thank Dr.Webb for his careful reading of our manuscript and constructive 

comments and suggestions, which are of great help in improving our study. We have addressed all 

these comments; our responses are given below. 

   

Main suggestions 

As I said the mathematics is fairly straightforward (maybe that is why JPO rejected the m/s), so I do not 

think all the details are needed in the final paper. In particular I think that the content of the appendices 

may be better placed in a separate document as supplementary material (a possibility with Ocean 

Science). 

 

Reply: The appendix has been deleted and will be submitted separately in the form of supplementary 

material. 

 

I am also concerned that this branch of oceanic literature always ignores similar studies that have 

occurred in related fields of physics - in particular microwave wave guides. There used to be a 

complaint about the different branches of physics reinventing the wheel and to a certain extent this is 

true here as the Coriolis term does not necessarily introduce major changes. 

For that reason I suggest that the authors, who appear to be applied mathematicians, talk to someone 

with a physics or microwave background about reflections from discontinuities in impedance 

(refractive index in the case of light). This should give a bit more insight which they could usefully add 

to their conclusions. 

 

Reply: The behaviour of water wave reflection in a nonrotating channel is indeed similar to the 

microwave reflection, or the light refraction. However, when the wave propagates in a rotating channel 

and the period of the wave is comparable to that of Earth’s rotation the Coriolis force will have 

significant influence on the wave propagation and reflection. As an example, we revisit the problem of 

the reflection of the Kelvin wave in a semi-infinite channel first studied by Taylor (1922). Taylor’ 

result shows that when the incident Kelvin wave is reflected at the southern shore of the North Sea, a 

time lag of 1.4 hr occurs due to the Coriolis force. The details are given in the appendix to this 

response. The main conclusion is that the Coriolis parameter has significant influence on the tidal wave 

reflection in a semi-infinite channel. This conclusion should also hold for the case studied in the 

present paper. 
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As another possibility for future work I would also suggest treating all variables as complex and 

investigating how the solutions at key points change with complex angular velocity - to understand 

how the resonant properties of the system affect the solution. 

 

Reply: This is a very useful suggestion for our future work. We will try to apply the complex angular 

velocity to the Taylor method. 

Detailed comments 

1. Title 

I suggest "Study of the ..." 

 

Reply: Revised as suggested. 

 

2. Page 1, line 9 

Similarly "studies of the tides ..." 

 

Reply: Revised as suggested. 

 

3. Page 1, line 23 

" ... the Yellow Sea ..." 

 

Reply: Revised as suggested. 

 

4. Page 1, line 26 

Delete ’vast’. 

 

Reply: Revised as suggested. 

 

5. Page 1, line 27 

Knives are sharp, continental slopes are steep. 

 

Reply: The word “sharp” has been replaced with “steep” in page 1, line 27 and page 16, line 4. 

 

6. Page 2, line 18 

I disagree with ’analytical’, this is a semi-analytical method, using the numerical solution of a large set 

of equations. 

 

Reply: The word “analytical” has been replaced with “semi-analytical”. 

 

7. Page 4, line 21 

This is angular velocity (radians per second) Anything with frequency refers to full cycles of 

something. 

 

Reply: The term “angular frequency” has been replaced with “angular velocity” in page 1, line 18, page 
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4, line 21 and page 5, line 13. (Please note that angular frequency is a synonym of angular velocity, see 

Weik M.H. (2000) angular frequency. In: Computer Science and Communications Dictionary. 

Springer, Boston, MA. https://doi.org/10.1007/1-4020-0613-6_670 ). 

 

8. Page 5, line 8 

Change to ’with momentum ... " 

 

Reply: The article “the” has been deleted. 

 

9. Page 16, lines 10 onwards. 

This is all very standard in other areas of physics as well, so I do not think the work of Dean and 

Dalrymple needs to be spelt out in such detail. I suggest that you just give the results you need. 

 

Reply: According to this comment, we have revised this paragraph as follows: “If the second area is 

semi-infinitely long, allowing for the wave to radiate out from the second area freely, then a part of the 

wave is reflected at the connecting point and another part is transmitted into the second area. The 

amplitude of the transmitted wave is (see e. g. Dean and Dalrymple (1984))” 

 

10. Page 17, line 1 

You do not make clear which case you are writing about - yours or that of Dean and Dalrymple. 

 

Reply: This equation is the same as that given by Dean and Dalrymple (1984), but in a more 

understandable form. In order to clarify this the words “(see also Dean and Dalrymple (1984))” have 

been added above this equation. 

 

11. Page 18, line 9 and following 

"can be attributed to ...". This is a bit of a cop out, the classic response of a committee shirking 

responsibility. It would read better if you were disappointed about the discrepancy but that it may be due 

to ... . 

 

Reply: The words “can be attributed to” have been replaced with “may be duo to”. 

 

12. Page 19, Line 21. 

I would suggest you delete this line. It is doing nothing useful. 

 

Reply: This line has been deleted. 

 

 

Appendix: A Short Note on the Reflection of the Kelvin Wave in a Semi-infinite Channel: Taylor’s 

Example Revited 

 

1. Introduction 

Taylor (1922) studied the tidal system in a semi-infinite channel, with especial attention paid to the 

refection of the Kelvin wave at the closed end of the channel. The channel he studied is semi-infinite 

with a width of 𝑊 and a uniforn depth of ℎ as shown in Fig. 1. He showed that when an incident 

https://doi.org/10.1007/1-4020-0613-6_670
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Kelvin wave propagates into the rotating channel, the wave would be reflected at the closed end to form 

a reflected Kelvin wave and an amphidromic system. Meanwhile, a series of Poincare modes would be 

induced in the vicinity of the closed end. 

 

Fig.A1 Sketch of the semi-infinite channel.  

 

2. Taylor’s Example 

Let 

{
𝛼 =

𝑓

𝑐
,     

𝑘 =
√𝜎2+𝑓2

c
,
                                                              (R1) 

where 𝑓 is Coriolis parameter, 𝜎 is the angular velocity of the wave, 𝑐 is defined as 

𝑐 =
𝜋

𝑊
√𝑔ℎ                                                                (R2) 

with 𝑊 and ℎ representing the width and depth of the channel respectively. Taylor (1922) specifically 

computed the relationship between the incident and reflected Kelvin waves with period equal to 12 hr 

(equivalent to an angular velocity of 1.4544 × 10−4s−1) for the case 

{
𝛼 = 0.7,
𝑘 = 0.5,

                                                                 (R3) 

which corresponds to the dimensions of the North Sea. This case was referred to as Taylor’s example by 

Brown (1973). The estimated phase-lag increase 𝜃 of the reflected Kelvin wave versus the incident 

Kelvin wave at the closed end of the channel was equal to 42.10° (Taylor, 1920, p. 166). This result 

indicates that when the incident Kelvin wave is reflected at the southern shore of the North Sea, a time 

lag of 1.4 hr occurs due to the Coriolis force. The value of 𝜃 was estimated again by Brown (1973), 

yielding 𝜃 =42.18° (see also Thiebaux, 1988, p.369). 

3. Influence of the Coriolis parameter on the reflection of the incident Kelvin wave 

To illustrate the Influence of the Coriolis parameter on the reflection of the incident Kelvin wave, we 

artificially change the values of the Corisolis parameter, and apply the method discribed in our paper to 

the semi-infinite channel shown in Fig.1. The channel is taken 463.3 km wide (corresponding to 250 

nautical miles as given by Taylor (1922)) and 63.4 m deep, then we truncate the Poincare modes up to 

100 terms and calculate the values of 𝜃 for various values of 𝑓. The result is shown with the red curve 
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in Fig. 2. This figure indicates that the value of 𝜃 is zero when 𝑓 = 0, and can be up to nearly 50° when 

𝑓 = 1.4 × 10−4s−1. 

  For the case of Tayor’s example which satisfies Eq. (3) we can obtain 𝑓 = 1.1835 × 10−4s−1 

through eliminating 𝑐 in Eq. (1) and inserting Eq. (3). This particular value of 𝑓 is indicated with a 

vertical dashed line in Fig.2, and the corresponding value of 𝜃 is 42.16°. 

  Fang and Wang (1966) proposed an approximate equation for 𝜃 as follows (note that the Eq. (60) of 

their paper is the expression for 𝜃/2): 

𝜃 =
8𝜈3

𝜋𝑙(𝑙2+𝜈2)√𝑙2+𝜈2−1 th
𝜋𝜈

2𝑙

 ,                                                 (R4) 

where 

 𝜈 =
𝑓

𝜎
 ,                                                                (R5) 

and                                                   

 𝑙 =
𝑐

𝜎
 .                                                                 (R6) 

The values of 𝜃 derived from (4) as function of 𝑓 are shown in blue curve in Fig. 2. In particular, the 

value of 𝜃 corresponding to 𝑓 = 1.1835 × 10−4s−1 is equal to 41.68°. 

  Thiebaux (1988) also proposed an approximate method for calculating 𝜃. His equation has the form 

𝜃 = 𝑏1𝜈′ + 𝑏3𝜈′
3

+ O(𝜈′
5

)                                                  (R7) 

where 

𝜈′ =
𝜎

𝑓
 .                                                                 (R8) 

Thiebaux (1988) did not provide any formula for calculating O(𝜈′
5

). The expressions of 𝑏1 and 𝑏3 are 

quite complicated, but their values can be calculated from his Eqs. (30) and (31) and his Table 1. The 

values of 𝜃 derived from (7) as function of 𝑓 are shown in green curve in Fig. 2. In particular, the value 

of 𝜃 corresponding to 𝑓 = 1.1835 × 10−4s−1 is equal to 37.19°. 

 

Fig. 2 The phase-lag increase (𝜃) of the reflected Kelvin wave versus the incident Kelvin wave at the 

closed end as function of the Coriolis parameter (𝑓) in a semi-infinite channel, which has a width of 

463.3 km and a unifom depth of 63.4 m.  
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4. Conclusion 

The works of Taylor (1922), Fang and Wang (1966), Brown (1973), Thiebaux (1988) and the present 

study all show that the Coriolis parameter has significant influence on the tidal wave reflection in a semi-

infinite channel. 
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Part 2 

Response to Referee #2 by Guohong Fang and Di Wu 

 

This paper contains an original contribution to the co-oscillating tide in Sea of Japan (East Sea) using 

an extended Taylor method. Writing is considered to be reasonably good with fine piece of references. 

However, there is an important point authors need to make correction to enhance the quality of the 

paper. Specifically, extension of the three sub-region model to four sub-region model is requested. 

Reviewer think the extension work is not difficult but considerable time around two months might be 

required to make correction of the content of manuscript. For that, a major revision is recommended. 

 

Reply: We sincerely thank Reviewer for his carefully reading and constructive comments. We have 

extended the model domain from three sub-regions to four sub-regions in the revised manuscript. 

Please see the following for details. 

 

Detailed comments: 

 

Pg.4, Lines 14-20: Authors constructed a model with three sub-regions as seen in Fig. 3. However, 

water depth of Fig.1 and tidal chart of Fig.2 indicate the necessity of including Tartar Strait region in 

the analytical model. Extension of the three sub-region model to the four sub-region model is 

requested. On the while, review think, though not much important, representing the Japan Sea (East 

Sea) as the Area 2 with width W1+W3 might be sufficient rather than width W2 unless the shallow 

water depth along the northern coastline of Japan is considered. 

 

Reply: According to this comment, we have extended the model domain from three sub-regions to four 

sub-regions in the revised manuscript. For convenience, we call the models with three sub-regions and 

with four sub-regions the 3-area model and the 4-area model respectively. The 4-area model domain 

fitting the KS and JS is shown in Fig. R1 below. Please note that we can only artificially place Area4 

northeast of Area3 rather than north of Area3 due to the limitation of the Taylor method. So that the 

Area4 cannot overlap the actual Tartar Strait. 
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Fig. R1: Idealized 4-area model domain fitting the Korea Strait and Japan Sea. Copied from 

Figure 4 of the revised manuscript. 

 

 

Fig. R2: Comparison of tidal system charts. (a) K1 and (b) M2 tides from the present analytical 

model; and (c) K1 and (d) M2 tides from DTU10 (Chen and Andersen, 2011). Copied from Figure 

5 of the revised manuscript. 

The comparison between model results and observations is shown in Fig. R2. Correspondingly, the 

results in Area1 (representing the KS) of the 3-area model mentioned from page 13, line 29 to page 14, 

line 14 in the original manuscript are replaced with the 4-area model results in the revised manuscript. 

The changes in Area1 are less than 0.01 m and 2° for amplitudes and phase lags of K1 respectively, and 

less than 0.01 m and 1° for amplitudes and phase lags of M2 respectively, indicating that adding Area4 

does not significantly change the tidal systems in Area1. 

 

Pg.7, Line 16: Authors used the Collocation approach. In fact there is another approach called Galerkin 

approach. Briefly comment why authors used Collocation approach. Is it mainly due to its simplicity? 

 

Reply: Yes, it is mainly due to its simplicity. In Taylor’s original work, he used the Fourier method, 

which involved the Fourier expansions at the closed cross-sections, and thus making the solution more 

complicated. To our knowledge, nobody has employed the Galerkin method in the Taylor problem, 

though it has been widely used in the numerical computations. 

 

Pg.8, Lines 11-12: Authors state that the influence of tide-generating force on the KS is negligible. 

Reviewer does not agree on this statement because the influence of direct tide generating force (DTGF) 

on the tide in JS can be significantly large, indirectly affecting on the tide in KS even though its direct 

influence on the KS is small. Reviewer think co-oscillating tide may be dominant in Japan Sea (East 

Sea) but DTGF has some non-negligible effects. 

 

Reply: This comment correctly points out a limitation of the Taylor method. The classical and extended 

Taylor methods solve the homogeneous differential equations as shown in the governing equations in 
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our manuscript (please see also Taylor, 1922; Hendershott and Speranza, 1971; among others). Once 

the DTGF is included, the governing equations will become non-homogeneous, and the basic wave 

forms (namely the Kelvin wave and the Poincare wave) will no longer satisfy the governing equations. 

This is the reason why all existing studies (please see references listed in our manuscript) do not 

include DTGF. 

To examine the influence of the DTGF on the tides in the Korea Strait, we have numerically 

computed the tides in the Korea Strait and Japan/East Sea with and without DTGF using MIKE21 

model, and make comparison between these two results. As an example, Fig. R3 displays the 

comparison of the model-produced M2 tidal systems with and without DTGF. 

 

Fig. R3: Comparison of the model-produced M2 tidal system charts, (a) with DTGF, and (b) 

without DTGF. 

 

As shown in our paper title, the present study focuses on the tides in the KS. To quantitatively 

evaluate the influence of the DTGF on the tides in the KS, we select evenly distributed 893 points in 

the KS as shown in Fig. R4, and calculate the root-mean-square (RMS) vector differences between two 

sets of model results according the following equation: 

∆= {
1

𝐾
∑ [(𝐻2,𝑘 cos 𝐺2,𝑘 − 𝐻1,𝑘 cos 𝐺1,𝑘)

2
+ (𝐻2,𝑘 sin 𝐺2,𝑘 − 𝐻1,𝑘 sin 𝐺1,𝑘)

2
]𝐾

𝑘=1 }
1/2

         (R1) 

in which 𝑘 = 1, 2, … , 𝐾 are indices of the points shown in Fig. R4, with 𝐾 representing the total 

number of the points (=893); H and G are model-produced amplitude and phase lag respectively, with 

subscripts 1 and 2 representing the results with and without DTGF respectively. The characteristic 

model-produced mean amplitude with DTGF can be calculated from the following equation: 

𝐻̅ = (
1

𝐾
∑ 𝐻1,𝑘

2𝐾
𝑘=1 )

1/2

                                                           (R2) 

The relative difference is represented by 

𝛿 = ∆/𝐻̅                                                                     (R3) 

The results are given in Table R1 below. From Table R1 we find that the differences between the 

model results in the KS with and without DTGF are not significant, indicating that the KS is dominated 

by co-oscillating tides. 
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Fig. R4: Distribution of the points for comparison between the model-produced results with and 

without DTGF. 

 

Table R1. Difference and relative difference between model results with and without direct tidal 

generating force (DTGF) 

 ∆ 𝐻̅ 𝛿 

M2 0.0092 0.6731 0.0137 

K1 0.0075 0.1625 0.0459 

 

Pg.9, Lines 10-12: In Table 1, it is noted that water depth of area 3 is 1783m, which is comparable with 

that of Area 2. With the model reproduction of tide in Tartar Strait shown in Fig.2 is hardly expected. 

 

Reply: We have changed Table 1 to include Area4, which represents the Tartar Strait. The depth of 

Area4 is taken 90 m, much shallower than Area3. 

 

Pg.11, Lines 11-12: Authors’ statement such that the model-produced tidal systems agree fairly well 

with the DTU10 result is reasonably acceptable. Reviewer however notices that there are some 

important points authors did not comment. Close examination of Fig.5 reveals that DTU10 produces 

amphidromic point further north than that calculated by the analytic model and that DTU10 and 

analytic model produces different contour patterns in Area 2 and Area 3. Reviewer thinks that these are 

due to neglecting the shallow Tartar Strait region in the analytic model. Again it is addressed that Area 

3 is too deep and short to include the effects of presence of the Tartar Strait. According to reviewer’s 

modeling experience, the tides in JS (East Sea) and KS vary sensitively with change of bottom 

frictional coefficient in the Tartar Strait. 

 

Reply: We accept this comment and add the fourth sub-region (Area4) to represent the Tartar Strait in 

the revised manuscript. The water depth of Area4 is taken 90 m, which is equal to the mean depth of 

the main part of the Tartar Strait. After adding Area4, the agreement between model results and DTU10 

data is slightly improved. 

 

Pg.12, Lines 3-5: Authors state with regard to Fig. 6 that the greatest phase lag error occurred at the 

northernmost corner of JS due to the existence of degenerated amphidromic point near the area. This 
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supports the necessity of developing an extended model which takes into account the shallow Tartar 

Strait region. 

 

Reply: The 4-area model does show a degenerated amphidromic point for M2 in Area4, which is 

consistent with observed feature as shown in Fig. R2. 

 

Pg.16, Line 1: Authors discussed tidal dynamics in KS-JS basin with emphasis on the amphidromic 

point. However, it is hard to find any discussions related to the influence of Area 2. Reviewer think this 

is because no meaningful contribution by Area 2. Again, it is strongly addressed that extension of the 

three sub-region model to the four subregion model is required. 

 

Reply: In the text of the original manuscript from page 17, line 6 onward in Section 4 our focus of 

discussion is on the role of Area2 which representing the JS. To emphasize the importance of the JS, 

we insert “Eq. (36) indicates that the length, width and depth of Area2 are also important in 

determining the phase-lag increase of the reflected wave relative to the incident wave in Area1” in page 

17 of the revised text; and add “(5) The length, width and depth of the JS is also important in 

determining the phase-lag increase of the reflected Kelvin wave in the KS” to the end of Section 5 

(Summary) in the revised text. 
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Part 3  

Modification list 

 

Page 1. 

Line 1. The title “Study on ”has been changed to “Study of …”. 

Line 9. “studies on” has been changed to “studies of”. 

Line 10. “…three connected uniform-depth rectangular areas…” has been changed to “…four connected 

uniform-depth rectangular areas…”. 

Line 18. “angular frequency” has been changed to “angular velocity”. 

Line 23. The word “the” has been added before “Yellow Sea”. 

Line 26. The word “vast” has been deleted. 

Line 27. “A sharp continental” has been changed to “A sheep continental”. 

 

Page 2.  

Line 18. “analytical solutions” has been changed to “semi-analytical solutions”. 

 

Page 3.  

Line1. Figure 1 has been replaced by a new figure with “TTS”, and “TTS-Tartar Strait” has been added 

in the caption. 

 

Page 4.  

Lines 2-3. “an analytical solution” has been changed to “a theoretical solution”. 

Line 18. Figure 3 has been replaced by a new figure with a four-rectangle structure. 

Line 21. “angular frequency” has been changed to “angular velocity”. 

 

Page 5.  

Line 8. The word “the” before “momentum advection” has been deleted. 

Line 13. “angular frequency” has been changed to “angular velocity”. 

 

Page 6.  

Line 23. “both the idealized KS and JS” has been changed to “all rectangular areas shown in Fig.3”. 

 

Page 8.  

Line 17. “three rectangular areas” has been changed to “four rectangular areas”. 

Line 18. “our area of focus” has been changed to “our focus area”. 

Line 19. “two rectangles” has been changed to “three rectangles”. 

Line 22. “angular frequencies” has been changed to “angular velocities”. 

 

Page 9. 

Lines 1-3. Figure 4 has been replaced by a new figure with a four -rectangle structure, and “A, B, … , J” 

in the caption has been changed to “A, B,…, M”. 

Lines 5-6. “… in these three areas are 2686 km, 12189 km, and 11398 km, respectively, and those of the 

M2 Kelvin waves are 1393 km, 6321 km, and 5911 km, respectively” has been changed to “… in these 
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four areas are 2686 km, 12189 km, 11398 km, and 2561 km, respectively, and those of the M2 Kelvin 

waves are 1393 km, 6321 km, 5911 km and 1328 km, respectively.” 

Lines 12. The fifth column about Area4 has been inserted in Table 1. 

 

Page 11. 

Lines 1-2. Figure 5 has been replaced by a new figure with new solutions, and “analytical model” in the 

caption has been changed to “theoretical model”. 

Lines 4-6. Figure 6 has been replaced by a new figure with new solutions, and “A, B, … , J” in the caption 

has been changed to “A, B, C, D, G, H, I, J K, L, M”. 

Line 11. The sentence “A degenerated amphidromic point appears near the entrance of the Tartar Strait.” 

has been inserted. 

 

 

Page 12. 

Line 4. “approximately 70° at the northernmost corner of the JS” has been changed to “approximately 

64° near the entrance of the Tartar Strait”. 

Line 9. The RMS differences “0.014 and 0.031 m” and “7.4° and 6.4° have been changed to “0.014 and 

0.032 m” and “7.0° and 5.2°”, respectively. 

Line 12. Table 3 has been replaced with the new solutions. 

 

Page 13. 

Line18. “0.96 cm” has been changed to “0.95 cm”. 

 

Page 13 Line 30 ~Page 14 Line 14.  

All the data have been replaced with the new solutions, which is shown as follows: 

“The incident and reflected K1 Kelvin waves are shown in Figs. 7c and 7d, respectively. The area-

mean amplitude of the incident Kelvin wave in the KS is 0.248 m, and that of the reflected Kelvin wave 

is 0.190 m, which is 77% of the incident Kelvin wave. On the connecting cross-section, the section-mean 

amplitude of the incident Kelvin wave is 0.243 m, and the section-mean phase lag is 151.6°. The section-

mean amplitude of the reflected Kelvin wave is 0.194 m, which is 80% of the incident Kelvin wave. The 

section-mean phase lag is 295.8°, indicating that the phase lag increases by 144.2° when the wave is 

reflected. The amphidromic point of the superposed Kelvin wave is 137 km away from the step and close 

to the northwest shore of the KS. 

The incident and reflected M2 Kelvin waves are shown in Figs. 8c and 8d, respectively. The area-mean 

amplitude of the incident Kelvin wave in the KS is 0.471 m, and that of the reflected Kelvin wave is 

0.439 m, which is 93% of the incident Kelvin wave. This ratio is larger than the K1 tide because the 

bottom friction of M2 is smaller and less energy is lost in the propagation process. On the connecting 

cross-section, the mean amplitude of the incident Kelvin wave is 0.462 m, and the phase lag is 97.9°. The 

mean amplitude of the reflected Kelvin wave is 0.447 m, which is 97% of the incident Kelvin wave, and 

the phase lag is approximately 266.4°, with a phase-lag increase of 168.5°, which is closer to 180° as 

compared to the corresponding value of the K1 tide. Accordingly, the M2 amphidromic point of the 

superposed Kelvin wave shifts to approximately 21 km away from the step. A comparison between Fig. 

7a and Fig. 8a shows that the amphidromic point of K1 is located west of that of M2. This result reproduces 

well the observed phenomenon as seen from Fig. 2.” 
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Page 15. 

Lines 1-4 Figure 7 and figure 8 have been replaced with the new solutions. 

 

Page 16. 

Lines 4-5. “a sharp continental slope” has been changed to “a steep continental slope”. 

Lines 10-14. “Dean and Dalrymple (1984) have presented a solution for a tidal waves travelling in such 

a channel; however, in their study, 10 the wave was allowed to radiate out from the second area freely, 

which implies that the second area is assumed to be semi-infinitely long. Their solution shows that a part 

of the wave is reflected at the connecting point and another part is transmitted into the second area.” has 

been changed to “If the second area is semi-infinitely long, allowing for the wave radiating out from the 

second area freely, then a part of the wave is reflected at the connecting point and another part is 

transmitted into the second area. The amplitude of the transmitted wave is (see e. g. Dean and Dalrymple 

(1984))”. 

 

Page 17. 

Line 1. “Appendix for derivation” has been change to “also Dean and Dalrymple (1984)”. 

Line 12. “Appendix” has been changed to “supplement” 

Line 16 The sentence “Eq. (36) indicates that the length, width and depth of Area2 are also important in 

determining the phase-lag increase of the reflected wave relative to the incident wave in Area1.” has been 

added after “𝜒2 = 𝑘2𝐿2.” 

 

Page 18. 

Line 9. “can be attributed to” has been changed to “may be due to”. 

 

Page 19 

Line 20. “(5) The length, width and depth of the JS is also important in determining the phase-lag increase 

of the reflected Kelvin wave in the KS.” has been added at the end of the paragraph. 

Line 21. The last sentence has been deleted. 

 

Pages 20-23 

The Appendix has been deleted in the manuscript, and will be submitted as a supplement. 

 

Page 24 

Line 15. “We sincerely thank Dr. Joanne Williams for handling our manuscript and thank Dr. David Webb 

and the anonymous Referee for their careful reading of our manuscript and constructive comments and 

suggestions which are of great help in improving our work.” has been added in acknowledgment. 
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Study of the Tidal Dynamics of the Korea Strait Using the Extended 
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Abstract. The Korea Strait (KS) is a major navigation passage linking the Japan Sea (JS) to the East China Sea and Yellow 

Sea. Almost all existing studies of the tides in the KS employed either data analysis or numerical modelling methods; thus, 

theoretical research is lacking. In this paper, we idealize the KS-JS basin as four connected uniform-depth rectangular areas 10 

and establish a theoretical model for the tides in the KS and JS using the extended Taylor method. The model-produced K1 and 

M2 tides are consistent with the satellite altimeter and tidal gauge observations, especially for the locations of the amphidromic 

points in the KS. The model solution provides the following insights into the tidal dynamics. The tidal system in each area can 

be decomposed into two oppositely travelling Kelvin waves and two families of Poincaré modes, with Kelvin waves 

dominating the tidal system. The incident Kelvin wave can be reflected at the connecting cross-section, where abrupt increases 15 

in water depth and basin width occur from the KS to JS. At the connecting cross-section, the reflected wave has a phase-lag 

increase relative to the incident wave by less than 180°, causing the formation of amphidromic points in the KS. The above 

phase-lag increase depends on the angular velocity of the wave and becomes smaller as the angular velocity decreases. This 

dependence explains why the K1 amphidromic point is located farther away from the connecting cross-section in comparison 

to the M2 amphidromic point. 20 

1 Introduction 

The Korea Strait (KS, also called the Tsushima Strait) connects the East China Sea (ECS) on southwest and the Japan Sea (the 

JS, also called the East Sea, or the Sea of Japan) on northeast. It is the main route linking the JS to the ECS and the Yellow Sea 

and is thus an important passage for navigation. The strait is located on the continental shelf, and it has a length of 

approximately 350 km, a width of 250 km, and an average water depth of approximately 100 m. The JS, which is adjacent to 25 

the KS, is a deep basin that has an average depth of approximately 2000 m and a depth of more than 3000 m at its deepest part. 

A steep continental slope separates the KS and the JS, and it presents abrupt depth and width changes (Fig. 1). Such topographic 

characteristics create the unique tidal waves that occur in the KS. 
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Ogura (1933) first conducted a comprehensive study of the tides in the seas adjacent to Japan using data from the tidal 

stations along the coast and gained a preliminary understanding of the characteristics of the tides, including amphidromic 

systems in the KS. Since then, many researchers have investigated the tides in the strait via observations (Odamaki, 1989a; 

Matsumoto et al., 2000; Morimoto et al., 2000; Teague et al., 2001; Takikawa et al., 2003) and numerical simulations (Fang 

and Yang, 1988; Kang et al., 1991; Choi et al., 1999; Book et al., 2004). The results of these studies show consistent structures 5 

of the tidal waves in the KS. Fig. 2 displays the distributions of the K1 and M2 tidal constituents based on the global tidal model 

DTU10, which is based on satellite altimeter observations (Cheng and Andersen, 2011). The figures show that the amplitudes 

of the diurnal tides are smaller than the semidiurnal tides. The peak amplitude of the semidiurnal tide appears on the south 

coast of South Korea, and lower amplitudes occur along the southern shore of the strait from the ECS to the JS. Distinguishing 

features include (1) K1 and M2 amphidromic points in the strait that appear in the northeast part of the KS close to the southern 10 

coast of the Korean Peninsula; and (2) the M2 amphidromic point appears further northeast and closer to the shelf break relative 

to the K1 tide.  

However, almost all previous studies have employed either data analysis or numerical modelling methods; thus, theoretical 

research is lacking. In particular, the existence of amphidromic points in the northeast KS for both diurnal and semidiurnal 

tides has not been explained based on geophysical dynamics. In this paper, we intend to establish a theoretical model for the 15 

K1 and M2 tides in the KS-JS basin using the extended Taylor method. The model idealizes the KS-JS basin into three connected 

uniform-depth rectangular areas, with the effects of bottom friction and Coriolis force included in the governing equations and 

with the observed tides specified as open boundary conditions. The extended Taylor method enables us to obtain semi-

analytical solutions consisting of a series of Kelvin waves and Poincaré modes. Formatted
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Figure 1: Map of the Korea Strait and its neighbouring areas. (TTS-Tartar Strait, SYS- Soya Strait, TGS- Tsugaru Strait, KS- 

Korea Strait, ECS-East China Sea). Isobaths are in metres (based on ETOPO1 from US National Geophysical Center). 

 
Figure 2: Tidal charts of the KS and its neighbouring areas based on DTU10 (Cheng and Andersen, 2011) for the (a) K1 tide and (b) 5 

M2 tide. Solid lines represent the Greenwich phase lag (in degrees), and dashed lines represent amplitude (in metres). 
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2 The extended Taylor method and its application to multiple rectangular areas 

The Taylor problem is a classic tidal dynamic problem (Hendershott and Speranza, 1971). Taylor (1922) first presented a 

theoretical solution for tides in a semi-infinite rotating rectangular channel of uniform depth to explain the formation of 

amphidromic systems in gulfs and applied the theory to the North Sea. The classic Taylor problem was subsequently improved 

by introducing frictional effects (Fang and Wang, 1966; Webb, 1976; Rienecker and Teubner, 1980) and open boundary 5 

conditions (Fang et al., 1991) to study tides in multiple rectangular basins (Jung et al., 2005; Roos and Schuttelaars, 2011; 

Roos et al., 2011) as well as to solve tidal dynamics in a strait (Wu et al., 2018). 

The method initiated by Taylor and developed afterwards is called the extended Taylor method (Wu et al., 2018). This 

method is especially useful in understanding the tidal dynamics in marginal seas and straits because the tidal waves in these 

sea areas can generally be represented by combinations of the Kelvin waves and Poincaré waves/modes (e. g., Taylor, 1922; 10 

Fang and Wang, 1966; Hendershott and Speranza, 1971; Webb, 1976; Fang et al., 1991; Carbajal, 1997; Jung et al., 2005; 

Roos and Schuttelaars, 2011; Roos et al., 2011; Wu et al., 2018). 

2.1 Governing equations and boundary conditions for multiple rectangular areas 

A sketch of the model geometry is shown in Fig. 3, and it consists of a sequence of 𝐽𝐽 rectangular areas with length 𝐿𝐿𝑗𝑗, width 

𝑊𝑊𝑗𝑗 and uniform depth ℎ𝑗𝑗 for the 𝑗𝑗th rectangular area (denoted as Areaj, 𝑗𝑗=1, …, 𝐽𝐽). For convenience, the shape of the study 15 

region shown in Fig. 3 is the same as that for the idealized KS–JS basin, which will be described in the next section. In 

particular, Area1 represents the KS, which is our focus area in this study. 

 
Figure 3: Model geometry. 

 20 

Consider a tidal wave of angular velocity 𝜎𝜎 and typical elevation amplitude H. We assume 𝐻𝐻/ℎ ≪ 1, and the conservation 

of momentum and mass leads to the following depth-averaged linear shallow water equations on the 𝑓𝑓 plane: 
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⎩
⎪
⎨

⎪
⎧
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝜕𝜕
− 𝑓𝑓𝑗𝑗𝜐𝜐�𝑗𝑗 = −𝑔𝑔

𝜕𝜕𝜁𝜁�𝑗𝑗
𝜕𝜕𝜕𝜕
− 𝛾𝛾𝑗𝑗𝑢𝑢�𝑗𝑗

𝜕𝜕𝜐𝜐�𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑗𝑗𝑢𝑢�𝑗𝑗 = −𝑔𝑔
𝜕𝜕𝜁𝜁�𝑗𝑗
𝜕𝜕𝜕𝜕
− 𝛾𝛾𝑗𝑗𝜐𝜐�𝑗𝑗

𝜕𝜕𝜁𝜁�𝑗𝑗
𝜕𝜕𝜕𝜕

= −ℎ𝑗𝑗 �
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜐𝜐�𝑗𝑗
𝜕𝜕𝜕𝜕
�     

,                                                                      (1) 

where 𝑥𝑥 and 𝑦𝑦 are coordinates in the longitudinal (along-channel) and transverse (cross-channel) directions; 𝑡𝑡 represents 

time; 𝑢𝑢�𝑗𝑗 and 𝜐𝜐�𝑗𝑗 represent the depth-averaged flow velocity components in the 𝑥𝑥 and 𝑦𝑦 directions, respectively, with the 

subscript j indicating the area number; 𝜁𝜁𝑗𝑗  represents the free surface elevation above the mean level; 𝛾𝛾𝑗𝑗  represents the 

frictional coefficient, which is taken as a constant for each tidal constituent in each area; 𝑔𝑔 = 9.8 ms−2  represents the 5 

acceleration due to gravity; and 𝑓𝑓𝑗𝑗 represents the Coriolis parameter, which is also taken as a constant based on the average 

of the concerned area. The equations in (1) for each j are two-dimensional linearized shallow water equations on an 𝑓𝑓-plane 

with momentum advection neglected. For any 𝑗𝑗, the equations are the same as those used in the work of Taylor (1922) except 

that bottom friction is now incorporated, such as in Fang and Wang (1966), Webb (1976), Rienecker and Teubner (1980), etc. 

When a monochromatic wave is considered, �𝜁𝜁𝑗𝑗 ,𝑢𝑢�𝑗𝑗 , 𝜐𝜐�𝑗𝑗� can be expressed as follows: 10 

�𝜁𝜁𝑗𝑗 ,𝑢𝑢�𝑗𝑗 , 𝜐𝜐�𝑗𝑗� = Re�𝜁𝜁𝑗𝑗,𝑢𝑢𝑗𝑗, 𝜐𝜐𝑗𝑗�e𝑖𝑖𝑖𝑖𝑖𝑖,                                                                     (2) 

where Re stands for the real part of the complex quantity that follows, �𝜁𝜁𝑗𝑗 ,𝑢𝑢𝑗𝑗, 𝜐𝜐𝑗𝑗� are referred to as complex amplitudes of 

�𝜁𝜁𝑗𝑗 ,𝑢𝑢�𝑗𝑗 , 𝜐𝜐�𝑗𝑗�, respectively, i≡√−1 is the imaginary unit, and 𝜎𝜎 is the angular velocity of the wave. For this wave, Eq. (1) can 

be reduced as follows: 

⎩
⎪
⎨

⎪
⎧�𝜇𝜇𝑗𝑗 + 𝑖𝑖�𝑢𝑢𝑗𝑗 − 𝜈𝜈𝑗𝑗𝜐𝜐𝑗𝑗 = −𝑔𝑔

𝜎𝜎

∂𝜁𝜁𝑗𝑗
∂𝑥𝑥

�𝜇𝜇𝑗𝑗 + 𝑖𝑖�𝜐𝜐𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑢𝑢𝑗𝑗 = −𝑔𝑔
𝜎𝜎

∂𝜁𝜁𝑗𝑗
∂𝑦𝑦

𝜁𝜁𝑗𝑗 =
𝑖𝑖ℎ𝑗𝑗
𝜎𝜎
�
∂𝑢𝑢𝑗𝑗
∂𝑥𝑥

+
∂𝜐𝜐𝑗𝑗
∂𝑦𝑦
�       

,                                                                      (3) 15 

in which 

𝜇𝜇𝑗𝑗 =
𝛾𝛾𝑗𝑗
𝜎𝜎

   and  𝜈𝜈𝑗𝑗 =
𝑓𝑓𝑗𝑗
𝜎𝜎

 .                                                                         (4) 

Provided that the j-th rectangular area, denoted as Areaj, has a width of 𝑊𝑊𝑗𝑗, a length of 𝐿𝐿𝑗𝑗, and ranges from 𝑥𝑥 = 𝑙𝑙𝑗𝑗 to 𝑥𝑥 =

𝑙𝑙𝑗𝑗+1 (𝑙𝑙𝑗𝑗+1 = 𝑙𝑙𝑗𝑗 + 𝐿𝐿𝑗𝑗) in the x direction and from y = 𝑤𝑤𝑗𝑗,1 to y = 𝑤𝑤𝑗𝑗,2 (𝑤𝑤𝑗𝑗,2 = 𝑤𝑤𝑗𝑗,1 + 𝑊𝑊𝑗𝑗) in the y direction, the boundary 

conditions along the sidewalls within 𝑥𝑥 ∈ [𝑙𝑙𝑗𝑗 , 𝑙𝑙𝑗𝑗+1] are taken as follows: 20 

𝜐𝜐𝑗𝑗 = 0 at 𝑦𝑦 = 𝑤𝑤𝑗𝑗,1 and 𝑦𝑦 = 𝑤𝑤𝑗𝑗,2.                                                                  (5) 

Along the cross-sections, such as 𝑥𝑥 = 𝑙𝑙𝑗𝑗, various choices of boundary conditions are applicable depending on the problem: 

𝑢𝑢𝑗𝑗 = 0,                                                                                        (6) 

if the cross-section is a closed boundary; 

𝑢𝑢𝑗𝑗 = ±�
𝑔𝑔

(1−𝑖𝑖𝜇𝜇𝑗𝑗)ℎ𝑗𝑗
𝜁𝜁𝑗𝑗,                                                                              (7) 25 

if the free radiation in the positive/negative 𝑥𝑥 direction occurs on the cross-section; 

𝜁𝜁𝑗𝑗 = 𝜁𝜁𝑗𝑗,                                                                                        (8) 

if the tidal elevation is specified as 𝜁𝜁𝑗𝑗 along the cross-section; and 

�
𝜁𝜁𝑗𝑗 = 𝜁𝜁𝑗𝑗+1,      
𝑢𝑢𝑗𝑗ℎ𝑗𝑗 = 𝑢𝑢𝑗𝑗+1ℎ𝑗𝑗+1,                                                                                (9) 

if the cross-section is a connecting boundary of the areas 𝑗𝑗 and 𝑗𝑗 + 1, with each having a different uniform depth of ℎ𝑗𝑗 and 30 

ℎ𝑗𝑗+1. 

Equation (9) is matching conditions accounting for sea level continuity and volume transport continuity. The individual Eqs.  
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(6) to (9), or their combination, may be used as boundary conditions for the cross-sections. The relationship between 𝑢𝑢𝑗𝑗 and 

𝜁𝜁𝑗𝑗 shown in Eq. (7) is based on the solution for progressive Kelvin waves in the presence of friction, which will be given in 

Eqs. (10) and (11) below. 

2.2 General solution 

For the j-th rectangular area, that is, for 𝑥𝑥 ∊ [𝑙𝑙𝑗𝑗 , 𝑙𝑙𝑗𝑗+1] and 𝑦𝑦 ∊ [𝑤𝑤𝑗𝑗,1,𝑤𝑤𝑗𝑗,2], the governing equations in Eq. (3) only have the 5 

following four forms satisfying the sidewall boundary condition of Eq. (5) (see, e. g., Fang et al. 1991): 

�

𝜐𝜐𝑗𝑗,1 = 0,                           
𝑢𝑢𝑗𝑗,1 = −𝑎𝑎𝑗𝑗 exp�𝛼𝛼𝑗𝑗𝑦𝑦 + i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗��,     

𝜁𝜁𝑗𝑗,1 =
𝛽𝛽𝑗𝑗
𝜎𝜎
ℎ𝑗𝑗𝑎𝑎𝑗𝑗 exp[𝛼𝛼𝑗𝑗𝑦𝑦 + i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗�] ;    

                                                         (10) 

�

𝜐𝜐𝑗𝑗,2 = 0,                             
𝑢𝑢𝑗𝑗,2 = 𝑏𝑏𝑗𝑗  exp�−𝛼𝛼𝑗𝑗𝑦𝑦 − i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗��,       

𝜁𝜁𝑗𝑗,2 =
𝛽𝛽𝑗𝑗
𝜎𝜎
ℎ𝑏𝑏𝑗𝑗  exp�−𝛼𝛼𝑗𝑗𝑦𝑦 − i𝛽𝛽𝑗𝑗�𝑥𝑥 − 𝑙𝑙𝑗𝑗�� ;    

                                                       (11) 

⎩
⎨

⎧ 𝜐𝜐𝑗𝑗,3 = ∑ 𝜅𝜅𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 exp[−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑥𝑥 − 𝑙𝑙𝑗𝑗�],                       

𝑢𝑢𝑗𝑗,3 = ∑ 𝜅𝜅𝑗𝑗,𝑛𝑛�𝐴𝐴𝑗𝑗,𝑛𝑛 cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐵𝐵𝑗𝑗,𝑛𝑛 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦� exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑥𝑥 − 𝑙𝑙𝑗𝑗��,∞
𝑛𝑛=1      

𝜁𝜁𝑗𝑗,3 =
𝑖𝑖ℎ𝑗𝑗
𝜎𝜎
∑ 𝜅𝜅𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 �𝐶𝐶𝑗𝑗,𝑛𝑛 cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐷𝐷1,𝑛𝑛 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦� exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑥𝑥 − 𝑙𝑙𝑗𝑗��;   

                                (12) 

and 10 

⎩
⎨

⎧𝜐𝜐𝑗𝑗,4 = ∑ 𝜆𝜆𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑙𝑙𝑗𝑗+1 − 𝑥𝑥��,                      

𝑢𝑢𝑗𝑗,4 = ∑ 𝜆𝜆𝑗𝑗,𝑛𝑛
∞
𝑛𝑛=1 �𝐴𝐴𝑗𝑗,𝑛𝑛

′ cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐵𝐵𝑗𝑗,𝑛𝑛
′ sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦� exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑙𝑙𝑗𝑗+1 − 𝑥𝑥��,    

𝜁𝜁𝑗𝑗,4 =
𝑖𝑖ℎ𝑗𝑗
𝜎𝜎
∑ 𝜆𝜆𝑗𝑗,𝑛𝑛�𝐶𝐶𝑗𝑗 ,𝑛𝑛

′ cos 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦 + 𝐷𝐷𝑗𝑗,𝑛𝑛
′ sin 𝑟𝑟𝑗𝑗,𝑛𝑛𝑦𝑦�∞

𝑛𝑛=1 exp�−𝑠𝑠𝑗𝑗,𝑛𝑛�𝑙𝑙𝑗𝑗+1 − 𝑥𝑥��.  
                                (13) 

where 𝛼𝛼𝑗𝑗, 𝛽𝛽𝑗𝑗, 𝑟𝑟𝑗𝑗,𝑛𝑛 and 𝑠𝑠𝑗𝑗,𝑛𝑛 are equal to the following: 

𝛼𝛼𝑗𝑗 =
𝜈𝜈𝑗𝑗

�1−i𝜇𝜇𝑗𝑗�
1/2 𝑘𝑘𝑗𝑗,                                                                               (14) 

𝛽𝛽𝑗𝑗 = �1 − 𝑖𝑖𝜇𝜇𝑗𝑗�
1/2𝑘𝑘𝑗𝑗,                                                                            (15) 

𝑟𝑟𝑗𝑗,𝑛𝑛 = 𝑛𝑛π
W𝑗𝑗

 ,                                                                                    (16) 15 

and 

𝑠𝑠𝑗𝑗,𝑛𝑛 = �𝑟𝑟𝑗𝑗,𝑛𝑛
2 + 𝛼𝛼𝑗𝑗2 − 𝛽𝛽𝑗𝑗2�

1
2,                                                                        (17) 

in which 𝑘𝑘𝑗𝑗 = 𝜎𝜎 𝑐𝑐𝑗𝑗⁄  is the wave number, with 𝑐𝑐𝑗𝑗 = �𝑔𝑔ℎ𝑗𝑗 being the wave speed of the Kelvin wave in the absence of friction. 

The parameters 𝑠𝑠𝑗𝑗,𝑛𝑛 in Eq. (17) are of fundamental importance in determining the characteristic of the Poincaré modes. If 

Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2)1/2 < 𝜋𝜋/𝑊𝑊𝑗𝑗, all Poincaré modes are bound in the vicinity of the open, connecting or closed cross-sections (see 20 

Fang and Wang, 1966; Hendershott and Speranza, 1971 for in absence of friction); while if Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2)1/2 > 𝑛𝑛𝑛𝑛/𝑊𝑊𝑗𝑗, the n-

th and lower-order Poincaré modes are propagating waves. In the present study, the inequality Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2)1/2 < 𝜋𝜋/𝑊𝑊𝑗𝑗 holds 

for all rectangular areas shown in Fig.3, so that all Poincaré modes in the present study appear in a bound form. The parameter Deleted: both the idealized KS and JS
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𝑠𝑠𝑗𝑗,𝑛𝑛 has two complex values for each 𝑛𝑛, and here,we choose the one that has a positive real part. To satisfy the equations in 

Eq. (3), (𝐴𝐴𝑗𝑗,𝑛𝑛,𝐵𝐵𝑗𝑗,𝑛𝑛 ,𝐶𝐶𝑗𝑗,𝑛𝑛,𝐷𝐷𝑗𝑗,𝑛𝑛) and (𝐴𝐴𝑗𝑗,𝑛𝑛
′ ,𝐵𝐵𝑗𝑗,𝑛𝑛

′ ,𝐶𝐶𝑗𝑗,𝑛𝑛
′ ,𝐷𝐷𝑗𝑗,𝑛𝑛

′ ) should be as follows: 

𝐴𝐴𝑗𝑗,𝑛𝑛 =
��𝜇𝜇𝑗𝑗+𝑖𝑖�

2
+𝜈𝜈𝑗𝑗

2�𝑟𝑟𝑗𝑗,𝑛𝑛𝑠𝑠𝑗𝑗,𝑛𝑛

�𝜇𝜇𝑗𝑗+𝑖𝑖�
2𝑟𝑟𝑗𝑗,𝑛𝑛

2 +𝜈𝜈𝑗𝑗
2𝑠𝑠𝑗𝑗,𝑛𝑛
2 𝑠𝑠𝑗𝑗,𝑛𝑛,                                                                     (18) 

𝐵𝐵𝑗𝑗,𝑛𝑛 =
𝜈𝜈𝑗𝑗�𝜇𝜇𝑗𝑗+𝑖𝑖��𝛼𝛼𝑗𝑗

2−𝛽𝛽𝑗𝑗
2�

�𝜇𝜇𝑗𝑗+𝑖𝑖�
2𝑟𝑟𝑗𝑗,𝑛𝑛

2 +𝜈𝜈𝑗𝑗
2𝑠𝑠𝑗𝑗,𝑛𝑛
2  ,                                                                        (19) 

𝐶𝐶𝑗𝑗,𝑛𝑛 = 𝑟𝑟𝑗𝑗,𝑛𝑛 − 𝑠𝑠𝑗𝑗,𝑛𝑛𝐴𝐴𝑗𝑗,𝑛𝑛,                                                                           (20) 5 

𝐷𝐷𝑗𝑗,𝑛𝑛 = −𝑠𝑠𝑗𝑗,𝑛𝑛𝐵𝐵𝑗𝑗,𝑛𝑛,                                                                              (21) 

𝐴𝐴𝑗𝑗,𝑛𝑛
′ = −𝐴𝐴𝑗𝑗,𝑛𝑛,                                                                                 (22) 

𝐵𝐵𝑗𝑗,𝑛𝑛
′ = 𝐵𝐵𝑗𝑗,𝑛𝑛,                                                                                   (23) 

𝐶𝐶𝑗𝑗,𝑛𝑛
′ = 𝐶𝐶𝑗𝑗,𝑛𝑛,                                                                                   (24) 

and 10 

𝐷𝐷𝑗𝑗,𝑛𝑛
′ = −𝐷𝐷𝑗𝑗,𝑛𝑛                                                                                  (25) 

Equations (10) and (11) represent Kelvin waves propagating in the −𝑥𝑥 and 𝑥𝑥 directions, respectively; and Eqs. (12) and (13) 

represent two families of Poincaré modes bound along the cross-sections 𝑥𝑥 = 𝑙𝑙𝑗𝑗  and 𝑙𝑙𝑗𝑗+1  in the j-th rectangular area, 

respectively. Coefficients (𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗 , 𝜅𝜅𝑗𝑗,𝑛𝑛 , 𝜆𝜆𝑗𝑗,𝑛𝑛) determine amplitudes and phase lags of Kelvin waves and Poincaré modes. These 

coefficients must be chosen to satisfy the boundary conditions, using preferably the collocation approach. 15 

2.3 Defant’s collocation approach 

The collocation approach was first proposed by Defant in 1925 (see Defant, 1961), and is convenient in determining the 

coefficients (𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 ,𝜅𝜅𝑗𝑗,𝑛𝑛, 𝜆𝜆𝑗𝑗,𝑛𝑛). In the simplest case, that is, if the model domain contains only a single rectangular area, then 

𝐽𝐽 =1 and the index j has only one value: 𝑗𝑗 = 1, the calculation procedure can be as follows. First, we truncate each of the two 

families of Poincaré modes in Eqs. (12) and (13) at the 𝑁𝑁1-th order so that the number of undetermined coefficients for two 20 

families of Poincaré modes is 2𝑁𝑁1 and the total number of undetermined coefficients (plus those for a pair of Kelvin waves) 

is thus 2𝑁𝑁1 + 2. To determine these unknowns, we take equally spaced 𝑁𝑁1 + 1 dots, which are called collocation points, 

located at 𝑦𝑦 = 𝑤𝑤1,1 + 𝑊𝑊1
2(𝑁𝑁1+1)

,  𝑤𝑤1,1 + 3𝑊𝑊1
2(𝑁𝑁1+1)

, … ,  𝑤𝑤1,1 + (2𝑁𝑁1+1)𝑊𝑊1
2(𝑁𝑁1+1)

 on both cross-sections 𝑥𝑥 = 𝑙𝑙1 and 𝑙𝑙2. At these points, 

one of the boundary conditions given by Eqs. (6) to (8) should be satisfied, which yields 2𝑁𝑁1 + 2 equations. By solving this 

system of equations, we can obtain 2𝑁𝑁1 + 2 coefficients (𝑎𝑎1, 𝑏𝑏1, 𝜅𝜅1,𝑛𝑛, 𝜆𝜆1,𝑛𝑛). Because the high-order Poincaré modes, which 25 

have great values of n and 𝑠𝑠1,𝑛𝑛 in Eqs. (12) and (13), decay from the boundary very quickly, it is generally necessary to retain 

only a few lower-order terms. In the above single-rectangle case, the spacing of collocation points is equal to ∆y = 𝑊𝑊1/(𝑁𝑁1 +

1).  

For 𝐽𝐽 > 1, that is, the model contains multiple rectangular areas connected one by one, we can treat the approach in the 
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following way. First, we may choose a common divisor of 𝑊𝑊1,𝑊𝑊2, … , 𝑊𝑊𝐽𝐽 as a common spacing, which is denoted by ∆y, 

for all areas. For the 𝑗𝑗th rectangle (Fig. 3), we may select the collocation points at 𝑦𝑦 = 𝑤𝑤𝑗𝑗,1 + ∆𝑦𝑦
2

, 𝑤𝑤𝑗𝑗,1 + 3∆𝑦𝑦
2

, …  , 𝑤𝑤𝑗𝑗,2 −
∆𝑦𝑦
2

 

on the cross-sections 𝑥𝑥 = 𝑙𝑙𝑗𝑗 and 𝑥𝑥 = 𝑙𝑙𝑗𝑗+1, where 𝑤𝑤𝑗𝑗,2 = 𝑤𝑤𝑗𝑗,1 + 𝑊𝑊𝑗𝑗. The number of collocation points on each cross-section 

in this area is equal to 𝑊𝑊𝑗𝑗/∆𝑦𝑦 . Thus the number of undetermined coefficients for the Poincaré modes is selected to be 

𝑁𝑁𝑗𝑗 = (𝑊𝑊𝑗𝑗/∆𝑦𝑦) − 1. Accordingly, there will be in total ∑ (2𝑁𝑁𝑗𝑗 + 2)𝐽𝐽
𝑗𝑗=1  collocation points in J areas. Note that on the cross-5 

section connecting Areaj and Area(j+1), the collocation points that belong to Areaj and those that belong to Area(j+1) are 

located at the same positions. For the points located on the open or closed boundaries, Eqs. (6) to (8) are applicable, while for 

the points located on the cross-sections connecting two areas, Eq. (9) should be applied. From these ∑ (2𝑁𝑁𝑗𝑗 + 2)𝐽𝐽
𝑗𝑗=1  equations, 

we can obtain ∑ (2𝑁𝑁𝑗𝑗 + 2)𝐽𝐽
𝑗𝑗=1  coefficients (𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗 , 𝜅𝜅𝑗𝑗,𝑛𝑛, 𝜆𝜆𝑗𝑗,𝑛𝑛), in which 𝑗𝑗 = 1, 2, … , 𝐽𝐽 and 𝑛𝑛 = 1, 2, … 𝑁𝑁𝑗𝑗. 

3 Tidal dynamics of the Korea Strait 10 

As noted by Odamaki (1989b), the co-oscillating tides are dominant in the JS, which is mainly induced by inputs at the opening 

of the KS rather than those through the TGS and SYS. Furthermore, our study focuses on the KS, in which influences of the 

tide-generating force and the inputs from the TGS and SYS are negligible. Therefore, we idealize the KS-JS basin as a semi-

enclosed basin with a sole opening connected to the ECS and study the co-oscillating tides generated by the tidal waves from 

the ECS through the opening. 15 

3.1 Model configuration and parameters for the Korea Strait and Japan Sea 

To establish an idealized analytical model for the KS–JS basin, we use four rectangular areas as shown in Fig. 4 to represent 

the study region. The first rectangle, designated as Area1, represents the KS, which is our focus area. According to the shape 

of its coastline, we use three rectangles designated as Area2 and Area3 to represent the JS. We place the x-axis parallel to but 

200 km away from the southeast sidewall of the KS (that is, 𝑤𝑤1,1 in Fig. 3 is equal to 200 km), and the y-axis is in the direction 20 

perpendicular to the x-axis through the opening of the KS (Fig. 4). The selected depths are the mean depths calculated based 

on the topographic dataset ETOPO1. The K1 and M2 angular velocities are equal to 7.2867 × 10−5s−1  and 1.4052 ×

10−4s−1, respectively. The details of the model parameters can be found in Table 1. 
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Figure 4: Idealized model domain fitting the Korea Strait and Japan Sea. The dashed line represents open boundary, and the solid 

lines represent closed boundaries. A, B, … , M indicate the localities of the points used in Fig. 6 for model-observation comparison. 

Numbered red dots are tidal gauge stations where the observed harmonic constants are used for model validation in Table 2. 

Based on the depths listed in Table 1, the wavelengths of the K1 Kelvin waves in these four areas are 2686 km, 12189 km, 5 

11398 km, and 2561 km, respectively, and those of the M2 Kelvin waves are 1393 km, 6321 km, 5911 km and 1328 km, 

respectively. Because the widths of the areas are all smaller than half the corresponding Kelvin wavelengths, the inequality 

Re(𝛽𝛽𝑗𝑗2 − 𝛼𝛼𝑗𝑗2) < 𝜋𝜋/𝑊𝑊𝑗𝑗 as stated in the subsection 2.2 is satisfied (see also Godin, 1965; Fang and Wang, 1966; Wu et al., 2018), 

Thus the Poincaré modes can only exist in a bound form. 

 10 

Table 1. Parameters used in the model. 

Parameter Area1 Area2 Area3 Area4 

𝑊𝑊𝑗𝑗  (km) 230 700 350 140 

𝐿𝐿𝑗𝑗  (km) 350 950 400 400 

𝑤𝑤𝑗𝑗,1 (km) 250 200 550 760 

𝑓𝑓𝑗𝑗  (10-5s-1) 8.28 9.24 10.10 10.65 

ℎ𝑗𝑗 (m) 99 2039 1783 90 

𝑁𝑁𝑗𝑗 22 69 34 13 

 

In addition to the parameters listed in Table 1, we need to estimate the parameters 𝜇𝜇M2  and 𝜇𝜇K1  as defined by Eq. (4). 

Since M2 has the largest tidal current in the KS (Teague et al., 2001), and we assume that the tidal currents are rectilinear, the 

linearized frictional coefficient for M2 is approximately equal to the following, after Pingree and Griffiths (1981), Fang (1987) 15 
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and Inoue and Garrett (2007), 

𝛾𝛾𝑀𝑀2 ≈
𝐶𝐶𝐷𝐷
ℎ

8
3𝜋𝜋
𝑈𝑈𝑀𝑀2 �1 + 3

4
∑ 𝜖𝜖𝑖𝑖2𝑖𝑖=2,3,… � ,                                                              (26) 

where 𝐶𝐶𝐷𝐷 is the drag coefficient and 𝑈𝑈𝑀𝑀2 is the tidal current amplitude of M2, 𝜖𝜖𝑖𝑖 = 𝑈𝑈𝑖𝑖/𝑈𝑈𝑀𝑀2, with 𝑈𝑈𝑖𝑖 representing the tidal 

current amplitude of the constituent i (here, we designate i=1 for M2 and i=2, 3, … for any constituents other than M2). 

According to Fang (1987) and Inoue and Garrett (2007), the linearized frictional coefficient for the non-dominant constituent 5 

i is approximately equal to the following: 

𝛾𝛾𝑖𝑖 ≈
𝐶𝐶𝐷𝐷
ℎ

4
𝜋𝜋
𝑈𝑈𝑀𝑀2 �1 + 𝜖𝜖𝑖𝑖

2

8
+ 1

4
∑ 𝜖𝜖𝑘𝑘2𝑘𝑘=2,3,…
𝑘𝑘≠𝑖𝑖    

� ,                                                            (27) 

Inserting Eqs. (26) and (27) into Eq. (4), we can obtain the parameter 𝜇𝜇. Teague et al. (2001) provided tidal current harmonic 

constants at 10 mooring stations along two cross-sections in the KS. The averaged values of the major semi-axes of the tidal 

current ellipses at these stations are 0.154, 0.119, 0.101 and 0.062 m/s for M2, K1, O1 and S2, respectively. Here, we use these 10 

values and 𝐶𝐶𝐷𝐷 ≈ 0.0026 to estimate the parameters in Eqs. (26) and (27). Then, after inserting these values into Eq. (4), we 

obtain rough estimates of 𝜇𝜇𝑀𝑀2  and 𝜇𝜇𝐾𝐾1  for the KS (Area1), which are approximately 0.05 and 0.09, respectively. Since the 

JS is much deeper and has much weaker tidal currents than the KS, we simply let 𝜇𝜇𝐾𝐾1 = 𝜇𝜇𝑀𝑀2 = 0 for both Area2 and Area3. 

For the collocation approach, we take 10 km as the spacing between collocation points. Thus in this model, a total of 198 

collocation points are used to establish 256 equations, and the parameters of 3 pairs of Kelvin waves and 125 pairs of Poincaré 15 

modes can be obtained. Along the open boundary of the KS, the open boundary condition Eq. (8) is employed, with the value 

of 𝜁𝜁 equal to the observed harmonic constants from the global tide model DTU10 (Cheng and Anderson, 2011). Along the 

cross-sections connecting Area1 with Area2 and Area2 with Area3, the matching conditions Eq. (9) are applied. Along the 

solid cross-sections, condition Eq. (6) is used. 

3.2 Model results and validation 20 

The obtained analytical solutions of the K1 and M2 tides using the extended Taylor method are shown in Fig.5a and 5b, 

respectively. The maximum amplitude of the K1 tide is 0.34 m, which appears at the southwest corner of the KS. The amplitude 

decreases from southwest to northeast, and a counter-clockwise tidal wave system occurs in the northeast part of the KS, with 

amplitudes less than 0.05 m near the amphidromic point. A co-tidal line with a phase lag of 210° runs from the amphidromic 

point in the KS into the southwest JS. 25 
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Figure 5: Comparison of tidal system charts. (a) K1 and (b) M2 tides from the present theoretical model; and (c) K1 and (d) M2 tides 

from DTU10 (Chen and Andersen, 2011). 

 

Figure 6: Comparison of model results (blue) and observations based on DTU10 (orange) along the coasts. (a) K1 amplitudes; (b) K1 5 
phase lags; (c) M2 amplitudes; and (d) M2 phase lags. The locations of the points A, B, C, D, G, H, I, J K, L, M are shown in Fig. 4. 

 

The maximum amplitude of the M2 tide is 1.02 m, which appears at the westernmost corner of the KS. The amplitude 

decreases gradually from southwest to northeast along the direction of the strait, and the amphidromic point occurs at the 

junction of the KS and JS. The amplitudes near the amphidromic point are lower than 0.1 m, and the phase lags in the most 10 

part of the JS vary from 150° to 210°. A degenerated amphidromic point appears near the entrance of the Tartar Strait. The 

comparison with the tidal charts based on data from DTU10 (Fig.5c, d) shows that the model-produced tidal systems agree 

fairly well with the observations. 

To quantitatively validate the model results, we first extract the data along the solid boundary of the model for comparison 

as shown in Fig.6. For the K1 tide, the model-produced amplitudes and phase lags along the boundary in the JS both agree well 15 
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with the observed data, although small differences occur at the northern corner of the JS. For the M2 tide, the greatest phase-

lag errors are approximately 64° near the entrance of the Tartar Strait due to the existence of a degenerated amphidromic point 

near this area (Fig. 2b). 

For further validation, we select 16 tide gauge stations where harmonic constants are available from the International 

Hydrographic Bureau (1930). The station locations are shown in Fig. 4. The result of the comparison is given in Table 2, which 5 

also shows that the model results are consistent with the data obtained from gauge observations: the RMS (root mean square) 

differences of amplitudes of K1 and M2 are 0.014 and 0.032 m, respectively; and those of the phase lags are 7.0° and 5.2°, 

respectively. 

Table 2. Comparison between harmonic constants from the observations and models at coastal tide gauge stations.  

No Station Name 

K1 M2 

Amplitude (m) Phase lag (°) Amplitude (m) Phase lag (°) 

Obs model obs model obs model obs model 

1 Reisui Ko 0.21 0.20 50 39 1.02 0.93 357 10 

2 Toei Ko 0.16 0.12 46 39 0.80 0.76 355 2 

3 Takesiki Ko, Aso Wan 0.12 0.11 83 87 0.66 0.66 1 6 

4 Aokata 0.23 0.23 90 85 0.80 0.81 356 358 

5 Konoura, Uku Sima 0.20 0.22 92 88 0.78 0.79 354 2 

6 Usuka Wan, Hirado Sima 0.19 0.21 102 97 0.74 0.78 2 8 

7 Kottoi 0.12 0.13 174 155 0.32 0.34 31 33 

8 Sitirui 0.04 0.04 206 211 0.06 0.04 152 148 

9 Nakai Iri,Hoku Wan 0.06 0.05 215 214 0.07 0.07 172 164 

10 Ryotu Ko, Sado 0.05 0.05 211 215 0.05 0.07 181 167 

11 Kamo Ko 0.06 0.05 211 216 0.07 0.07 174 169 

12 Akita 0.06 0.05 220 216 0.05 0.07 174 170 

13 Hamamasu 0.05 0.06 211 219 0.05 0.09 185 180 

14 Zyosin Ko 0.06 0.05 227 227 0.08 0.06 187 185 

15 Sokcho 0.04 0.05 236 228 0.07 0.05 189 188 

16 Uturyo To 0.04 0.04 222 226 0.04 0.04 194 180 

RMS difference 0.014 7.0 0.032 5.2 

 10 

Although the theoretical model greatly simplifies the topography and boundary, the amplitude and phase-lag differences of 
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these two tidal constituents are very small in the KS and its surroundings and the basic characteristics of the tidal patterns are 

well retained (Fig. 5). These findings show that the simplification of the model is reasonable and the extended Taylor method 

is appropriate for modelling the tides in the KS-JS basin. Therefore, it is meaningful to use the model results for theoretical 

analysis. 

3.3 Tidal waves in the Korea Strait 5 

To reveal the relative importance of the Kelvin waves versus Poincaré modes in the modelled Korea Strait, the superposition 

of Kelvin waves and that of the Poincaré modes are given in the upper panels of Fig.7 for K1 and in the upper panels of Fig.8 

for M2. 

For the K1 tide in the KS, the superposition of the incident (northeastward) and the reflected (southwestward) Kelvin waves 

appears as a counter-clockwise amphidromic system, with the amphidromic point located near the middle of the strait, but 10 

closer to the southeast coast of Korea (Fig.7a). The highest amplitude of the superposed Kelvin waves is 0.3 m, and the mean 

difference from the observations is less than 0.03 m. The superposition of all Poincaré modes has amplitudes of approximately 

0.1 m near the cross-sections on both left and right sides, and a counter-clockwise amphidromic point exists nearly at the centre 

of the strait (Fig. 7b). Since the amplitudes of the superposed Poincaré modes are significantly smaller than those of the 

superposed Kelvin waves, the latter can basically represent the total tidal pattern, including the counter-clockwise amphidromic 15 

system. 

For the M2 tide, the highest amplitude of the superposition of two Kelvin waves is approximately 0.95 m, which appears at 

the southwest corner of the strait (Fig. 8a). The amplitude decreases from southwest to northeast along the strait, and the 

amphidromic point appears near the cross-section connecting to the JS, where a topographic step exists. The maximum 

deviation of the amplitudes of the superposed Kelvin waves from the observations is 0.06 m, and the structure of the superposed 20 

Kelvin waves is consistent with the observation. The amplitudes of the superposed Poincaré modes are generally less than 0.2 

m on both left and right sides of the KS, and they decay rapidly towards the middle of the strait, thus forming a counter-

clockwise amphidromic system structure (Fig. 8b). Therefore, the M2 tide in the KS is also mainly controlled by Kelvin waves. 

The above results show that the Poincaré modes only exist along the open boundary and the connecting cross-section and 

their amplitudes quickly approach to zero away from these cross-sections. In fact, these properties of the Poincaré wave are 25 

inherent in any narrow strait. Therefore, in the following, we will focus on Kelvin waves and analyze the characteristics of the 

incident (northeastward) and reflected (southwestward) Kelvin waves. 

The incident and reflected K1 Kelvin waves are shown in Figs. 7c and 7d, respectively. The area-mean amplitude of the 

incident Kelvin wave in the KS is 0.248 m, and that of the reflected Kelvin wave is 0.190 m, which is 77% of the incident 

Kelvin wave. On the connecting cross-section, the section-mean amplitude of the incident Kelvin wave is 0.243 m, and the 30 
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section-mean phase lag is 151.6°. The section-mean amplitude of the reflected Kelvin wave is 0.194 m, which is 80% of the 

incident Kelvin wave. The section-mean phase lag is 295.8°, indicating that the phase lag increases by 144.2° when the wave 

is reflected. The amphidromic point of the superposed Kelvin wave is 137 km away from the step and close to the northwest 

shore of the KS. 

The incident and reflected M2 Kelvin waves are shown in Figs. 8c and 8d, respectively. The area-mean amplitude of the 5 

incident Kelvin wave in the KS is 0.471 m, and that of the reflected Kelvin wave is 0.439 m, which is 93% of the incident 

Kelvin wave. This ratio is larger than the K1 tide because the bottom friction of M2 is smaller and less energy is lost in the 

propagation process. On the connecting cross-section, the mean amplitude of the incident Kelvin wave is 0.462 m, and the 

phase lag is 97.9°. The mean amplitude of the reflected Kelvin wave is 0.447 m, which is 97% of the incident Kelvin wave, 

and the phase lag is approximately 266.4°, with a phase-lag increase of 168.5°, which is closer to 180° as compared to the 10 

corresponding value of the K1 tide. Accordingly, the M2 amphidromic point of the superposed Kelvin wave shifts to 

approximately 21 km away from the step. A comparison between Fig. 7a and Fig. 8a shows that the amphidromic point of K1 

is located west of that of M2. This result reproduces well the observed phenomenon as seen from Fig. 2. 

The above results indicate that the relation of the amplitudes and phase lags of the reflected Kelvin wave with the incident 

wave plays a decisive role in the tidal system in the KS, especially in the formation of amphidromic points, for both the K1 15 

and M2 tides. 

 

Figure 7: Decomposed charts for the model-produced K1 tide in the Korea Strait: (a) contribution of Kelvin waves; (b) contribution 

of Poincaré modes; (c) northeastward (incident) Kelvin wave; and (d) southwestward (reflected) Kelvin wave. 
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Figure 8: Same as in Fig. 7 but for M2. 

4 Discussion on the formation mechanism of amphidromic points 

To explore the tidal dynamics of the KS–JS basin, especially the formation mechanism of amphidromic points, we consider 

the simplest case: a one-dimensional tidal model in channels. In the one-dimensional case, the amphidromic point is equivalent 5 

to the wave node. As previously mentioned, an important feature of the topography of the KS–JS basin is that there is a steep 

continental slope between the KS and JS, and to northeast of this slope, the JS is much deeper and wider than the KS. Thus, 

the channel is idealized to contain two areas, with the first one (Area1) having uniform depth ℎ1 and uniform width 𝑊𝑊1 and 

the second one (Area2) having uniform depth ℎ2 and uniform width 𝑊𝑊2. Therefore, the idealized channel contains abrupt 

changes in depth and width at the connection of these two areas. An incident wave enters the first area and propagates toward 10 

the second area passing over the topographic step. For simplicity, we neglect friction. 

If the second area is semi-infinitely long, allowing for the wave radiating out from the second area freely, then a part of the 

wave is reflected at the connecting point and another part is transmitted into the second area. The amplitude of the transmitted 

wave is (see e. g. Dean and Dalrymple (1984)) 

𝐻𝐻𝑇𝑇 = 𝜅𝜅𝑇𝑇𝐻𝐻𝐼𝐼 ,                                                                                  (28) 15 

where 𝐻𝐻𝐼𝐼  is the amplitude of the incident wave and 𝜅𝜅𝑇𝑇 is called the transmission coefficient, which is equal to 

𝜅𝜅𝑇𝑇 = 2
1+𝜌𝜌

 ,                                                                                   (29) 
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where 

𝜌𝜌 = 𝑐𝑐2𝑊𝑊2
𝑐𝑐1𝑊𝑊1

= �ℎ2
�ℎ1

𝑊𝑊2
𝑊𝑊1

                                                                             (30) 

with 𝑐𝑐𝑗𝑗 = �𝑔𝑔ℎ𝑗𝑗  representing the wave speed in the j-th area, 𝑗𝑗 = 1, 2. 𝑐𝑐𝑗𝑗 is in fact proportional to �ℎ𝑗𝑗. The amplitude of 

the reflected wave 𝐻𝐻𝑅𝑅 is 

𝐻𝐻𝑅𝑅 = 𝜅𝜅𝑅𝑅𝐻𝐻𝐼𝐼                                                                                   (31) 5 

where 𝜅𝜅𝑅𝑅 is called the reflection coefficient, and is equal to the following: 

𝜅𝜅𝑅𝑅 = 1−𝜌𝜌
1+𝜌𝜌

                                                                                    (32) 

If ρ > 1, namely, if �ℎ2𝑊𝑊2 > �ℎ1𝑊𝑊1, then 𝜅𝜅𝑅𝑅 < 0, (32) can be rewritten in the form 

𝜅𝜅𝑅𝑅 = 𝜌𝜌−1
𝜌𝜌+1

exp (−𝑖𝑖𝑖𝑖).                                                                           (33) 

The above equation indicates that at the connecting point, the reflected wave changes its phase lag by 180°. Therefore, the 10 

superposition of incident and reflected waves in Area1 has the minimum amplitude at the connecting point. This theory explains 

how the reflected wave can be generated by abrupt increases in water depth and basin width, and why the reflected wave there 

has a phase lag opposite to the incident wave. 

  

The complete solution for this case is as follows (see also Dean and Dalrymple (1984)): 15 

�

 
𝜁𝜁(𝑥𝑥) = 𝐻𝐻𝐼𝐼 �exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]} + 𝜌𝜌−1

𝜌𝜌+1
exp {−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 𝜋𝜋]}� , 𝑙𝑙1 ≪ 𝑥𝑥 ≪ 𝑙𝑙2

𝜁𝜁(𝑥𝑥) = 2
1+𝜌𝜌

𝐻𝐻𝐼𝐼 exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2) + 𝜒𝜒1 + 𝜃𝜃1]},                                      𝑙𝑙2 ≪ 𝑥𝑥
          (34) 

where 𝜃𝜃1 represents the phase lag of the incident wave at the opening of Area1; 𝑘𝑘𝑗𝑗 = 𝜎𝜎/𝑐𝑐𝑗𝑗 is the wave number, with 𝑐𝑐𝑗𝑗 =

�𝑔𝑔ℎ𝑗𝑗 representing the wave speed in Areaj, j=1, 2; and 𝜒𝜒1 = 𝑘𝑘1𝐿𝐿1. This solution for the K1 and M2 constituents for h1=99 m, 

L1=350 km, W1=230 km, h2=2039 m, and W2=700 km is plotted with the blue curves in Fig. 9. 

However, Sect. 3.3 shows that the phase-lag changes of the reflected waves relative to the incident waves are not exactly 20 

equal to 180° but rather are smaller than 180°, and the discrepancy increases with the decreasing angular frequency. To explain 

this discrepancy, we improve the above theory by introducing the reflected wave in the second area. In fact, the JS is represented 

with a semi-closed area in the two-dimensional model (Sect. 3.1), namely, all boundaries except those connected to KS are 

solid ones (Fig. 4). Therefore, in the following one-dimensional model, the second area is closed at its right end so that the 

reflection will occur at this end. In this case, the solution becomes more complicated and is dependent on the length of the 25 

second area 𝐿𝐿2. The reflection coefficient 𝜅𝜅𝑅𝑅 now has the following form (see supplement for derivation): 

𝜅𝜅𝑅𝑅 = exp(−𝑖𝑖2𝛿𝛿).                                                                              (35) 

in which 𝛿𝛿 is determined by the following equations: 
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�
cos δ = 1+cos 2𝜒𝜒2

[(1+cos 2𝜒𝜒2)2+(𝜌𝜌 sin2𝜒𝜒2)2]1/2 ,

sin δ = 𝜌𝜌 sin2𝜒𝜒2
[(1+cos 2𝜒𝜒2)2+(𝜌𝜌 sin2𝜒𝜒2)2]1/2 ,

                                                               (36) 

where 𝜒𝜒2 = 𝑘𝑘2𝐿𝐿2. Eq. (36) indicates that the length, width and depth of Area2 are also important in determining the phase-

lag increase of the reflected wave relative to the incident wave in Area1. 

The complete solution for this case is as follows: 

�
 

𝜁𝜁(𝑥𝑥) = 𝐻𝐻𝐼𝐼(exp {−𝑖𝑖[𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 𝜃𝜃1]} + exp {−𝑖𝑖[−𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1) + 2𝜒𝜒1 + 𝜃𝜃1 + 2𝛿𝛿]}),                 𝑙𝑙1 ≪ 𝑥𝑥 ≪ 𝑙𝑙2
𝜁𝜁(𝑥𝑥) = 𝜖𝜖𝐻𝐻𝐼𝐼(exp{−𝑖𝑖[𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]} + exp{−𝑖𝑖[−𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)+(2𝜒𝜒2 + 𝜒𝜒1 + 𝜙𝜙 + 𝜃𝜃1)]}), 𝑙𝑙2 ≪ 𝑥𝑥 ≪ 𝑙𝑙3

 5 

                                                                                            (37) 

where ε = 2𝐸𝐸−1. 𝐸𝐸 and 𝜙𝜙 are determined by the following relations: 

�𝐸𝐸 cos𝜙𝜙 = (𝜌𝜌 + 1) − (𝜌𝜌 − 1) cos 2𝜒𝜒2 ,
𝐸𝐸 cos𝜙𝜙 = (𝜌𝜌 − 1) sin 2𝜒𝜒2.                                                                      (38) 

The first terms on the rhs (right-hand side) of the two equations in Eq. (37) represent the waves propagating in the positive 

x direction, and the second terms are those propagating in the negative x direction. This solution for the K1 and M2 constituents 10 

for the case h1=99 m, L1=350 km, W1=230 km, h2=2039 m, L2=1150 km, and W2=700 km is plotted with the red curves in Fig. 

9. 

Equation (35) indicates that the amplitude of the reflected wave in the first area is equal to that of the incident wave. This 

result is natural because friction is not considered and no dissipation is present during wave propagation. Equation (35) also 

indicates that the phase lag of the reflected wave at the connecting point is greater than that of the incident wave at the same 15 

point by 2𝛿𝛿. Since the node of the superposition of the incident and reflected waves appears at the place where the phase lags 

of these two waves are opposite, the first node should appear at ∆𝑥𝑥 away from the connecting point with 

∆𝑥𝑥 = (π − 2δ)/(2𝑘𝑘1).                                                                          (39) 

The above relationship can also be obtained from the first equation of Eq. (37). The dependence of 2𝛿𝛿 on σ for the case 

h1=99 m, L1=350 km, W1=230 km, h2=2039 m, L2=1150 km, and W2=700 km is plotted in Fig. 10. This figure shows that 20 

2𝛿𝛿 = 0 when σ = 0 and 2𝛿𝛿 increases with increasing σ, although it is always less than 180°. In particular, 2𝛿𝛿 = 167.7° 

when 𝜎𝜎 = 𝜎𝜎𝐾𝐾1  and 2𝛿𝛿 = 176.2° when 𝜎𝜎 = 𝜎𝜎𝑀𝑀2. Based on this theory, the M2 and K1 amphidromic points should be located 

at 7.4 and 45.9 km away from the connecting point, respectively. Compared with the two-dimensional model results given in 

Sect. 3.3, this theory roughly explains one third of the changes. The remaining two third of the changes may be due to the 

effect of Coriolis force. The solution of phase-lag changes at the cross-section in the two-dimensional rotating basin involves 25 

interactions among three Kelvin waves (an incident and a reflected Kelvin waves in Area1 and a transmitted Kelvin wave in 

Area2) and two families of Poincaré modes at the connecting cross-section (one family in each area). Taylor (1922), Fang and 

Wang (1966), and Thiebaux (1988) have studied the Kelvin-wave reflection at the closed cross-section of semi-infinite rotating 

two-dimensional channels. In their studies, only two Kelvin waves and one family of Poincaré modes were involved. In 
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comparison to their studies, the present problem is much more complicated. Because of the complexity of the problem, we 

will presently leave it for a future study. 

 

 

Figure 9: Amplitude distribution along the channel. (a) K1 and (b) M2. Blue/red curves are solutions for semi-infinite/finite Area2. 5 
The red arrow indicates the position of the connecting point between the Korea Strait and the Japan Sea. Amplitudes are given as 

ratios to the incident wave in Area1. 

 

 

 10 

Figure 10: Phase-lag increase of the reflected wave relative to the incident wave as a function of the angular frequency at the 

connecting point. See the text for details. 

5 Summary 

In this paper, we establish a theoretical model for the KS-JS basin using the extended Taylor method. The model idealizes the 

study region as three connected flat rectangular areas, incorporates the effects of the Coriolis force and bottom friction in the 15 

governing equations and is forced by observed tides at the opening of the KS. The analytical solutions of the K1 and M2 tidal 
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waves are obtained using Defant’s collocation approach. 

The theoretical model results are consistent with the satellite altimeter and tidal gauge observations, which indicates that the 

model is suitable and correct. The model well reproduces the K1 and M2 tidal systems in the KS. In particular, the model-

produced locations of the K1 and M2 amphidromic points are consistent with the observed ones. 

The model solution provides the following insights into the tidal dynamics in the KS. (1) The tidal system in each rectangular 5 

area can be decomposed into two oppositely travelling Kelvin waves and two families of Poincaré modes, with Kelvin waves 

dominating the tidal system due to narrowness of the area. (2) The incident Kelvin wave from the ECS through the opening of 

the KS travels toward the JS and is reflected at the connecting cross-section between the KS and JS, where abrupt increases 

from the KS to JS in water depth and basin width occur. (3) The phase lag of the reflected wave at the connecting cross-section 

increases by less than 180° relative to that of the incident wave, thus enabling the formation of the amphidromic points in the 10 

KS. (4) The phase-lag increase of the reflected wave relative to the incident wave is dependent on the angular frequency of the 

wave and becomes smaller as the angular frequency decreases. This feature explains why the K1 amphidromic point is located 

farther away from the connecting cross-section in comparison to the M2 amphidromic point. (5) The length, width and depth 

of the JS is also important in determining the phase-lag increase of the reflected Kelvin wave in the KS. 

 15 
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Appendix: Tidal wave propagation in channels with 

abrupt depth/width changes.

a. Basic Equations 
We study tidal wave propagation in channels with abrupt 

depth/width changes. To be specific, we consider a one-

dimensional problem corresponding to the model shown in 

Fig. 3. For simplicity, Area3 is combined into Area2, and the 

Coriolis force and friction are neglected, then Eqs. (10) and  
(11) in the Sect. 2.2 of the text can be simplified as follows:

𝑢𝑢1,−(𝑥𝑥) = −𝑎𝑎1 exp[𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                  

(A1)

𝜁𝜁1,−(𝑥𝑥) = 𝑝𝑝1𝑎𝑎1 exp[𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                  

(A2) 
𝑢𝑢1,+(𝑥𝑥) = 𝑏𝑏1 exp[−𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                  

(A3)

𝜁𝜁1,+(𝑥𝑥) = 𝑝𝑝1𝑏𝑏1 exp[−𝑖𝑖𝑘𝑘1(𝑥𝑥 − 𝑙𝑙1)]                                                                

(A4)

𝑢𝑢2,−(𝑥𝑥) = −𝑎𝑎2 exp[𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                                  
(A5)

𝜁𝜁2,−(𝑥𝑥) = 𝑝𝑝2𝑎𝑎2 exp[𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                                 

(A6)

𝑢𝑢2,+(𝑥𝑥) = 𝑏𝑏2 exp[−𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                                 

(A7) 
𝜁𝜁2,+(𝑥𝑥) = 𝑝𝑝2𝑏𝑏2 exp[−𝑖𝑖𝑘𝑘2(𝑥𝑥 − 𝑙𝑙2)]                                                               

(A8)

where 𝑘𝑘𝑗𝑗 = 𝜎𝜎/𝑐𝑐𝑗𝑗  is the wave number, with 𝑐𝑐𝑗𝑗 = �𝑔𝑔ℎ𝑗𝑗 ...
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Deleted: A15) by 𝑝𝑝1/ℎ1𝑊𝑊1 and obtain 
𝜁𝜁1,+(𝑙𝑙2) − 𝜁𝜁1,−(𝑙𝑙2) = 𝜌𝜌[𝜁𝜁2,+(𝑙𝑙2) − 𝜁𝜁2,−(𝑙𝑙2)],                                                      

(A16)

where

𝜌𝜌 = 𝑝𝑝1ℎ2𝑊𝑊2

𝑝𝑝2ℎ1𝑊𝑊1
= �ℎ2𝑊𝑊2

�ℎ1𝑊𝑊1
 .                                                                        

(A17) 
b. Solution for the case with semi-infinite Area2

Here, we first investigate a simpler case that has been 

previously studied by Dean and Dalrymple (1984). In this 

case, Area2 is assumed to be semi-infinitely long so that the 

wave can propagate freely in the positive x direction without  
reflection, meaning that 𝑎𝑎2 = 0. Thus, the terms 𝜁𝜁2,− in 

Eqs. (A6), (A14) and (A16) are all equal to zero. From Eqs. 

(A14) and (A16) with 𝜁𝜁2,−(𝑙𝑙2) = 0 we obtain ...
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