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Abstract. Backward drift simulations can aid the interpretation of in situ monitoring data. Some trajectories
:
In

:::::
some

:::::
cases,

however, are
:::::::::
trajectories

:::
are

::::
very

:
sensitive to even small changes of the tracer release position. A corresponding spread of

backward simulations implies convergence
::::::::
attraction

:
in the forward passage of time . Such

:::
and

:::::
hence

:
uncertainty about the

probed water body’s origincomplicates the interpretation of measurements. This study examines surface drift simulations in

the German Bight (North Sea). Lines across which drift behaviour changes non-smoothly are obtained as ridges in the fields5

of the finite-time Lyapunov exponent (FTLE), a parameter used in dynamical systems theory to identify Lagrangian coherent

structures (LCS). Results are shown to closely resemble those obtained considering a) two-particle relative dispersionand b)

the average divergence of Eulerian velocities that tracers experience. Structures observed in simulated sea surface temperature

and salinity further corroborate the FTLE results
:
.
::
It

::
is

::::::
argued

::::
that

::::::::
simulated

::::::
FTLE

:::::
fields

:::::
might

:::
be

::::
used

::
in
:::::::

support
:::
of

:::
the

:::::::::::
interpretation

::
of

:::::::::
monitoring

:::::
data,

::::::::
indicating

::::
also

:::::::::
vagueness

::
of

::::
drift

:::::::::
simulations

:::::
being

::::
used.10
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1 Introduction

In the German Bight area exists
:::::
(North

:::::
Sea) a comprehensive monitoring network

::
is

:::::::
operated, including the Marine Envi-

ronmental Monitoring Network in the North Sea (MARNET), the Coastal Observing System for the North and Arctic Seas

(COSYNA) and other stations. Details on the type of data being collected can be found in Baschek et al. (2017). Stanev et al.15

(2016) discuss issues related to modelling and data assimilation with spatiotemporal optimal interpolation. Multivariate statis-

tical methods could
:::
can also be used for optimizing the design of observational arrays (e.g. Chen et al., 2016; Kim and Hwang,

2020). However, data analysis based on
:::::
When

:
it
::::::
comes

::
to

:::
the

::::::
analysis

:::
of

::::::
specific

::::
data,

::::::::
however, a merely statistical description

of spatial connectivity falls short of what can be achieved if hydrodynamic current fields from either models or remote sensing

are available. This applies all the more, when it comes to the interpretation of data from a whole array of in situ monitoring20

stations.
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Backward trajectories of Lagrangian tracers
:::::
tracer

:::::::::
trajectories

:
seeded at monitoring stations provide valuable insight into the

background of water bodies that are probed (e.g. d’Ovidio et al., 2015). They help
::::
were

::::::
probed

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. d’Ovidio et al., 2015; Lucas et al., 2016; Teeling et al., 2012, supplement, movie S1)

:
,
::::::
helping distinguish between temporal and spatial variability, i.e. local changes and advection from somewhere else. Because of

considerable uncertainties, however, following just single particle trajectories is likely to be misleading. Trajectories accumulate25

deficiencies of the underlying hydrodynamic fields, including the effects of unresolved sub-grid scale hydrodynamic structures.

Initially moderate deviations may possibly transfer a trajectory to another submesoscale circulation structure. Backtracking

water bodies from hypothetical monitoring stations in the vicinity of Helgoland, Callies et al. (2011, their Fig. 3) provide an

example of how quasi-chaotic mixing may transform
::
in

::::::::::::::
two-dimensional

::::::::
barotropic

::::::::::
simulations

::::::::::
transforms initially regular

into quite contorted structures. Also in nature
:
,
::::::
forward

::::::::::
trajectories

::
of

:
drifters released pairwise may separate quite fast (e.g.30

Callies et al., 2019; Meyerjürgens et al., 2020), which sets a limit to the reliability of simulations that can be achieved in

the best case. .
:::::::::
Therefore,

::
a

:::
key

::::::::
question

:
is
:::::

how
::::::
reliable

:::::::::
backward

::::
drift

:::::::
analyses

:::
can

:::
be

::::
and

::::
how

:::
the

::::::::
numerical

:::::::
analysis

:::
of

:
a
:::::
water

::::::
body’s

:::::
recent

::::::
history

::::::
should

:::
be

::::::::
designed.

::
In

:::::::
addition

:::
to

::::
well

::::::
known

::::::
random

:::::::::
dispersion

:::::
there

::::
exist

::::
also

::::
flow

:::::::
patterns

:::
that

:::::
affect

:::::::::
separation

::
of

::::::::
simulated

::::::::
backward

::::::::::
trajectories

::::
more

::::::::::::
systematically

::::::::::::
(Haller, 2015)

:
.
:::
The

:::::::
present

::::
study

:::::::
focuses

::
on

::::
this

::::
latter

::::::
aspect,

:::
i.e.

:::::::
coherent

:::::::::
structures

::::::
shaping

:::::::::
separation

::
of

:::::::::
simulated

::::::::
backward

::::::::::
trajectories.35

For these reasons, Lucas et al. (2016) for instance, studying the variation of bacterial community composition at station

Helgoland Roads in the German Bight (North Sea), considered the behaviour of a whole bundle of backward trajectories, seeded

within an extended region around the observational site. Uncertainties due to sub-grid scale eddies unresolved in the model

were dealt with by a random walk component superimposed to each individual trajectory. This blanket approach implicitly deals

also with the problem the present study focusses on : A possibly high sensitivity of backward trajectories (either simulated or40

observed) to where exactly they are seeded. A statistical measure for such
::
of particle spreading is relative dispersion, the mean

square particle distance,
:

as function of time. LaCasce (2008) reviews how this parameter relates to the energy spectrum of a

turbulent flow. Relative dispersion is called
::::
local

:::::
when

::::::
particle

:::::::::
separation

::
is

:::::::::
dominated

:::
by

:::::
small

:::::
eddies

:::::
with

:
a
::::::
typical

:::::
scale

:::
that

::::::::
compares

::::
with

:::::::
particle

:::::::::
separation.

:::
By

::::::::
contrast,

:
it
::
is

::::::
termed

:
non-local if particle separation is dominated by eddies much

larger than particle separation. In this
:::
the

:::::
latter case, characterized by a steep energy spectrum, particle separation is expected45

to grow exponentially. The
::::
Such

:
very high sensitivity to initial particle positions implies what in dynamical systems theory is

called chaotic advection
:::::::::::::
(Wiggins, 2005).

Dynamical systems theory aims at a description of the kinematics of turbulent mixing. The approach is based on flow maps

that describe particle advection over some time interval, according to Haller (2015) "thereby mimicking experimental flow

visualization by tracers". This technique has widely been applied for analysing the microstructure of chaotic mixing processes50

in two dimensions (e.g. Pierrehumbert and Yang, 1993), describing how chaotic advection may transform initially small disks

of fluid into complex filamentary structures. Trying to improve the sometimes vague definitions of such structures, Haller

and Yuan (2000) introduced the framework of Lagrangian coherent structures (LCS). Their method seeks to identify material

lines that function as only weekly permeable barriers for water body transport, attracting or repelling neighboured trajectories.

Peacock and Haller (2013) provide a nice overview of the topic.55
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In case of flows with arbitrary time dependence, identification of LCSs can still be difficult.
::::::::
Attracting

::::::
LCSs,

::
in

:::::::::
dynamical

::::::
systems

::::::
theory

:::
also

::::::
called

:::::::
unstable

::::::
because

::
of

::
a

:::
fast

::::::::
stretching

::
of

:::::::
particles

:::::
along

:::::
them

:::::::::
(according

:
to
:::::::::::::::::::::::::::
Harrison and Glatzmaier (2010)

::
an

::::::::::
unfortunate

::::::::
historical

::::::::::
definition),

::::
have

:::::
been

::::
used

:::
for

::::::::::
optimizing

:::::
drifter

:::::::::::
deployments

:::
in

::::
field

:::::::
studies.

:::::::::::::::
Poje et al. (2002)

:::::::
proposed

::::::
drifter

::::::::::
deployment

:::
into

::::::::
attracting

:::::
LCSs

::
to
::::::
ensure

:::
fast

::::::::
dispersal

:::::
based

:::
on

:::::::::::::
near-exponential

:::::::
material

:::::::::
stretching,

::::::
which

:::
lets

::::::
drifters

:::::::
explore

::::::
regions

::
of

::::
high

::::::
kinetic

:::::::
energy.

::::::::::::::::::
Molcard et al. (2006)

:::
used

::::
this

::::::::
approach

:::
for

::::::::::
assimilating

::::::
drifter

::::::::
velocities60

:::
into

:::
an

:::::
ocean

::::::
general

:::::::::
circulation

::::::
model.

::::::::
Different

::::
from

:::::
these

:::::::
studies,

::::::::::::::::::
Shadden et al. (2009)

::::
focus

:::
on

:::::::
repelling

::::::
LCSs.

:::::::
Seeding

::::::
drifters

::
in

:
a
::::

less
::::::::
localized

::::
way,

:::::::::::::
Shadden et al.

::
try

::
to

:::::
make

::::::
drifters

::::
stay

::
as
:::::

long
::
as

:::::::
possible

::
in

::
a
:::::::
specific

:::::
region

:::::::::
delineated

:::
by

:::::::
transport

:::::::
barriers.

:::::
They

:::::::::
exemplify

:::
that

::
a
:::::
LCS’s

:::::::::
robustness

::::::
might

:::::
enable

:::::::::::
extrapolation

:::
of

::
its

:::::::::
separatrix

:::::::
function

::::
even

:::::::
beyond

::
the

:::::
time

::::::
horizon

:::
of

:::::::
detailed

:::::::::
operational

::::::::::::
hydrodynamic

::::::::::
predictions

::::
(e.g.

:::::
three

:::::
days).

::::::::::
Combining

::::::::
SeaWiFS

:::::::::::
ocean-colour

::::
data

::::
with

::::::::::::::
altimetry-derived

::::::
surface

::::::::
currents

::
in

:::
the

:::::::::::::
Brazil-Malvinas

::::::::::
confluence

:::::
zone,

::::::::::::::::::
d’Ovidio et al. (2010)

:::::
found

::::
that

::::::
stirring

:::
by65

::::::::
mesoscale

:::::::
currents

::::
can

::::
play

::
an

::::::::
important

::::
role

::
in

:::::::::
structuring

:::::::::::::
phytoplankton

::::::::::
communities

::::
and

::::
even

::::::
create

::::
what

::::
they

:::
call

:::::
fluid

::::::::
dynamical

:::::::
niches,

::::::
sharply

::::::::
delimited

:::
by

::::::
LCSs.

::::::::::::::::::::::::::::
Hernández-Carrasco et al. (2018)

::::
study

::::
this

::::
topic

::
at
::::

the
::::::::::::
submesoscale,

:::::
using

::::::
currents

::::::::
observed

::::
with

::::::::::::::
High-Frequency

:::::
Radar

::::::
(HFR)

::
in

::::::
coastal

::::::
waters.

:::::::::
According

::
to
:::::::::::::::::

Scales et al. (2018)
:::::::
attracting

:::::
LCSs

::::
can

:::
also

:::
be

:::::::
targeted

::
by

::::::::
fisheries,

:::
led

::
by

::::
lines

:::
of

::::::
drifting

:::::
foam

::
or

::::::
debris.

:::::::::
Conducting

::::::::
backward

:::::::::::
simulations,

::
the

:::::::
present

::::
study

::::::::
proposes

:::
the

:::
use

::
of

::::
LCSs

:::
as

::::::::
indicators

::
of

:
a
:::::::
possibly

:::::::
sensitive

::::::::::
dependence70

::
of

::::::::::::
measurements

::
on

::::::
where

:::
and

:::::
when

::::::
exactly

::::
they

::::
were

::::::
taken.

:::
The

:::::::
analysis

::
is

:::::
based

:::
on

:::::
offline

::::
drift

::::::::::
simulations

:::::
using

:::::::
German

::::
Bight

:::::::
surface

::::
layer

:::::::
currents

:::::::
obtained

:::::
from

:::::::
archived

:::::
output

::
of

:::
the

::::::::::
operational

:::
3D

::::::::
baroclinic

:::::
model

::::::::::
BSHcmod,

:::
run

:::::::::::
operationally

::
by

:::
the

:::::::
German

:::::::
Federal

::::::::
Maritime

::::
and

::::::::::::
Hydrographic

:::::::
Agency

::::::
(BSH).

::::
The

:::::
study

::::
aims

:::
for

:::
an

::::::::::
assessment

::
of

:::
the

:::::::::
situations

::
at

::::::
specific

:::::
times

::
of

::::::
interest

::::::
rather

:::
than

:::
for

::
a

::::::
generic

:::::::::::::
characterization

::
or

:::::::::::
classification

::
of

:::::
given

::::::::
locations.

::::::
Highly

:::::::
variable

::::::::
transport

::::
paths

:::
in

:::
the

:::::::
German

:::::
Bight

::::
area

:::
for

::::
the

::::
most

::::
part

:::::
arise

:::::
from

:::::::
residual

:::::::
currents

:::::
being

::::::
driven

:::
by

::::::::
changing

:::::
wind

:::::::::
conditions75

:::::::::::::::::::::::::::::
(Schrum, 1997; Callies et al., 2017a)

:
.
::::::::::
Establishing

::
a
::::::
simple

:::::::::::::
interrelationship

::::::::
between

:::::
winds

:::
and

::::::
overall

:::::::::
finite-time

:::::::::
transports

:
is
::::::
hardly

::::::::
possible,

:::::
tracer

::::::::::
trajectories

::::::::
aggregate

:::
the

::::::
effects

::
of

::::::::
possibly

::::
very

:::::::
different

::::::
winds.

::::::::
Detailed

::::::::
numerical

:::::::::::
simulations,

:::::::
however,

:::::::
properly

::::::::
integrate

::::
such

:::::::
variable

::::::::::::
hydrodynamic

::::::::
transports

::::::
during

::
a

::::::
specific

::::::::::
observation

::::::
period.

:

Hadjighasem et al. (2017) compare twelve candidate approaches that could be used
::
for

:::
the

:::::::::::
identification

:::
of

:::::
LCSs. Among

those, calculation of finite-time Lyapunov exponents (FTLE) is one of the most common methods. It is closely related to the80

finite-scale Lyapunov exponent (FSLE), originally introduced by Aurell et al. (1996, 1997) and used in experiments for diag-

nosing scale dependent separation rates between drifter pairs (LaCasce and Ohlmann, 2003; Sansón et al., 2017). Karrasch and

Haller (2013), however, report some limitations for FSLE in LCS detection,
:
suggesting that an approach based on FTLE distri-

butions may be more reliable. The FTLE fields are independent of an observer’s reference frame (Haller, 2015), representing

the rate at which neighbouring tracers diverge
::::::
separate

:
according to the largest eigenvalue of the so-called Cauchy-Green strain85

tensor. Ridges in the FTLE field are indicators of LCSs.

Building on work by Haller (2001), Shadden et al. (2005) even define LCS in terms of these ridges , assuming that those

approximately act as transport barriers. In to dimensions
:::::
ridges

::
in

:::
the

::::::
FTLE

::::
field.

::
In
::::

two
::::::::::
dimensions,

:
the LCSs are material

lines transported with the flow .
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Haller (2011)discusses examples
:::
and,

::
in

::::
good

:::::::::::::
approximation,

:::::
acting

::
as

::::::::
transport

:::::::
barriers.

:::::::::::
Haller (2011),

:::::::::
discussing

::::::::::::::
counterexamples90

in which substantial material flows crossing a FTLE ridge occur. It may also happen that a LCS does no produce
::::
cross

:
a FTLE

ridge or that a LCS suggested by FTLE does not exist. Therefore Haller (2011)
:::::::
occurred,

:
developed a more sophisticated

variational theory that also involves the eigenvectors of the Cauchy-Green strain tensor. Farazmand and Haller (2012) present

::::::::
approach,

::::::::::::::::::::::::
Farazmand and Haller (2012)

::::::::
presented a corresponding numerical algorithm for two-dimensional application, based

on the specification of strainlines along which exponential stretching occurs (to be distinguished from simple shear)
:::::::::
applications.95

Recently Tian et al. (2019) applied a variational method to identify the outer bounds of the Kuroshio current system.

Wiggins (2005) makes reservations that, as contrasted with many engineering applications, the presence and interaction of

very different scales in geophysical flows can restrict the possibility of simulating detailed particle drift paths. The present

study will therefore adhere to the simple conventional FTLE analysis. German Bight residual currents change with changing

atmospheric winds (Schrum, 1997; Callies et al., 2017a) so that a description of exchange processes in a quasi-persistent hydrodynamic100

space-time structure like gyres or jets (Wiggins, 2005) is not the topic here. Analysing surface transports simulated by the

operational hydrodynamic model BSHcmod, FTLE fieldswill be compared with statistical measures like single-particle absolute

and two-particle relative dispersion, but also with the Lagrangian divergence (the average divergence that tracers experience

along their trajectories (Huntley et al., 2015)). It turns out that all these parameters deliver very consistent results
:::::
Here,

:::
the

::::::
analysis

::::
will

::::::
adhere

::
to

:::::::::::
conventional

:::::
FTLE

:::::
fields.105

The paper is organized as follows: Section 2 first describes
:::
the

:::::
study

::::
area

::::
and

:
how Lagrangian drift simulations were

performed based on pre-calculated hydrodynamic surface current fields. It follows a short compilation of the definitions of

the FTLE, Lagrangian divergence and statistical measures of dispersion.
::::::::
Presenting

:
a
::::::
couple

::
of

:::::::::
structures

:::
that

::::::::
emerged

:::::
under

:::::::
different

::::
wind

::::::::::
conditions, Section 3 then reports three prototypical situations, evaluated also with regard to fields of sea surface

temperature and salinity
:::
tries

::
to

::::
give

:::
an

::::::::
overview

::
of

:::
the

::::
type

::
of

:::::
LCSs

::::
that

:::
can

:::
be

:::::
found

::
in
:::
the

:::::::
German

::::::
Bight

:::
area. Example110

trajectories illustrate
:::::::::
substantiate

:
the relevance of FTLE ridges as material separatrices. Three snapshots from a video available

in the supplement illustrate the temporal variability of LCSs. A general discussion and a short summary conclude the paper.

2 Material and methods

2.1 Study area

The North Sea is a semi-enclosed shelf sea that connects to the north-eastern Atlantic at its northern boundary and through the115

English Channel at its southwest (Sündermann and Pohlmann, 2011). Strong tidal forcing occurs as a co-oscillation triggered

by Atlantic tidal waves. This study focusses on the German Bight, the shallow south-eastern part of the North Sea
:::::
(here:

::::
east

::
of

:::::
6.5◦E

::::
and

:::::
south

::
of

::::::
56◦N) with water depths of mainly 20-40 m

::::
20-50

:::
m

:::
(see

::::
Fig.

:::
1), adjoining the Dutch, the German

and the Danish coasts (Becker et al., 1992). In the German Bight, a mean cyclonic North Sea circulation corresponds with

residual currents from the southwest to the north. Superimposed to this mean circulation, a strong weather driven variability120

occurs on short time scales (Schrum, 1997; Callies et al., 2017a). A fresh water plume emerging from the Elbe River and, to a

4



Figure 1.
::::::
German

::::
Bight

:::::::::
bathymetry.

:::::::
Magenta

:::::::
coloured

:::::
circles

::::::
indicate

:::::::
locations

::
of

::
six

::::::
stations

::
of

:::
the

::::::::
MARNET

::::::::
monitoring

:::::::
network

:::::
(labels

:::
1-6)

:::
and

::
of

:::
the

::::
island

::
of
::::::::
Helgoland

:::::
(label

:::
H).

minor extent, also the Weser river (see Fig. 2)
:::
and

:::
the

::::
Ems

:::::
rivers can be observed as a permanent feature. Transient eddies and

meanders depend on bottom topography, baroclinic instabilities and wind effects.
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The most important topographic feature is the old Elbe Glacial Valley, opening from today’s Elbe estuary towards the

northwest (west of Helgoland) into the open North Sea
::::
(see

:::
Fig.

:::
1).

:::::::::::::::::
Becker et al. (1992)

:::::::::
summarize

:::::::
different

:::::
types

::
of

::::::
fronts125

::::
(river

::::::
plume,

:::::::
thermal

:::
and

:::::::::
upwelling

::::::
fronts)

:::
that

:::::
occur

::
in

:::
the

:::::::
German

:::::
Bight. Frontal structures depend on season but vary also

on a short term basis (Budéus, 1989; Schrum, 1997). In the warm season, strong stratification occurs at water depths greater

than approximately 30 m, mainly in the Elbe Glacial Valley. A baroclinic tidal mixing front (James, 1984; Holt and Umlauf,

2008) separates this region from the well-mixed more shallow coastal water, where stratification is prevented by strong tidal

mixing (Krause et al., 1986).130

2.2 Hydrodynamic fields

Offline drift simulations were based on surface currents
::::::
Surface

:::::
layer

::::::
currents

::::
used

:::
for

::::::
offline

::::
drift

:::::::::
simulations

::::
(see

::::::
Section

::::
2.3)

::
as

::::
well

::
as

::::::::::
temperature

::::
fields

:::::
were taken from archived BSHcmod model output. Fields of surface temperature and salinity were

taken from the same data base. BSHcmod
:::::::::
BSHcmod

::
is

:
a
:::::::::::::::
three-dimensional

:::::::::
baroclinic

:::::::::
circulation

::::::
model,

::::::::::
formulated

:::::
using

::::::::::
geographical

::::::::::
coordinates

:::
and

:
a
:::::::
flexible

::::::
vertical

:::::::::
resolution

:::
that

:::::
allows

:::
for

::::::
weakly

:::::::
inclined

:::::::::
coordinate

:::::::
surfaces

:::::::::::::::
(Dick et al., 2008)135

::
of

::
up

::
to

::
36

::::::
layers.

::::
The

:::::
model is run operationally by the Federal Maritime and Hydrographic Agency (BSH) . The model covers

::::
since

:::::
many

:::::
years,

:::::::::
providing

:::
the

::::
basis

:::
for

:::::::
different

:::::::::::::
oceanographic

:::::::
services

::::::::
including

:::::::::::::::
search-and-rescue

::::::::::
applications.

::
It
::::::
covers

::::
both

:::
the North Sea and

:::
the Baltic Sea and is two-way nested with approximately 900 m resolution in the German Bight area

::::
(Fig.

::
1)

:
and approximately 5 km in the open North Sea (Dick et al., 2001). In the vertical, a dynamical coordinate is used

(Dick et al., 2008)
:::
The

::::::
domain

::
of

:::
the

::::::
present

:::::::
analysis

:::::::
roughly

::::::
agrees

::::
with

:::
the

:::::
region

::
of

::::
900

::
m

::::::::
resolution

::
in

:::::::
German

:::::
North

::::
Sea140

::::::
coastal

::::::
waters.

::
In

:::::::::
BSHcmod,

:::::::::
advection

::::
and

::::::::
diffusion

:::
are

:::::::::
calculated

:::::
using

::
a
::::::::::::
flux-corrected

::::::::
transport

:::::::
scheme.

::::
The

::::::::::
hydrostatic

:::
and

::::
the

:::::::::
Boussinesq

:::::::::::::
approximations

:::
are

::::::::
applied.

:::
The

::::::::::::
Smagorinsky

::::::
scheme

::::::::::::::::::
(Smagorinsky, 1963)

::
is

::::
used

:::
for

:::
the

::::::::::::::
parameterization

:::
of

::::::::
horizontal

::::::::
viscosity.

::::
For

:::
an

::::::::
inclusion

::
of

:::::
wind

::::::
stress,

:::
the

:::::::::::::
parametrization

:::
by

:::::::::::::::::::::
Smith and Banke (1975)

:
is
:::::

used.
::::::

Stokes
:::::

drift

::::::
remains

::::::::::
disregarded

::
in

:::
the

:::::::::
operational

::::::
model

:::::
output. The model’s atmospheric forcing on an hourly basis is provided by the re-145

gional model COSMO-EU (Consortium for Small-Scale Modelling; Schulz and Schättler (2014)), run by the German Meteoro-

logical Service (Deutscher Wetterdienst – DWD). For an inclusion of wind stress, the parametrization by Smith and Banke (1975)

is used. Stokes drift remains disregarded in archived operational model output
:::
The

:::::::
Swedish

:::::::::::::
Meteorological

::::
and

:::::::::::
Hydrological

:::::::
Institute

::::::
(SMHI)

::::
and

:::
the

::::::
Federal

:::::::
Institute

:::
of

:::::::::
Hydrology

:::::
(BfG)

:::::::
provide

:::::
runoff

::::
data

:::
for

::
all

:::::
major

:::::
rivers

::::
that

::::
flow

::::
into

:::
the

:::::
North

:::
Sea.150

In the process of archiving, BSHcmod hydrodynamic fields with originally higher vertical resolution were re-gridded. Con-

serving transport rates, this was done in such a way that the stored
:::::::
archived surface currents used in this study approximately

represent
::
are

::::::::::::
representative

:::
for

:
the uppermost 5 metres of the water column.

::::
With

::::
drift

::::::::::
simulations

:::::
based

:::
on

:::::
these

:::::::
currents

:::
plus

::
a
::::::
leeway

::
of

:::
0.6

::
%

::
of

:::::
wind

::
in

::
10

::
m

::::::
height,

:::::::::::::::::::::::
Callies et al. (2017b, 2019)

:::::::::
reproduced

::::::::
observed

:::::
drifter

::::::::::
trajectories

:::::::::
reasonably

::::
well.155
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2.3 Lagrangian drift simulations

Drift
::::::
Offline

::::
drift simulations were performed using the Lagrangian transport program PELETS-2D (Callies et al., 2011), based

on BSHcmod model output
::::::
surface

::::
layer

::::::::
currents, archived on a 15 min basis. Originally, the PELETS toolbox developed at

Helmholtz-Zentrum Geesthacht was designed for its use with hydrodynamic currents on unstructured triangular grids. Current

fields provided on a regular grid (like those from BSHcmod) must be preprocessed, splitting each rectangular grid cell into two160

triangles. This ,
::
a transformation of grid topology

:::
that

:
does not affect the information content of hydrodynamic fields.

All simulations in this study were produced using the fourth-order Cash Karp method (Press et al., 1992) that belongs to

the Runge Kutta family of solvers. It should be mentioned, however, that a
:
A

:
simple Euler forward scheme

:
,
:::::::
however,

:
used in

other PELETS applications (e.g. Callies et al., 2011, 2017b, 2019) gave very similar results. The maximum time step is set to

15 min. Velocities are updated earlier if a tracer particle moves to another triangular grid cell.165

2.4 Finite-time Lyapunov exponents (FTLE)as indicators of Lagrangian coherent structures (LCS)

Definition of the FTLE is based on a consideration of Lagrangian flow motions. A flow map Φ relates
::::
maps

:
particle locations

x0, where particles were seeded at time t0, to
:::
onto

:
their destinations x at later time t= t0 + τ :

Φτt0(x0) = x(t0 + τ ; t0,x0) .
:

(1)

Taking the spatial gradient∇Φτt0 = ∂x(t0 + τ ; t0,x0)/∂x0 :::
The

::::::::
following

::::::::::
deformation

:::::::
gradient

::::::::
describes

:::::::
material

:::::::::::
deformation,170

∇Φτt0(x0) =

 ∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

 ,

:::::::::::::::::::::::::

(2)

:::::
where

:::::::::
x = (x,y).

::::
The

::::::::::::
deformation’s

::::::::
Jacobian

:::::::
provides

:::
the

:::::
ratio

::
of

:::
the

::::
area

::
A

:::
of

:
a
::::::::
deformed

::::::::::
quadrangle

::
to

:::
the

::::
area

:::
A0:::

of

::
an

:::::::::::
infinitesimal

::::::
square

:
it
::::

has
::
its

::::::
origin

:::
in.

::
In

::::
case

::
of

::
a
:::::
finite

::::
size

:::::
initial

::::::
square

::::
and

:
a
:::::::::
non-linear

:::::
flow,

:::
this

:::::
ratio

:::::
refers

::
to

::
a

:::::::::
quadrangle

:::
that

::::::::::::
approximates

:::
the

::::::::
emerging

:::::::
distorted

:::::
patch.

:::::::::
Similarly,

:
a
:::::
linear

::::
map

:::::
sends

:::
an

::::::
initially

:::::
small

:::::
circle

::
to

::
an

:::::::
ellipse.175

:::
The

::::::
lengths

:::
of

:::
the

:::::
image

:::::
area’s

:::::::::
semi-axes

:::
are

:::::
given

::
by

:::
the

:::::::::::
deformation

::::::::
gradient’s

::::
two

:::::::
singular

:::::
values

:::
µ1,

:::
µ2,

::::::
whose

:::::::
product

:::::
equals

:::
the

::::::::
Jacobian

::::::::::
determinant:

:

A

A0
= det

(
∇Φτt0

)
= µ1µ2 .

::::::::::::::::::::::

(3)

::::
From

:::
the

::::::
above

::::::::::
deformation

::::::::
gradient, one obtains the following Cauchy-Green strain or deformation tensor (e.g. Shadden

et al., 2005; Haller, 2015):180

C(τ ; t0,x0) =
[
∇Φτt0(x0)

]T ∇Φτt0(x0) .
:

(4)

This two-dimensional(in case of two-dimensional flows) tensor is symmetric and positive definite,
:::::::::
symmetric

:::
and

::::::::::::::
positive-definite

:::::
tensor

:::
has

:::
two

::::::::::
eigenvalues

:::::::
λ1 = µ2

1:::
and

:::::::
λ2 = µ2

2. Definition of the finite-time Lyapunov exponent
::::::
(FTLE) is based on its largest
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eigenvalue λmax:
::
the

:::::::
tensor’s

:::::
larger

:::::::::
eigenvalue

:::
λ1:

FTLE
(
τ ; t0,xx0

)
=

1

| τ |
ln
√
λmax (C(τ ; t0,x0))log

√
λ1 =

1

| τ |
log(µ1) .

::::::::::::::::::::

(5)185

The absolute value of integration time τ is used because integration of particle drift can be conducted either forward or

backward in time. The geometric interpretation of the FTLE refers to the maximum separation rate of neighbouring particles

. Maximum separation among particles started on a small circle around location x0 occurs for those particles that end up

along the largest principal axis of an ellipse that evolved from the initially circular structure (see Haller, 2015, his Fig. 4)

:::::::::::
(Haller, 2015).190

For the computation of FTLE fields
::
To

::::::::
compute

:::::
FTLE

:::::
fields

::::::::::
numerically, a regular Cartesian grid of tracers was released.

Initial ,
::::::
initial locations with 1 km resolution covered

:::::::
covering the German Bight area east of 6.5◦E and south of 56◦N

(165 vortices in the longitudinal and 310 vortices in the latitudinal direction). The corresponding 51150 trajectories were

integrated 250 hours backward
::::
back

:
in time (τ = -250 h). To avoid the computational burden of four additional close-by

auxiliary trajectories, finite-differencing involved in FTLE specification (Eq. (4)
:
2) was performed involving trajectories seeded195

at neighbouring locations of
:::::
based

::
on

:::::::::::
neighbouring

::::::::::
trajectories

::::::
already

::::::
seeded

::
on

:
the regular FTLE grid.

If
:
In

:::::
view

::
of

:::
the

::::::
limited

::::::
vertical

:::::::::
resolution

::
of

:::::::
archived

:::::::::
BSHcmod

:::::::
currents,

::::::
values

::
of

:::
the

::::::::::
deformation

:::::::
gradient

::::
(Eq.

:::
(2))

:::::
were

:::::
tagged

:::
as

::::::
missing

:::::
each

::::
time at least one of the

:::
four

::::::
tracer trajectories needed for FTLE calculation reached the coastline, the

FTLE value was treated as missing. Corresponding
::
its

::::::
discrete

::::::::::
calculation

::::::::::
encountered

:
a
:::::
water

:::::
depth

::
of

:::
less

::::
than

::
5

::
m

::::::::
sometime

::
in

:::
the

:::::
course

:::
of

::
its

::::::::::
integration.

::::::::
Resulting

:
gaps in the FTLE fields depend on prevailing

::::
fields

::
of
::::::

FTLE
:::
and

::::::
related

:::::::::
quantities200

::::::
change

::::
with

::::::
variable

:
atmospheric forcing. As BSHcmod covers the whole North Sea, no such problem occurs

::::::
specific

::::::::
treatment

:
is
::::::
needed

:
for particles that cross the open boundaries of the FTLE grid.

2.5 Finite-Domain Lagrangian Divergence (FDLD)
:::::::::
Distinction

::::::::
between

:::::::::
divergence

::::
and

::::::
stretch

An incompressible two-dimensional flow field preserves the area of a Lagrangian patch during arbitrary deformations. In the

present study this is not the case as the
::::
Here,

::::::::
however,

:
two-dimensional surface currents being used were extracted from205

3D hydrodynamic fields , allowing
::::::::::::::
three-dimensional

::::::::::::
hydrodynamic

:::::
fields

::::
that

:::::
allow

:
for vertical exchange of water masses.

Huntley et al. (2015) developed a concept that splits FTLE values into contributions that come from area-preserving stretching

:::
and

::::::::::
deformation

:
on the one hand and dilation

:::
area

::::::::
changes on the other. With the area of a deformed elliptical Lagrangian

patchbeing proportional to the product of the two eigenvalues λi of the Cauchy-Green strain tensor, Huntley et al. define a

dilation rate
::::
Given

::::
the

:::::::
singular

::::::
values

:::::::
µ1 ≥ µ2::

of
::::

the
::::::::::
deformation

:::::::
gradient

::::::::::
∇Φτt0(x0),

::::::::::::::::::
Huntley et al. (2015)

::::::::
introduce

:::
the210

::::::::
following

::::::
stretch

:::
rate

:::
Σ:

Σ =
1

| τ |
log

(
µ1

µ2

)
.

:::::::::::::::::

(6)
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::
In

:::::::
addition,

::::
they

::::::::
introduce

:::
the

:::::::::
following

::::::
dilation

::::
rate

:
∆ in a two-dimensional flow field as:

:::
that

::::::::
describes

:::
the

:::::::::::::
transformation

::
of

:
a
::::::::::
Lagrangian

::::::
patch’s

:::::
initial

::::
area

:::
A0 ::

to
::
an

::::
area

::
A

::::
after

:::::::::
integration

::::
time

::
τ ,
:

∆ =
1

| τ |
log

(
A

A0

)
=

1

| τ |
log(µ1µ2) ,

::::::::::::::::::::::::::::::::

(7)215

:::::
where

:::
Eq.

:::
(3)

:::
has

:::::
been

::::
used.

:::::
From

::::
Eq.

::
(5)

::
it
:::::::
follows

:::
that

:::
the

:::::::::
separation

::::
rate

:::::::::
represented

:::
by

:::
the

:::::
FTLE

::::
can

::
be

:::::::::::
decomposed

::
in

::::
terms

:::
of

:::
the

:::::
above

:::
two

:::::::::::
components:

∆FTLE
::::

=
ln(λ1λ2)

| τ |
∆ + Σ

2
.

::::::

(8)

According to Huntley et al., this parameter equals
::::::
Dilation

::::
rate

:::
∆

:::
can

:::
be

::::::
shown

::
to

:::::
equal

:
the average Eulerian

::::::::
horizontal

divergences experienced by a fluid parcel along its pathway .
::::::::::::::::::::::::::::::::::::::::::
(Huntley et al., 2015; Duran et al., 2018, supplement)

:
.
:::::
From

:::
the220

:::::::
material

::::::::
derivative

dA

dt
=A∇ ·v ,

::::::::::::

(9)

:
it
:::::::
follows

:::
that

:

A(t) =A0 exp

 t0+τ∫
t0

∇ ·v(t′,x(t′))dt′

 .

::::::::::::::::::::::::::::::::::

(10)

Hernández-Carrasco et al. (2018) refer to this integral parameter
:::
the

:::::
patch

:::::
area’s

:::::::
change

::::
rate,

:::::::
derived

::::
from

::::
past

::::::::
Eulerian225

::::::::::
divergences, as the Finite-Domain Lagrangian Divergence (FDLD),

FDLD =
1

τ

1

| τ |
log

::::::

 A

A0
::

=
1

| τ |
:::::

t0+τ∫
t0

∇H
:
·v(t′,x(t′))dt′ .

:
(11)

and
::::
They demonstrate its potential for supporting the interpretation of satellite based observations of surface chlorophyll a

patches.

::::::::::
Analytically,

:::
the

::::::
FDLD

:::::
from

:::
Eq.

::::
(11)

::::::
equals

:::
the

:::::::
dilation

::::
rate

::
∆

:::::
from

:::
Eq.

::::
(7).

:
In the present study, FDLD values were230

calculated at all locations with valid FTLE values.
:::::::
however,

:
Eulerian divergences needed for the

::::::::
numerical

:
evaluation of

Eq. (11) were computed based on a discretization using
:::::::::
introducing

:
auxiliary points at a 250 m distance. Velocities at these

auxiliary locations were obtained by linear interpolationin the respective gridtriangle.
:::
As

:
a
:::::
result

:::
of

:::
this

::::::::
approach,

:::::::::
estimated

:::::
FDLD

:::::
fields

::::
have

:::::::
slightly

:::::
higher

::::::::
resolution

::::
than

::
∆

:::::
fields

:::::::
derived

::::
from

::::::::::
deformation

::::::::
gradients

:::::::
specified

:::
on

:::
the

::::
basic

::
1

:::
km

:::::
FTLE

:::
grid.235

2.6 Absolute and relative dispersion

Absolute and relative dispersion are statistical measures for analysing Lagrangian data. Generally, absolute dispersion is defined

as the second moment of the single particle displacement PDF, i.e. the variance of particle displacements relative to their starting
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position, which
:
.
::::
This

::::::::
measure must not be confused with cloud variance (LaCasce, 2008). Ensemble averaging could be

performed with respect to either different locations or different realizations at some fixed location. Here, following Haller and240

Yuan (2000), the simpler density of absolute dispersion is considered, describing just a single particle’s squared displacement

from its release point:

a2(τ ; t0,x0) =| x(t0 + τ ; t0,x0)−x0) |2 (12)

By contrast, relative dispersion describes the mean square separation of particle pairs with nearby initial release points. Relative

dispersion at each node of the FTLE grid will be calculated combining
::
the

:
information from four particle pairs,245

D2(τ ; t0,x0) =
1

4

4∑
i=1

| x(t0 + τ ; t0,x0)−x(t0 + τ ; t0,x0 + δxi) |2 (13)

where δxi denotes the distance vector between neighbouring nodes. For a comparison with FTLE and FDLD fields, the loga-

rithm of absolute and relative dispersion is a reasonable choice. Exponential growth of pair separations indicates the presence

of Lagrangian chaos dynamical systems theory deals with (Wiggins, 2005).

3 Results250

3.1 Examples

The following examples are
::
A

::::::
couple

::
of

::::::::
examples

::::
will

::
be

::::::
given, intended to illustrate the occurrence

:::
and

::::
time

::::::::
variability

:
of

Lagrangian structures in German Bight surface currents. None of these structures are persistent, occurrence and specific details

depend on the past evolution of environmental conditions.
::
All

::::::
figures

:::::::
contain

:::::
wind

:::::
roses

:::
that

::::::::::
summarize

:::::
wind

:::::::::
conditions

:::::
during

:::
the

::::
past

::::
250

:::::
hours.

::
A

:::::
video

::::::::
provided

::
in

:::
the

:::::::::
supplement

::::::::::
exemplifies

:::
the

::::
time

::::::::
evolution

::
of

::::::
FTLE

:::::
fields

::
in

:::
the

::::::
course

::
of255

::
the

::::
year

:::::
2016.

:

3.0.1 First example

3.1
::::

First
:::::::
example

Fig. 2a shows the FTLE field for simulations initialized on 12 June 2015 (13:00 UTC) and extending over 250 hours backward

in time. The scale was chosen to well visualize ridges of large values (negative logarithmic FTLE values have been plotted as260

if they were zero). All locations that gave rise to trajectories hitting the coast were disregarded.

:::::
graph

:::::
leaves

:::::
blank

:::
all

:::::::
locations

:::::
from

:::::
where

::::::::::
trajectories

:::::::
reached

::::::
regions

::::
with

:::::
water

::::::
depths

:::::
below

::
5

::
m.

:
At the time the plot

:::
Fig.

::
2
:
refers to, the most prominent feature of

:
in
:

the FTLE field is a
:
an

::::::::
extended

:
south-north running ridge that separates

the region of interest more or less into two halves
::
of

::::
high

:::::
FTLE

::::::
values. Further west, a less pronounced parallel second ridge

occurs which, however, tends to be split into
::::
three

::
or

::::
four

:
segments. Other more local and sometimes also weaker filamentary265

structures can be recognized. Intended to illustrate the physical relevance of the central FTLE-ridge, Fig. 2a includes three
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groups of four 250 h backward trajectories, initialized in the wider neighbourhood of stations 1, 4 and 6 of the MARNET mon-

itoring network1. To facilitate orientation and comparison,
:::::::
locations

:::
of the six MARNET stations and the island of Helgoland

(station H) will be indicated in all further figures.

The two
:::::::::
experiment

::::::
shown

:::::
refers

::
to

::
a

:::::::
situation

::::
with

:::::
calm

:::::::::
conditions

:::::
during

:::
the

::::
last

::::
three

:::::
days,

:::::
weak

:::::
winds

:::::::
blowing

:::::
from270

::
the

:::::::::::::
north/northeast

:::::
under

:::
the

::::::::
influence

::
of

:
a
::::
high

:::::::
pressure

::::::
system

:::::::
centred

::::::
further

::::
west.

:::::::
Vectors

::
in

:::
the

:::
top

::::
right

::::::
corner

::
of

:::
Fig.

:::
2a

::::
show

::::::::
simulated

:::
10

::
m

:::::
wind

::::::::
directions

::::
near

:::::::::
MARNET

::::::
station

:
4
::::::
during

:::
the

::::
past

:::
250

:::::
hours

::
at
:::
ten

::::::
hourly

::::::::
intervals.

:::::
Wind

::::::
speeds

::
are

::::::::::
represented

:::
by

:
a
::::::

colour
:::::
code.

::::
The

::::
wind

::::::
vector

::
at

:::
the

::::
time

:::
of

:::
the

::::
plot

:
is
::::::

edged
::
in

::::
red,

:::::
those

:::::
during

::::
the

:::
last

:::
50

:::::
hours

:::
are

:::::
edged

::
in

::::::
black.

::::::
Strong

:::::
winds

:::
(>

::::::
17m/s)

::::
from

::::::::::::::
south/southwest

::::::::
occurred

:::
on

:::
the

::::::
second

::::
and

::::
third

::
of

:::::
June,

:::
i.e.

:::
at

:::
the

:::
end

:::
of

::
the

::::
250

:::::
hours

:::::::::
backward

:::::::::
integration

::::::
period.

:::::::
Another

:::::
event

:::::
with

::::::::
enhanced

::::
wind

::::::
speeds

:::
(<

:::
10

::::
m/s)

::::
from

:::
the

::::::::::::::
north/northwest275

:::::::
occurred

:::::
about

:::
4-6

::::
days

::::::
before

:::
the

::::
time

::
of

:::
the

:::::
FTLE

:::::
field

:::::
being

::::::
shown.

::
In

:::
this

::::::
period,

:::::
wind

::::::::
directions

::::::::
changed

::::
from

:::::::
roughly

:::::::
southern

::
to

:::::::
northern

:::::::::
directions.

:::::
Both

:::
the

:::::::::
directional

:::::::
changes

::::
and

:::
the

:::::
higher

::::
drift

::::::
speeds

::
at

:::
the

::::
end

::
of

:::
the

:::::::::
integration

:::::
back

::
in

::::
time

:::
can

::::
also

::
be

:::::::::
recognized

:::::
from

:::
the

:::::::
example

::::
drift

:::::::::
trajectories

::::::::
displayed

::
in

::::
Fig.

:::
2a.

:::
Two

:
pairs of hypothetical in situ stations

:::::::::
observation

::::::
points (indicated by small circles, green and red) near MARNET

stations 1 and 6
:::::
blue) were located on either side of the central FTLE ridge

:::
near

:::::::::
MARNET

:::::::
stations

::
1

:::
and

::
6.
:::::::::
Trajectory

::::
end280

:::::
points

:::
are

::::::::
indicated

:::
by

:::::
small

::::::::
diamonds. Simulations show a clear separation of trajectories emerging

::::::::
backward

::::::::::
trajectories

:::
that

:::::::
emerge from different sides of the FTLE ridge. By contrast, trajectories started on the same side of the ridge (

::::::
having

same colour) remain close to each other. Trajectory end points are indicated by small diamonds. The example
:::
The

::::::::
example

::::::::
backward trajectories illustrate how even close by in situ observations may encounter water bodies with a much different

history. A complementary experiment considers four trajectories in the vicinity of MARNET station 4, with now all release285

points being located within the same contiguous region
::::
area of low FTLE values. In this case all trajectories stay close together

or even further converge.

1Station names: Deutsche Bucht (1), FINO1 (2), Ems (3), Nordseeboje III (4), Nordseeboje II (5), FINO3 (6)
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Figure 2. (a) FTLE field analysed for 12 June 2015 (13:00),
:::::::
evaluating

:::
Eq.

:::
(5) based on trajectories calculated 250 hours backward in time.

:::
The

::::
scale

:::
was

:::::
chosen

::
to
::::
well

:::::::
visualize

::::
ridges

::
of

::::
large

::::::
values,

::::::
negative

:::::
values

::
of

:::
the

::::::::
logarithmic

:::::
FTLE

::::
have

::::
been

:::::
plotted

::
as

:
if
::::
they

::::
were

::::
zero.

:::::::
Locations

::::
from

:::::
where

::::::::
trajectories

::::::::::
encountered

:
a
:::::
water

::::
depth

::
of

:::
less

::::
than

:
5
::
m

::::::::
sometime

:
in
:::

the
:::::
course

::
of
::::
their

::::::::
integration

::::
were

::::::::::
disregarded.

Example backward trajectories are shown, using different colours
:::::::::
(green/blue) for better distinction. Trajectory release points are indicated by

circles, small diamonds mark trajectory end points. Labelled circles (magenta) indicate locations of six stations of the MARNET monitoring

network (labels 1-6) and of the island of Helgoland (label H).
:::::
Vectors

::
in
:::
the

:::
top

:::
right

:::::
corner

:::::
show

:::
past

::::
wind

:::::::
directions

::
at

:::
ten

:::::
hourly

:::::::
intervals,

::::::
referring

::
to
::::::::

conditions
::::::::

modelled
::
for

:::
the

:::::::
location

::
of

::::::::
MARNET

:::::
station

::
4.
:::::::

Different
:::::

wind
:::::
speeds

:::
are

:::::::::
represented

::
by

:::::::
different

::::::
colours.

::::
The

::::
wind

:::::
vector

:
at
:::

the
::::
time

::
of

:::
the

:::
plot

::
is

:::::
edged

:
in
::::

red,
::::
those

:::::
during

:::
the

:::
last

::
50

:::::
hours

:::
are

:::::
edged

:
in
:::::

black.
:
(b) Negative Lagrangian divergences

(FDLD) calculated from Eq. (11)for all pixels that also appear in panel (a). Values
:::
Few

::::
large

::::::
positive

:::::
values,

:
exceeding the range covered

by the colour scale
::::
map,

:
are plotted in dark blue(positive, occurs near the coast) and dark green (negative, very few points). (c) Negative

dilation rate ∆, calculated according to Eq.
:::::::
Simulated

::::
mean

::::::::::
temperatures

::
in

:::
the

::::::::
uppermost

:
5 (??)

:::::
meters.

:::
To

::::
focus

::
on

::::
open

:::
sea

:::::::::
conditions,

:::::::::
temperatures

:::::
higher

::::
than

::::
16◦C

::
are

:::
not

:::::
shown.
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Divergence
::::::::
Separation

:
in backward time means convergence

::::::::
confluence

:
in ordinary forward time. Therefore, the negative

backward Lagrangian divergence FDLD (
::
see

:
Eq. (11)) shown in Fig. 2b is to be read in agreement with the usual passage of

time. There is
::::
Fig.

::
2b

::::::
reveals

:
a striking structural similarity with Fig. 2a. Water parcels located on backward FTLE ridges have290

predominantly experienced converging surface currents along their pathway during the last 250 hours. Between these ridges
:::
the

:::::
ridges,

:
there are wider regions with particles the history of which was dominated by diverging

:::::::
divergent

:
Eulerian currents.

:::::::
Studying

:::
the

:::::::
Agulhas

:::::::
current

::
in

:::
the

::::::::
southwest

::::::
Indian

::::::
Ocean,

::::::::::::::::::::::::::::::
van Sebille et al. (2018, their Fig. 3)

:::::
found

::::::::
structures

::
in

:::::
fields

::
of

:::
sea

::::::
surface

::::::::::
temperature

::::::
(SST)

:::
that

::::::
agreed

::::
with

:::::
LCSs

:::::::
derived

::::
from

::::::::::
geostrophic

::::::::
currents.

:::
For

:::
the

:::::::
present

:::::::
example,

:
Fig. 2c

shows the field of dilation rate ∆, calculated according to Eq. (??). In the open sea, dilation rates deliver the same spatial295

structure as the FDLD a
::::::::::

south-north
:::::::
oriented

:::::
zone

::
of

::::::::
relatively

::::
cool

::::::
surface

:::::
layer

:::::
water,

:::::::
located

::
in

:::::::
between

::::::
narrow

:::::
bands

:::
of

:::::
higher

::::::::::
temperature

::::
that

::::
tend

::
to

:::::::
coincide

::::
with

:::
the

::::::
FTLE

:::::
ridges

::::
(Fig.

:::
2a)

::::
and

:::::
zones

::
of

:::::::::::
convergence

::::
(Fig.

::::
2b).

:::
The

::::
belt

::
is

:::::
made

::
up

:::
by

:
a
::::::
couple

::
of

::::::
patches

::::
that

::::
bear

:
a
::::::::
structural

:::::::::::
resemblance

::
to

:::::::
patches

::
of

:::::::
positive

:::::::::
divergence in Fig. 2b, although the scale of

values differs. This discrepancy in scale may be explained by numerical discretization and also the length of the integration

interval which transforms small initial disks of the fluid into contorted structures rather than simple ellipses. More severe300

discrepancies occur near the coast, where even the signs of the analysed values differ. This deficiency presumably indicates

that calculations based currents from a 5 m surface layer and with a 900 m horizontal resolution are inappropriate in these

nearshore regions
:::::::::
suggesting

:::
that

:::::
some

:::::::
features

::
of

:::
the

::::::::::
temperature

::::::::::
distribution

::
in

::::
Fig.

::
2c

::::
can

::::::
indeed

::
be

::::::::
explained

::
in
:::::

terms
:::

of

:::
up-

:::
and

:::::::::::
downwelling

:::::::::
simulated

::
in

:::
the

::::::
model.

:::::::::::::::::::::::
Meyerjürgens et al. (2020)

::::
found

:::::::
reduced

:::::::
relative

:::::::::
dispersion

:::
for

:::::::::::
experimental

::::::
drifters

:::::::
released

::
in

:::
the

::::::
vicinity

:::
of

:
a
::::
tidal

::::::
mixing

:::::
front,

:::::::::
indicating

::::::::
horizontal

::::::::
attraction

::
in

::::
this

:::::
region.305

3.1.1 Second example

3.2
::::::

Second
:::::::
example

Fig. 3a shows a situation (26 March 2018, 18:00) in which the
:
b
::::::
shows

:
a
:
backward FTLE field

:::
that

:
is even more clearly

partitioned
::::::::
structured

::::
than

::
the

::::
one

::
in

:::
Fig.

::
2a, including also pronounced west-east oriented divides. FTLE ridges are particularly

sharp, so that the simulated origins of water bodies located on either side of a FTLE ridge vastly differ.Example tracer310

trajectories illustrate this effect, assuming
::::
Note

::::
that

:::::
FTLE

:::::
ridges

::
in

:::
the

::::::
western

::::
part

::
of

:::
the

::::::
domain

::::::
closely

::::::
follow

::
the

::::::::::
bathymetric

::::::
feature

::
of

:::
the

:::
old

::::
Elbe

:::::::
Glacial

:::::
Valley

::::
(see

::::
Fig.

:::
1).

::::::
Again,

:::
the

::::::
origins

::
of

::::::::
example

::::::
tracers,

::::::::
estimated

:::
by

::::::::
backward

::::::::::
trajectories

::::
with close by release points (red/green

:::::::::
green/blue) on either side of FTLE ridges

:
,
:::::
vastly

:::::
differ. Particularly large differences

between backward trajectories occur for the most northern and the most southern of the three pairs
::::::::
trajectries.

:

::::::
Similar

::
to

:::
the

:::::::
example

::::::
shown

::
in

::::
Fig.

::
2,

::::
calm

::::::::::
atmospheric

:::::::::
conditions

::::::::
prevailed

::::
also

:::
for

:
a
::::::
couple

::
of

::::
days

:::::::::
preceding

:::
the

::::
time315

::
of

:::
Fig.

:::
3b

:::
(26

::::::
March

:::::
2018,

::::::
18:00).

::::
Very

::::::
strong

:::::::
easterly

::::::
winds,

:::::::
however,

::::::::
persisted

:::
for

:
a
::::::
couple

::
of

::::
days

:::::::
towards

:::
the

::::
end

::
of

:::
the

:::
250

::
h

::::::::
backward

:::::::::
integration

::::::
period

:::::::
(roughly

:::::
16-18

:::::::
March).

::::::
Nearly

::::::::
constant

::::::
easterly

:::::
wind

:::::::::
directions

::
for

:::
the

::::
last

::
50

:::::
hours

::::
can

::
be

:::::::::::
distinguished

:::::
from

:::
the

::::
wind

::::
rose

::
in
::::

Fig.
:::
3a,

::::::::
showing

:::
the

:::::
FTLE

::::
field

:::::
eight

::::
days

::::::
earlier.

::::::::::
Trajectories

:::
of

:::::
North

:::
Sea

:::::::
drifters

:::::::
observed

:::::
under

:::::
these

:::
rare

:::::::::
conditions

::::
(due

::
to

::::
low

:::::::::::
temperatures

::
in

::
the

::::
UK

:::::
called

:::
the

::::::
’Beast

::::
from

:::
the

:::::
East’)

::::
have

:::::
been

::::::::
discussed

::
by

::::::::::::::::::::::::::::::::
Stanev et al. (2019, see Fig. 3a therein).

::::::
Some

:::::
FTLE

:::::
ridges

::::
that

::::::
emerge

:::::::::
according

::
to

::::
Fig.

::
3a

:::
are

:::::::
aligned

:::::::
parallel

::::
with

:::
the320
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Figure 3. (a) Backward FTLE field (integration time 250 h
::::
hours

::::::::
integration) for

::
18

:::::
March

::::
2018

:::::::
(14:00).

::::::
Magenta

::::::
circles

::::::
indicate

:::::::
locations

:
of
:::::::::

MARNET
:::::
stations

:::::
(1-6)

:::
and

:
of
:::

the
:::::
island

::
of

::::::::
Helgoland

:::
(H).

:::
(b)

::::::::
Backward

::::
FTLE

::::
field

::::
about

::::
eight

::::
days

::::
later

:
(26 March 2018. Pairs

::::
2018,

:::::
18:00).

:::::
Three

::::
pairs

:
of example trajectories were started on either side (green/red

:::
blue)

:
,
:::::
started

:::
on

::::
either

::::
side of FTLE ridges,

:::
are

:::::
shown.

Trajectory release points are indicated by circles, end points by diamonds. Magenta circles indicate locations of MARNET stations (1-6) and

of the island of Helgoland (H). (b)
::
(c) Example of a much smoother backward FTLE field on 11 June 2016.

::::
2016

::::::
(03:00).

:
For the purposes

of comparison, example backward trajectories were calculated from the same release points already used in panel (a).
::::::
Vectors

::
in

::
the

:::
top

::::
right

:::::
corner

::
of

::::
each

::::
panel

::::
show

::::
past

::::
wind

::::::::
directions

::::::::
(modelled

::
for

:::
the

:::::::
location

::
of

::::::::
MARNET

:::::
station

::
4)

::
at
:::
ten

:::::
hourly

:::::::
intervals.

::::::::
Different

::::
wind

:::::
speeds

::
are

:::::::::
represented

::
by

:::::::
different

::::::
colours.

:::::
Wind

:::::
vectors

::
at

::
the

:::::
times

::::
plots

::::
refer

:
to
:::
are

:::::
edged

::
in

:::
red,

::::
those

:::::
during

:::
the

:::
last

::
50

::::
hours

:::
are

:::::
edged

:
in
:::::
black.

::::::
easterly

::::::
winds

:::
and

:::::
seem

::
to

::::::::::
correspond

::::
with

::
or

:::
to

::::::::
transform

::::
into

:::::
sharp

:::::
FTLE

::::::
ridges

::
in

::::
Fig.

:::
3b

:::::
under

:::
the

::::::::::
subsequent

:::::
much

:::::
calmer

:::::::::
conditions.
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:::
For

::::::::::
comparison

::::::::
purposes,

:
Fig. 3b c

:
shows the example of a much less structured FTLE field

::
on

:::
11

::::
June

:::::
2016

:::::::
(03:00)

::::
after

:::::::::
persistently

::::::::
moderate

::::::
winds

::::
from

::::::::
northerly

:::::::::
directions.

::
In

::::
this

::::
case

:::::
sharp

:::::
FTLE

:::::
ridges

:::
are

::::::
nearly

::::::
absent. Overlaid to the

FTLE field, the figure includes
:::
Fig.

:::
3c

:::::::
includes

:::::
direct counterparts of the trajectories shown in Fig. 3a

:
b, released at exactly the325

same locationsbut on 11 June 2016 (10:00) rather than 26 March 2018 (18:00). Contrary to the situation in Fig. 3a
:
b, now all

neighbouring trajectories closely resemble each other, just being
::
are

::::
very

:::::
much

:::::
alike,

::::::
mainly shifted in agreement with shifted

::
the

:::::::
slightly

:::::::
different

:
release points. A similar behaviour occurs

:::
also at the time of Fig. 3a, if

:
b
:::::
when

:
particles are released from

the interior of a contiguous area delineated by the
::::
away

:::::
from

:::
the FTLE ridges (see Fig. S1

:
in
:::
the

::::::::::
supplement).

3.2.1 Third example330

3.3
:::::

Third
:::::::
example

The third example, referring to

29 February 2016 (11:00) , provides an analysis
:::
Fig.

:::
4a)

::::::::
provides

::::::
another

::::::::
example

::
of

::::
weak

::::::
winds

:::
that

::::::
follow

:::::
more

::::::
stormy

:::::::::
conditions.

:::
At

:::::
about

::
26

:::::::::
February,

:::::
strong

::::::
winds

::
to

:::
the

:::::
south

:::
of

::
an

:::::::::::
atmospheric

:::
low

:::::
make

::::
way

:::
for

:::::::
weaker

:::::
winds

::::::
under

:::
the

:::::::
influence

::
of

::
a
::::
high

:::::::
pressure

::::::
system.

::::::::
Different

::::
from

:::
the

:::::::
previous

::::::::
example,

::::::::
however,

::
the

::::::
strong

:::::
winds

:::::
some

::::
days

:::
ago

::::::::::
persistently335

::::
blew

::::
from

:::
the

::::
west

:::::
rather

::::
than

:::::
from

:::
the

::::
east.

:::::
Again

::
a

:::
net

::
of

:::::
sharp

:::::
FTLE

:::::
ridges

::::
can

::
be

::::::::
observed

::
in

:::
Fig.

:::
4a.

:

::::
Figs.

:::
4b

:::
and

:::
4c

::::::
analyse

:::
the

::::::::
situation in terms of statistical dispersion measures. Fig. 4a

:
b displays the spatial distribution

of absolute dispersion. Remember that each
::::
Each pixel in the plot is calculated based on just one trajectory and represents

the squared distance between the
::::::::::::
corresponding trajectory’s release and end point. The plot reveals some sharp demarcations

between zones with either broadly similar or at least
::::
most

:
smoothly changing drift velocities.340

A measure that directly concentrates on small scale changes in drift behaviour is two-particle relative dispersion (Fig. 4b).

Maps
::
c).

::
Its

::::::::::
distribution

::::::
closely

:::::::::
resembles

:::
the

:::::
FTLE

::::
field

::
in

::::
Fig.

:::
4a.

::::
Also

:::
the

:::
two

:::::
maps of absolute and relative dispersion are

in very good agreement, relative dispersion highlighting sharp transitions in the graph of absolute dispersion. The two plots

include the same

:::
Fig.

:::
4b

::::
also

:::::::
includes

:::::
some

:
example trajectories. Two test

:::
Test

:
trajectories near the horizontal divide south of MARNET345

station
:
4 illustrate a stepwise change of advection speed, giving rise to the enhanced level of absolute dispersion for the test

station located more to the south (green). Note that a pure change of drift direction, maintaining advection speed, would have

affected relative but not absolute dispersion. Three additional magenta trajectories, seeded at MARNET stations
:
1, 2 and 6,

were included to just visualize spatial variability of transports.

Finally, it is to be noted that the relative dispersion graph in Fig. 4b closely resembles the backward FTLE field (Fig. S2).350

FTLE ridges subdivide the area of interest in the same way as relative dispersion does, differences can hardly be distinguished.
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Figure 4. (a) Absolute dispersion
::::::::
Backward

::::
FTLE

::::
field

:
(squared particle displacements) for

::::::::
integration

::::
time

:
250 hbackward integrations

started on )
:::

for
:
29 Feb 2016 (11:00).

::::::
Magenta

::::::
circles

::::::
indicate

:::::::
locations

::
of

::::::::
MARNET

:::::::
stations

::::
(1-6)

:::
and

::
of

:::
the

:::::
island

::
of

::::::::
Helgoland

::::
(H).

:::::
Vectors

::
in

:::
the

::
top

::::
right

:::::
corner

::::
show

::::
past

::::
wind

:::::::
directions

::::::::
(modelled

::
for

:::
the

::::::
location

::
of

:::::
station

::
4)

::
at

::
ten

::::::
hourly

:::::::
intervals.

:::::::
Different

::::
wind

:::::
speeds

::
are

:::::::::
represented

::
by

:
a
:::::
colour

::::
map.

::::
The

::::
wind

:::::
vector

:
at
:::
the

:::
time

::
of
:::
the

:::
plot

::
is

:::::
edged

:
in
::::
red,

::::
those

:::::
during

:::
the

:::
last

::
50

::::
hours

:::
are

:::::
edged

:
in
:::::
black.

:::
(b)

::::::
Absolute

::::::::
dispersion

::::::::
(backward

::::::
squared

::::::
particle

::::::::::::
displacements)

::
for

:::
the

::::
same

::::
time. Example trajectories

::::
shown

:
were initialized at MARNET

monitoring stations
:
1, 2 and

:
6 (magenta) and at two locations (red

::::
small

:::::
circles

::
in

:::
blue

:
and green) neighbouring MARNET station

:
4 to its

south. Small diamonds indicate each trajectory’s final location. (b)
::
(c) Distribution of relative dispersion for the same situation

:::
time.
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3.4 Surface temperatures
::::::
Fourth

::::::::
example

Studying the Agulhas current in the southwest Indian Ocean, van Sebille et al. (2018, their Fig. 3) found structures in fields

of sea surface temperature (SST) that agreed with LCSs derived from geostrophic currents. For the German Bight region,355

Meyerjürgens et al. (2020) found reduced relative dispersion for experimental drifters released in the vicinity of a tidal mixing

front, indicating horizontal convergence in this region. This section addresses relationships between SST simulated in BSHcmod

and the LCSs presented in the above examples.

Sea surface temperatures at times the FTLE fields in Fig. 2 (a), Fig. 3a (b) and the distributions of absolute and relative

dispersion in Fig. 4 (c) refer to.360

Fig. ??a, referring to the situation in Fig. 2, shows a south-north oriented zone of relatively cool water. This belt is made up

by a couple of patches that bear a striking structural resemblance to patches of positive divergence in Fig. 2b. These patches

and the overall belt are delimited by the FTLE ridges shown in Fig. 2a. In the temperature field these lines of convergence

(Fig. 2b) appear as being relatively warm. Fig. 2b suggests that some features of the temperature distribution in Fig. ??a can

indeed be explained in terms of up- and downwelling.365

Similar effects occur on 26 March 2018 (Fig. ??b, corresponding with Fig. 3a). The sharp west-east oriented ridges in Fig. 3a

reappear in Fig. ??b as lines of relatively warm water (e.g. near MARNET station 6 or between MARNET stations 1 and 3).

On the other hand, three tongues of relatively cool water extend westward from the coast into the areas between the lines of

converging surface currents. Note that the eye-catching pronounced westward transition towards generally higher temperatures

in the open sea (a transition broadly corresponding with increasing water depth towards the old Elbe Glacial Valley) does370

actually not always coincide with the main FTLE ridge neighbouring MARNET station 4. In particular to the north of this

station, the FTLE ridge produces a line of relatively warm water that is clearly separate and shifted eastward (Fig. ??b).

Fig. ??c, showing the temperature field for 29 February 2016, corresponds with dispersion rates in Fig. 4. In this case, sharp

transitions in the temperature field correspond with lines of large relative backward dispersion (Fig. 4b) or backward FTLE

ridges (Fig. S2).375

For all three examples addressed in Fig. ??, some related structures can be identified also in salinity fields (see Fig. S3). See

Krause et al. (1986) and Budéus (1989) for a report on observations regarding the roles of temperature and salinity in different

kinds of German Bight frontal structures.

3.5 Time evolution of coherent structures

FTLE (or dispersion) fields change continuously under changing environmental conditions. A video in the supplement, based380

on one FTLE field every 7 hours, shows the variability of FTLE ridges in the year
:::::::::
throughout 2016. The three panels of

Fig. 5were
:
, extracted from this video. They ,

:
illustrate the development within the almost three week period 23 November to

12 December . Long FTLE ridges aligned in a meridional direction (
:::
two

:::::
week

:::::
period

:::
22

:::::::::
November

::
to

:
6
:::::::::
December

:::::
2016.

Fig. 5a ) evolve into a more cellular structure (Fig. 5c).
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:::::
shows

:::
the

::::::::
situation

::::
after

:::
10

::::
days

::
of

::::::
mostly

::::::
strong

:::::
winds

:::::
from

:::::::
between

::::::::
southeast

::::
and

:::::
west. The FTLE field in Fig. 5b is385

much less compartmentalized than the fields in Figs. 3a and 4b, for instance. Instead , it contains more filamentary ridges

that sometimes come very close. To illustrate the relevance of such narrow filaments,
:
it
::::::
shows

::::
long

:::::
FTLE

::::::
ridges

::::::
aligned

::
in

::
a

:::::::::
meridional

::::::::
direction,

:::::::::
resembling

:::
the

:::::::
situation

::
in

:
Fig. 5b combines asimulated backward trajectory starting at MARNET station

4 with another two trajectories (red and green) initialized slightly further east. Between the three seeding positions, FTLE

ridges indicate enhanced backward particle separation (i.e. convergence in forward mode). Accordingly, the three trajectories390

end points are clearly much more separated from each other than tracers were at the outset. All three trajectories clearly

reflect
::
2a.

:::
On

:::
23

:::::::::
November,

::::::
winds

::::::
change

:::::
from

::::::::
southern

:::::
winds

::
to

::::::
winds

::::
from

::::::::
northern

:::::::::
directions.

::::
This

::::::
entails

:
a reversal

of the residual circulation that occurred during 22-24 November, when a pronounced cyclonic circulation changed
:::::::
formerly

:::::::::
pronounced

::::::::
cyclonic to an anticyclonic

::::::
marine

:::::::
residual circulation2. However, the more the observation position is shifted to

the east, the more any hypothetical measurements would reflect conditionsthe probed water parcel experienced further south
:::
The395

::::
wind

::::
rose

::
in

:::
Fig.

:::
5b

:::
(27

:::::::::
November,

::::::
21:00)

:::::
clearly

:::::::
clusters

:::::
strong

:::::
winds

:::::
from

:::
the

::::
south

:::::::::
underlying

:::
the

::::::
period

::::::
covered

:::
by

::::::
FTLEs

::
in

:::
Fig.

:::
5a

:::
and

::::::
winds

::::
from

:::
the

:::::
north

:::::
more

:::::::
recently.

::
It

:::
can

:::
be

::::
seen

::::
how

:::
this

::::::::
transition

:::
of

:::::
winds

::::::::
generates

:::::::::
structures

::::::::
including

:::
also

:::::
more

::::::::
east-west

:::::::
oriented

::::::
ridges.

:::::
After

:
3
::::::::::

December,
:
a
::::
high

::::::::
pressure

:::
area

:::::
with

::::
very

:::
low

::::::
winds

::::::
extends

::::
into

:::
the

:::::
North

::::
Sea

::::::
region.

:::::
Under

::::
such

:::::
calm

:::::::::
conditions,

:::
the

:::::
FTLE

::::
field

::
in

::::
Fig.

::
5c

::::::::
suggests

::::::::
evolution

::::::
towards

::
a
::::
more

:::::::
cellular

:::::::
structure.

2see https://www.bsh.de/DE/DATEN/Stroemungen/Zirkulationskalender/zirkulationskalender_node.html
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Figure 5. Example
::::
Three

:
backward FTLE fields scheduled with nearly one week

::::::::::
approximately

:::
five

:::
and

::::
nine

::::
days

:
in
:
betweenthem

:
,
:::::::
extracted

:::
from

::
a
::::
video

:::::::
available

::
in

:::
the

::::::::
supplement. Backward trajectories were started at

:::::::
Magenta

:::::
circles

::::::
indicate

:::::::
locations

::
of MARNET station four

::::::
stations (magenta

::
1-6) and two locations (red and green circles) on either side of the FTLE ridge further east

:::::
island

::
of

::::::::
Helgoland

:::
(H). Small

diamonds indicate trajectory end points
:::::
Vectors

::
in

:::
the

::
top

::::
right

::::::
corners

::::
show

::::
past

::::
wind

:::::::
directions

::::::::
(modelled

:::
for

::
the

:::::::
location

::
of

:::::
station

::
4)

::
at

::
ten

:::::
hourly

:::::::
intervals. The three panels

:::::::
Different

::::
wind

:::::
speeds are extracted from

::::::::
represented

::
by

:
a video available

:::::
colour

::::
map.

::::
Wind

::::::
vectors

::
at

::
the

::::::::
respective

::::
times

::
of

:::
the

::::
plots

::
are

:::::
edged

:
in

:::
red,

::::
those

::::::
during the supplement

:::
last

::
50

::::
hours

:::
are

:::::
edged

:
in
:::::

black.
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4 Discussion400

Taking a monitoring perspective, this study focussed on an
::
the

:
analysis of attracting LCSs, technically identified as repelling

LCSs in backward simulations. LCSs help delineate regions in situ observations are possibly representative for. A structure like

the one shown in Fig. 2a, for instance, provides a warning that in the vicinity of the central south-north oriented FTLE ridge,

even
::::
Drift

::::::::::
simulations

:::::
based

:::
on

:::::::::
BSHcmod

::::::
surface

:::::
layer

:::::::
currents

:::::::
revealed

::
a

::::::::::
pronounced

::::
time

:::::::::
variability

::
of

:::::
LCSs,

::::::
driven

:::
by

::
the

::::::
recent

::::::
history

::
of

:::::
wind

:::::::::
conditions.

:::::
Some

::::::
LCSs,

::::::::
identified

::
as

::::::
ridges

::
in

:::
the

:::::
FTLE

:::::
field,

::::
were

:::::
found

::
to

:::
be

::::::::::
surprisingly

:::::
sharp405

::::
(e.g.

::::
Figs.

:::
3b

::
or

:::
4a),

:::
so

:::
that

:
measurements at neighbouring locations might see water bodies with very different backgrounds.

In Fig. 3a the FTLE ridges are surprisingly sharp, so that in this case
:::::::
Similarly,

::
at
::
a
:::::
given

::::::
station,

:
even a small relocation of

a measurement site
:::::::::::
wind-induced

:::::::::::
displacement

:::
of

:::
the

:::::
FTLE

::::
field

:
could substantially shift the origin

::::::
origins of water bodies

being probed. Convergence of water bodies with different past histories introduces uncertainties in the interpretation of
:::::
Being

:::::
aware

::
of

::::
such

::::::::::
sensitivities

:::
can

:::
be

:::::::
relevant

:::
for

:
a
::::::
proper

:::::::::::
interpretation

::
of

::::::::::::
observational data. Ridges in the simulated backward410

FTLE field convey information on this uncertainty
::
the

::::::::::
information

:
in a clear and amenable way.

Attracting LCSs, in dynamical systems theory also called unstable because of a fast stretching of particles along them

(according to Harrison and Glatzmaier, 2010, an unfortunate historical definition), have been used for optimizing drifter deployments

in field studies. Poje et al. (2002) proposed drifter deployment into attracting LCSs to ensure fast dispersal based on near-exponential

material stretching, which lets drifters explore regions of high kinetic energy. Molcard et al. (2006) used this approach for415

assimilating drifter velocities into a ocean general circulation model. Different from these studies, Shadden et al. (2009) focus

on repelling LCSs. Seeding drifters in a less localized way, Shadden et al. try to make drifters stay as long as possible in a

specific region delineated by transport barriers.

:::
The

:::::::
general

::::
idea

::::::::
followed

::::
here

::::::
differs

:::::
from

:::
the

::::::::
objective

:::
of

:::::::::::::::::::::
Ricker and Stanev (2020),

:::
for

::::::::
instance,

:::::
who

:::::
aimed

::
at
::::

the

:::::::::::
identification

::
of

:::::
mean

:::::::
particle

:::::::::::
accumulation

:::::::
patterns

:::
(in

:::::::
forward

::::::
mode)

::
in

:::
the

:::::::::
European

::::::::
northwest

:::::
shelf

:::
on

::::
time

:::::
scales

:::
of420

::::::
months

::
or

::::::
years.

::
In

:::
the

::::
light

::
of
::::::::::::::

time-dependent,
:::::::::
sometimes

::::::
narrow

::::::
FTLE

::::::
ridges,

:::
the

:::::::
general

:::::::::::::
characterization

::
of

::::::::::
monitoring

::::::
stations

::
in

:::::
terms

::
of

::::
their

:::::
areas

::
of

::::::::
influence

:::::
seems

:::::::
difficult

::
to

:::::::
achieve.

:::::::::::::::::
Duran et al. (2018)

:::::
derived

::::::::::::
climatological

:::::
LCSs

:::::::
(cLCS)

:::::
based

::
on

::::::::
low-pass

::::::
filtered

:::::::
velocity

::::::
fields.

:::::
These

::::::
cLCSs

:::::
could

::::
then

:::::::::::
successfully

::
be

:::::::
applied

:::
for

:
a
::::::::::
description

::
of

:::::::::::
quasi-steady

:::::::
transport

:::::::
patterns

:::
in

:::
the

:::::
Gulf

::
of

:::::::
Mexico.

:::::::
Marine

:::::::
currents

:::
in

:::
the

:::::::
German

::::::
Bight

::::
area,

::::::::
however,

::::
are

:::::
much

:::::
more

::::::::
variable.

::::::::
Therefore,

::::
this

:::::
study

:::::::
suggests

:::
the

::::
use

::
of

:::::::
detailed

:::::::::
numerical

:::::::::
simulations

:::
to

::::::
classify

::::::
probed

::::::
water

:::::
bodies

:::::
with

:::::
regard

::
to
:::::

their425

:::::::::
presumable

::::::
source

:::::::
regions.

::::::::
Similarly,

::::::
detailed

::::::::
transport

::::::::
modelling

:::::
could

:::::::
support

:::
the

:::::::
effective

::::::::::
organization

::
of

::::
field

:::::::::::
experiments.

Not looking into the future, backward FTLE fields can be simulated already at the time when observations are actually taken.

Shadden et al. (2009) exemplify that a LCS’s robustness might enable extrapolation of its separatrix function even beyond the

time horizon of detailed operational hydrodynamic predictions, e.g. three days. Timely
::::
Such

::::::
timely

:
model based informa-

tion on LSCs
::::::
existing

:::::
LCSs

:
would allow for an adjustment of field campaigns to prevailing environmental conditions and430

data already gathered. New data should complement rather than duplicate information already available. Proper interpretation

of measurements can much depend on both location and time when observations were taken. This is analogous to what

Lekien et al. (2005) found in forward mode, trying to optimize a pollution release scheme based on forward FTLE fields. In this
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case favourable and unfavourable time spans for pollution release could clearly be distinguished from each other. Favourable

time windows might also be identified when taking observations.435

In this study, FTLE fields were analysed on a grid with 1 km resolution, nearly matching resolution of the underlying

hydrodynamic current fields. Generally, defining FTLE fields on a finer grid to look at structures smaller than the resolution

of the Eulerian hydrodynamic model would have been possible (see Huhn et al., 2012, for instance). Generated by chaotic

advection with exponential material stretching rates, small scale structures arise from tracer simulations over distances much

exceeding numerical grid resolution (Huhn et al., 2012). Generally, Harrison and Glatzmaier (2010) found locations of major440

LCSs to be fairly robust to spatial resolution
::
in

:::
the

::::
light

::
of

:::
the

::::
data

::::::
already

::::::::
gathered.

According to Lekien et al. (2005), the relevance of FTLE ridges may be classified with regard to their length rather than

the size of FTLE values. Here, LCSs often turned out to have considerable length and to be connected, sometimes forming a

whole network
::::::::
Examples

::::::
shown

:::::::
suggest

:::
that

::
in

::::::::
particular

::::::
strong

::::
wind

:::::::::
conditions

::::::
trigger

:::
the

:::::::::
occurrence

::
of
::::::::::
pronounced

::::::
FTLE

:::::
ridges,

:::::
often

:::::
being

:::
of

::::::::::
considerable

::::::
length

::
or

:::::::::::
demarcating

:
a
:::
net

:
of closed subregions. Throughout the

:::::
These

:::::
ridges

::::::::
continue445

::
to

::::
exist

:::
for

:::::
some

::::
time

::::
also

:::::
under

:::::::::
subsequent

::::::
calmer

:::::
wind

:::::::::
conditions

::::
(e.g.

::::
Figs.

:::
3a

:::
and

::::
3b).

::::::::::
Throughout

:::
this

:
study, all FTLE

values were calculated based on trajectories integrated 250 hours back in time. This is roughly ten times the integration time

Huhn et al. (2012) chose
:::::::::
integration

::::
time

::
is

:::::
much

:::::
longer

::::
than

:::
just

::::
few

::::
tidal

:::::
cycles

::::::
which,

:::
for

:::::::
instance,

:::::::::::::::
Orre et al. (2006)

:::::
chose

::
for

:::::::::
analysing

:::::::::::::
topographically

::::::::::
constrained

:::::::
currents

::
in

:
a
::::::::::
Norwegian

:::::
fjord.

:::::::::::::::
Huhn et al. (2012)

:::::
chose

::
24

:::::
hours

:
for their study in

the Ria de Vigo estuaryin Spain. Experiments reducing integration time to just ,
:::::::

thereby
:::::::::
preventing

::::::::
particles

::::
from

::::::::
reaching450

::
the

::::::::::
boundaries.

:::
In

:::
the

::::::
present

::::::
study,

::
all

::::::::::
trajectories

::::
that

:::
met

::::::
water

:::::
depths

::::::
below

::
5

::
m

::::
were

:::::::::
discarded.

::::
The

::::
long

::::::::::
integration

::::
time

::::::
implied

::::
that

:::::
even

:::::
when

:::::
being

::::::
started

:::::
under

:::::
calm

::::::::::
atmospheric

::::::::::
conditions,

::::::::::
trajectories

::::::::::
experienced

:::
the

::::::
storm

:::::
event

::
at

::
the

::::
end

::
of

:::::
their

::::::::
backward

::::::::::
integration.

::
A

::::
very

:::::::::
interesting

:::::::::::
observations

::
is,

::::::::
however,

::::
that

::::
with

:::::::::
integration

:::::
time

:::::
being

:::::::
reduced

::
to

:::
just

:::
50

::
or

::::
even

:
25 hours, revealed that

:::::
hours,

:::
the

:
key FTLE ridges tended to become less sharp but to not change their

locations (not shown). This finding agrees with expectations (e.g. Peng and Dabiri, 2009; Shadden et al., 2009).According to455

Peng and Dabiri (2009), in practice integration time should be chosen such that it makes LCSs well resolved and clearly

visible. As in Huhn et al. (2012), the tidal signal did not dominate the choice of integration time. The example trajectories

shown , illustrate how changing residual currents, driven by wind forcing, play a major role for particle separation. This is very

different in a Norwegian fjord, for instance, with topographically constrained currents driven mainly by tides (Orre et al., 2006)

.460

Branicki and Malek-Madani (2010) warn that conclusions from two-dimensional FTLE fields could be misleading in shallow

coastal waters with strong vertical mixing. Branicki and Malek-Madani see this point less critical when dealing with surface

currents and buoyant Lagrangian tracers.Tracer convergence (divergence in backward FTLE fields)near FTLE ridges
:::
did

:::
not

::::::::
disappear

:::
(see

::::
Fig.

:::
S2,

::::::::::::
demonstrating

::::
that

:::
for

:::
the

:::::::
example

::::::
shown

::
in

:::
Fig.

::::
3b).

::::
This

::::::
finding

:
is consistent with an accumulation

of drifting material near tidal mixing fronts (Simpson and Pingree, 1978; Thiel et al., 2011). If two-dimensional current fields465

are obtained from three-dimensional model output (as in this study), divergences may reflect injection of nutrients via vertical

transports.This provides important input for modelling chlorophyll a dynamics
::
the

::::
fact

:::
that

::::::::
example

::::::::
backward

::::::::::
trajectories

::
in

::::
Figs.

:::
2a

:::
and

:::
3b, for instance. At the submesoscale, Hernández-Carrasco et al. (2018) found extreme divergence (indicating
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upwelling) and convergence (indicating accumulation of surrounding phytoplankton standing stocks) both being associated

with phytoplankton patches observed in coastal waters,
:::::
show

::::
high

::::
drift

::::::::
velocities

:::::::
towards

:::
the

:::
end

::
of

:::
the

:::::::::
integration

::::::
period

:::
but470

:
at
:::
the

:::::
same

::::
time

:
a
:::::
clear

:::::::::
separation

::
of

::::::::::
neighboured

::::::::::
trajectories

::::::
already

::::
right

:::::
from

:::
the

::::
start.

::::
This

::::::
proves

:
a
::::::
certain

::::::::
memory

::::
after

::
the

:::::
storm

::::
has

:::::
ceased.

In this study, analysed structures were remarkably consistent for fields of FTLE , FDLD, dilation rate or measures of

dispersion. Differences between the FTLE and FDLD fieldsdiscussed by Huntley et al. (2015) could not be seen on the spatial

scale considered. Fields of path-averaged finite-time Lagrangian divergence FDLD corroborate the role of backward FTLE475

ridges as lines of convergence (see Fig. 2). This relationship agrees with the results of many oceanographic studies. Olascoaga et al. (2013, their Fig. 1)

, for instance, provide an example of how a chlorophyll a plume
::::
FTLE

:::::
fields

:::::
were

:::::::
analysed

:::
on

:
a
::
1

:::
km

::::
grid,

::::::
nearly

::::::::
matching

::::::::
resolution

::
of

:::
the

::::::
marine

:::::::
current

:::::
fields.

::::::::::::::
Computationally

:::::
more

:::::::::
demanding

::::::
FTLE

:::::::
analyses

:::
on

:
a
::::
finer

::::
grid

::::::
would

::::
have

:::::::
enabled

:::::::::::
identification

::
of

::::::::
structures

:::::
even

::::::
smaller

:::::
than

::::::::
resolution

:::
of

:::
the

:::::::
Eulerian

:::::::::::::
hydrodynamic

:::::
model

:::::::
arising,

::::::::
however,

::::
from

::::::
tracer

:::::::::
simulations

::::
over

::::::
longer

::::::::
distances

:::::::::::::::
(Huhn et al., 2012)

:
.
::::
This

:::::
shows

:::
that

::
a
:::::::::::
classification

::
of

::::::::
kinematic

:::::
LCSs

::
in

:::::
terms

::
of

:::::::::
mesoscale480

::
or

:::::::::::
submesoscale

:::::::
features

::::
and

::::::::
processes

::::
may

:::
be

:::::::
difficult.

:::::::
Longer

:::::::::
integration

::::::
periods

::::::::::
underlying

:::
the

::::
LCS

:::::::
analysis

::::
may

:::::
filter

::::
more

:::::::::
short-term

:::::::
features

::::::::::::::::::::
(Serra and Haller, 2016).

:

::
In

::::
their

:::::
study

::
of

::::::::::
Lagrangian

::::::::
transports

:
in the Gulf of Mexicocoincides with an attracting LCS.

:
,
::::::::::::::::
Duran et al. (2018)

:::::
found

::::::
patterns

:::::::
shaping

::::::::::::::
two-dimensional

:::::::::
transports

::
to

::::
arise

:::::
from

::::::
merely

::::::::::
confluence,

:::
i.e.

::::::
normal

::::::::
attraction

::::
and

::::::::
tangential

:::::::::
stretching

::::::
without

:::::::::::
convergence.

:::::::::
Similarly,

:
Lehahn et al. (2007) found satellite observations of chlorophyll filaments in the northeast485

Atlantic to well agree even with simulated geostrophic transports, contracting at and stretching along material lines. Referring

to Lapeyre and Klein (2006), Lehahn et al.
:::
they

:
argue that an ageostrophic secondary circulation injecting nutrients from deeper

layers may trigger further chlorophyll production.

Combining SeaWiFS ocean-colour data with altimetry-derived surface currents in the Brazil-Malvinas confluence zone,

d’Ovidio et al. (2010) found that stirring by mesoscale currents can play an important role in structuring phytoplankton communities490

and even create what they call fluid dynamical niches, sharply delimited by LCSs. Hernández-Carrasco et al. (2018) study this

topic at the submesoscale, using currents observed with High-Frequency Radar (HFR)
::::::::
Similarly,

:::::::::::::::::::::::::::::
Olascoaga et al. (2013, their Fig. 1)

::::::
provide

:::
an

:::::::
example

::
of

::::
how

:
a
::::::::::

chlorophyll
::
a
:::::
plume

:::
in

:::
the

::::
Gulf

::
of

:::::::
Mexico

::::::::
coincides

::::
with

:
a
:::::::::::::
divergence-free

::::::::
attracting

:::::
LCS.

:::
At

::
the

:::::::
smaller

::::::::::::
submesoscale,

::::::::
however,

::::::::::::::::::::::::::::
Hernández-Carrasco et al. (2018)

:::::
found

:::::::
negative

::::::::
extremes

::
of

::::::::::
Lagrangian

:::::::::
divergence

:::
to

:::::::
coincide

::::
with

::::::::
attracting

:::::
LCSs

::::::::
identified

::
as

::::::
ridges

::
in

:::
the

::::
field

::
of

:::::::::
backward

:::::::::
Finite-Size

:::::::::
Lyapunov

:::::::::
Exponents

::::::
(FSLE)

::::::::
analysed495

::::
from

:::
HF

:::::
radar

::::
data.

::::
Also

:::
in

:::
the

::::::
present

:::::
study,

:::::
fields

::
of

::::::::::::
path-averaged

::::::::::::
finite-domain

:::::::::
Lagrangian

:::::::::
divergence

::::::
FDLD

:::::::::
suggested

::
the

::::
role

::
of

:::::::::
backward

:::::
FTLE

:::::
ridges

::
as

:::::
lines

::
of

::::::::::
convergence

:
in coastal waters. According to Scales et al. (2018) attracting LCSs

can also be targeted by fisheries, lead by lines of drifting foam or debris. However, Abraham and Bowen (2002), employing

the FTLE for estimating a stirring rate from surface velocity data in
:::
This

::::
was

::::::::
explicitly

::::::
shown

:::
for

:::
the

:::::::
example

::
in

::::
Fig.

::
2

:::
but

::::::
pertains

::::
also

::
to

:::
all

:::
the

::::
other

:::::::::
examples.500
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Figure 6.
::
(a)

:::::
Values

::
of

::
the

:::::::
Jacobian

:::::::::
determinant

:::
(Eq.

::::
(4))

::
for

:::
100

:
h
::::::::

backward
:::::::::
simulations,

::::::::
initialized

::
on

::
26

:::::
March

::::
2018

:::
(as

::
in

:::
Fig.

:::
3b).

::::
Few

:::::
outliers

::::::::
exceeding

:::
the

::::::::
maximum

::::
value

::
of
:::

the
:::::
colour

::::
map

::::
were

:::
not

:::::::::
specifically

::::::
marked.

::::
Any

::::::
negative

::::::
values,

:::::::
possible

:::
due

::
to

::::
finite

:::::
initial

:::::::
distances,

::::
were

::::::
omitted

::
in

:::
the

::::
plot.

::::
Wind

::::::::
directions

:::::
during

::::::::
integration

::::
time

:::
are

:::::
shown

::
at

::
ten

::::::
hourly

::::::
intervals

::
in
:::
the

:::
top

::::
right

:::::
corner

::
of

:::
the

::::
panel.

::::
The

:::::
actual

::::
wind

:::::
vector

::
is

:::::
edged

::
in

:::
red,

::::
those

:::::
during

:::
the

:::
last

:::
50

::::
hours

:::
are

:::::
edged

::
in

:::::
black.

:::
(b)

:::::::::
Histograms

::
of

:::::::
Jacobian

:::::::::
determinant

:::::
values

::
for

:::::::::
integration

::::
times

:::
-50

::
h

::::
(left)

:::
and

::::
-100

:
h
::::::
(right),

:::::::::
respectively.

::::
Note

::::
that

:::
the

::::::::::
distributions’

:::
flat

:::
tales

::::::
extend

::::::
beyond

::
the

::::::
ranges

::
of

:::::
values

::::
being

::::::
shown.

::
(c)

::::::
Zooming

::
in
:::
on

::
the

::::::::
subregion

:::::::
indicated

::
by

:::
the

:::::
black

::::
frame

::
in
:::::
panel

:::
(a),

::
the

:::::
panel

:::::
shows

:::
the

:::
time

:::::::
evolution

:::
of

:::
two

:::::
square

::::::
patches,

::::::
corners

::
of

:::::
which

:::
are

::::
made

:::
up

::
by

:::
the

:::::
initial

:::::::
locations

:::
(red

:::
and

:::::
green

::::
dots)

::
of
:::

the
::::
four

::::::::
trajectories

::::::
needed

::
to

:::::::
calculate

:::
the

::::::::
discretized

:::::::::
deformation

:::::::
gradient

:::
(Eq.

:::
(2))

::
at
:::
the

::::::::
respective

::::::
square’s

::::::
center.

:::::::
Deformed

::::::::::
quadrangles

:::::::
emerging

:::::
during

:::
the

::::
-100

:
h
:::::::::

integration

:::::
period

::
are

:::::
shown

::
at
::
25

::::::
hourly

:::::::
intervals.

:::::
Factors

::
of
::::

area
::
in-

::
or
::::::::
decreases

::::
µ1µ2::::

(Eq.
:::
(3))

:::
are

::::
1.56,

::::
2.50,

::::
3.40,

:::
3.73

::::
(red)

:::
and

:::::
0.96,

::::
0.70,

::::
0.42,

:::
0.31

::::::
(green),

:::::
where

:::
the

:::
last

:::::
values

::::
equal

:::
the

:::::
values

::
for

::::
-100

:
h
:::::
shown

::
in

:::
the

::::
map.

:::::::::::
Corresponding

::::::
stretches

::::::
µ1/µ2 :::

(see
:::
Eq.

:::
(6))

:::
are

::::
1.88,

::::
3.01,

::::
3.78,

:::
5.52

::::
(red)

:::
and

::::
1.17,

::::
1.52,

::::
1.98,

::::
2.36.

::::::
(green).
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::::::::
Referring

::
to

:::
the

:::::::
example

::::::::
addressed

::
in
::::
Fig.

:::
3b,

::::
Fig.

::
6a

::::::
shows

:::
the

:::::::::::
corresponding

:::::
field

::
of

:::
the

:::::::
Jacobian

:::::::::::
determinant.

::
A

::::::
shorter

:::::::::
integration

:::::
period

::
of
:::::

only
::::
-100

:
h
::::::
(rather

::::
than

::::
-250

:::
h)

:::
was

::::::
chosen

::
to
:::::::
exclude

:::
the

::::::
period

::
of

::::::
strong

::::::
easterly

::::::
winds

:::
that

::::::::
occurred

::::
about

::
8
::::
days

::::::
before

::
the

::::
date

::
of

:::
the

:::::::
analysis

::::::::
(compare

:::
the

::::
wind

:::::
roses

::
in

::::
Fig.

::
3b

:::
and

::::
Fig.

:::
6a,

:::::::::::
respectively).

:::::::
Despite

:::
the

::::::::
shortened

:::::::::
integration

::::
time,

::::::
ridges

::
in

:::
the

::::::::
backward

::::::::
Jacobian

::::::::::
determinant

::::
field

::::
well

::::::::
coincide

::::
with

:::::
FTLE

::::::
ridges

::
in

:::
Fig.

::::
3b.

:::::
Values

:::
of

:::
the

:::::::
Jacobian

::::::::::
determinant

:::
are

:::::::::::
substantially

:::::
spread

::::::
around

:::
the

::::::
neutral

:::::
value

::
of

::::
one

:::
that

:::::::::::
corresponds

::::
with

::::
zero

:::::::::
divergence

::::
(Fig.

::::
6b).505

:::::
Values

::::::
further

::::::
spread

::::
with

:::::::::
increasing

:::::::::
integration

:::::
time.

:::
To

::::::::
exemplify

:::::::
patterns

:::
of

::::::::
transport,

::::
Fig.

::
6c

::::::
shows

:::
the

::::::::::
development

:::
of

:::
two

:::::::
patches

::::
with

:::::
either

:::::::::
increasing

::
or

:::::::::
decreasing

::::
area.

:::
At

::::
each

::::
time

:::::
level,

:::
the

:::::::::::
quadrangles

:::
are

::::::
defined

:::
by

:::
the

:::::::
positions

:::
of

:::
the

:::
four

::::::::::
trajectories

:::
that

:::::::
emerge

::::
from

:::
the

::::::::
locations

:::::
used

::
to

:::::::
calculate

::::
the

:::::::::
discretized

::::::::::
deformation

::::::
radius

::::
(Eq.

:::
(2))

::
in
:::::

their
::::::
centre.

:::
The

:::::
more

:::::::
southern

::::::::
example

:::::::
emerges

:::::
from

:
a
:::::::
location

:::
on

::
a

::::
ridge

:::
in

:::
the

:::::::
Jacobian

:::::::::::
determinant

::::
field.

:::::
After

::::
100

:::::
hours

::::
back

:::
in

::::
time,

:::
the

:::::
initial

::::
area

:::
has

::::::
grown

:::
by

:
a
:::::
factor

::
of
:::::

3.73,
:::::
which

::::::
equals

:::
the

::::::
values

::
of

:
the East Australian Current region, emphasize510

that a model beyond a simple passive tracer concept would be needed to better understand chlorophyll distribution.
::::::::::
determinant

:::::
shown

::
in
:::
the

:::::
map.

:::
By

:::::::
contrast,

:::::::
starting

:::::
from

:::
the

::::
more

::::::::
northern

:::::::
example

::::::::
location,

:::
the

::::
area

::::::::
decreases

:::
by

:
a
::::::
factor

::
of

::::
0.31.

:::
In

::::
both

:::::::
example

:::::
cases

::
the

::::
drift

:::::::::
behaviour

::
is

::
far

:::::
from

:::::
being

::::::::::::
non-divergent.

Relatively stable FTLE ridges connected to the island of Helgoland, for instance, could also be relevant for sedimentation

processes.However, again an analysis of ideal passive tracer trajectories is likely to be too simplistic for studying such effects.Movements515

of inertial tracers can substantially differ from those of fluid parcels. Therefore the idea of LCSs has been generalized to include

dynamics of inertial particles (Sapsis and Haller, 2009; Sudharsan et al., 2016; Günther and Theisel, 2017). This theoretical

concept has successfully been applied on the scale of ocean eddies (Beron-Vera et al., 2015) but also on the very small scale of

jellyfish feeding (Peng and Dabiri, 2009; Sapsis et al., 2011).

In this study, drift simulations were not validated against data. However, it was shown that to some extent the LCSs520

identified in model output manifested themselves also in simulated fields of surface temperature (
::
In

::::
both

:::::
cases,

::::::::
however,

::::
also

:::::::::
substantial

::::::::
stretching

::::::
occurs.

:::::
Final

:::::::
stretches

::::::
µ1/µ2 ::

of
:::
the

:::::::
example

::::::
squares

::
in
:
Fig. ??) and salinity (Fig. S3)as intrinsic tracers.

A relationship between frontal structures and FTLE ridges confirms the relevance of LCSs for surface current transports.

Becker et al. (1992) summarize different types of fronts (river plume, thermal and upwelling fronts) that occur in the German

Bight
::
6c

:::::::
amount

::
to

::::
5.52

:::::
(red)

:::
and

::::
2.36

:::::::
(green).

:::
To

::::::::::
differentiate

:::
the

::::::
effects

::
of

::::::::
divergent

:::::
flows

::::
from

:::::::::::::
divergence-free

:::::::::
repulsion,525

:::::::::::::::::
Huntley et al. (2015)

:::::::::
introduced

:::
the

::::::::::::
decomposition

::
of

:::
the

:::::
FTLE

:::::::
measure

:::
into

:::::::
dilation

:::
rate

::
∆

:::
and

::::::
stretch

::::
rate

:
Σ
::::
(see

::::::
Section

::::
2.5).

:::
For

:::
the

::::
three

::::::::
examples

::::::::
presented

::
in

::::
Fig.

::
2,

:::
Fig.

:::
3b

:::
and

::::
Fig.

:
4,
:::::::::::
respectively,

:::::
Table

:
1
:::::::
provides

:::
the

::::::::::
correlations

:::::::
between

:::::
FTLE

::::
and

:::::
either

::::::
dilation

::
∆

:::
or

:::::
stretch

::::
rate

::
Σ.

:::
In

::::
each

::::
case,

::::::::::
correlations

:::
are

:::::
given

:::
for

:::
the

::::
three

::::::::
different

:::::::::
integration

:::::
times

::
of

:::
-50

::
h,

::::
-100

::
h

:::
and

::::
-250

::
h,

::::::::::
respectively.

:::::
Both

::::::::::
correlations

:::::::
between

:::::
FTLE

:::
and

:::
∆

::
or

::
Σ

:::
are

:::::::
generally

:::::::
positive

::::
and

::
of

::::::
similar

::::
size,

::::::::
indicating

::::
that

:::::::
repulsion

:::
in

:::
the

::::::
vicinity

:::
of

::::::::
backward

:::::
FTLE

::::::
ridges

::::::
indeed

::::::
occurs

::
as

::
a

::::::::::
combination

::
of

::::::::::
divergence

:::
and

:::::::::
stretching.

::
In
:::

all
:::::
three530

::::::::
examples,

::
an

:::::::::
interesting

::::::::::
observation

::
is

::::
that

:::
the

::::::::::
correlations

:::::::
between

:::::
FTLE

:::
and

:::::::
dilation

::::
rate

::
∆

:::::::
increase

::::
with

:::::::::
integration

:::::
time,

::::
while

::::::::::
correlations

::::
with

::::::
stretch

::::
rate

::
Σ

:::::::
decrease.

:::
As

:
a
::::::
result,

:::::::::
correlation

::
of

:::::
FTLE

::::::
values

::::
with

:::::::
dilation

:::
rate

::
∆

::
is

::::::::
dominant

:::
for

:::
the

::::
-250

:
h
:::::::::
integration

::::
time

::::::
chosen

::
in
::::
this

:::::
study.

:

:::
The

::::::::::
temperature

::::
field

::
in

:::
Fig.

:::
2c

:::::::
provided

::
an

:::::::::
indication

::
of

::::::::
confluent

:::
and

:::::::
possibly

::::
also

:::::::::
convergent

:::::::
currents.

:::::::
Surface

:::::::::
temperature

::::::::::
observations

::
by

::::::
remote

:::::::
sensing

:::::
might

:::::::
possibly

:::::::
provide

:
a
:::::
means

::
to

:::::::
confirm

::::::::
simulated

::::::
FDLD

:::::
fields. Schrum (1997) showed how535
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Table 1.
:::::::::
Correlations

:::::::
between

:::::
FTLE

:::
and

::
its

::::::
additive

:::::::::
components

::
∆

:::
and

::
Σ

:::
(see

:::::
Eq.8).

::
12

:::
Jun

::::
2015

::
26

:::
Mar

::::
2018

: ::
29

:::
Feb

::::
2016

:

τ
:::
(Fig.

::
2)
: ::::::

(Fig.3b)
:::
(Fig.

::
4)
:

:::
corr

::::::
(FTLE,

::
∆)

: ::
-50

::
h

:::
0.41

: :::
0.59

: :::
0.68

:

:::
-100

::
h

:::
0.51

: :::
0.66

: :::
0.73

:

:::
-250

::
h

:::
0.65

: :::
0.72

: :::
0.77

:

:::
corr

::::::
(FTLE,

::
Σ)

: ::
-50

::
h

:::
0.69

: :::
0.63

: :::
0.57

:

:::
-100

::
h

:::
0.65

: :::
0.57

: :::
0.47

:

:::
-250

::
h

:::
0.52

: :::
0.50

: :::
0.37

:

For three examples presented in this paper, the table shows correlations obtained for backward

integration times τ=-50 h, -100 h and -250 h, respectively.

the spatial extent of thermohaline stratified areas, a precondition for the occurrence of tidal mixing fronts, depends on wind

forcing possibly inducing
:::
that

:::::::
possibly

:::::::
induces

:
differential advection. In a recent paper, Chegini et al. (2020) provided a

more detailed analysis of different processes that affect stratification and destratification
:
in

:::
the

:::::::
German

:::::
Bight

::::
area, including

freshwater buoyancy input. Location of the Elbe River plume again depends on the wind driven residual circulation. Against

this backdrop, it can be assumed that atmospheric forcing is also ,
::::::
which

::::::
further

::::::::::
substantiates

:::
the

::::::::::
assumption

::
of

:::::::::::
atmospheric540

::::::
forcing

:::::
being a key driver for the generation, movement and extinction of German Bight LCSs.

Although some patterns in the temperature (and salinity) field seem clearly related to ridges in the FTLE fields, it must

nevertheless be noted that there is no one to one relationship. An example for this provides the rather smooth FTLE field

in Fig. 3b. The corresponding temperature field (Fig. S4a) shows small-scale structures with less clear counterparts in the

FTLE field. According to Fig. S4b, the Lagrangian divergence FDLD reproduces structures seen in the temperature field,545

but FDLD values are clearly smaller than those in Fig. 3b. Combining pure flow dynamics with a simple representation

of the dynamics of temperature itself might be necessary for an explanation of these structures in the temperature field

(Abraham and Bowen, 2002). Note that large divergences in coastal regions are
::::::::
Relatively

:::::::::
persistent

:::::
FTLE

:::::
ridges

:::::::
related

::
to

::
the

::::::
island

::
of

:::::::::
Helgoland,

:::
for

::::::::
instance,

:::::
could

:::::::
possibly

::
be

:::::::
relevant

:::
for

::::::::::::
sedimentation

::::::::
processes.

:::::::::
However,

:::::::::
movements

:::
of

::::::
inertial

:::::
tracers

::::
can

:::::::::::
substantially

:::::
differ

::::
from

:::::
those

::
of

:::::
fluid

::::::
parcels,

:::
so

::::
that

::
an

:::::::
analysis

:::
of

::::
ideal

:::::::
passive

:::::
tracer

:::::::::
trajectories

::
is
:
likely to550

be artefacts because of water depths in tidal waters falling below the depth of the assumed 5 m surface layer (remember the

same type of discrepancies also between Figs. 2b and 2c)
::
too

::::::::
simplistic

::
in
::::
that

:::::::
context.

:::
The

::::
idea

::
of

:::::
LCSs

:::
has

:::::
been

::::::::::
generalized,

:::::::
however,

::
to

::::::::
explicitly

::::::
include

:::
the

::::::::
dynamics

::
of

::::::
inertial

:::::::
particles

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sapsis and Haller, 2009; Sudharsan et al., 2016; Günther and Theisel, 2017)

:
.
::::
This

:::::::::
theoretical

::::::
concept

::::
has

::::::::::
successfully

::::
been

:::::::
applied

::
on

:::
the

:::::
scale

::
of

:::::
ocean

::::::
eddies

:::::::::::::::::::::
(Beron-Vera et al., 2015)

::
but

::::
also

:::
on

:::
the

::::
very

::::
small

:::::
scale

::
of

:::::::
jellyfish

::::::
feeding

::::::::::::::::::::::::::::::::::::
(Peng and Dabiri, 2009; Sapsis et al., 2011).555
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FTLE barriers may
::::::::
Although

::::::::
numerical

:::::::
models

:::
can

:::::
make

::::::::
observers

:::::
aware

::
of
::::::

FTLE
::::::
barries

:::
that

:
move, disappear or newly

arise under changing environmental conditions. Numerical models are valuable tools for making observers aware of this

fact. However, hydrodynamic models ,
::::
they

:
can never provide a perfect surrogate nature.

::::::::::::::
Guo et al. (2016)

::::::
propose

::::::::
concepts

::
to

::::::
extend

:::
the

:::::::::::
conventional

:::::::
analysis

:::
of

:::::::::::
deterministic

::::::
FTLE

:::::
fields

::::
and

:::::
ridges

:::
to

::::::::
uncertain

::::
flow

::::::::::
conditions.

:
In a compara-

tive study, Hufnagl et al. (2017) found considerable discrepancies between the results from a large number of different560

North Sea tracer simulations essentially based on vertical mean currents. For surface drift simulations, additional simulation

errors may arise from the necessity to specify the extent to which near surface currents are exposed to wave related Stokes

drift or a direct wind drag. In field studies, corresponding parameters may be tuned empirically (e.g. Callies et al., 2017b)

:::::::::::::
Wiggins (2005)

:::::
makes

::::::::::
reservations

:::::
that,

::
as

:::::::::
contrasted

::::
with

:::::
many

:::::::::::
engineering

:::::::::::
applications,

:::
the

:::::::
presence

::::
and

:::::::::
interaction

:::
of

::::
very

:::::::
different

::::::
scales

::
in

::::::::::
geophysical

:::::
flows

::::
can

::::::
restrict

:::
the

:::::::::
possibility

::
of
::::::::::

simulating
:::::::
detailed

::::::
particle

:::::
drift

:::::
paths. Altogether,565

simulated FTLE distributions
:::
field

:
will always be imperfect. Guo et al. (2016) propose concepts to extend the conventional

analysis of deterministic FTLE fields and ridges to uncertain flow conditions. However, even in case of inaccurate simulations,

the simulated FTLE would at least warn
::::::::
simulated

:::::
FTLE

:::::
fields

::::
will

::::
warn

:::::
users about key sensitivities of

::::::
specific

:
model output.

If an observation is taken close to a simulated FTLE ridge, a simulated backward trajectory for this location must be used with

due care.570

This study did not address repelling LCSs in prediction mode. However, it is obvious that the above difficulties also

occur when forward simulations are
:::::::
(forward)

::::::
mode.

:::::
Drift

::::::::::
simulations

:::
are

:::::::::
important

::::
tools

:
employed for search and res-

cue (Breivik et al., 2013)
:::::
(SAR), for instance . A forward FTLE field could possibly warn users against particularly sensitive

dependences on the assumed location of numerical drift simulations. In tracer experiments, substantial model data discrepancies

could result from just a slight misspecification of initial locations or a moderate displacement of simulated LCSs relative575

to reality
:::::::::::::::::
(Breivik et al., 2013)

:
.
:::::::::::::::
Serra et al. (2020)

:::::::
proposed

::::
the

:::
use

::
of

::::::::
objective

::::::::
Eulerian

:::::::
coherent

:::::::::
structures

:::::::
(OECS)

::
in

::::
this

::::::
context,

::
a
:::::::
concept

:::::::::
developed

:::
by

::::::::::::::::::::
Serra and Haller (2016)

::
for

:::::
being

:::::
used

:::::
when

:::::
quick

::::::::::
operational

::::::::
decisions

:::
are

::
to
:::

be
::::::
made.

::::::::
According

:::
to

:::::::::::::::::::
Serra and Haller (2016)

:
,
::::::
OECSs

::::
can

::
be

::::::::::
understood

::
as

:::::::::
short-time

:::::
limits

::
of

::::::
LCSs,

::::::::
applicable

:::
for

::
a
::::
time

:::::::
horizon

::
of

::::
very

:::
few

::::::
hours.

::::
More

:::::::::
long-term

:::::::
forward

:::::::::
simulations

:::
are

:::::::
feasible

:::
and

:::
can

:::
be

:::::::
afforded

::
in

:::
the

::::::
context

::
of
:::::::::
ecosystem

:::::::::
hindcasts,

::::::::
analysing

:::::
larval

:::::::
transport

::::
and

::::::::
dispersal,

:::
for

:::::::
instance.

:
580

:::
For

::::::
surface

:::::
drift

::::::::::
simulations,

:::::::::
additional

:::::::::::
uncertainties

::::
may

:::::
arise

::::
from

::::
the

::::::::
necessity

::
to

:::::::
specify

:::
the

:::::
extent

:::
to

:::::
which

:::::
near

::::::
surface

:::::::
currents

:::
are

:::::::
exposed

::
to

:
a
:::::
direct

:::::
wind

:::::
drag.

::::::::::::::::::::::
Callies et al. (2017b, 2019)

:::::
found

::::
that

:
a
:::::::::
successful

:::::::::
simulation

::
of

::::::::
observed

:::::
drifter

:::::::::
trajectories

:::::::
needed

:::::::::
BSHcmod

::::::
surface

:::::::
currents

::
to

:::
be

:::::::::
augmented

:::
by

:
a
::::::
leeway

::
of

:::
0.6

:::
%

::
of

:::
10

::
m

::::::
winds.

::::::
Besides

::
a
:::::
small

:::::
direct

::::
wind

::::
drag

::::::
exerted

:::
on

:::
the

::::::
drifters

::::::::::
themselves,

:::
this

::::::
leeway

:::::::::::
compensates

:::
for

:::::::::
insufficient

:::::::
vertical

::::::::
resolution

::
in
:::
the

::::::::
archived

::::::
surface

::::::
current

:::::
fields

:::::::::::
(representing

::
a

::::
layer

::
of

::
5
::
m

::::::
depth).

:::
In

:::::::
addition,

:::
the

::::::
leeway

::::
may

::::
also

:::::::::::
parameterize

:::::
wave

::::::
related

::::::
Stokes585

:::
drift

::::
not

:::::
being

:::::::::
considered

::::::::
explicitly

:::::::::::::::::::::::::::::::::::::
(Callies et al., 2017b; Sutherland et al., 2020).

::::::::
Example

:::::::
forward

:::::
FTLE

:::::
fields

::::::::
including

::
a

:
6
::
%

::::::
leeway

:::
are

::::::
shown

::
in
::::
Fig.

:::
S3.

::::
The

:::::::
example

::::::
shows

::::
that

:::::
FTLE

:::::
ridges

:::
are

::::::::
modified

:::
but

:::
do

:::
not

::::::::
disappear

:::::
when

:::
the

:::::::
smooth

::::
fields

:::
of

:
a
:::::
wind

:::::::
induced

::::::
leeway

:::
are

::::::::::::
superimposed

::
to

::::::
marine

:::::::
currents.

::::
This

::::::::::
conclusion

::::::
directly

:::::::::
translates

::
to

::
all

:::
the

:::::::::
backward

:::::
FTLE

:::::
fields

:::::::
analysed

::
in

::::
this

::::
paper.
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5 Conclusions590

The analysis of backward surface tracer simulations in the German Bight
:::::
region

:
revealed the intermittent presence of linear

structures (LCSs) across which the past history of water bodies substantially changes. Such sensitive dependences
::
of

::::::::
backward

:::::::::
trajectories

::
on

:::::
tracer

:::::::
seeding

:::::::
positions, represented by

::::::
narrow ridges in the fields of either backward FTLE or backward relative

dispersion are potential sources of uncertainty in the interpretation of in situ
:::::
FTLE

::::
field,

:::::
could

:::::
entail

:::::::::
differences

:::::::
between

::
in
::::
situ

::::::::::
observations

::::
even

::
at

:::::::::::
neighbouring

:::::::::
locations.

::::::::
Therefore,

:::
an

::::::::
evaluation

:::
of

:::::::
spatially

:::::::::
distributed

::
in

:::
situ

:::::::::::
observations

:::::
could

::::::
benefit595

::::
from

:::
the

:::::::::
awareness

::
of

::::::::
changing

:::::
FTLE

:::::
fields,

::::::::
analysed

:::::
based

::
on

:::::
either

:::::::::
numerical

:::::::::
simulations

:::
or

:::::::
possibly

::::
high

::::::::
frequency

:::::
(HF)

::::
radar

:
observational data.

In the presence of repelling LCSs, large
:::::
narrow

::::::
FTLE

::::::
ridges,

::::::
marked differences between observed and simulated tracer tra-

jectories do not necessarily reflect poor model performance. If the location of a simulated LCS does not fully agree with reality,

a tracer release point may come to lie on different sides of the separatrix
:::::::::
separatrices

:
in the model and in nature,

::::::::::
respectively.600

In this case, a naive comparison of emerging trajectories could much exaggerate inconsistencies. The same arguments pertain

to a comparison of different drift models. Conventional
::::::::
Therefore,

:::::::::::
conventional

::::::
model evaluations based on

::::::::
individual drift

paths might be supplemented
::::::::::::
complemented

:
with a comparison of simulated FTLE fieldsthat highlight spatial variability of

prediction uncertainty.

Examples illustrated the variability of LCSs in the German Bight
::::::
German

:::::
Bight

::::::
surface

:::::
layer

:::::
LCSs

:::::
under

::::::::
changing

:::::
wind605

::::::::
conditions. For a more comprehensive picture it would

:::::
could be useful to establish a link between the

:::::
formal

::::::
model

::::
that

:::::::
estimates

::::
the

::::
basic

::::::::::::
characteristics

:::
of

::::::::
backward

:::::
FTLE

::::::
fields,

:::::
given

:
a
:

recent history of atmospheric forcing, tidal movements

and the main characteristics of the backward FTLE fields to be expected.
::::
The

::::::::
examples

::::::
studied

::::::
suggest

::::
that

:::::
model

:::::::::::
uncertainties

::::
occur

::::::::::
particularly

::
in
::::

the
::::::::
aftermath

::
of

:::::
storm

:::::::::
conditions. Due to

::
the

::::::::
presence

::
of

:
sometimes complex filamentary structures, a

decomposition of FTLE fields in terms of a mean field plus the sum of
:::
plus

:
a number of weighted anomaly fields (empirical610

orthogonal function analysis) seems not very promising. Classification of FTLE fields into a limited number of categories

might
:::::
could be useful. This problem is left to future research.

Code and data availability. The hydrodynamic data analysed in this paper were obtained from the repository of the Federal Maritime and

Hydrographic Agency (BSH). For access to the archived results of the operational hydrodynamical model BSHcmod, please contact BSH

(www.bsh.de). The Lagrangian drift code PELETS is available on request from the author.615

Video supplement. A video is provided (FTLE_2016.avi) that demonstrates the temporal development of FTLE fields in the course of the

year 2016, based on FTLE fields calculated every 7 hours.
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