Norwegian Sea net community production estimated from O2 and prototype CO2 optode measurements on a Seaglider

Luca Possenti1,*, Ingunn Skjelvan2, Daria Atamanchuk3, Anders Tengberg4, Matthew P. Humphreys5, Socratis Loucaides6, Liam Fernand7, Jan Kaiser1

1Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
2NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
3Dalhousie University, Halifax, Canada
4University of Gothenburg, Sweden
5NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems (OCS), and Utrecht University, Texel, the Netherlands
6National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
7Centre for Environment, Fisheries and Aquaculture Sciences, Lowestoft, UK, NR33 0HT

Correspondence to: Luca Possenti (l.possenti@uea.ac.uk; luca.possenti@nioz.nl)

Abstract. We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea for 8 months (from March to October 2014). The optode measurements required drift- and lag-correction, and in situ calibration using discrete water samples collected in the vicinity. We found that the optode signal correlated better with the concentration of CO2, c(CO2), than with its partial pressure, p(CO2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon concentrations, C2-DIC, which had a standard deviation of 1011 µmol kg−1 compared with direct C2-DIC in situ measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift-corrected and calibrated using a c(O2) climatology for deep samples (R2 = 0.89; RMSE = 0.009 µmol kg−1). The calibrated data enabled the calculation of C2-DIC- and c(O2)-based net community production, N(C2-DIC) and N(O2). To derive N, C2-DIC and O2 inventory changes over time were combined with estimates of air-sea gas exchange, diapycnal mixing and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, we found N(C2-DIC) = (23±4.2DIC) mmol m−2 d−1, N(O2) = (94±2416) mmol m−2 d−1 and an (uncalibrated) Chl a peak concentration of craw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, associated with N(C2-DIC) = (14±8.2DIC) mmol m−2 d−1 and N(O2) = (126±25) mmol m−2 d−1. The high-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the material produced during the period of increased Chl a inventory decreased N(C2-DIC) to (4.3±5.2) mmol m−2 d−1 and N(O2) to (0±1.62) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters: influence by the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). The NCC was characterised by lower c(O2) and
C_DIC than the NwAC, as well as lower $N(O_2)$, $N(C_4)$ and c_{raw}(Chl a) but higher $N(DIC)$. Our results show the potential of glider data to simultaneously capture time and depth-resolved variability in C_DIC and O_2 concentrations.

1 Introduction

Climate models project an increase in the atmospheric CO$_2$ mole fraction driven by anthropogenic emissions from a preindustrial value of 280 µmol mol$^{-1}$ (Neftel et al., 1982) to 538-936 µmol mol$^{-1}$ by 2100 (Pachauri and Reisinger, 2007). The ocean is known to be a major CO$_2$ sink (Sabine et al., 2004; Le Quéré et al., 2009; Sutton et al., 2011; Sabine et al., 2004; Le Quéré et al., 2009; Sutton et al., 2014); in fact, it has taken up approximately 25% of this anthropogenic CO$_2$ with a rate of (2.5±0.6) Gt a$^{-1}$ (in C equivalents) (Friedlingstein et al., 2019). This uptake alters the carbonate system of seawater and is causing a decrease in seawater pH, a process known as ocean acidification (Gattuso and Hansson, 2011). The processes affecting the marine carbonate system include air-sea gas exchange, photosynthesis and respiration, advection and vertical mixing, and CaCO$_3$ formation and dissolution. For that reason, it is important to develop precise, accurate and cost-effective tools to observe CO$_2$ trends, variability and related processes in the ocean.

Provided that suitable sensors are available, autonomous ocean glider measurements may help resolve these processes.

To quantify the marine carbonate system, four variables are commonly measured: total dissolved inorganic carbon concentration (C_DIC), pH, c(DIC), total alkalinity (A_t) and the fugacity of CO$_2$ (f(CO$_2$)); and pH. At thermodynamic equilibrium, knowledge of two of the four variables is sufficient to calculate the other two.

Marine carbonate system variables are primarily measured on research ships, commercial ships of opportunity, moorings, buoys and floats (Hardman-Mountford et al., 2008; Monteiro et al., 2009; Takahashi et al., 2009; Olsen et al., 2016; Bushinsky et al., 2019). Moorings equipped with submersible sensors often provide limited vertical and horizontal, but good long-term temporal resolution (Hemsley, 2015). In contrast, ship-based surveys have higher vertical and spatial resolution than moorings but limited repetition frequency because of the expense of ship operations. Ocean gliders have the potential to replace some ship surveys because they are much cheaper to operate and will increase our coastal and regional observational capacity. However, the slow glider speed of 1-2 km h$^{-1}$ only allows a smaller spatial coverage than ship surveys and the sensors require careful calibration to match the quality of data provided by ship-based sampling.

Carbonate system sensors suitable for autonomous deployment have been developed in the past decades, in particular pH sensors (Martz et al., 2010; Rérolle et al., 2013; Seidel et al., 2008) and p(CO$_2$) sensors (Goyet et al., 1992; Degrandpre, 1993; Körtzinger et al., 1996; Bittig et al., 2012; Atamanchuk, 2013). One of these sensors is the CO$_2$ optode (Atamanchuk et al., 2014) which has been successfully deployed to monitor an artificial CO$_2$ leak on the Scottish west coast (Atamanchuk et al., 2015b), on a cabled underwater observatory (Atamanchuk et al., 2015a), to measure lake metabolism (Peeters et al., 2016), for fish transportation (Thomas et al., 2017) and on a moored profiler (Chu et al., 2020).

C_DIC
of these sensors is the CO$_2$ optode (Atamanchuk et al., 2014) which has been successfully deployed to monitor
an artificial CO$_2$ leak on the Scottish west coast (Atamanchuk, et al., 2015b), on a cabled underwater observatory
(Atamanchuk et al., 2015a), to measure lake metabolism (Peeters et al., 2016), for fish transportation (Thomas et
al., 2017) and on a moored profiler (Chu et al., 2020).

c(DIC) and c(O$_2$) measurements can be used to calculate net community production (ΔNCP), which is defined as
the difference between gross primary production (GGPP) and community respiration (RCR). At steady-state,
ΔNCP is equal to the rate of organic carbon export and transfer from the surface into the mesopelagic and deep
waters (Lockwood et al., 2012). NCP is derived by vertical integration to a specific depth, that is commonly defined relative to the mixed layer depth (z_{mix}) or the bottom of the euphotic zone (Plant
et al., 2016). A system is defined as autotrophic when GGPP is larger than RCR (i.e. ΔNCP is
positive) and as heterotrophic when RCR is larger than GGPP (i.e. ΔNCP is negative) (Ducklow and Doney,
2013).

Δ can be quantified using bottle incubations or in situ biogeochemical budgets (Sharpley et al., 2006; Quay, et
al., 2012; Seguro et al., 2019). Bottle incubations involve measuring production and respiration in vitro under dark
and light conditions. Biogeochemical budgets combine O_2 and $C$$_{DIC}$ inventory changes with estimates of air-sea
gas exchange, entrainment, advection and vertical mixing (Alkire et al., 2014; Binetti et al., 2020; Neuer et al.,
2007).

NCP can be quantified using bottle incubations or in situ biogeochemical budgets (Sharpley et al., 2006; Quay, et
al., 2012; Seguro et al., 2019). Bottle incubations involve measuring production and respiration in vitro under
dark and light conditions. Biogeochemical budgets combine O_2 and $C$$_{DIC}$ inventory changes with estimates of air-sea
gas exchange, entrainment, advection and vertical mixing (Neuer et al., 2007; Alkire et al., 2014; Binetti et
al., 2020).

The Norwegian Sea is a complex environment due to the interaction between the Atlantic Water (NwAC)
flowing along the Norwegian coast (Nilsen and Falck, 2006). In particular, Atlantic Water enters the Norwegian
Sea through the Faroe-Shetland Channel and Iceland-Faroe Ridge (Hansen and Østerhus, 2000) with salinity S
between 35.1 and 35.3 and temperatures (θ) warmer than 6 °C (Swift, 1986). The NCC water differs from the
NwAC with a surface $S < 35$ (Saetre and Ljøen, 1972) and a seasonal θ signal (Nilsen and Falck, 2006).

Biological production in the Norwegian Sea varies during the year and can be divided into 5 different periods
can be discerned (Rey, 2001): (1) winter with the smallest productivity and phytoplankton biomass; (2) a pre-
bloom period; (3) the spring bloom when productivity increases and phytoplankton biomass reaches the annual
maximum; (4) a post-bloom period with productivity mostly based on regenerated nutrients; (5) autumn with
smaller blooms than in summer. Previous estimates of the DIC based net community production ($N(\Delta$C$_{DIC}$))
were based on discrete $C$$_{DIC}$ samples (Falck and Anderson, 2005) or were calculated from c(O$_2$)
measurements and converted to C equivalents assuming Redfield stoichiometry of production/respiration (Falck
and Gade, 1999; Kivimäe, 2007; Skjelvan et al., 2001). Glider measurements have been used to estimate N(Falck
and Gade, 1999; Skjelvan et al., 2001; Kivimäe, 2007). Glider measurements have been used to estimate NCP in
other ocean regions (Nicholson et al., 2008; Alkire et al., 2014; Haskell et al., 2019; Binetti et al., 2020); however, as far as we know, this is the first study of net community production in the Norwegian Sea using a high-resolution glider dataset (>10⁶ data points; 40 s time resolution) and the first anywhere estimating ANCP from a glider-mounted sensor directly measuring the marine carbonate system.

2 Material and methods

2.1 List of symbols (unit)

- A_t: total alkalinity (µmol kg⁻¹)
- b: backscatter signal (engineering units)
- c: amount content (µmol kg⁻¹)
- C: amount concentration (mmol m⁻³)
- Chl a: chlorophyll a
- DIC: dissolved inorganic carbon
- E: entrainment flux (mmol m⁻² d⁻¹)
- F_C: diapycnal eddy diffusion flux (mmol m⁻² d⁻¹)
- $f(CO_2)$: fugacity of CO₂ (µatm)
- I: inventory (mmol m⁻²)
- K_z: diapycnal eddy diffusivity (m² s⁻¹)
- N: net community production (mmol m⁻² d⁻¹)
- $p(CO_2)$: partial pressure of CO₂ (µatm)
- S: practical salinity (~)
- t: time (s)
- U: wind speed (m s⁻¹)
- x: dry mole fraction (mol mol⁻¹)
- z_{DCM}: depth of the deep chlorophyll maximum (m)
- z_{lim}: integration depth (m)
- z_{mix}: mixed layer depth (m)
- Φ: air-sea flux (mmol m⁻² d⁻¹)
- φ: CO₂ optode CalPhase (º)
- σ_0: potential density (kg m⁻³)
- θ: Celsius temperature (ºC)
- τ: response time (s)

2.2 Glider sampling

Kongsberg Seaglider 564 was deployed in the Norwegian Sea on 16 March 2014 at 63.00° N, 3.86° E and recovered on 30 October 2014 at 62.99° N, 3.89° E. The Seaglider was equipped with a prototype Aanderaa 4797 CO₂ optode, an Aanderaa 4330F oxygen optode (Tengberg et al., 2006), a Seabird CTD and a combined backscatter/chlorophyll a fluorescence sensor (Wetlabs Eco Puck BB2FLVMT). The mean sampling intervals for each sensor varied with depth (Table 1). On average in the top 100 m the CTD performed an in situ measurement every 24 s, the O₂ optode every 49 s, the CO₂ optode every 106 s and the
fluorescence sensor every 62 s. The sampling interval increased in depths between 100 to 500 m to 31 s for the CTD, 153 s for the O₂ optode and 233 s for the CO₂ optode. The sampling interval reached its maximum at depths between 500 to 1000 m where was 42 s for the CTD, 378 s for the O₂ optode and 381 d for the CO₂ optode.

Table 1. Average sampling interval of Seabird CTD, Aanderaa 4330F oxygen optode, Aanderaa 4797 CO₂ optode and a combined backscatter/chlorophyll a fluorescence sensor (Wetlabs Eco Puck BB2FLVMT) in the top 100 m, from 100 to 500 and from 500 to 1000 m.

<table>
<thead>
<tr>
<th>Depth / m</th>
<th>t(CTD) / s</th>
<th>t(O₂) / s</th>
<th>t(CO₂) / s</th>
<th>t(Chl a) / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 100 m</td>
<td>24</td>
<td>49</td>
<td>106</td>
<td>62</td>
</tr>
<tr>
<td>100 – 500 m</td>
<td>31</td>
<td>153</td>
<td>233</td>
<td>-</td>
</tr>
<tr>
<td>500 – 1000 m</td>
<td>42</td>
<td>378</td>
<td>381</td>
<td>-</td>
</tr>
</tbody>
</table>

The deployment followed the Svinøy trench, from the open sea towards the Norwegian coast. The glider covered a 536 km long transect 8 times (4 times in each direction) for a total of 703 dives (Figure 1).

Figure 1: Map of the glider deployment and the main water masses currents. The black dots are the glider dives, the green and the red dots are the water samples collected along the glider section and at Ocean Weather Station M (OWSM), respectively. The three main water masses (Skjelvan et al., 2008) are the Norwegian Coastal Current (yellow), the Norwegian Atlantic Current (NwAC, orange) and Arctic Water (green).

2.33 Discrete sampling

During the glider deployment, 70 discrete water samples from various depths (5, 10, 20, 30, 50, 100, 300, 500 and 1000 m) were collected on 45 different cruises on the R/V Haakon Mosby along the southern half of the
glider transect on 18 March, 5 May, 6 and 14 June, and 30 October 2014. Samples for C_{ic}(DIC) and A_f were collected from 10 L Niskin bottles following the standard operational procedure (SOP) 1 of Dickson et al. (2007). The C_{ic}(DIC) and A_f samples were preserved with saturated HgCl$_2$ solution (final HgCl$_2$ concentration: 15 mg dm$^{-3}$) and analysed within 14 days after the collection. Nutrient samples from the same Niskin bottles were preserved with chloroform (Hagebo and Rey, 1984). C_{ic}(DIC) and A_f were analysed on shore according to SOP 2 and 3b (Dickson et al., 2007) using a VINDTA 3D (Marianda) with a CM5011 coulometer (UIC instruments) and a VINDTA 3S (Marianda), respectively. The precision of the samples' c(DIC) and A_f values was 1 µmol kg$^{-1}$ for both, based on duplicate samples and running Certified Reference Material (CRM) batch numbers 118 and 138 provided by professor A. Dickson, Scripps Institution of Oceanography, San Diego, USA (Dickson et al., 2003). Nutrients were analysed on shore using an Alpkem Auto Analyzer. In addition, 43 water samples were collected at Ocean Weather Station M (OWSM) on 5 different cruises on 22 March on R/V Haakon Mosby, on 9 May on R/V G.O. Sars, on 14 June on R/V Haakon Mosby, on 2 August and on 13 November 2014 on R/V Johan Hjort from 10, 30, 50, 100, 200, 500, 800 and 1000 m depth. The OWSM samples were preserved and analysed for A_f and C_{ic}(DIC) as the Svinøy samples. No phosphate and silicate samples were collected at OSWM. Temperature (θ) and salinity (S) profiles were measured at each station using a SeaBird 911 plus CTD. pH and δ(CO$_2$) were calculated using the MATLAB toolbox CO2SYS (Van Heuven et al., 2011) with the following constants: K_1 and K_2 carbonic acid dissociation constants of Luckner et al. (2000), Luckner et al. (2000), K(HSO$_4^{-}$/SO$_4^{2-}$) bisulfate dissociation constant of Dickson (1990) and borate to chlorinity ratio of Lee et al. (2010). In Lee et al. (2010), The precision of A_f and c(DIC) led to an uncertainty in the calculated c(CO$_2$) of 0.28 µmol kg$^{-1}$. For the OWSM calculations, we used nutrient concentrations from the Svinøy section at a time as close as possible to the OWSM sampling as input. In the case of the glider, we derived a parameterisation for phosphate and silicate concentration as a function of sample depth and time. This parameterisation had an uncertainty of 1.3 and 0.13 µmol kg$^{-1}$ and a R^2 of 0.6 and 0.4, for silicate and phosphate concentrations, respectively. The uncertainty was calculated as the root mean square difference between measured and parameterised concentrations. This nutrient concentration uncertainty contributed an uncertainty of 0.04 µmol kg$^{-1}$ in the calculation of c(CO$_2$), which is negligible, and smaller than the uncertainty caused by A_f and c(DIC).

2.4 Oxygen optode calibration

The last oxygen optode calibration before the deployment was performed in 2012 as a two-point calibration at 9.91 °C in air-saturated water and at 20.37 °C in anoxic Na$_2$SO$_4$ solution. Oxygen optodes are known to be affected by drift (Bittig et al., 2015), which is even worse for the fast-response foils used in the 4330F optode for glider deployments. It has been suggested that it is necessary to calibrate and drift correct the optode using discrete samples or in-air measurements (Nicholson and Feen, 2017). Unfortunately, no discrete samples were collected at glider deployment or recovery. To overcome this problem, we used archived data to correct for oxygen optode drift. These archived concentration data (designated c_c(O$_2$)) were collected at OWSM between 2001 and 2007 (downloaded from ICES data base) and in the glider deployment region between 2000 and 2018 (extracted from GLODAPv2, Olsen et al., 2016). To apply the correction, we used the oxygen samples corresponding to a potential density $\sigma_0 > 1028$ kg m$^{-3}$ (corresponding to depths between 427 and 1000 m), because waters of these potential densities were always well below the mixed layer and therefore subject to limited seasonal and
interannual variability, as evidenced by the salinity \(S \) and potential temperature \(\theta \) of these samples: \(S \) varied from 34.88 to 34.96, with a mean of 34.90 ± 0.01; \(\theta \) varied from 0.45 to −0.76 °C, with a mean of (−0.15 ± 0.36) °C.

Figure 2 shows that the glider oxygen concentration (\(c_G(O_2) \)) corresponding to \(\sigma_0 > 1028 \) kg m\(^{-3}\) was characterised by two different water masses separated at a latitude of about 64° N. We used the samples collected north of 64° N to derive the glider optode correction because this reflects the largest area covered by the glider. We did not use the southern region because the archived samples from there covered only 5 days. For each day of the year with archived samples, we calculated the median concentration of the glider and the archived samples. Figure 3 shows a plot of the ratio between \(c_C(O_2)/c_G(O_2) \) against the day of the year and a linear fit, which is used to calibrate \(c_G(O_2) \) and correct for drift.

![Figure 2: Glider oxygen concentration, \(c_G(O_2) \), for \(\sigma_0 > 1028 \) kg m\(^{-3}\) coloured by latitude.](image)

No lag correction was applied because the \(O_2 \) optode had a fast response foil and showed no detectable lag (<10 s), based on a comparison between descent and ascent profiles.
Figure 2: Glider oxygen concentration, $c_{O_2}(O_2)$, for $\sigma_0 > 1028$ kg m$^{-3}$ coloured by latitude.

Figure 3: The

$$\frac{c_{C}(O_2)}{c_{G}(O_2)} = 0.0004 \Delta t/d + 1.0307$$

$R^2 = 0.90$
Figure 3: A linear fit of the ratio between the daily median of the discrete oxygen samples ($c_C(O_2)$) and glider oxygen data ($c_G(O_2)$) for $\sigma_0 > 1028$ kg m$^{-3}$ was used to derive the $c_G(O_2)$ drift and initial offset at deployment. The time difference Δt is calculated with respect to the deployment day of the 16th of March.

2.45 CO$_2$ optode measurement principle

The CO$_2$ optode consists of an optical and a temperature sensor incorporated into a pressure housing. The optical sensor has a sensing foil comprising two fluorescence indicators (luminophores), one of which is sensitive to pH changes and the other is not and thus used as a reference. The excitation and emission spectra of the two fluorescence indicators overlap, but the reference indicator has a longer fluorescence lifetime than the pH indicator. These two fluorescence lifetimes are combined using an approach known as Dual Lifetime Referencing (DLR) (Klimant et al., 2001; von Bültzingslöwen et al., 2002). From the phase shift (ϕ), the partial pressure of CO$_2$, p(CO$_2$), is parameterised as an eight-degree polynomial (Atamanchuk et al., 2014):

$$\log \left[\frac{p(\text{CO}_2)}{\mu\text{atm}} \right] = C_0 + C_1 \phi + \ldots + C_8 \phi^8$$

where C_0 to C_8 are temperature-dependent coefficients.
The partial pressure of CO$_2$ is linked to the CO$_2$ concentration, c(CO$_2$), and the fugacity of CO$_2$, f(CO$_2$), via the following relationship:

$$c$(CO$_2$) = p(CO$_2$) / (1 - p(H$_2$O) / p) F(CO$_2$) = K_0(CO$_2$) f(CO$_2$)

(2)

where F(CO$_2$) is the solubility function (Weiss and Price, 1980), p(H$_2$O) is the water vapour pressure, p is the total gas tension (assumed to be near 1 atm) and K_0(CO$_2$) is the solubility coefficient. F and K_0 vary according to temperature and salinity.

2.56 CO$_2$ optode lag and drift correction and calibration

The CO$_2$ optode was fully functional between dives 31 (on 21 March 2014) and 400 (on 24 July 2014). After dive 400, the CO$_2$ optode stopped sampling in the top 150 m. Figure 4 shows the outcome of each calibration step described in this section (steps 1 and 2) and section 2.6 (step 3): 0) uncalibrated optode output (blue dots), 1) drift correction (red dots), 2) lag correction (green dots) and 3) calibration using discrete water samples (black dots).
Figure 4: Panel a) shows in black the calibrated \(p(\text{CO}_2) \) \((p_{\text{cal}}(\text{CO}_2))\) and in azure the discrete samples. b) Plot of \(p(\text{CO}_2) \) versus depth where the vertical continuous lines are the mean every 50 m and the error bars represent the standard deviation. Blue colour shows \(p_d(\text{CO}_2) \) without any correction; red shows \(p_d(\text{CO}_2) \) corrected for drift, green represents \(p_c(\text{CO}_2) \) corrected for drift and lag; black shows \(p_{\text{cal}}(\text{CO}_2) \) calibrated against water samples (azure dots) collected during the deployment (section 2.6). \(p_{\text{cal}}(\text{CO}_2) \) had a mean standard deviation of 22 \(\mu \text{atm} \) and a mean bias of 1.84 \(\mu \text{atm} \) compared with the discrete samples.

In order to correct for the drift occurring during the glider mission, we selected the \(\text{CO}_2 \) optode measurements in water with \(\sigma_0 > 1028 \text{ kg m}^{-3} \) (just as for \(\text{O}_2 \); section 2.24). We calculated the median of the raw optode phase shift data ("CalPhase" \(\varphi_{\text{cal}} \)) for each Seaglider dive. Then, we calculated a drift coefficient \((m)\) as the ratio between the median \(\varphi_{\text{cal}} \) for a given dive divided by the median \(\varphi_{\text{cal,0}} \) of dive 31. Drift-corrected \(\varphi_{\text{cal,d}} \) values were calculated by dividing the raw \(\varphi_{\text{cal}} \) by the specific \(m \) for each dive.

The \(\text{CO}_2 \) optode was also affected by lag (Atamanchuk et al., 2014; Atamanchuk et al., 2014) caused by the slow response of the optode to ambient \(c(\text{CO}_2) \) changes in time and depth. The lag created a discrepancy between the depth profiles obtained during glider ascents and descents. To correct for this lag we applied the method of Miloshevich et al. (2004), which was previously used by Fiedler et al. (2013) and Atamanchuk et al. (2015b) to correct the lag of the Contros HydroC \(\text{CO}_2 \) sensor (Fiedler et al., 2013; Saderne et al., 2013). This \(\text{CO}_2 \) sensor has a different measurement principle (infrared absorption) than the \(\text{CO}_2 \) optode, but both rely on the diffusion of \(\text{CO}_2 \) through a gas-permeable membrane.

To apply the lag correction, the sampling interval \((\Delta t)\) needs to be sufficiently small compared to the sensor response time \((\tau)\) and the ambient variability (Miloshevich, 2004). Before the lag correction, \(\varphi_{\text{cal,d}} \) was rLOWESS-smoothed to remove any outliers and "kinks" in the profile using the Matlab function rLOWESS. The smoothing function applies a local regression every 9 points using a weighted robust linear least-squares fit. Subsequently, \(\tau \) was determined such that the following lag-correction equation (Miloshevich, 2004) minimised the \(\varphi_{\text{cal,d}} \) difference between each glider ascent and the following descent:

\[
p_c(\text{CO}_2 ; t_2) = \frac{p_d(\text{CO}_2 ; t_2) - p_d(\text{CO}_2 ; t_0)}{1 - e^{-\Delta t / \tau}} \] \(\text{(3)} \)

where \(p_d(\text{CO}_2 ; t_0) \) is the drift-corrected value measured by the optode at time \(t_0 \), \(p_d(\text{CO}_2 ; t_1) \) is the measured value at time \(t_1 \), \(\Delta t \) is the time between \(t_0 \) and \(t_1 \), \(\tau \) is the response time, and \(p_c(\text{CO}_2 ; t_1) \) is the lag-corrected value at \(t_1 \). We calculated a \(\tau \) value for each glider dive and used the median of \(\tau \) (1384 s, 25\text{th} quartile: 1101 s; 75\text{th} quartile: 1799 s) (Figure 5), which was larger than \(\Delta t \) (258 s) and therefore met the requirement to apply the Miloshevich (2004) method. To apply the lag correction the glider needs to sample same water mass during the ascent and descent. The difference between the ascent and descent was minimal because was \((0.13 \pm 0.33) \text{ } ^\circ\text{C} \) for \(\theta \) and 0.02±0.04 for \(S \). This lag correction reduced the average difference between the glider ascent and descent from \((71 \pm 30) \mu\text{atm} \) to \((21 \pm 26) \mu\text{atm} \).
The histogram shows the distribution of the τ calculated from glider dive 31 to 400 to correct the CO$_2$ optode drift using the algorithm of Miloshevich (2004).

The CO$_2$ optode output was calibrated using the discrete samples collected throughout the mission. Using the discrete sample time and potential density σ_0, we selected the closest CO$_2$ optode output. Figure 6 shows a linear regression between optode output and c(CO$_2$) from the discrete samples (c_{WS}(CO$_2$)), which was used to calibrate the optode output p(CO$_2$) in terms of c(CO$_2$). We used c(CO$_2$) because it had a better correlation than p(CO$_2$) ($R^2 = 0.77$ vs. $R^2 = 0.02$). The residual difference in c(CO$_2$) between glider and water samples had a standard deviation of 1.3 μmol kg$^{-1}$.
Figure 6: Calibration of the CO$_2$ optode using a) CO$_2$ concentration of the discrete samples (c_{WS}(CO$_2$)) against the glider output with the linear regression line and b) CO$_2$ partial pressure of the discrete samples (p_{WS}(CO$_2$)) against the glider output with the linear regression line.

Plotting the regression residuals (c_{r}(CO$_2$), calculated as the difference between c_{WS}(CO$_2$) and the value predicted by the regression) revealed a quadratic relation between the regression residuals and water temperature (θ). We have therefore included θ and θ^2 in the optode calibration (Figure 6a). This second calibration increased the correlation coefficient R^2 from 0.77 to 0.90 and decreased the standard deviation of the regression residuals from 1.3 to 0.8 µmol kg$^{-1}$. Even with the explicit inclusion of temperature in the calibration, the CO$_2$ optode response remained more closely related to c(CO$_2$) than p(CO$_2$) (Figure 6b).
Figure 6: Regression (black lines, reg1) of the \(\text{CO}_2 \) optode output \(p_c(\text{CO}_2) \) against a) co-located concentration \(c_{\text{WS}}(\text{CO}_2) \) that has an uncertainty of 0.28 µmol kg\(^{-1}\) b) and partial pressure \(p_{\text{WS}}(\text{CO}_2) \) of \(\text{CO}_2 \) in discrete water samples (black dots). Also shown are the values predicted by including \(\theta \) and \(\theta^2 \) in the regression used for optode calibration (red dots, reg2). The regression equations are:

a) reg1: \(c_{\text{WS}}(\text{CO}_2)/(\mu\text{mol kg}^{-1}) = (0.033\pm0.003)p_c(\text{CO}_2)/\mu\text{atm} - 1.8\pm1.6 \) \((R^2 = 0.77) \)

b) reg1: \(p_{\text{WS}}(\text{CO}_2)/\mu\text{atm} = (0.05\pm0.05)p_c(\text{CO}_2)/\mu\text{atm} + 344\pm33 \) \((R^2 = 0.02) \)

a) reg2: \(c_{\text{WS}}(\text{CO}_2)/(\mu\text{mol kg}^{-1}) = (0.12\pm0.14)\theta/\degree\text{C} - (0.071\pm0.011)(\theta/\degree\text{C})^2 + (0.0094\pm0.0048)p_c(\text{CO}_2)/\mu\text{atm} + 16\pm4 \) \((R^2 = 0.90) \)

b) reg2: \(p_{\text{WS}}(\text{CO}_2)/\mu\text{atm} = (21\pm3)\theta/\degree\text{C} - (1.9\pm0.2)(\theta/\degree\text{C})^2 + (0.2\pm0.1)p_c(\text{CO}_2)/\mu\text{atm} + 209\pm76 \) \((R^2 = 0.60) \).
2.7 Regional algorithm to estimate \(A_T \)

To calculate \(C_T \), we used two variables: glider \(c(CO_2) \) derived as described in section 2.6 and \(A_2 \) derived using a regional algorithm based on \(S \) and \(\theta \) in the top 1000 m. The algorithm followed the approach of Lee et al. (2006) and was derived using 663 water samples collected at OWSM from 2004 to 2014 and GLODAPv2 (Olsen et al., 2016) data from 2000 in the deployment region. Discrete samples with \(S < 33 \) were removed because these values were lower than the minimum \(S \) measured by the glider. The derived \(A_2 \) parameterisation is:

\[
A_{\text{reg}} / (\mu\text{mol kg}^{-1}) = 2317.03 + 33.12 (S-35) + 7.94 (S-35)^2 + 0.96 (\theta^{\circ}\text{C}-20) + 0.01 (\theta^{\circ}\text{C}-20)^2
\]

(4)

The parameterisation has an uncertainty of 8.2 \(\mu \text{mol kg}^{-1} \) calculated as the standard deviation of the residual difference between actual and parameterised \(A_T \).

To test this parameterisation, we compared the predicted \(A_{\text{reg}} \) values with discrete measurements \(A_{T,\text{ws}} \) collected close in terms of time, potential density \((\sigma_0) \) and distance to the glider transect \((n = 60) \). These discrete samples and the glider had mean temperature and salinity differences of \((0.17 \pm 0.68) \, ^{\circ}\text{C} \) and \(0.03 \pm 0.013 \), respectively. The mean difference between \(A_{T,\text{ws}} \) and \(A_{\text{reg}} \) was \((2.1 \pm 6.5) \, \mu\text{mol kg}^{-1} \).

This \(A_2 \) parameterisation was used in CO2SYS (Van Heuven et al., 2011) to calculate \(C_T \) from \(A_{\text{reg}} \) and the calibrated \(c(CO_2), c_{\text{cal}}(CO_2) \). These calculated \(C_{\text{cal}} \) values were compared with \(C_{\text{ws}} \) we calculated using a regional algorithm based on \(S \) and \(\theta \) depths of less than 1000 m. The algorithm followed the approach of Lee et al. (2006) and was derived using 663 water samples collected at OWSM from 2004 to 2014 and GLODAPv2 (Olsen et al., 2016) data from the year 2000 in the deployment region. Discrete samples with \(S < 33 \) were removed because these values were lower than the minimum \(S \) measured by the glider. The derived \(A_T \) parameterisation is:

\[
A_{T,\text{reg}} / (\mu\text{mol kg}^{-1}) = 2317.03 + 33.12 (S-35) + 7.94 (S-35)^2 + 0.96 (\theta^{\circ}\text{C}-20) + 0.01 (\theta^{\circ}\text{C}-20)^2
\]

(4)

The parameterisation has an uncertainty of 8.2 \(\mu \text{mol kg}^{-1} \) calculated as the standard deviation of the residual difference between actual and parameterised \(A_T \).

To test this parameterisation, we compared the predicted \(A_{T,\text{reg}} \) values with discrete measurements \(A_{T,\text{ws}} \) collected close in terms of time, potential density \((\sigma_0) \) and distance to the glider transect \((n = 60) \). These discrete samples and the glider had mean temperature and salinity differences of \((0.17 \pm 0.68) \, ^{\circ}\text{C} \) and \(0.03 \pm 0.013 \), respectively. The mean difference between \(A_{T,\text{ws}} \) and \(A_{T,\text{reg}} \) was \((2.1 \pm 6.5) \, \mu\text{mol kg}^{-1} \).

This \(A_T \) parameterisation was used in CO2SYS (Van Heuven et al., 2011) to calculate \(c(DIC) \) from \(A_{T,\text{reg}} \) and the calibrated \(c(CO_2), c_{\text{cal}}(CO_2) \). These calculated \(c_{\text{cal}}(DIC) \) values were compared with \(c_{\text{ws}}(DIC) \) of the same set of discrete samples used to calibrate \(c_{\text{cal}}(CO_2) \), the only difference being that instead of the actual total alkalinity of the water sample \((A_{T,\text{ws}}) \), we used \(A_{T,\text{reg}} \). The mean difference between \(c_{\text{cal}}(DIC) \) and \(c_{\text{ws}}(DIC) \) was \((0.03 \pm 0.013) \).
\[C_{DIC} \] was \((1.5\pm10^{3}\pm11) \text{ mol kg}^{-1}\), with the non-zero bias and the standard deviation due to the uncertainties in the \(A_{\text{reg}} \) parameterisation and the \(c_{\text{G,cal}}(\text{CO}_2) \) calibration.

2.78 Quality control of other measurement variables

The thermal lag of the glider conductivity sensor was corrected using the method of Gourcuff (2014). Single-point outliers in conductivity were removed and replaced by linear interpolation. The glider CTD salinity was affected by presumed particulate matter stuck in the conductivity cell (Medeot et al., 2011) during dives 147, 234, 244, 251, 272, 279, 303, 320 and 397 and sensor malfunction caused a poor match between glider ascent and descent during a dives 214, 215, 235 and 243. These dives were removed from the subsequent analysis.

Glider-reported chlorophyll concentrations, \(c_{\text{raw}}(\text{Chl} \ a) \), were computed using the factory coefficients. \(c_{\text{raw}}(\text{Chl} \ a) \) was affected by photochemical quenching during the daytime dives. To correct for quenching, we used the method of Hemsley et al. (2015) based on the night-time relationship between fluorescence and optical backscatter. This relationship was established in the top 60 meters and the night-time values were selected between sunset and sunrise. We calculated a linear fit between \(c_{\text{raw}}(\text{Chl} \ a) \) measured at night, \(c_{\text{N}}(\text{Chl} \ a) \), and the backscatter signal measured at night \((b_N) \). The slope and the intercept were then used to derive corrected daytime \(c_{\text{D}}(\text{Chl} \ a) \). The glider-reported chlorophyll concentration has not been calibrated against in situ samples and is not expected to be accurate, even after correction for quenching. However, it should give an indication of the depth of the deep chlorophyll concentration maximum \((c_{\text{DCM}}) \) and the direction of chlorophyll concentration change (up/down). 8 day-means of \(c_{\text{raw}}(\text{Chl} \ a) \) were compared with satellite 8 day-composite chlorophyll concentration (Figure 7) from Ocean Colour CCI (https://esa-oceancolour-cci.org/) and gave a mean difference of \((0.12\pm0.08) \text{ mg m}^{-3}\).

Figure 7: Comparison between the 8 day-glider \(c(\text{Chl} \ a) \) \((c_G(\text{Chl} \ a)) \) mean and the 8 day-satellite \(c(\text{Chl} \ a) \) \((c_S(\text{Chl} \ a)) \) download from Ocean Colour CCI (https://esa-oceancolour-cci.org/), as time-series (panel a) and scatter plot (panel b).
2.89 Calculation of oxygen-based net community production \(N(O_2) \)

Calculating net community production \(N \) from glider data is challenging because the glider continuously moves through different water masses. For that reason we subdivided the transect by binning the data into 0.1° latitude intervals to derive \(O_2 \) concentration changes every two transects. The changes were calculated between transects in the same direction of glider travel (e.g. transects 1 and 3, both in N-S direction) to have approximately the same time difference (40-58 days) at every latitude. If instead we had used two consecutive transects, this would lead to a highly variable time difference of near-0 to about 50 days along the transect.

We calculated \(N(O_2) \) (in mmol m\(^{-2}\) d\(^{-1}\)) from the oxygen inventory changes \((\Delta I/O_2) / \Delta t \) corrected for air-sea exchange \(\Phi(O_2) \), normalised to \(z_{\text{mix}} \) when \(z_{\text{mix}} \) was deeper than the integration depth of \(z_{\text{lim}} = 45 \) m, entrainment \(E(O_2) \) and diapycnal eddy diffusion \(F_e(O_2) \):

\[
N(O_2) = I(O_2) + \frac{\Delta I(O_2)}{\Delta t} + \Phi(O_2) \frac{\min(z_{\text{lim}}, z_{\text{mix}})}{z_{\text{mix}}} - E(O_2) - F_e(O_2)
\]

(5)

The inventory changes were calculated as the difference between two transects of the integrated \(\epsilon(O_2) \) in the top 45 m. A constant oxygen concentration \(C(O_2) \). \(C(O_2) \) (in mmol m\(^{-3}\)) was derived from the oxygen content \(c(O_2) \) (in µmol kg\(^{-1}\)) by multiplication with the water density (about 1027 kg m\(^{-3}\), but we used the actual values). A default integration depth of 45 m was chosen to capture the deepest extent of the deep chlorophyll maximum \((z_{\text{DCM}}) \) found during the deployment, which likely represents the extent of the euphotic zone.

The inventory changes for every latitude bin were calculated using the following equation:

\[
I(O_2) = \frac{\int_{z_{\text{lim}}}^{z_{\text{mix}}} \epsilon(O_2) dz}{z_{\text{mix}} - z_{\text{lim}}} \frac{\Delta I(O_2)}{\Delta t} = \frac{\int_{z_{\text{lim}}}^{z_{\text{mix}}} c_{\text{w}}(O_2) dz}{z_{\text{mix}} - z_{\text{lim}}} + \int_{z_{\text{lim}}}^{z_{\text{mix}}} \epsilon(O_2) dz
\]

(6)

where \(n \) is the transect number, \(t \) is the day of the year and \(C(O_2) \) is the vertical \(\epsilon(O_2) \) concentration profile. \(I(O_2) \) is defined as the changes of the integrated \(\epsilon(O_2) \) to \(z_{\text{lim}} \) in the same latitude bin between two dives.

The air-sea flux of oxygen, \(\Phi(O_2) \) was calculated for each glider dive using the median \(\epsilon C(O_2) \), \(\theta \) and \(S \) in the top 10 m. We followed the method of Woolf and Thorpe (1991) that includes the effect of bubble equilibrium supersaturation in the calculations:

\[
\Phi(O_2) = k_a(O_2) \left(\epsilon C(O_2) - [1 + A_{\text{bub}}(O_2)] \epsilon w C_{\text{w}}(O_2) \right)
\]

(7)

where \(k_a(O_2) \) is the gas transfer coefficient, \(A_{\text{bub}}(O_2) \) is the increase of equilibrium saturation due to bubble injection and \(\epsilon w C_{\text{w}}(O_2) \) is the oxygen saturation. \(\epsilon w C_{\text{w}}(O_2) \) was calculated from \(S \) and \(\theta \) using the solubility coefficients of Benson and Krause Jr (1984), as fitted by Garcia and Gordon (1992). \(A_{\text{bub}}(O_2) \) was calculated from the following equation:

\[
A_{\text{bub}}(O_2) A_{\text{bub}}(O_2) = 0.01 \left(\frac{U}{U_0} \right)^2
\]

(8)

where \(U \) is 10 m-wind speed with 1 hour resolution (ECMWF ERA5, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) and \(U_0 \) represents the wind speed when the oxygen concentration is 1% supersaturated and has a value of 9 m s\(^{-1}\) (Woolf and Thorpe, 1991). \(U \) has a spatial...
resolution of 0.25° latitude and 0.25° longitude and was interpolated to the
glider position at the beginning of the dive.

The transfer velocity $k_w(O_2)$ was calculated based on Wanninkhof (2014):

\[
\frac{k_w(O_2)}{\text{cm h}^{-1}} = 0.251 \left(\frac{Sc(O_2)}{660} \right)^{0.5} \left(\frac{v}{\text{m s}^{-1}} \right)^2
\]

(9)

The Schmidt number, $Sc(O_2)$, was calculated using the parameterisation of Wanninkhof (2014). To account for
wind speed variability, $k_w(O_2)$ applied to calculate $N(O_2)$ was a weighted mean based on the varying daily-mean
wind speed U in the time interval between t_n and t_{n-1} (Δt) used to calculate $\frac{\Delta I(O_2)}{\Delta t}$ using a 5 point median z_{mix} and
for 50 days to calculate $\Phi(O_2)$ (section 3.2) (Reuer et al., 2007). To account for wind speed variability, $k_w(O_2)$
was a weighted mean. This value was calculated using the varying daily-mean wind
speed U in the time interval between t_n and t_{n+1} (Δt) (50 days) using a 5 point median z_{mix} (section 3.2) (Reuer et
al., 2007). The time interval is the same as used to calculate $\frac{\Delta I(O_2)}{\Delta t}$.

The entrainment flux, $E(O_2)$, was calculated as the oxygen flux when the mixed layer depth deepens in time and
is greater than z_{lim} at time t_2:

\[
E(O_2) = \frac{I(O_2,t_1,z_{\text{mix}}(t_2)) - I(O_2,t_1,z_{\text{lim}})}{t_2 - t_1}
\]

(10)

where $t_2 - t_1$ represents the change in time, z_{mix} is the mixed layer depth, $I(O_2,t_1,z_{\text{mix}}(t_2))$, is the expected
inventory that would result from a mixed layer deepening to $z_{\text{mix}}(t_2)$ between t_2 and t_1, and $I(O_2,t_1,z_{\text{lim}})$ is the
original inventory at t_1.

The effect of diapycnal eddy diffusion (F_v) was calculated at z_{mix} when it was deeper than z_{lim} and at z_{lim} when
z_{mix} was shallower than z_{lim}, using the following equation:

\[
F_v(O_2) = K_z \frac{\partial \bar{C}(O_2)}{\partial z}
\]

(11)

for a vertical eddy diffusivity (K_z) of 10^{-4} m s$^{-1}$ (Naveira Garabato et al., 2004). The effect of $F_v(O_2)$ on $N(O_2)$
was negligible (Figure A2b) with a median of (0.06±0.3) mmol m$^{-2}$ d$^{-1}$.

For a vertical eddy diffusivity (K_z) of 10^{-3} m2 s$^{-1}$ (Naveira Garabato et al., 2004). The effect of $F_v(O_2)$ on
$N(O_2)$ was negligible (Figure A2b) with a median of (-0.1±0.5) mmol m$^{-2}$ d$^{-1}$.

2.10 Calculation of dissolved inorganic carbon-based net community production, $N(C_{\text{DIC}})$

$N(C_{\text{DIC}})$ was expressed in mmol m$^{-2}$ d$^{-1}$ and was calculated from the C_{DIC} inventory changes
$\Delta C_{\text{DIC}}(\Delta t)$, air-sea flux of CO$_2$, Φ(CO$_2$), entrainment $E(C_{\text{DIC}})$ and diapycnal diffusion $F_v(C_{\text{DIC}})$:

\[
N(C_{\text{DIC}}) = -I(C_{\text{DIC}}) - (\text{DIC}) = -\frac{\Delta [\text{DIC}]}{\Delta t} - \Phi(CO_2) \left(\frac{\text{min}(z_{\text{lim}},z_{\text{mix}})}{z_{\text{mix}}} \right) + E(C_{\text{DIC}}) + (\text{DIC}) + F_v(C_{\text{DIC}}) - (\text{DIC})
\]

(12)

(12)
Firstly, \(\Phi(CO_2) \) was calculated using the 10 m wind speed with 1 hour resolution downloaded from ECMWF ERA5. As for oxygen, we selected the closest wind speed data point at the beginning of each glider dive. We used the monthly mean atmospheric CO\textsubscript{2} dry mole fraction \((x(CO_2))\) downloaded from the Greenhouse Gases Reference Network Site [https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php] closest to the deployment at Mace Head, County Galway, Ireland (Dlugokencky et al., 2015). Using \(x(CO_2) \) we calculated the air-saturation concentration \(c_{sat}(CO_2) \):

\[
\text{c}_{sat}(CO_2) = x(CO_2) \times \text{baro} \times F(CO_2)
\]

where \(p_{baro} \) is the mean sea level pressure and \(F(CO_2) \) is the CO\textsubscript{2} solubility function \(\text{in mol dm}^{-3} \text{ atm}^{-1} \) calculated from surface \(\theta \) and \(S \) (Weiss and Price, 1980).

The seawater \(c(CO_2) \) at the surface was calculated using the median in the top 10 meters between the glider ascent and descent of the following dive \(c(CO_2) \). From this, \(\Phi(CO_2) \) was calculated:

\[
\Phi(CO_2) = k(CO_2) \left[c(CO_2) - c_{sat}(CO_2) \right].
\]

\(k(CO_2) \) was calculated using the parameterisation of Wanninkhof (2014):

\[
\frac{\text{Sc}(CO_2)}{\text{cm} h^{-1}} \text{ cm h}^{-1} = 0.251 \left(\frac{Sc(CO_2)}{660} \right)^{-0.5} \left(\frac{u}{m s^{-1}} \right)^{2}
\]

\(Sc(CO_2) \) is the dimensionless Schmidt number at the seawater temperature (Wanninkhof, 2014). To account for wind speed variability, \(k_v(CO_2) \) applied to calculate \(M(O,DIC) \) was a weighted mean based on the varying daily-mean wind speed \(U \) in the time interval between \(t_0 \) and \(t_{n+1} (\Delta t) \) used to calculate \(\frac{\Delta C(DIC)}{\Delta t} = \frac{\Delta (DIC)}{\Delta t} \) and for 40 50 days to calculate \(\Phi(CO_2) \) (section 3.2) (Reuer et al., 2007).

The DIC inventory changes were calculated in the top 45 m with the following equation:

\[
\frac{\Delta C(DIC)}{\Delta t} = \int_0^{h} \left(\frac{\partial C(DIC)}{\partial z} \right) dz \\ = \int_0^{h} \left(\frac{\partial C(DIC)}{\partial z} \right) dz \\ = \int_0^{h} C_{n+1}(DIC) dz - \int_0^{h} C_{n}(DIC) dz \\ = \int_0^{h} C_{n+1}(DIC) dz - \int_0^{h} C_{n}(DIC) dz \\ = \int_0^{h} C_{n+1}(DIC) dz - \int_0^{h} C_{n}(DIC) dz
\]

\(\Delta C(DIC) \) was calculated at \(h \) and for \(\Delta t \) and \(\Delta C(DIC) \) when \(h \) is greater than \(\Delta t \) and \(\Delta C(DIC) \) when \(h \) is shallower than \(\Delta t \) and \(\Delta C(DIC) \) using the following equation:

\[
E(C(DIC)) = \frac{\int_0^{h} C(DIC) dz}{h} = \frac{\int_0^{h} C(DIC) dz}{h} = \frac{\int_0^{h} C(DIC) dz}{h} = \frac{\int_0^{h} C(DIC) dz}{h}
\]

As for oxygen, the effect of diapycnal eddy diffusion \((F_v) \) was calculated at \(z_{mix} \) when it was deeper than \(z_{lim} \) and at \(z_{mix} \) when \(z_{mix} \) was shallower than \(z_{lim} \), using the following equation:

\[
F_v(C(DIC)) = K_v \frac{\partial C(DIC)}{\partial z} \\
= K_v \frac{\partial C(DIC)}{\partial z}
\]
for a K_z of 10^{-5} m2 s$^{-1}$ (Naveira Garabato et al., 2004). The effect of $F_v(C_T)$ was negligible (Figure A2a) with a median of (0.07±0.3) mmol m$^{-2}$ d$^{-1}$.

The contribution of horizontal advection to $N(C_T)$ was considered minimal over the timescales we calculated inventory changes because previous studies have shown that changes in C_T during summer are mainly controlled by biology and air-sea interactions (Gislefoss et al., 1998). For that reason, previous studies that estimated N in the Norwegian Sea have also neglected advective fluxes (Falck and Anderson, 2005; Falck and Gade, 1999; Kivimäe, 2007; Skjelvan et al., 2001).

for a K_z of 10^{-5} m2 s$^{-1}$ (Naveira Garabato et al., 2004). The effect of $F_v(DIC)$ was negligible (Figure A2a) with a median of (0.1±0.3) mmol m$^{-2}$ d$^{-1}$.

The contribution of horizontal advection to $N(DIC)$ was considered minimal over the timescales we calculated inventory changes because previous studies have shown that changes in $C(DIC)$ during summer are mainly controlled by biology and air-sea interactions (Gislefoss et al., 1998). For that reason, previous studies that estimated N in the Norwegian Sea have also neglected advective fluxes (Falck and Anderson, 2005; Falck and Gade, 1999; Kivimäe, 2007; Skjelvan et al., 2001).

Uncertainties in N(C_TDIC) and N(O$_2$) were evaluated with a Monte-Carlo approach. The uncertainties of the input variables are shown in Table 2; we repeated the analysis 1000 times. The total uncertainty in N was calculated as the standard deviation of the 1000 Monte-Carlo simulations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Error</th>
<th>Reference/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_T(DIC)</td>
<td>±0.1 µmol kg$^{-1}$</td>
<td>Standard deviation of the differences to discrete water samples.</td>
</tr>
<tr>
<td>S</td>
<td>0.01</td>
<td>Standard deviation of glider salinities for $\sigma_0 > 1028$ kg m$^{-3}$ and latitude $> 64.5^\circ$ N</td>
</tr>
<tr>
<td>θ</td>
<td>0.3 °C</td>
<td>Standard deviation of glider temperature for $\sigma_0 > 1028$ kg m$^{-3}$ and latitude $> 64.5^\circ$ N</td>
</tr>
<tr>
<td>ε_{atm}(CO$_2$)</td>
<td>1.5 µmol kg$^{-1}$</td>
<td>Standard deviation of ε_{atm}(CO$_2$)</td>
</tr>
<tr>
<td>ε(CO$_2$)</td>
<td>±0.8 mmol m$^{-3}$</td>
<td>Error is the standard deviation of the differences to discrete water samples.</td>
</tr>
<tr>
<td>k_w(CO$_2$)</td>
<td>20 %</td>
<td>(Wanninkhof, 2014)</td>
</tr>
</tbody>
</table>
3 Results

The uncorrected temperature θ, salinity S, $c(O_2)$, $p(CO_2)$ and $c_{raw}(Chl \ a)$ presented in Figure 8 were analysed up to dive 400 (24 July 2014). For the following dives, the CO$_2$ optode stopped sampling in the first 150 m (Figure 8d). Instead, the uncorrected temperature θ, salinity S, $c(O_2)$ and $c_{raw}(Chl \ a)$ were analysed for all the dives (30 October 2014). The raw optode $c(O_2)$ data was calibrated and drift-corrected and $c(CO_2)$ was drift-, lag-corrected and recalibrated, then used to quantify the temporal and spatial changes in N and Φ together with the quenching corrected $c_{raw}(Chl \ a)$ to evaluate net community production changes.
Figure 8: Raw glider data for all 703 dives with latitude of the glider trajectory at the top (black: NwAC; red: NCC, separated by a S of 35). a) temperature θ, b) salinity S, c) oxygen concentration $c(O_2)$, d) uncorrected CO$_2$ optode output p_u(CO$_2$) and e) chlorophyll a concentration c_{raw}(Chl a). The white space means that the sensors did not measure any data. The pink line is z_{mix} calculated using a threshold criterion of $\Delta \theta = 0.5$ °C to a median θ of the top 5 m of the glider profile (Obata et al., 1996; United States. National Environmental Satellite and Information Service, Monterey and Levitus, 1997; Foltz et al., 2003), the black dotted line z_{lim} used as depth limit to calculate the net community production (N) and black contour lines are the isopycnals.
Figure 8: Raw glider data for all 703 dives with latitude of the glider trajectory at the top (black: NwAC; red: NCC, separated by a S of 35). a) temperature θ, b) salinity S, c) oxygen concentration $c_G(O_2)$, d) uncorrected CO$_2$ optode output p_d (CO$_2$) and e) chlorophyll a concentration c_{raw}(Chl a). The white space means that the sensors did not measure any data. The pink line is z_{mix}, calculated using a threshold criterion of $\Delta \theta = 0.5$ °C to the median θ in the top 5 m (Obata et al., 1996; United States. National Environmental Satellite and Information Service, Monterey and Levitus, 1997; Foltz et al., 2003). Black dotted line designates z_{lim}, used as depth limit to calculate N. Black contour lines represent isopycnals.

3.1 O$_2$ and CO$_2$ optode calibration

The O$_2$ optode drift caused a continuous and unexpected decrease of the uncorrected $c(O_2)$ continually decreased $c_G(O_2)$ from 290 to 282 µmol kg$^{-1}$ for $\sigma_0 > 1028$ kg m$^{-3}$ (Figure 8c). The ratio $c_G(O_2)/c_C(O_2)$ against day of the year used for the drift correction had a good correlation with time ($R^2 = 0.90$), showing a continuous increase of 0.0004 d$^{-1}$ (Figure 3), equivalent to a decrease in the measured glider O$_2$ concentration of 0.11 µmol kg$^{-1}$ d$^{-1}$. It was possible to apply the correction because $c_C(O_2)$ had low temporal variability for the chosen potential density $\sigma_0 > 1028$ kg m$^{-3}$. The $c_G(O_2)$ values from OWSM and GLODAPv2 had a mean of (304.6 ± 3.1) µmol kg$^{-1}$, varying from 294 to 315 µmol kg$^{-1}$ (Figure A1). The drift correction reduced the variability of $c_G(O_2)$ in the selected potential density range from a standard deviation of 7.3 µmol kg$^{-1}$ to a standard deviation of 2.4 µmol kg$^{-1}$ (Figure 9a).

Figure 9: $c(O_2)$ contour plot with z_{DCM} (red line) and the z_{mix} (pink line) and z_{mix} using 5 points median (pink dotted line) calculated using a threshold criterion of $\Delta \theta = 0.5$ °C to median θ of the top 5 m of the glider profile (Obata et al., 1996; United States. National Environmental Satellite and Information Service, Monterey and Levitus, 1997; Foltz et al., 2003), in black $\sigma_0 = 1028$ kg m$^{-3}$ and at the top the latitude trajectory of the glider in black NwAC and in red NCC.
Figure 9: a) $c(O_2)$; b) $s(O_2) = c(O_2)/z_{WM}(O_2)$ with z_{WM} (red line), z_{mix} (pink line) 5-point median z_{mix} (pink dotted line). Black line: $\sigma_0 = 1028$ kg m$^{-3}$. Top panel: glider latitude (black: NwAC; red: NCC).

Following drift, lag and scale corrections, glider fugacity $f_d(CO_2)$ derived from Eq. 2 had a mean difference of (82 ± 22) µatm to the discrete samples ($n = 55$; not shown) and ξ_{DIC} had a standard deviation of 10 µmol kg$^{-1}$ and a mean difference of (5 ± 11) µmol kg$^{-1}$ (Figure 10). $p(CO_2)$ and $f(CO_2)$ are almost identical, but $f(CO_2)$ takes into account of the non-ideal nature of the gas phase. The optode was able to capture the temporal and spatial variability showing that NCC had a lower DIC concentration of ξ_{DIC} than NwAC. Restricting the $f(CO_2)$ comparison to the discrete samples in the top 10 m gave a mean difference of $(21\pm19\pm31)$ µatm ($n = 86$). We also compared glider $f_d(CO_2)$ with SOCAT $f_{SOCAT}(CO_2)$ (Bakker et al., 2016) data in the region during the deployment (Figure 11). Until the beginning of June whole deployment, there was general agreement between $f_d(CO_2)$ and $f_{SOCAT}(CO_2)$. Afterwards, $f_d(CO_2)$ varied between 259 ± 204 and 434 ± 391 µatm while $f_{SOCAT}(CO_2)$ varied between 259 ± 204 and 354 ± 428 µatm (Figure 11).
Our results are in agreement with Jeansson et al. (2011) who found the surface NCC was the region with the lowest C_T values (2083 µmol kg$^{-1}$) in the Norwegian Sea. This was confirmed during our deployment because C_T was (2100±18) µmol kg$^{-1}$ in the NCC region and (2150±23) µmol kg$^{-1}$ in the NwAC region (Figure 10) and c(O_2) was > 300 µmol kg$^{-1}$ in the NwAC and < 280 µmol kg$^{-1}$ in the NCC.

Figure 10: C_T contour plot with z_{DCM} (red line) and the z_{mix} (pink line) and z_{mix} using 5 points median (pink dotted line) calculated using a threshold criterion of $\Delta \theta = 0.5 ^\circ$C to median θ of the top 5 m of the glider profile (Obata et al., 1996; United States. National Environmental Satellite and Information Service, Monterey and Levitus, 1997; Foltz et al., 2003), in black $\sigma_0 = 1028$ kg m$^{-3}$ and at the top the latitude trajectory of the glider in black NwAC and in red NCC.
Figure 11: The plot represents the surface $f(CO_2)$ from 2014 SOCAT and from the glider. The black dots are the median of the glider $f(CO_2)$ in the top 10 meters calculated using the ascent of the single dive and the descent of the next dive. The red dots are the water samples collected during the deployment and the remaining dots are from the SOCAT cruises in the area during the deployment. On the bottom there is the map of the glider and SOCAT data positions.
Figure 10: c(DIC) contour plot with z_{DCM} (red line), z_{mix} (pink line) 5-point median z_{mix} (pink dotted line). Black line: $\sigma_0 = 1028$ kg m$^{-3}$. Top panel: glider latitude (black: NwAC; red: NCC).
3.2 Air-sea exchange

The surface water was supersaturated with oxygen all summer (Figure 12). From May, this supersaturation drove a continuous O$_2$ flux from the sea to the atmosphere. However, the flux varied throughout the deployment having a median of 4425 mmol m$^{-2}$ d$^{-1}$ (5th centile: 4631 mmol m$^{-2}$ d$^{-1}$; 95th centile: 40388 mmol m$^{-2}$ d$^{-1}$). Prior to the spring period of increased Chl a inventory, the supersaturation varied between 0 to 10 µmol kg$^{-1}$. Φ(O$_2$) had a median of -1.4 mmol m$^{-2}$ d$^{-1}$ (5th centile: -49 mmol m$^{-2}$ d$^{-1}$; 95th centile: 23 mmol m$^{-2}$ d$^{-1}$). Then, during the spring period of increased Chl a inventory, the surface concentration increased by over 35 µmol kg$^{-1}$, causing a peak in Φ(O$_2$) of 140 mmol m$^{-2}$ d$^{-1}$. A second period of increased Chl a inventory was encountered in June and had a larger Φ(O$_2$) up to 118 mmol m$^{-2}$ d$^{-1}$, driven by supersaturation of 68 µmol kg$^{-1}$. The fluxes were smaller than during the first period of increased Chl a and were associated by an increase of c_{sea}(Chl a) from 2.5 mg m$^{-3}$ to the summer maximum of 4.0 mg m$^{-3}$. However, prior to the spring period of increased Chl a
inventory, $\Phi(O_2)$ showed a few days of influx into seawater caused by a decrease of θ from 7.6 °C to 5.9 °C that increased $\omega_{\text{sat}}(O_2)$. The influx at the beginning of the deployment is partly due to the $A_{\text{bulk}}(O_2)$ correction that increased $[1+\Delta_{\text{bub}}(O_2)] \omega_{\text{sat}}(O_2)$ to values larger than $c(O_2)$ for $U > 10$ m s$^{-1}$—resulted in $[1+\Delta_{\text{bub}}(O_2)] \omega_{\text{sat}}(O_2) > c(O_2)$ for $U > 10$ m s$^{-1}$. In August the surface supersaturation decreased to 2.3 µmol kg$^{-1}$ and $\Phi(O_2)$ decreased to a monthly minimum of –7.6 mmol m$^{-2}$ d$^{-1}$. In the second half of September the surface water became undersaturated by –2.6 µmol kg$^{-1}$, causing O_2 uptake with a median flux of -13 mmol m$^{-2}$ d$^{-1}$ (5th centile: -39 mmol m$^{-2}$ d$^{-1}$; 95th centile: 10 mmol m$^{-2}$ d$^{-1}$).
Figure 12: Air-sea flux of O₂ and CO₂ during spring and summer for CO₂ and during spring, summer and autumn for O₂. a) $c_{sat}(O_2)$ in blue and $c(O_2)$ in red, b) $c_{sat}(CO_2)$ in blue and $c(CO_2)$ in red, c) $\Delta c(O_2) = c(O_2) - c_{sat}(O_2)$, d) $\Delta c(CO_2) = c(CO_2) - c_{sat}(CO_2)$, e) sea surface temperature, f) $k_{sat}(O_2)$ in blue and $k_{sat}(CO_2)$ in red normalised back to 50 days (Reuer et al., 2007), g) oxygen air-sea flux $\Phi(O_2)$ and h) CO₂ air-sea flux $\Phi(CO_2)$. The flux from sea to air is positive while that from air to sea is negative.
The CO₂ flux from March to July was always from the air to the sea (Figure 12), with a median of -3.95 ± 2 mmol m⁻² d⁻¹ (5th centile: -4.14 mmol m⁻² d⁻¹; 95th centile: 0.3-1.5 mmol m⁻² d⁻¹). An opposite flux direction is expected for Φ(O₂) and Φ(CO₂) during the productive season when net community production is the main driver of concentration changes. After the summer period of increased Chl a inventory, the flux had a median of -1.11 ± 1 mmol m⁻² d⁻¹ (5th centile: -5.16 mmol m⁻² d⁻¹; 95th centile: 1.7-6.8 mmol m⁻² d⁻¹), in agreement with previous studies that classified the Norwegian Sea as a CO₂ sink (Skjelvan et al., 2005; Takahashi et al., 2002). Φ(CO₂) for the discrete samples from 18 March to 14 June (n = 13) varied from 0.1 to -13 mmol m⁻² d⁻¹.
Figure 12: Oxygen and CO$_2$ air-sea flux where a) shows in blue c_{sat}(O$_2$) and in red c(O$_2$), b) shows in blue c_{sat}(CO$_2$) and in red c(CO$_2$), c) Δc(O$_2$) = c(O$_2$) – c_{sat}(O$_2$), d) Δc(CO$_2$) = c(CO$_2$) – c_{sat}(CO$_2$), and e) sea surface.
temperature θ, $\Delta \theta$ (O$_2$) (blue) and Δ(CO$_2$) normalized back to 50 days (Reuer et al., 2007).

The flux from sea to air is positive while that from air to sea is negative.

3.3 N(O$_2$)

We calculated N(O$_2$) and N(DIC) using an integration depth of $z_{\text{lim}} = 45$ m because the mean deep chlorophyll maximum (DCM) depth was $z_{\text{DCM}} = (20\pm18)$ m (Figure 9). For comparison, the mixed layer depth was deeper and varied more strongly and had a mean value of $z_{\text{mix}} = (68\pm78)$ m, using a threshold criterion of $\Delta \theta = 0.5 \, ^\circ$C to the median θ value of the top 5 m of the glider profile (Obata et al., 1996; United States, National Environmental Satellite and Information Service, Monterey and Levitus, 1997; Foltz et al., 2003). Using a 5-points moving median maintained the same mean value of z_{mix} but decreased the variability = (68±75) m.

To capture the entire euphotic zone, we calculated N(O$_2$) and N(DIC) using an integration depth of $z_{\text{lim}} = 45$ m because the mean deep chlorophyll maximum (DCM) depth was $z_{\text{DCM}} = (20\pm18)$ m (Figure 9). For comparison, the mixed layer depth was deeper, varied more strongly and had a mean value of $z_{\text{mix}} = (68\pm78)$ m, using a threshold criterion of $\Delta \theta = 0.5 \, ^\circ$C to the median θ value in the top 5 m of the glider profile (Obata et al., 1996; United States, National Environmental Satellite and Information Service, Monterey and Levitus, 1997; Foltz et al., 2003).

The two N values were calculated as the difference in inventory changes between two transects when the glider moved in the same direction. This method was used in order to have similar time interval between repeat occupations of the same transect position to calculate the inventory changes and entrainment.

During the deployment, we sampled two periods of increased Chl a inventory, the first one in May and a second one in June. The chlorophyll a inventory ($I_{\text{raw,}z_{\text{lim}}\text{(Chl} \, a)\rangle}$) was calculated integrating c_{raw}(Chl a) to z_{lim}. The fluorometer was not calibrated for that reason to remove any outliers we used a five-point moving mean of $I_{\text{raw,}z_{\text{lim}}\text{(Chl} \, a)\rangle}$.

The N(O$_2$) changes of N(O$_2$) were dominated by Φ(O$_2$) that had an absolute median of 4234 mmol m$^{-2}$ d$^{-1}$ (5$^{\text{th}}$ centile: 413 mmol m$^{-2}$ d$^{-1}$; 95$^{\text{th}}$ centile: 10386 mmol m$^{-2}$ d$^{-1}$), followed by I(O$_2$) that had a median of 1215 mmol m$^{-2}$ d$^{-1}$ (5$^{\text{th}}$ centile: 283 mmol m$^{-2}$ d$^{-1}$; 95$^{\text{th}}$ centile: 2029 mmol m$^{-2}$ d$^{-1}$), F_c(O$_2$) that had an absolute median of 0.23 mmol m$^{-2}$ d$^{-1}$ (5$^{\text{th}}$ centile: 0 mmol m$^{-2}$ d$^{-1}$; 95$^{\text{th}}$ centile: 1.09 mmol m$^{-2}$ d$^{-1}$) and E(O$_2$) that had a median of 0 mmol m$^{-2}$ d$^{-1}$ (5$^{\text{th}}$ centile: 0.12 mmol m$^{-2}$ d$^{-1}$; 95$^{\text{th}}$ centile: 0.4 mmol m$^{-2}$ d$^{-1}$).

At the beginning of May, $I_{\text{raw,}z_{\text{lim}}\text{(Chl} \, a)\rangle}$ increased to 97 mg m$^{-2}$ and
Figure 13: a) Each component of the $N(O_2)$ calculation: in red $I(O_2)$, in blue $E(O_2)$, in violet $\Phi(O_2)$, in green dots and the green line is $\Phi(O_2)$-continuous timeseries calculated using $k_w(O_2)$ weighted 50 days and in yellow $N(O_2) = I(O_2) + \Phi(O_2)\frac{\min(z_{lim}-z_{mix})}{z_{mix}} - E(O_2) = F_v(O_2)$. b) the violet continuous line is the $c_{raw}(\text{Chl} a)$ inventory in the top 45 m, z_{lim}, $(I_{raw, z_{lim}}(\text{Chl} a))$ and the dotted line in all the water column, z_{all}, $(I_{raw, z_{all}}(\text{Chl} a))$. The black vertical lines represent each glider transect and between the two vertical red lines when the glider was in NCC.

$N(O_2) = (95\pm16)$ mmol m$^{-2}$ d$^{-1}$. After this period, $I_{raw, z_{lim}}(\text{Chl} a)$ decreased to 49 mg m$^{-2}$ and $N(O_2) = (-4.6\pm1.6)$ mmol m$^{-2}$ d$^{-1}$. During the summer $I_{raw, z_{lim}}(\text{Chl} a)$ increased to 110 mg m$^{-2}$, which caused a sharp increase of $N(O_2)$ to (126±25) mmol m$^{-2}$ d$^{-1}$. $I_{raw, z_{lim}}(\text{Chl} a)$ remained higher than 50 mg m$^{-2}$ until the end of June when $N(O_2)$ was (31±9) mmol m$^{-2}$ d$^{-1}$. The passage of the glider from NwAC to NCC accompanied by a drop of surface $c(O_2)$ from 330 to 280 µmol kg$^{-1}$ (Figure 9) that resulted in lower $\Phi(O_2)$ and $N(O_2)$ values (Figure 13). At the same time $I_{raw, z_{lim}}(\text{Chl} a)$ decreased to 35 mg m$^{-2}$ showing that the decrease of $N(O_2)$ depended on the passage to NCC and a decrease of biological production. After the beginning of August, $I_{raw, z_{lim}}(\text{Chl} a)$ decreased to 49 mg m$^{-2}$ and $N(O_2)$ turned negative with a minimum of (-23 ± 25) mmol m$^{-2}$ d$^{-1}$. In October during the last glider transect $I_{raw, z_{lim}}(\text{Chl} a)$ continued decreasing to 27 mg m$^{-2}$ leading to the minimum $N(O_2)$ of (-52 ± 11) mmol m$^{-2}$ d$^{-1}$.
Integrating At the beginning of May, I_{raw} (Chl a) increased to 97 mg m$^{-2}$ and $N(O_2) = (94\pm16)$ mmol m$^{-2}$ d$^{-1}$. After this period from March to October gives a flux of 4.9 mol m$^{-2}$ a$^{-1}$ (Table 3; discussed in section 4.2).

Figure 13: a) Components of the $N(O_2)$ calculation: $\Delta I(O_2)/\Delta t$ (red), $E(O_2)$ (blue), $F_d(O_2)$ (violet), $\Phi(O_2)$ (green) with $k_a(O_2)$ weighted over 50 days, $N(O_2)$ (yellow). b) Chl a inventory in the top 45 m, $I_{\text{raw, zlim}}$ (Chl a) (violet). Chl a inventory for the whole water column, $I_{\text{raw, zall}}$ (Chl a) (violet dotted line). The black vertical lines represent each glider transect. Between the two vertical red lines, the glider was in the NCC region.

3.4 $N(DIC)$

In the case of N(DIC) the main drivers were the inventory changes with an absolute median of 29 mmol m$^{-2}$ d$^{-1}$ (5th centile: 1.3 mmol m$^{-2}$ d$^{-1}$; 95th centile: 57 mmol m$^{-2}$ d$^{-1}$), followed by $\Phi(CO_2)$ that had an absolute median of 7.0 mmol m$^{-2}$ d$^{-1}$ (5th centile: 0.8 mmol m$^{-2}$ d$^{-1}$; 95th centile: 15 mmol m$^{-2}$ d$^{-1}$), $F_d(DIC)$ that had an absolute median of 0.2 mmol m$^{-2}$ d$^{-1}$ (5th centile: 0 mmol m$^{-2}$ d$^{-1}$; 95th centile: 1.3 mmol m$^{-2}$ d$^{-1}$) and $E(DIC)$ had a median of 0 mmol m$^{-2}$ d$^{-1}$ (5th centile: 0 mmol m$^{-2}$ d$^{-1}$; 95th centile: 3.4 mmol m$^{-2}$ d$^{-1}$). During the period of increased Chl a inventory $N(DIC)$ was (21 ± 4.5) mmol m$^{-2}$ d$^{-1}$. Later $I_{\text{raw, zlim}}$ (Chl a) decreased to 30 mg m$^{-2}$ driving $N(DIC)$ to negative values with a minimum of (2.7 ± 5.0) mmol m$^{-2}$ d$^{-1}$. In the next transect, the glider measured the maximum $I_{\text{raw, zlim}}$ (Chl a) of 111 mg m$^{-2}$ that increased $N(DIC)$ to (85 ± 4.5) mmol m$^{-2}$ d$^{-1}$. This maximum was reached during a transect when the glider moved in NCC that had a $c(DIC)$ of 2080μmol kg$^{-1}$ at the surface compared with the 2150μmol kg$^{-1}$ in NwAC and drove a continuous positive $N(O_2) = (0\pm1.6)\text{DIC}$ that had a minimum of (36 ± 7.4) mmol m$^{-2}$ d$^{-1}$ (Figure 14).
Using the mean of $N(O_2)$ assuming an $N(O_2) = 0$ in the rest of the year lead to an annual value of 4 mol m$^{-2}$ a$^{-1}$ (Table 3) discussed in section 4.2.

Integrating $N(DIC)$ from March to July gives a flux of 3.3 mol m$^{-2}$ a$^{-1}$ (Table 3. N_2, discussed in section 4.2).

Table 3. Net community production (N) estimates in the Norwegian Sea. The previous studies dataset had data collected by several cruises in different years, (with integration depth z_{lim}). Falck and Anderson (2005) used historically year-round data from 1960 to 2000 collected all the year in the area from between 62° and 70° N and from 1991 to 1994 collected at OWSM. Skjelvan et al., (2001) used data collected all the year from 67.5° N 9° E to 71.5° N 1° E and along 74.5° N from 7 to 15° E from 1957 to 1970 and from 1991 to 1998. Skjelvan et al., (2001) used year-round data from 1957 to 1970 and from 1991 to 1998 between 67.5° N 9° E and 71.5° N 1° E and along 74.5° N from 7 to 15° E. Kivimäe (2007) used the oxygen measured at OWSM all the year year-round data from 1955 to 2005 and Falck and Gade (1999) used data collected all the year in all the Norwegian Sea from 1955 to 1988 year-round data from 1955 to 1988 in all of the Norwegian Sea. While the previous studies report annual N estimates, the present study derives $N(O_2)$ between March and October and $N(DIC)$ between March and July.

<table>
<thead>
<tr>
<th>Study</th>
<th>$N(C\text{-DIC})$</th>
<th>$N(O_2)$</th>
<th>$N(O_2)$ / $N(DIC)$</th>
<th>z_{lim}</th>
<th>Variables used to derive N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Falck and Anderson, 2005), annual</td>
<td>3.4</td>
<td>—</td>
<td>100</td>
<td>c(NO$_3$), c(NO$_3$), $\epsilon_c(DIC)$</td>
<td></td>
</tr>
<tr>
<td>(Skjelvan et al., 2001) (Skjelvan et al., 2001), annual</td>
<td>2.0</td>
<td>2.6</td>
<td>300</td>
<td>c(O$_2$), c(NO$_3$), c(NO$_3$)</td>
<td></td>
</tr>
<tr>
<td>(Kivimäe, 2007), annual</td>
<td>8.6</td>
<td>11</td>
<td>300</td>
<td>c(O$_2$)</td>
<td></td>
</tr>
<tr>
<td>(Falck and Gade, 1999), annual</td>
<td>3.0</td>
<td>3.9</td>
<td>100</td>
<td>c(O$_2$)</td>
<td></td>
</tr>
<tr>
<td>This study, March to July</td>
<td>3.1</td>
<td>4.0</td>
<td>1.3</td>
<td>30</td>
<td>c(O$_2$), $\epsilon_c(DIC)$</td>
</tr>
<tr>
<td>This study, March to July</td>
<td>0.9</td>
<td>4.0</td>
<td>1.3</td>
<td>45</td>
<td>c(O$_2$), $\epsilon_c(DIC)$</td>
</tr>
<tr>
<td>This study, March to July</td>
<td>0.4</td>
<td>3.7</td>
<td>1.1</td>
<td>100</td>
<td>c(O$_2$), $\epsilon_c(DIC)$</td>
</tr>
<tr>
<td>This study, March to October</td>
<td>5.0</td>
<td>5.0</td>
<td>1.0</td>
<td>50</td>
<td>c(O$_2$), $\epsilon_c(DIC)$</td>
</tr>
<tr>
<td>This study, March to October</td>
<td>4.9</td>
<td>4.9</td>
<td>1.0</td>
<td>50</td>
<td>c(O$_2$), $\epsilon_c(DIC)$</td>
</tr>
<tr>
<td>This study, March to October</td>
<td>3.6</td>
<td>3.6</td>
<td>1.0</td>
<td>50</td>
<td>c(O$_2$), $\epsilon_c(DIC)$</td>
</tr>
</tbody>
</table>
3.4 $N(C_T)$

In the case of $N(C_T)$ the main driver were the inventory changes with an absolute median of 7.6 mmol m$^{-2}$ d$^{-1}$ (5th centile: 1 mmol m$^{-2}$ d$^{-1}$; 95th centile: 23 mmol m$^{-2}$ d$^{-1}$). The inventory changes, followed by $\Phi(CO_2)$ that had an absolute median of 1.7 mmol m$^{-2}$ d$^{-1}$ (5th centile: 0.3 mmol m$^{-2}$ d$^{-1}$; 95th centile: 4 mmol m$^{-2}$ d$^{-1}$). $E(C_T)$ that had a median of 0 mmol m$^{-2}$ d$^{-1}$ (5th centile: 0 mmol m$^{-2}$ d$^{-1}$; 95th centile: 3.3 mmol m$^{-2}$ d$^{-1}$). During the period of increased Chl a inventory $N(C_T)$ was (23 ± 4.2) mmol m$^{-2}$ d$^{-1}$. Later $I_{raw_{Chl \ a}}$ decreased to 30 mg m$^{-2}$ driving $N(C_T)$ to negative values with a minimum of (-4.5 ± 5.2) mmol m$^{-2}$ d$^{-1}$. In the next transect, the glider measured the maximum $I_{raw_{Chl \ a}}$ of 111 mg m$^{-2}$ that increased $N(C_T)$ to (14 ± 8.7) mmol m$^{-2}$ d$^{-1}$. In the next transect the glider moved in NCC that had a C_T of 2075 µmol kg$^{-1}$ at the surface compared with the 2130 µmol kg$^{-1}$ in NwAC and drove a continuous positive $N(C_T)$ that had a maximum of (26 ± 3.7) mmol m$^{-2}$ d$^{-1}$.

Figure 14).

Using the mean of $N(C_T)$ with the assumption that during the rest of year $N(C_T) = 0$, we calculated the annual $N(C_T)$ of 0.9 mol m$^{-2}$ a$^{-1}$ (Table 3) that its implications are discussed in section 4.2.
Figure 14: a) Each component of the $N(C_T)$: $\Delta (DIC)/\Delta t$ (red $K(C_T)$), $E(C_T)$ in DIC (blue), $F_e(C_T)$ in CO$_2$ (violet), $\Phi(C_T)$ in CO$_2$ (green dots and the green line is $\Phi(O_2)$ continuous time-series calculated using k with $k_w(CO_2)$ weighted over 50 days and in $N(DIC)$ (yellow $N(C_T) = -I(C_T) = \Phi(CO_2) \frac{min(min_{raw} - min_{all})}{z_{mix}} + E(C_T) + F_e(C_T)$), b) the violet continuous line is the $I_{raw}(Chl \alpha)$ inventory in the top 45 m, z_{lim} ($I_{raw,z_{lim}}(Chl \alpha)$) and the $I_{raw,z_{all}}(Chl \alpha)$ (violet). Chl α inventory for the whole water column, $I_{raw,z_{all}}(Chl \alpha)$ (violet) dotted line in all the water column, z_{all} ($I_{raw,z_{all}}(Chl \alpha)$). The black vertical lines represent each glider transect and between. Between the two vertical red lines when the glider was in the NCC region.

4 Discussion

4.1 Sensor performance

This study presents data from the first glider deployment with a CO$_2$ optode. The initial uncalibrated pCO_2, $p(CO_2)$ measured by the CO$_2$ optode had a median of 604 µatm (5^th centile: 566 µatm; 95^th centile: 768 µatm) $p(CO_2)$ of discrete samples varied from 302 to 421 µatm. This discrepancy was caused by sensor drift prior to and during deployment of the optode.
We applied corrections for drift (using deep-water samples as a reference point), sensor lag and calibrated the CO₂ optode against co-located discrete samples throughout the water column.

Atamanchuk (2014) reported that the sensor was affected by a lag that varied from 45 to 264 s depending on temperature. These values were determined in an actively stirred beaker. However, in this study the sensor was mounted on a glider and was not actively pumped, which increased the response time to 1384 s, 23 min (25th quartile: 1101 ± 18 min; 75th quartile: 1299 ± 30 min). Also, the optode was affected by a continuous drift from 637 to 5500 µatm that is larger than the drift found by Atamanchuk et al. (2015a) that increased by 75 µatm after 7 months.

In this study, the drift- and lag-corrected sensor output showed a better correlation with the CO₂ concentration c(CO₂) than with p(CO₂). The latter two quantities are related to each other by the solubility that varies with θ and S (Weiss, 1974) (Eq. 2). The better correlation with c(CO₂) was probably related due to an inadequate temperature-parameterisation of the sensor calibration function. The sensor output depends on the changes in pH that are directly related to the changes of the calibration gave a better fit for both c(CO₂) in the membrane and indirectly than with p(CO₂), via Henry’s Law, but overall still a lower calibration residual for the former. The sensor output depends on the changes in pH that are directly related to the changes of c(CO₂) in the membrane and indirectly p(CO₂), via Henry’s Law.

The calibration is supposed to correct for the temperature-dependence of the sensor output (Atamanchuk et al., 2014). So the fact, that the sensor output correlated better with c(CO₂) than p(CO₂) is perhaps due to a fortuitous cancellation of an inadequate temperature-parameterisation and the Henry’s Law relationship between c(CO₂) than p(CO₂).

The calibrated optode output captured the changes in space and time with a standard deviation of 1011 µmol kg⁻¹ compared with the discrete samples. c(CO₂) decreased from 2100 ± 130 µmol kg⁻¹ to 2050 ± 2000 µmol kg⁻¹ and increased with depth to 2170 µmol kg⁻¹. This shows the potential of the sensor for future studies that aim to analyse the carbon cycle using a high-resolution dataset.

The optode-derived CO₂ fugacity f(DIC) had a mean bias of (1.8 ± 22) µatm compared with the discrete samples. These values are comparable with a previous study when the CO₂ optode was tested for 65 days on a wave-powered Profiling cRAWLER (PRAWLER) from 3 to 80 m (Chu et al., 2020), which had an uncertainty between 35 and 72 µatm. The PRAWLER optode was affected by a continuous drift of 5.5 µatm d⁻¹ corrected using a regional empirical algorithm that uses c(O₂), θ, S and σθ to estimate A and c(DIC).

4.2 Norwegian Sea net community production

Increases in N(O₂) and N(C(CO₂)) were associated with increases in depth-integrated c(Chl a), designated as periods of increased Chl a inventory, I(Chl a), at the beginning of May and in June. During the first period of increased Chl a inventory at the beginning of May, surface c(Chl a) reached 31135 mg m⁻³. The second period of increased Chl a inventory in June lasted longer and c(Chl a) increased to 135 mg m⁻³. Between these two periods of increased Chl a inventory, N(CO₂ hadDIC) briefly turned negative values and N(O₂) reached the deployment minimum, indicating that remineralisation of the high Chl a inventory material was a dominant process during this period. Even though they are uncalibrated, the spring period of increased Chl a inventory c(Chl a) values are in agreement coincided with the study of Rey (2001) who found...
\(e_{\text{opt}}(\text{Chl}) = 3 \text{ mg m}^{-2} \) at the beginning of May. The largest period of increased Chl \(z \) inventory when the top 50 m \(\beta \) increased a surface temperature increase from 7 °C to 11 °C and \(z_{\text{shoal}} \) shoaling of the mixed layer from 200 m to 20 m. During this period, \(\text{O}_2 \) reached a summer maximum of 340 \(\mu \text{mol kg}^{-1} \) and \(C_{\text{DIC}}(\text{DIC}) \) decreased to the summer minimum at 2070 of 1990 \(\mu \text{mol kg}^{-1} \). In both cases, the main components of the \(N \) changes were the inventory and air-sea flux, while the smallest driver was the entrainment. Also, the glider sampled two different water masses characterised by different \(C_{\text{DIC}}(\text{DIC}) \) and \(\text{O}_2 \). This led to might be the cause of the smaller values of \(N(\text{O}_2) \) and higher values \(N(C_{\text{DIC}}) \) in June and July in NCC compared with to NWAC (Figure 13 and 14). Another explanation might be a consumption of \(\text{O}_2 \) due to remineralisation and a delay in the response of the \(C(\text{DIC}) \) that was lowered during the two blooms. A fully functional \(\text{CO}_2 \) optode in the second part of the deployment would have helped to uncover the cause of the higher \(N(\text{DIC}) \) than of \(N(\text{O}_2) \).

Table 3 shows estimates of net community production (\(N \)) in the Norwegian Sea (Falck and Anderson, 2005; Falck and Gade, 1999; Kivimäe, 2007; Skjelvan et al., 2001). All these studies used low-resolution datasets in space and time. These datasets had data collected by several cruises in different years, Falck and Anderson (2005) used historical data from 1960 to 2000 collected in the area from 62 to 70° N and from 1991 to 1994 collected all the year at OWSM. Skjelvan et al. (2001) used data collected from 67.5° N 9° E to 71.5° N 1° E and along 74.5° N from 7 to 15° E from 1957 to 1970 and from 1991 to 1998. Kivimäe (2007) used the oxygen measured all the year at OWSM from 1955 to 2005 and Table 3 shows estimates of net community production (\(N \)) in the Norwegian Sea. All other studies used ships to gather observations. The estimated \(N \) in of the four other studies varied from 2.6 to 11.1 \(\text{mol m}^{-2} \text{a}^{-1} \) for \(N(\text{O}_2) \) and was 3.4 for \(N(\text{DIC}) \). In our glider study, we obtained between March and July \(N(\text{DIC}) \) of 3.3 \(\text{mol m}^{-2} \text{a}^{-1} \) and a \(N(\text{O}_2) \) of 4.2 \(\text{mol m}^{-2} \text{a}^{-1} \), in agreement with these studies. The ratio of \(N(\text{O}_2) \) and \(N(\text{DIC}) \) for an integration depth of 45 m gave a photosynthetic quotient (PQ) of 1.3, in agreement with the Redfield ratio of 1.45±0.15 (Redfield, 1963; Anderson, 1995; Anderson and Sarmiento, 1994; Laws, 1991). The \(N(\text{O}_2) \) estimate is influenced primarily by the air-sea exchange flux \(\Phi(\text{O}_2) \) (median: 34 \(\text{mmol m}^{-2} \text{d}^{-1} \)), followed by the inventory change (15 \(\text{mmol m}^{-2} \text{d}^{-1} \)). In contrast, \(N(\text{DIC}) \) is dominated by the inventory change (−29 \(\text{mmol m}^{-2} \text{d}^{-1} \)), followed by \(\Phi(\text{CO}_2) \) (−7.0 \(\text{mmol m}^{-2} \text{d}^{-1} \)). This reflects the slower gas-exchange time constant of \(\text{CO}_2 \) compared with \(\text{O}_2 \), due to DIC buffering. To compare our results with previous studies we also used \(z_{\text{lim}} = 30 \text{ m} \) Falck and Gade (1999) used data collected all the year in all the Norwegian Sea from 1955 to 1988. The estimated \(N \) in the 4 studies varies from 2.0 to 8.6 \(\text{mol m}^{-2} \text{a}^{-1} \) for \(N(C_{\text{DIC}}) \) and from 2.6 to 11.1 \(\text{mol m}^{-2} \text{a}^{-1} \) for \(N(\text{O}_2) \). In our study, we obtained an annual \(N(C_{\text{DIC}}) \) of 0.9 \(\text{mol m}^{-2} \text{a}^{-1} \) and a \(N(\text{O}_2) \) of 4 \(\text{mol m}^{-2} \text{a}^{-1} \), in agreement with these studies. The larger \(N(\text{O}_2) \) compared with \(N(C_{\text{DIC}}) \) should be attributed to the large \(\Phi(\text{O}_2) \) that had an absolute median of 47 \(\text{mmol m}^{-2} \text{d}^{-1} \), compared with \(\Phi(\text{CO}_2) \) absolute median of 1.7 \(\text{mmol m}^{-2} \text{d}^{-1} \). Instead, the inventory changes were similar between \(N(\text{O}_2) \) and \(N(C_{\text{DIC}}) \) with a median of 2 \(\text{mmol m}^{-2} \text{d}^{-1} \) and 7.6 \(\text{mmol m}^{-2} \text{d}^{-1} \), respectively. To compare our results with previous studies we used the same \(z_{\text{lim}} = 30 \text{ m} \) Falck and Gade, 1999) and 100 m (Falck and Anderson, 2005; Kivimäe, 2007). The calculated \(N(C_{\text{DIC}}; 30 \text{ m}) = 3.1 \text{ mol m}^{-2} \text{a}^{-1} \), \(N(C_{\text{DIC}}; 100 \text{ m}) = 62.4 \text{ mol m}^{-2} \text{a}^{-1} \), \(N(\text{O}_2; 30 \text{ m}) = 4.1 \text{ mol m}^{-2} \text{a}^{-1} \) and \(N(\text{O}_2; 100 \text{ m}) = 3.7 \text{ mol m}^{-2} \text{a}^{-1} \). In the case of The\(N(C_{\text{DIC}}; 30 \text{ m}) \) and \(N(C_{\text{DIC}}; 100 \text{ m}) \) the values are in agreement with the value of 3.4 \(\text{mol m}^{-2} \text{a}^{-1} \) given by Falck and Anderson (2005). However, the latter estimate was for the entire year, whereas our estimate only covers the months from March to July. \(N(\text{O}_2) \) was similar for \(z_{\text{lim}} = 30 \text{ m} \), but lower for \(z_{\text{lim}} = 100 \text{ m} \), due to consumption during organic matter remineralisation below the euphotic zone. The PQ value at 30 m was 1.3 and at 100 m decreased to 1.1. Extending \(N(\text{O}_2) \) to October increased \(N(\text{O}_2; 30 \text{ m}) \) and \(N(\text{O}_2; 45 \text{ m}) \) to 5.0 and 4.9 \(\text{mol m}^{-2} \text{a}^{-1} \), respectively. Instead, \(N(\text{O}_2; \)).
100 m) decreased to 3.6 mol m$^{-2}$ a$^{-1}$, confirming the consumption of O$_2$ below the euphotic zone. The calculated were smaller to N(O$_2$) until October was in agreement with the previous studies where N(C$_3$) that varied from 2 to 8.6 mol m$^{-2}$ a$^{-1}$. The smallest value was for N(C$_3$) at 100 m because it included the not productive layer located under the euphotic zone and the z_{ax} where the remineralisation of the organic matter can increase C$_2$. The calculated N(O$_2$) was not affected by the selection of z_{ax} because the changes were largely controlled by f(O$_2$). However, the calculated N(O$_2$) was in agreement with the previous studies where varied from 2.6 to and 11 mol m$^{-2}$ a$^{-1}$.

Some of the previous N(C$_2$DIC) estimates derived C$_{\text{DIC}}$(DIC) from other variables such as c(O$_2$), c(PO$_4^{3-}$), c(NO$_3^-$), assuming Redfield ratios P:N:C:O$_2$ = 1:16:106:138 (Redfield, 1963). During photosynthesis c(PO$_4^{3-}$) and c(NO$_3^-$) are taken up by phytoplankton to form organic matter and are released again after remineralisation of the organic matter giving an indication of NCP changes. Our N(C$_2$DIC) estimate was 0.53 mol m$^{-2}$ a$^{-1}$ and is lower than 3.4 mol m$^{-2}$ a$^{-1}$ estimated by Falck and Anderson (2005) who used C$_3$ samples directly. The difference between our N(C$_3$) and other studies is likely due to their use of the Redfield ratio assumption (Redfield, 1963) to convert N(O$_2$) to N(C$_3$). The carbon/nutrients ratios vary between water masses and during photosynthesis (Copin-Montégut, 2000; Körtzinger et al., 2001; Osterroht and Thomas, 2000; Thomas et al., 1999). In deep waters, the release ratios vary for C$_2$, c(PO$_4^{3-}$), c(NO$_3^-$) and c(O$_2$) leading to different concentrations than the traditional Redfield ratio (Hupe and Karstensen, 2000; Minster and Boulahdid, 1987; Shaffer, 1996). For example, during remineralisation, NO$_3^-$ and PO$_4^{3-}$ are released faster than C$_2$ leading to a C:P remineralisation ratio of 90 ± 15 at the base of the euphotic zone to about 125 ± 10 from to 1000 m to the bottom (Shaffer, 1996).

The difference of N(O$_2$) and N(C$_3$) is who used c(DIC) samples directly. The carbon/nutrient ratios vary between water masses and during photosynthesis (Thomas et al., 1999; Copin-Montégut, 2000; Osterroht and Thomas, 2000; Körtzinger et al., 2001). The difference of the annual N(O$_2$) and N(DIC) with the previous studies can also be caused by the yearly variability of N in the Norwegian Sea. In fact, Kivimäe (2007) saw an annual variability of N(O$_2$) from 1955 to 2005 of between 4.7 mol m$^{-2}$ a$^{-1}$ and 18.3 mol m$^{-2}$ a$^{-1}$ and of N(C$_3$) of 3.6 mol m$^{-2}$ a$^{-1}$ to 14.0 mol m$^{-2}$ a$^{-1}$. In order to understand what is causing these interannual changes, it is important to use available high-resolution datasets capture inventory and air-sea changes. Also, this study showed that the Norwegian Sea spring and summer and autumn N is strongly affected by time and location of sampling. For that reason, N estimated from low-resolution datasets make the result strongly dependent on the time and place of sampling. To quantify this interannual variability in N, more high-resolution studies are needed.

5 Conclusions

This study was, to the best of our knowledge, the first glider deployment of a CO$_2$ optode. During the deployment, the CO$_2$ optode performance was affected by drift, lag, lack of sampling in
the top 150 m after dive 400 (the 24 July 2014), and poor default calibration. We found that the optode response was better correlated together with \(c(\text{CO}_2) \) than \(\rho(\text{CO}_2) \). Nevertheless, the optode was able to capture the spatial and temporal changes in the Norwegian Sea after recalibration with discrete samples collected along the glider section and nearby at OWSM during the deployment.

\(C_2 \) estimated from glider data had a standard deviation of 10 \(\mu \text{mol kg}^{-1} \) and a mean bias of 1.5 \(\mu \text{mol kg}^{-1} \)

compared with the discrete samples, while the \(\text{CO}_2 \) fugacity \(f(\text{CO}_2) \) had a mean bias of (8 ± 23) µatm. The dataset was used to calculate net community production \(\text{N(O}_2) \) and \(\text{N(C}_2) \) from inventory changes, air-sea flux, and entrainment. The two \(N \) values had maxima during the summer period of increased Chl \(a \) inventory of \(\text{N(C}_2) = (11±8.7) \text{mmol m}^{-2} \text{d}^{-1} \) and \(\text{N(O}_2) = (126±25) \text{mmol m}^{-2} \text{d}^{-1} \). At the beginning of April, we sampled a smaller spring period of increased Chl \(a \) inventory with \(\text{N(C}_2) = (23±4.2) \text{mmol m}^{-2} \text{d}^{-1} \) and \(\text{N(O}_2) = (94±24) \text{mmol m}^{-2} \text{d}^{-1} \). After the period of increased Chl \(a \) inventory, \(\text{N(C}_2) \) decreased due to remineralisation to \((4.5±5.2) \text{mmol m}^{-2} \text{d}^{-1} \)

and \(\text{N(O}_2) \) to \((0.4±1.5) \text{mmol m}^{-2} \text{d}^{-1} \). The glider monitored two water masses (NwAC and NCC). The NCC-influenced one was characterised by a lower \(c(\text{O}_2) \) and \(C_2 \) than the NwAC region. \(\text{N(O}_2) \) decreased to \((3.9±7.3) \text{mmol m}^{-2} \text{d}^{-1} \) driven by a decrease of \(c(\text{O}_2) \) under 30 m from 300 to 290 \(\mu \text{mol kg}^{-1} \) and increased for \(\text{N(C}_2) \) to \((26±3.7) \text{mmol m}^{-2} \text{d}^{-1} \). In particular, the \(\text{N(O}_2) \) changes were driven by the surface oxygen supersaturation making the seawater a source of oxygen. In contrast, the ocean was a sink of inorganic carbon during the summer, with a continuous \(\text{CO}_2 \) flux from the atmosphere into the water.

This deployment optode shows the potential of using small, low-energy consuming \(\text{CO}_2 \) optodes on autonomous observing platforms like Seagliders to quantify the interactions between biogeochemical processes and the marine carbonate system at high spatiotemporal resolution. The deployment helped to uncover NCP and air-sea flux variability over a period of 8 months.

Despite all the problems (drift, lag and poor calibration), the \(\text{CO}_2 \) optode data could be used to quantify dissolved inorganic carbon concentration variations. The temporal resolution sampling resolution was 106 s in the top 100 m (increasing to 381 s from 500 to 1000 m). This could be improved to less than 10 s, but this would reduce the length of the deployment due to the limited glider battery capacity. With better calibration and stability improvements, the \(\text{CO}_2 \) optode could be routinely used to measure the carbonate system on gliders, floats and surface vehicles. Glider deployments up to 8 months are possible thanks to the sensor's low power consumption of 8 mW at 5 s sampling intervals and 7 mW at 60 s sampling intervals (Atamanchuk et al., 2014).

Combined with other novel sensors that measure another DIC-related quantity such as \(A_1 \) or \(c(\text{DIC}) \), \(\text{CO}_2 \) optodes on gliders could help provide estimates of NCP, air-sea flux, respiration and remineralisation and aragonite saturation.

During our deployment we calculated \(\text{O}_2 \) and DIC-based NCP over the spring and summer period. In the future, extended deployments could be used to estimate annual (full year) NCP. To have an accurate estimate of annual NCP, at least one additional glider deployment is needed to have continuous coverage (Binetti et al., 2020).
Similar deployments can be used in other areas of the globe to fill gaps in N(DIC) and $\text{N(O}_2\text{)}$. In particular, glider deployments have potential in under-sampled areas of the globe such as the Southern Ocean and the Arctic. Also, it can be used in well-studied areas such as North and Mediterranean Sea to reduce monitoring costs and compare NCP estimates with previous studies that used other sampling strategies.

Data availability. The glider data are available on Norwegian Marine Data Centre (NMDC) at https://doi.org/10.21335/NMDC-1654657723

Competing interests. The author declares that there is no conflict of interest.

Acknowledgements. Luca Possenti's PhD project is part of The Next Generation Unmanned Systems Science (NEXUSS) Centre for Doctoral Training which is funded by the Natural Environment Research Council (NERC) and the Engineering and Physical Science Research Council (EPSRC) [grant number NE/N012070/1]. We would like to thank the scientists, engineers, and crew that contributed to the glider mission and data collection along the glider transect and at Ocean Weather Station M (OWSM). We would also like to thank Kristin Jackson-Misje, who performed all the carbon analyses, as well as Michael Hemming and Bastien Queste for their initial contributions to the data analysis. We are grateful to the comments from the two anonymous reviewers and the Editor, which led to a greatly improved paper.

6 References

Benson, B. B. and Krause Jr, D.: The concentration and isotopic fractionation of oxygen dissolved in freshwater...

R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W.,

Rérolle, V. M. C., Floquet, C. F. A., Harris, A. J. K., Mowlem, M. C., Bellerby, R. R. G. J. and Achterberg, E.

Saderne, V., Fietzek, P. and Herman, P. M. J.: Extreme Variations of pCO2 and pH in a Macrophyte Meadow of

the Baltic Sea in Summer: Evidence of the Effect of Photosynthesis and Local Upwelling, PLoS One, 8(4), 2

Seguro, I., Marca, A. D., Painting, S. J., Shutler, J. D., Suggett, D. J. and Kaiser, J.: High-resolution net and

gross biological production during a Celtic Sea spring bloom, Prog. Oceanogr., 177, 101885, https://doi.org/10.1016/j.pocean.2017.12.003,

2019.

Seidel, M. P., Degrandpre, M. D. and Dickson, A. G.: A sensor for in situ indicator-based measurements of

Shaffer, G.: Biogeochemical cycling in the global ocean 2. New production, Redfield ratios, and remineralization

Sharples, J., Ross, O. N., Scott, B. E., Greenstreet, S. P. R. and Fraser, H.: Inter-annual variability in the timing

of stratification and the spring bloom in the North-western North Sea, Cont. Shelf Res., 26(6), 733–751,

Seas and Barents Sea and Christoph through the strength area of 15-75, 2005.

Skjelvan, I., Falck, E., Rey, F. and Kringstad, S. B.: Inorganic carbon time series at Ocean Weather Station M in

Sprintall, J. and Roemmich, D.: Characterizing the structure of the surface layer in the Pacific Ocean, J.

data set from 14 open-ocean sites using a moored autonomous system, Earth System Science Data, 353–366,

1190 7 Appendices
Figure A1: discrete Discrete samples $c_c(O_2)$ (yellow), raw glider oxygen $c_g(O_2)$ (blue) and drift corrected glider oxygen $c_{G, cal}(O_2)$ (red) for a potential density > 1028 kg m$^{-3}$ at depths less than 1000 m.
Figure A2: Diapycnal mixing (F_V) calculated for the glider descent and ascent for a) $\epsilon_{w(DIC)}$ and b) O$_2$ at the mixed layer depth (z_{mix}) when deeper than 45 m (z_{lim}) and at z_{lim} when z_{mix} was shallower than 45 m. In the calculations we used a vertical eddy diffusivity (K_z) of 10^{-5} m2 s$^{-1}$ (Naveira Garabato et al., 2004).