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Abstract. A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012

by the RAPID array with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic re-

search suggests that the AMOC may have been declining for decades or even centuries before this, however direct observations

are sparse prior to 2004, giving only ‘snapshots’ of the overturning circulation. Previous studies have used linear models based

on upper layer temperature anomalies to extend AMOC estimates back in time, however these ignore changes in the deep5

circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher fidelity empirical

model of AMOC variability based on RAPID data, and associated physically with changes in thickness of the persistent upper,

intermediate and deep water masses at 26°N and associated transports. We applied historical hydrographic data to the empir-

ical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC to

approximately annual shows multi-annual variability in agreement with RAPID observations, and that the downturn between10

2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline as

indicated by other proxies and high resolution climate models. Our results reinforce that adequately capturing changes to the

deep circulation is key to detecting any anthropogenic climate change-related AMOC decline.

Copyright statement. TEXT

1 Introduction15

In the northern hemisphere, the Atlantic meridional overturning circulation (AMOC) carries as much as 90% of all the heat

transported poleward by the subtropical Atlantic Ocean (Johns et al., 2011), with the associated release of heat to the overlying

air helping to maintain north-western Europe’s relatively mild climate for its latitude. The AMOC also transports freshwater

towards the equator, and the associated deep water formation moves carbon and heat into the deep ocean (Kostov et al., 2014;

Winton et al., 2013; McDonagh et al., 2015). A significant change in AMOC circulation is thus likely to have an impact on the20

climate of north-western Europe and further afield, with possible influences on global hydrological and carbon cycles. Although
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the Intergovernmental Panel on Climate Change (IPCC) say
:::
says

:
that it is unlikely that the AMOC will stop this century, they

state with medium confidence that a slowdown by 2050 due to anthropogenic climate change is very likely (Stocker et al.,

2013).

The importance of the AMOC means that since 2004 it has been observed by the RAPID mooring array at 26°N. The25

resulting observations have highlighted the great variability in AMOC transport on a range of timescales (Kanzow et al., 2010;

Cunningham et al., 2007), including a decline in AMOC strength between 2004 and 2012 (Smeed et al., 2014). This reduced

state persisted in 2017 (Smeed et al., 2018). The decrease is more likely to be internal variability rather than a long-term decline

in response to anthropogenic forcing (Roberts et al., 2014), which the time series is currently too short to detect. Although the

AMOC has been well-observed at 26°N since 2004, prior to this estimates of AMOC strength were restricted to instances30

of transatlantic hydrographic sections along 24.5°N in 1957, 1981, 1992, 1998 and 2004, which provided only snapshots

of the overturning circulation strength (Bryden et al., 2005). There are extensive additional hydrographic data around 26°N,

particularly at the western boundary, but these are insufficient to reconstruct the AMOC conventionally (Longworth et al.,

2011). Due to the limited availability of hydrographic data, proxies have been used to reconstruct the AMOC time series

earlier than 2004.35

In one proxy reconstruction, Frajka-Williams (2015) used sea-surface height from satellite altimetry to estimate trans-basin

baroclinic transport at 26°N between 1993 to 2014. In another, Longworth et al. (2011) used temperature anomaly at the western

boundary as a proxy for geostrophic transport within the upper 800 m, or thermocline layer, finding the temperature anomaly at

400 dbar explained 53% of the variance in thermocline transport. However, both Longworth et al. (2011) and Frajka-Williams

(2015) used single layer models that do not account for the variable depth structure of the AMOC in the subtropics.40

At 26°N, the dynamics of the AMOC involve multiple water masses flowing in opposite directions in different layers, driven

by the changing density structure with depth (Figure 1a). Above around 1000 m
::::::
Within

:::
the

:::::::::
permanent

::::::::::
thermocline

::::
layer,

::::::
which

::::::
reaches

::
as

:::::
deep

::
as

::::
800

::
m

::
on

:::
the

:::::::
western

::::::::
boundary

::::
and

::::
600

::
m

::
on

:::
the

:::::::
eastern,

:::::::::
isopycnals

::::
rise

:::::::
towards

:::
the

::::::
eastern

::::::::
boundary,

isopycnals deepen towards the west, indicative of southward flow in the thermocline; below 1000 m
::::::::::::::::::::::::::
(Hernández-Guerra et al., 2014)

:
.
:::::
Below

:::
the

::::::::::
thermocline, isopycnals deepen towards the east. The

:
,
:::
and

:::
the

:
resulting transport profile (Figure 1c) shows a small45

northwards transport
:::::::
centered around 1000 m (

::::::::::
sandwiched

:::::::
between

:::::::::
southwards

:::::::::
transports

:::::
above

:::
and

::::::
below.

::::::::
Although referred

to by RAPID as Antarctic Intermediate Water (AAIW)) sandwiched between southwards transports above (thermocline layer)

and below (North Atlantic Deep Water (NADW)). The ,
::::
both

::::::
AAIW

::::
and

::::::::::::
Mediterranean

:::::
Water

:::
are

:::::::
observed

::::::::
between

::::::::
700-1600

::
m

::
on

:::
the

::::::
eastern

::::::::
boundary,

::::
with

:::
the

::::::
relative

::::::::::
contribution

::
of

::::
each

:::::::
varying

:::::::::
seasonally

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fraile-Nuez et al., 2010; Machín and Pelegrí, 2009; Hernández-Guerra et al., 2003)

:
.
:::
The

::::::::
transport

:
profile also shows the NADW

:::::
North

:::::::
Atlantic

:::::
Deep

::::::
Water

::::::::
(NADW),

::::::
which

:
has two distinct layers, above50

and below approximately 3000 m. These are the
:
: Upper (UNADW) and Lower North Atlantic Deep Water

::::
above

:::::
3000

:::
m,

:::::::
primarily

:::::::
formed

::
in

:::
the

:::::::::
Labrador

:::
Sea

:::::::::::::::::::::::::
(Talley and McCartney, 1982)

:
;
:::
and

::::::
Lower

:
(LNADW) , and changes

:::::
below

:::::
3000

:::
m,

:::::
which

:::
has

:::
its

::::::
origins

::
in

:::
the

::::::::
overflows

:::::
from

:::
the

::::::
Nordic

::::
Seas

:::::::::::::::::
(Pickart et al., 2003)

:
.
:::::::
Changes

:
observed in one NADW layer are

not necessarily observed in another:
:
.
:::::::::::::::::
(Smeed et al., 2014)

:::::
found

:
the reduction in AMOC strength between 2004 and 2012

(Smeed et al., 2014) was observed
:::
was

::::
seen

:
in LNADW but not UNADW, and

::::
while

:
Bryden et al. (2005) found LNADW55

transport estimated from transatlantic hydrographic sections at 25°N decreased from -15 Sv in 1957 to less than -7 Sv in 1998
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Figure 1. (a) World Ocean Circulation Experiment (WOCE) North Atlantic A05 section of potential
:::::
neutral

:
density

:::::::::
γn[kgm−3]

at 24°N. Potential density is split into σ0 (red), σ2 (green) and σ4 (blue). From the WOCE Atlantic Ocean Atlas Vol. 3.

::::::::::::::::::::::::::::::::::::::
(K. Koltermann, K.P., Gouretski, V.V., Jancke, 2011) (b) Schematic of four dynamic layers to be represented within the regression model

by density anomalies at the western and eastern boundaries at a depth within each layer. The density anomalies are represented by the circu-

lar markers. (c) Profile of RAPID-estimated mean mid-ocean transport and the resulting northwards and southwards layer transports. Mean

AMOC depth is around 1100 m.

and 2004 , while
::
but

:
the UNADW transport remained between -9 and -12 Sv. Below the NADW layers, there is a small north-

wards transport below 5000 m, Antarctic Bottom Water (AABW), that flows along the western side of the Mid-Atlantic Ridge.

The partition between the upper southwards and deep southwards transports defines the strength of the overturning circulation:

a weak AMOC is associated with a greater recirculation within the upper layers of the thermocline and weaker deep return60

flow; a stronger AMOC is associated with weaker thermocline recirculation and stronger deep NADW transport. For an empir-

ical model to more fully represent AMOC dynamics, in particular lower frequency changes, we suggest that it must represent

these deeper layers. A layered model interpretation of the density structure and the associated water mass transports is shown

in Figure 1b.

Here, we revisit the approach of Longworth et al. (2011) by using linear regression models to represent the AMOC, and65

develop the method further to include additional layers representative of the deep circulation. Section 2 describes how we

trained and validated our statistical model using the RAPID dataset, and how we selected historical hydrographic data to apply

to the model. Section 3 describes how these hydrographic data were used to create an extended timeseries of AMOC strength

from 1982 to 2016. In Sections 4 and 5, we discuss the implications of creating the longest observational timeseries of AMOC

strength that incorporates variability in the deep NADW layers, and acknowledge the limitations of using an empirical model.70
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2 Methods

2.1 Model data

Our regression models were trained on RAPID data from 27 May 2006 to 21 February 2017 (Smeed et al., 2017). RAPID

data are available from 7 April 2004, but we used only data obtained after the collapse of the main western mooring, WB2,

between 7 November 2005 and 26 May 2006. McCarthy et al. (2015) describes in detail how RAPID measures the AMOC,75

but it is described briefly here as we use both its results and the interim data created during the calculation. AMOC transport

at 26°N (Tamoc) is estimated by combining four directly observed components (Equation 1): Gulf Stream transport within the

Florida Straits (Tflo), which is measured by submarine cables and calibrated by regular hydrographic sections (Baringer and

Larsen, 2001; Meinen et al., 2010); Ekman transport (Tek), which here is calculated from ERA-Interim reanalysis wind fields;

Western Boundary Wedge (WBW) transport (Twbw), which is obtained from direct current measurements over the continental80

slope between the Bahamas and the WB2 mooring at 76.75°W; and the internal transport (Tint), the basin-wide geostrophic

transport calculated from dynamic height profiles described below, relative to a reference depth of no motion at 4820 dbar.

::::
This

::::::::
reference

:::::
depth

::
is

:::::::
selected

::
as

:::
the

:::::::::::
approximate

:::::
depth

::
of

:::
the

::::::::
interface

:::::::
between

:::
the

::::::::::
southwards

::::::::
LNADW

::::
and

:::
the

::::::
deeper

:::::::::
northwards

:::::::::::::::::::::::::
AABW(McCarthy et al., 2015)

:
. To the sum of these four components, a depth-dependent external transport (Text)

is added to ensure mass is conserved and that there is zero net flow across the section. The assumption of zero net flow holds85

on timescales longer than 10 days (Bryden et al., 2009)
::::::::::::::::::::::::::::::::::
(Kanzow et al., 2007; Bryden et al., 2009).

Tamoc (t,z) = Tflo (t,z)+Tek (t,z)+Twbw (t,z)+Tint (t,z)+Text (t,z) (1)

The internal geostrophic transport, Tint, is estimated from dynamic height profiles. These are created by merging data from

individual moorings to create four profiles for each of the western and eastern boundaries and the western and eastern sides

of the Mid-Atlantic Ridge. For example, at the western boundary, most data comes from instruments deployed on the WB290

mooring, but additional data from the deeper, more eastern , WBH2 and WB3 moorings are used to cover the full depth. This

results in vertical profiles of temperature and salinity with sparse resolution, which are then vertically interpolated using a

monthly climatology for each location. As RAPID data are vertically interpolated over a pressure grid, depth will henceforth

be reported in decibars (dbar) rather than metres. These four merged and interpolated temperature and salinity profiles are used

to calculate dynamic height (referenced to 4820 dbar), which is then extrapolated to the surface using a seasonal climatology.95

The strength of the AMOC is then the maximum of Tamoc integrated over depth from the surface, i.e., the maximum of the

transport streamfunction; and the AMOC depth (zamoc) is the depth of that maximum at each time step, usually around 1100

m. The upper mid-ocean (UMO) transport (Tumo) is defined as the mid-ocean transport (Tmo) integrated between the surface

and the AMOC depth (Equation 2), where the mid-ocean transport is the sum of the internal, external and Western Boundary
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Wedge transports. This net southwards UMO transport , which includes the southward gyre recirculation and the northwards100

Antilles Current, is the main contributor to the AMOC (Smeed et al., 2014).

Tumo(t) =

zamoc∫
Tmo(t,z) dz =

zamoc∫
[Tint(t,z)+Twbw(t,z)+Text(t,z)] dz (2)

2.2 Developing the model

For use in the regression models, absolute salinity, conservative temperature and in situ density were calculated from the

gridded in situ temperature and practical salinity data created during the RAPID calculations. As all AMOC transports are105

filtered during the RAPID calculation, the same Butterworth 10-day, low-pass filter was also applied to the salinity, temperature

and density data; the filtered data were then averaged from a 12-hourly resolution to a monthly mean. Anomalies of these data

and RAPID-estimated transports were created by subtracting the mean between 27 May 2006 and 21 February 2017, and these

monthly mean anomalies were used to train all our regression models.

We revisited the linear regression made by Longworth et al. (2011), an ordinary least-squares (OLS) regression between the110

conservative temperature anomaly at 400 dbar and the thermocline transport anomaly. Longworth et al. (2011) suggested that

increasing southwards thermocline transport (a negative transport anomaly) causes more warm water to recirculate close to the

western boundary, and so the temperature at any particular depth within the thermocline will increase (a positive temperature

anomaly). They chose 400 dbar as both the mid-point of the thermocline layer, and a depth at which every profile had a sensor

deployed within 50 m. We used 132 monthly mean conservative temperature anomalies at 400 dbar from the RAPID western115

boundary profile, compared to their 39 historic CTD profiles. Our regression however, shown in the scatter plot in
:
(Figure 2

:
a),

explained only 20% of the variance of the thermocline transport anomaly, compared with 53% for the original result based on

the shorter time series. To investigate whether the regression fit could be improved by using the temperature anomaly from a

different depth, we used an algorithm to repeat the same regression using the conservative temperature anomaly every 20 dbar

from 220 to 800 dbar, and report at which depth the highest explained variance, or adjusted R2 value, was found. The highest120

explained variance found by the algorithm was 51% for the regression using the western boundary temperature anomaly at 780

dbar Figure 2
:
b. Changing the regression to use the density anomaly makes

:::::
made very little difference, increasing the adjusted

R2 to 0.54, with the anomaly again at 780 dbar.

We expanded this one layer model by creating multiple linear regression models using two, three and four explanatory vari-

ables to represent two, three and four layers respectively, reflective of the water mass and circulation depth structure. We used125

RAPID-defined layers: the thermocline between the surface and 800 dbar; Antarctic Intermediate Water (AAIW) between 800

and 1100 dbar; Upper North Atlantic Deep Water (UNADW) between 1100 and 3000 dbar; and Lower North Atlantic Deep

Water (LNADW) between 3000 and 4820 dbar (Figure 1b). UMO transport (Tumo), as the main contributor to the AMOC, was

preferred to thermocline transport as the dependent variable for all subsequent regression models. Variability of the AMOC is

dominated by the western boundary (Elipot et al., 2014; Bryden et al., 2009); and Frajka-Williams et al. (2016) showed strong130

positive correlation between UMO transports and isopycnal displacements on the western boundary around 820 m, and negative
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Figure 2. Linear regression of the monthly mean RAPID thermocline (0-800 m) transport anomaly on the monthly mean conservative

temperature anomaly at
::
(a)

:
400 dbar

::
and

:::
(b)

:::
780

:::
dbar

:
from the RAPID western boundary profiles. The orange line is the regression equation

for these data, the blue dashed line
::
in

::
(a)

:
shows the equivalent regression from Longworth et al. (2011) for the same data.

:::
The

::::::::
Pearson’s

::::::::
correlation

::::::::
coefficient

::
(r)

::
is

:::::
shown

::
for

::::
each

:::::
model

::::::::
regression.

correlation between LNADW transport and isopycnal displacements on the western boundary between 1500 m and the bottom.

Western boundary density anomalies were thus chosen as the independent variables representing each layer, with the exception

of AAIW. Since the
:::
The seasonal cycle of the AMOC is driven largely by eastern boundary density anomalies, which have a

sub-surface maximum
:::::::::
seasonality

::
at

:::
the

::::::
eastern

::::::::
boundary

:::::::::::::::::::::::::::::::::::::::::::::
(Chidichimo et al., 2010; Pérez-Hernández et al., 2015).

::::
The

::::::
annual135

::::::::
maximum

::::::::::
northwards

:::::::
transport

::
at

:::
the

::::::
eastern

::::::::
boundary

::::
and

:::
the

::::::
AMOC

:::::
occur

::::::
around

:::::::
October

::::::::::::::::::::::
(Vélez-Belchí et al., 2017),

::::
and

:
is
::::::
driven

::
by

:::::::
changes

::
in
:::
the

:::::::::
circulation

:::
of

:::
the

::::::
Canary

::::::
Current

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Casanova-Masjoan et al., 2020; Hernández-Guerra et al., 2017)

:
,

:::
and

::
at

::::::::::
intermediate

::::::
depths

:
(
::::::::
700-1400

::::
dbar)

:::
by

:::::::
seasonal

:::::::
changes

::
in

:::
the

::::::::::
Intermediate

::::::::
Poleward

:::::::::::
Undercurrent

:::::::::::::::::::::::::::::::::::::::::::::::
(Hernández-Guerra et al., 2017; Vélez-Belchí et al., 2017)

:
.
::::::
Eastern

::::::::
boundary

:::::::
density

::::::::
anomalies

:::::
have

::::::::
maximum

::::::::::
sub-surface

:::::::::
variability around 1000 dbar (Chidichimo et al., 2010),

::
so

the AAIW layer was represented by an eastern boundary density anomaly between 800 and 1100 dbar. The multiple linear140

regression equation (Equation 3) shows the four explanatory variables — three western and one eastern boundary density

anomalies — representing the thermocline (ρz1wb), AAIW (ρz2eb ), UNADW (ρz3wb), and LNADW (ρz4wb) layers. The superscripts

z1, z2, z3, and z4 indicate the anomaly depths to be identified by algorithm.

Tumo (t) = α ρz1wb (t)+β ρz2eb (t)+ γ ρz3wb (t)+ ζ ρz4wb (t) (3)

Initially a model with two explanatory variables representing the thermocline (ρz1wb) and AAIW (ρz2eb ) layers was imple-145

mented, then variables representing the UNADW (ρz3wb), and finally the LNADW (ρz4wb) were added. All possible combinations

of density anomaly depths within each layer were used to run the regression to find which combination gave the maximum

adjusted R2 value. For example, for the two-layer model, each western boundary density anomaly every 20 dbar between 220

and 780 dbar was combined in turn with each eastern boundary density anomaly every 20 dbar between 800 and 1080 dbar,

and regressed against the UMO transport anomaly. Due to the number of iterations required by adding the fourth variable, the150
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western boundary density anomalies representing the UNADW and LNADW in this model were chosen every 100 dbar rather

than every 20.

The OLS regressions were checked against a number of assumptions that should hold for a linear regression model to be

fit for purpose, for example, a known issue for those models based on time series is auto-correlation of residuals. We found

that all our OLS models, whether using simple or multiple linear regression, showed autocorrelation of residuals, indicated by155

Durbin-Watson values between 0 and 1. An alternate linear regression model was used, the generalized least-squares model

with auto-correlated errors (GLSAR), which models autocorrelation of residuals for a given lag (McKinney et al., 2019). For

each of our models, autocorrelation was significant for a lag of one month,
::::::
which

:
is
:::::::::
consistent

::::
with

::::::::::::::::
Smeed et al. (2014)

:
,
::::
who

::::
show

:::
the

:::::::::::
decorrelation

::::::
length

::::
scale

:::::::::
associated

::::
with

:::
the

::::::
AMOC

::
is
:::
40

::::
days.

2.3 Evaluating the model160

The simplest model selected by algorithm, regressing UMO transport anomaly on the western boundary density anomaly at

780 dbar
:
, gives an adjusted R2 value of only 0.49, shown in the top time series plot (Figure 3a). This plot also shows relatively

large model prediction intervals (orange shaded area
::::::
shading), which give the range of UMO transport anomalies that we have

95% confidence will occur for that combination of boundary density anomalies. However, adding the eastern boundary density

anomaly at 1020 dbar (ρ1020eb ) increases the maximum adjusted R2 to 0.74 (Figure 3b) and reduces the prediction intervals.165

Adding the ρz3wb and then the ρz4wb western boundary density anomalies
:::::
further

:
increases the adjusted R2 value of the model to

0.76 and 0.78 respectively (Figure 3c and d). Although increasing layers from two to three to four doesn’t
:::
does

::::
not increase

the adjusted R2 greatly, it does reduce the standard error of the regression, from 1.85 Sv for the single layer model, to 1.32,

1.27 and 1.23 Sv for the two, three and four-layer models. The algorithm also selects slightly different density anomaly depths

for these last two regressions: 720, 980 and 1200 dbar when three variables are used; and 740, 980, 1200 and 3000 dbar when170

all four are included. As using explanatory variables to represent all four layers gives a regression model that explains the

greatest variance in the UMO transport anomaly and has the lowest standard error, it was selected to apply to the historical

hydrographic data. The resulting multiple linear regression equation (Equation 4) shows the depths chosen for each of the four

density anomalies by the algorithm, and the coefficients for each.

Tumo = 40.5 ρ740wb − 98.6 ρ980eb +46.7 ρ1200wb +46.8 ρ3000wb , (4)175

The model was tested against
::::::
selected

::::::
model

:::
was

:::::::::::::
cross-validated

:::::
using

:
a
:::::::
30/70%

::::::::::::
training/testing

::::
split

::
of

:::
the

::::::
RAPID

:::::
data,

::
to

:::::::::
investigate

::
its

::::::::
suitability

:::
for

:::::::::
predicting

::::
over

:
a
::::::
period

:::::
much

:::::
longer

::::
than

:::
the

::::::
almost

::
11

:::::
years

::
of

::::::
RAPID

::::
data

::::
used

::
to
:::::
train

::
the

::::
full

::::::
model.

::::
The

::::
two

:::::::::::::
cross-validation

:::::::
models,

::::::
trained

:::::
using

:::
the

:::
first

::::
and

:::
last

::::
30%

:::
of

:::
the

::::::
RAPID

:::::
data,

::::
both

::::::
predict

:::::
UMO

::::::::
transport

::::::::
anomalies

:::
for

:::
the

:::::::::
remaining

::::
70%

::::
that

::::
agree

:::::
well

::::
with

:::
the

::::::::::
observations

::::::::
(r=0.88).

::::
The

:::
full

::::::
model

:::
was

::::
then

::::::
tested

::::::
against

::::
new

RAPID data not used to train it, made available following the most recent expedition and covering the period from February180

2017 to November 2018 (Smeed et al., 2019). The model-predicted UMO transport anomaly shown in Figure 4a shows that it

reproduces the trends and variability, although not always the magnitude, of the observed values well (r=0.75). It also shows
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Figure 3. Comparison of UMO transport anomaly predicted by GLSAR(1) regression models using one to four layers with the UMO

transport anomaly observed by RAPID. The layers represented by the regression independent variables are shown above each plot, and the

model R2 value, adjusted for the degrees of freedom of each model; and standard error of the regression, are shown to the right. The shaded

area
::::

orange
:::::::

shading around each model prediction line shows the 95% prediction interval.
:::
The

::::
blue

::::::
shading

:::::
around

:::
the

:::::::
observed

:::::::
transport

::::
shows

:::
the

:::
1.5

::
Sv

:::::::::
uncertainty

:::::::
estimated

::
by

:::::::::::::::::
McCarthy et al. (2015)
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(b) Deep layer + Ekman model of LNADW

RAPID Model Model + climatology

Figure 4. (a) UMO transport anomaly estimated from the most recent RAPID observations (blue) compared against the UMO transport

anomaly predicted by the four-layer regression model (orange) using density anomalies derived from the same RAPID data. The RAPID

data were 12-hourly and 10-day filtered. The grey line shows the model prediction where the eastern boundary density anomaly at 980 dbar

is replaced by a monthly climatology. (b) LNADW transport anomaly estimated from the most recent RAPID observations (blue) compared

against the LNADW transport anomaly predicted by the regression model combining the western boundary density anomaly at 3040 dbar

(orange) derived from the same RAPID data and the Ekman transport.

that when the eastern boundary density anomaly at 980 dbar is replaced with a monthly climatology, the trends and variability

are also well captured (r=0.71). The reason that a climatology was tested will be discussed in subsection 2.5 when we describe

the selection of historical hydrographic data.185

Our model was trained on monthly mean density anomalies, but was to be used with hydrographic data from much shorter

periods of a day or two. To evaluate how well these ‘snapshot’ profiles represented the longer periods, we simulated them by

randomly selected 20 single points from the 7961 available 12-hourly values from the most recent RAPID data. These were

applied to the model and the predicted UMO compared to the observed monthly mean UMO for the same time,
::::
with

:::
the

::::::
model

::::
error

:::::
being

:::
the

::::::::
difference

:::::::
between

:::
the

::::
two. Bootstrapping the model prediction showed that around 65% of the observed UMO190

values were within the prediction interval of the corresponding model UMO. The standard deviation of the error (predicted

UMO minus observed UMO)
::::::::::
bootstrapped

::::::
model

:::::
errors

:
was 2.8 Sv.

The CTD profiles to be applied to the regression model to estimate UMO transport occur at irregular intervals, so to allow

comparisons between periods, we calculated the mean transport anomalies for a given time window. Additionally, we calculated

9



the weighted rolling mean for the transport anomalies with the RAPID annual cycle removed, using a Gaussian distribution195

over the same time window. Since Smeed et al. (2014) calculated means for two 4-year periods, 2004–2008 and 2008–2012,

from April to March, we used the same four-year window for both the period mean and weighted rolling mean to allow a direct

comparison. Since the UMO is a transport specific to RAPID, we also estimated the AMOC by adding the model-derived

UMO transport to the monthly mean Florida Current and Ekman transport anomalies for the same date. The Florida Current

data were the Western Boundary Time Series daily mean transport estimates from submarine cable voltage, and the Ekman200

data were the same ERA-interim reanalysis-derived Ekman transports as used by RAPID. The Florida Current data has
:::
have

:
a

gap between 22 October 1998 and 19 June 2000. There were no selected hydrographic profiles during this gap, but this period

was filled with the time series mean to allow the four-year mean and weighted rolling mean to be calculated for the Florida

Current transport. To give overall transports, the relevant mean transports from the RAPID data used to train the model (27

May 2006 to 21 February 2017) were added to the four-year and rolling mean anomalies.205

To evaluate the co-variability of the density anomaly selected to represent each water mass transport and the observed UMO

transport anomaly, we determined the coherence between them using a multi-taper spectrum following Percival and Walden

(1998). This method reduces spectral leakage while minimising the data loss associated with other tapers. The number of tapers

used was K = 2p− 1, where p= 4, and the 95% confidence level given by 1− 0.051/(K−1). The western boundary density

anomaly at 740 dbar, which represents the thermocline water mass transport, shows significant coherence
:::::
shows

:::::::::
significant210

::::::::
coherence

::::
with

:::
the

::::::::
observed

:::::
UMO

::::::::
transport

:
at periods of around 65, 75 and 95 days; and then at all periods from 120 days

to 4 years. The highest significance occurs for periods of around 65 days and 2–3 years (Figure 5a), and is in phase at all

periods (Figure 5b). The eastern boundary density anomaly at 980 dbar, representing the AAIW water mass transport, shows

significant coherence for periods between 100 and 120 days, 150 to 200 days, and between 280 days and 1.5 years, with the

strongest coherence at around 160 days and just over 1 year (Figure 5c). The coherence for this variable is mostly out of215

phase by 180°
::
for

:::::
most

::::::
periods

::::
with

:::::::::
significant

:::::::::
coherence,

:
(Figure 5d)

:
), which is consistent with its negative coefficient. The

western boundary density anomaly at 1200 dbar, representing the UNADW water mass transport, shows significant coherence

for periods between 67 and 80 days, and around 90 days, and to a lesser extent around 200 days (Figure 5e), For the first two

coherence peaks it is out of phaseby up to -90°.
::::
The

:::::::::
significant

::::::::
coherence

::
is

::::::::::::
approximately

::
in

::::::
phase,

::::
with

:::
the

::::::::
observed

:::::
UMO

:::::::
transport

::::::::
anomaly

::::::
lagging

:::
the

:::::
1200

::::
dbar

::::::
density

::::::::
anomaly

::::::
slightly (Figure 5f); at the 200 day peak it is in phase. Finally, the220

western boundary density anomaly at 3000 dbar, representing the LNADW water mass transport, shows significant coherence

only for periods at just under 140 days, and between just over 1 year, or 400 days (Figure 5g), and just over 2.5 years, or 990

days. For this latter period, the co-variability is out of phaseby nearly 90°, showing that increasing density at
:::
also

::::::::::::
approximately

::
in

:::::
phase,

::::
with

::::
the 3000 dbar is related to a weakening of the southward UMO transport

::::::
density

::::::::
anomaly

::::::
lagging

:::
the

::::::
UMO

:::::::
transport

:::::::
anomaly

:::::::
slightly (Figure 5h).225

2.4 An additional model: reconstructing Lower North Atlantic Deep Water

The importance of the LNADW in the AMOC decline compared to the UNADW (Smeed et al., 2018) suggested an additional

linear regression model between the LNADW transport anomaly and two independent variables; a western boundary density

10
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Figure 5. Multi-taper spectrum coherence (left) and phase relationship (right) between the UMO transport anomaly observed by RAPID and

the density anomaly that is each independent variable in the linear regression. Significance of coherence (95% confidence) is indicated by the

black dashed horizontal line
:
in
:::
the

:::::::
left-hand

:::::
figures.

:::
The

::::::::
horizontal

::::
black

::::::
dashed

::::
lines

::
in

::
the

::::::::
right-hand

::::::
figures

::::
show

:::::
where

::
the

::::
time

:::::
series

::
are

::::::
exactly

::
in

:::::
phase,

:::
and

:::::
exactly

::::
180°

:::
out

::
of

:::::
phase.

11



anomaly at a depth within the LNADW layer, and the Ekman transport anomaly. The Ekman transport is included in the

model as Frajka-Williams et al. (2016) found that LNADW transport showed a deep baroclinic response to changes in Ekman230

transport. We applied a similar algorithm to the UMO regression model, repeating the regression for the deep density anomaly

every 20 dbar between 3000 dbar and 4820 dbar, and reporting the maximum explained variance.

For the LNADW linear regression, the optimal model with the highest adjusted R2 value of 0.75 for a
::::::::
algorithm

:::::::
selected

:::
the

western boundary density anomaly at 3040 dbar, close to the boundary between the upper and lower North Atlantic Deep Water

layers at 3000 dbar. The resulting linear regression has
:
(Equation 5)

::::
has

::
an

:::::::
adjusted

:::
R2

:::::
value

::
of

::::
0.75,

:
a standard error of 0.94235

Sv(), and the coefficients show that a positive anomaly in LNADW transport is associated with both a negative density anomaly

and negative Ekman transport anomaly. This means a reduction in the deep southwards LNADW flow is linked to lower density

water at 3040 dbar, which we would expect with a reduction in overturning. The inverse relation between LNADW and Ekman

transports reflects the statistically significant inverse correlation (r = -0.58) found by Frajka-Williams et al. (2016) between the

two transports.240

Tlnadw =−175.9ρ3040wb − 0.4 Tekman (5)

This model was also tested using the RAPID data between February 2017 to November 2018, and the model-predicted

LNADW transport anomaly shown in Figure 4b shows that it compares well with the RAPID-observed equivalent (r=0.73).

The hydrographic profiles selected for use in the UMO empirical model were also applied to this LNADW model, and the

four-year and weighted rolling means calculated using the same windows.245

2.5 Selecting historical hydrographic data

As Longworth et al. (2011) documented, between 1980 and 2017 there are many more hydrographic profiles close to the

western boundary than the eastern. Since the eastern boundary density anomaly shows strong seasonal variability (Pérez-

Hernández et al., 2015; Chidichimo et al., 2010), replacing it in the model with a monthly climatology from the RAPID eastern

boundary data, as described in the previous subsection 2.3, allows us to use all available western boundary profiles, although250

at the cost of losing a little of the explained UMO transport variance.

Historical hydrographic data were obtained from the World Ocean Database 2018 (WOD2018) (Boyer et al., 2018), and

from the datasets processed during
::
by

:
Longworth et al. (2011), with duplicate data removed. Data were selected initially based

on a region defined by latitude and longitude, from 24°N to 27°N, and from 75°W to 77.5°W. CTD profiles were then grouped

by date, with a date group defined as separated by 3 days or more. From each group, we selected profiles based on similarity of255

distance from the continental slope to the west as the RAPID WB2 and WBH2 moorings. We justify this as the AMOC shows

meridional coherence of buoyancy anomalies within 100 km, and variability at the western boundary increases with distance

from it (Kanzow et al., 2009). The RAPID western boundary profile that the model is based on uses the WB2 mooring for

measurements down to around 3850 dbar, then the WBH2 and WB3 moorings below this. The distance from each mooring to

the continental slope was calculated at the depths of the western boundary density anomalies that the algorithm selected. The260
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Figure 6. (a) All CTD profiles from the World Ocean Database 2018 in the region shown, compared with (b) those selected as being the

most similar distance from the western boundary as the WB2 and WBH2 RAPID moorings.

same was done for each CTD profile. Then, for the profiles within each group, those with the most similar distance for each

depth were selected. For example, for the density anomaly ρ740wb , the WB2 mooring is 13.8 km from the continental slope at

740 dbar. If there are 5 CTD profiles within the group, with distances from the slope at 720
:::
740

:
dbar of 9.8 km, 12.4 km, 15.0

km, 18.9 km, and 27.5 km, then the profile that is 12.4 km away is selected. The same is done for the density anomalies ρ1200wb

and ρ3000wb . Thus between one and three CTD profiles are selected from each group to use in the model, and merged if required.265

The two regional plans in Figure 6, which compare all available CTD profiles and those selected for use in the model, shows

::::
show

:
that the majority were located close to the RAPID western boundary mooring array.
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RAPID Model Bryden et al., 2005

Figure 7. UMO transport anomaly estimated by the empirical model using density anomalies from six transatlantic hydrographic sections,

compared to estimates from Bryden et al. (2005) and RAPID. The uncertainties shown for the model-derived values are the model’s prediction

intervals; the Bryden et al. (2005) uncertainty is 2 Sv.

3 Applying the model to historical hydrographic data

Initially, we used the western boundary density anomalies derived from the transatlantic sections at 25
::::
24.5°N from 1981,

1992, 1998, 2004, 2010 and 2015 to estimate the UMO transport anomaly using the four-layer regression model. The error270

bars show the model prediction interval, which gives the range of UMO transport anomalies that we have 95% confidence

will occur for that combination of boundary density anomalies. The uncertainty for the 1957 section model estimate were
:::
was

much larger than for the later sections
::::::
section, and since no suitable hydrographic data before 1981 was available, it is omitted

from our results. The sections from 1981, 1992, 1998 and 2004 were used by Bryden et al. (2005) to reconstruct the AMOC

fully, and Figure 7 shows generally very good agreement between the model and Bryden et al. (2005) AMOC estimates, with275

only
:
.
::::
Only

:
the 2004 estimate from Bryden et al. (2005)

:
is
:
not within the model’s prediction interval, however the model 2004

estimate appears to be in better agreement with the RAPID observations. The model UMO estimates for 2010 and 2015 are

also consistent with the RAPID UMO, reflecting the large downturn between late 2009 and early 2010 and a peak in 2015. The

model consistently predicts a stronger AMOC than Bryden et al. (2005), with mean and maximum differences of 2.6 and 4.4

Sv.280

When the model is applied to western boundary density anomalies from the selected hydrographic profiles, together with

the eastern boundary climatology, the resolution of the UMO time series in Figure 8 is sufficient to show decadal and multi-

annual variability. The standard deviation of the RAPID monthly mean anomalies is ±2.9 Sv, and the UMO transport anomaly

estimated by the model is stronger southward than this in May 1985, March 1989, June 1993, February 2003, and March

2004, with each anomaly lower than -3.3 Sv. This is stronger than any negative anomaly predicted by the model during the285

RAPID period. The UMO is weaker southward than the RAPID standard deviation in September 1981, February 1986, July

and August 1992, October 2004, and October and December 2015, with the anomaly again being greater than 3.5 Sv with the

14



exception of July 1992. When compared directly to the RAPID observations, the model predictions generally agree well with

the overall trends, with one notable exception during the RAPID WB2 mooring failure of late 2005 to early 2006, when the

model estimates a stronger southwards UMO than was observed by RAPID.290

The model-estimated AMOC transports shown in Figure 8 also agree well with the equivalent estimates from Bryden

et al. (2005), with only their
:::
the

::::::::
exception

:::
of

:
1998value outside of the model’s prediction interval, although it

:
,
::::::
where

::::
their

:::::::
estimate

::
of

:::::
16.1

::
Sv

::
is
::::

just
:::::::
outside

:::
the

:::::
model

::::::
upper

:::::::::
uncertainty

:::
of

::::
15.3

:::
Sv.

::
It

:
should be noted that they

:::::::
however

::::
that

:::::::::::::::::
Bryden et al. (2005) used constant values for both Florida Current and Ekman transports

:
,
:::::::
whereas

::
we

:::
use

:::::::
monthly

:::::
mean

::::::
values

:::::
based

::
on

:::::::::::
observations. The magnitude and trends of the RAPID observations are also captured well by the model estimates295

from CTD profiles taken during the same period. Including the monthly mean Ekman transport allows the model to capture the

2009–2010 downturn well, although the profiles from November 2009 and October 2010 give the only model AMOC trans-

ports sufficient weak to be outside the standard deviation of the RAPID monthly mean anomalies of ±2.4 Sv. Prior to 2004,

the model estimates the AMOC to be weaker and outside the standard deviation in March of 1987 and 1989, September 1991,

June 1993, February 1998, and March 2004, although none reach the magnitude of the 2009–2010 downturn, with the weakest300

AMOC anomaly of -5.5 Sv seen in March 1987. The strongest model AMOC anomaly of 8.4 Sv is seen on 2 October 2004,

which is very close to the RAPID mean anomaly for September 2004 of 8.7 Sv. The AMOC anomaly was also over 2.4 Sv for

11 profiles during the 23 years prior to the start of RAPID and 4 during the 13 years of RAPID observations shown here.

Compared to the LNADW estimates from transatlantic sections made by Bryden et al. (2005), the model predictions get

closer with each subsequent section from 1981 to 2004. The model-estimated transports are all more positive than those of305

Bryden et al. (2005) with the exception of 2004. The LNADW transport estimated by the model for April 2004 differs from

that estimated by Bryden et al. (2005) only 0.3 Sv, and from the observed RAPID LNADW transport by less than 0.1 Sv. The

model LNADW transports prior to 2004 show a weakening in 1987 to +1 Sv, almost
::
as weak as the observed RAPID monthly

mean LNADW transports of 1.3, 1.0 and 1.6 Sv in January 2010, December 2010
:::
and

:
March 2013 respectively. The model

LNADW transports post-2004 are in reasonable agreement with RAPID trends, although tend to over- or under-estimate the310

strength. The observed weakening of southwards LNADW flow in 2010 is captured well, with the model LNADW showing a

strong positive anomaly.

The four-year mean transports in Figure 9 show that between 1984 and 2000, the UMO strength was within 0.6 Sv of the

RAPID mean UMO of -18.3 Sv, taken for the period used to create the model. The four-year means begin from 1984 as prior

to this there is only a single profile. The period with the strongest southwards four-year mean UMO is 2000–2004 at -20.6 Sv,315

lower than the RAPID reduced period of 2008–2012 and 2012–2016 when the mean UMO transports were -18.6 and -18.7 Sv

respectively, however the error for the model mean is 4.4 Sv. The four-year model mean UMO transport also compares well

to the RAPID equivalent for 2004–2008 and 2008-2012, each differing by only 0.4 Sv. The model mean UMO for 2012–2017

is however 1.6 Sv higher than the RAPID mean. The Gaussian-weighted four-year rolling mean also suggest
:::::::
suggests

:
that the

multi-year UMO variability was low during the 1990s, followed by a period of strengthened southward transport in the early320

2000s. It also suggest a weakening of southwards UMO transport from 2012 not seen in the observations.
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Figure 8. UMO and LNADW transports estimated by empirical models using density anomalies from hydrographic CTD profiles, compared

to estimates from RAPID and Bryden et al. (2005). The 980 dbar eastern boundary density anomaly for the UMO model was replaced

by RAPID monthly climatology. The monthly mean Florida Current and Ekman transports are also shown, and were added to the UMO

model-estimated transports to give the estimated AMOC transport.
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The four-year mean AMOC transports show slightly more variability than the UMO, and agree slightly less well with the

RAPID four-year mean values, differing by 0.7 Sv for 2004–2008 and 2008–2012, and 1.5 Sv for 2012–2016. The 2000–2004

mean reflects the UMO downturn, with the lowest four-year mean value of 14.8 Sv, again lower than the 2008–2012 mean

AMOC transport for both model and RAPID by 0.4 and 1.1 Sv respectively.325

The four-year LNADW rolling mean suggests a weakening, although not monotonic,
::::::::::::
non-monotonic

::::::::::
weakening trend in

the southwards deep return flow between 1985 and 1999, from 8.5 Sv southwards in 1985, decreasing to 3.8 Sv southwards in

1999. The rolling four-year mean then varies by less than 0.6 Sv between 2000 and 2008, then weakens again to between 4.6

and 4.3 Sv southwards in 2009 and 2010 respectively, before increasing in strength again to a maximn
::::::::
maximum

:
southwards

transport of 7.7 Sv in 2013. The RAPID mean
::::::
RAPID

:::::
mean

:::::::::
southward values for 2004–2008 and 2008–2012 are stronger330

southwards than the model by 0.9 and 0.3 Sv respectively, but for 2012–2016
:
it
:

is 1.8 Sv weaker. The greater disagreements

between model and RAPID mean values for AMOC and LNADW transports may be due to the additional smoothing caused

by using monthly mean Ekman transport to estimate them, rather than the 10-day filtered values used by RAPID. None of the

model-estimated UMO, AMOC or LNADW transports show an overall trend.

4 Discussion335

Although the AMOC has been well-observed since 2004 by RAPID, before this, estimates of AMOC transport were restricted

to approximately decadal transatlantic sections. It has been estimated that a time series of at least 60 years is necessary to detect

long-term change in the AMOC due to anthropogenic global warming (Baehr et al., 2008), so extending the AMOC record

into the past is crucial. Although proxies have been used to extend AMOC estimates earlier, these use one, or at most two,

layers to represent AMOC dynamics (Longworth et al., 2011; Frajka-Williams, 2015). However, Baehr et al. (2007) showed340

that deep density measurements were important in reducing the length of the time series required to detect anthropogenic

change, and single layer models neglect this. In this study, we showed that an empirical regression model applied to historical

hydrographic data could be used to improve the resolution of the UMO and hence AMOC transport estimates compared to the

sparse transatlantic sections. In addition, by representing the deep return layers of the AMOC, the model could capture low

:::::
lower frequency changes missed by other proxy models.345

To develop this empirical model of the AMOC, we regressed UMO transport on western boundary density anomalies within

each of the thermocline, UNADW and LNADW layers, and an eastern boundary climatology within the AAIW layer, using an

algorithm to select the best depth for each density anomaly. The selected model was then applied to historical hydrographic

CTD profiles to predict UMO and hence AMOC transport strength between 1981 and 2016, at approximately annual resolution.

This resolution is sufficient to show decadal and multi-year
::::::
pentadal

:::
to

::::::
decadal

:
variability, with a model uncertainty of around350

±2.5 Sv.

There is no overall trend in either AMOC or UMO as estimated by the model, but four-year means, following Smeed et al.

(2018), suggest that there were stronger southwards UMO and stronger northwards AMOC transports between 2000 and 2004

than at any time observed by RAPID. The sea-surface height model developed by Frajka-Williams (2015), which is implicitly
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Figure 9. Four-year means (dashed lines) from 1984 to 2016 and the Gaussian-weighted rolling mean with a 4-year window (solid line),

with the markers showing the mid-point, for AMOC, LNADW and UMO transports estimated by the relevant regression models (orange)

and from RAPID observations (dark blue). The four-year and rolling means for Florida Current (light blue) and Ekman (dark grey) transports

are also shown.

single-layer, estimated the mean UMO for 1993–2003 and 2004–2014 to vary by only 0.1 Sv. By contrast, our model estimated355

the same 11-year means as -19.0 and -18.2 Sv, a difference of 0.8 Sv. The 11-year mean for 1982–1992 was -18.1 Sv, showing

that our four-layer model captures more of a change in the UMO. The model mean UMO transport for 2004–2014 of -18.2 Sv

also agrees well with the RAPID equivalent of -17.9 Sv. The importance of representing the deep layers can be seen in repeating

the predictions using the two- and three-layer models described earlier. The two-level model representing the upper two layers

gives decadal mean differences in UMO transport of 0.3 Sv, while adding the upper deep layer increases the mean UMO for360

1982–1992, 1993–2003 and 2004–2014 to -18.3, -18.7 and -18.1 Sv respectively, a difference of 0.6 Sv. The AMOC proxy

from Frajka-Williams (2015) had mean transports for 1993–2003 and 2004–2014 of 18.3 and 17.1 Sv, while the RAPID mean

AMOC transport for 2004–2014 was 16.9 Sv. The 11-year mean AMOC transports were predicted by our model as 17.8, 17.4

and 15.9 Sv for 1982–1992, 1993–2003 and 2004–2014 respectively, again showing greater variability than the altimetry-based

results.365
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In addition to the four-layer UMO/AMOC model, we also created a similar model regressing LNADW transport on the deep

western boundary density anomaly at 3040 dbar and Ekman transport. The four-year mean LNADW transport estimates from

the same hydrographic profiles show lower frequency variability than the UMO/AMOC, suggesting the deep southwards return

flow was strong throughout the late 1980s and 1990s, weakening towards 2000. The four-year mean is also weak during the

observed AMOC downturn of 2008–2012. The rolling four-year means for all three transports reflect the changes observed370

by RAPID well, with decreasing northwards AMOC transport and decreasing deep southwards return flow balanced by an

increase in southwards gyre recirculation (Smeed et al., 2018).

Although this model increases the temporal resolution of AMOC estimates, the resolution is still coarse compared to RAPID

and the time intervals between profiles are inconsistent. The longest period where no interval is greater than 1 year is October

1988 to July 1994. There are only 2 intervals longer than 2 years: September 1981 to April 1985; and February 1998 to375

April 2001. The longest interval is 1328 days, the mean is 210 days. Although this resolution is sufficient to show multi-year

variability, as shown by the four-year means, the length of some of the sampling intervals and their inconsistency means the

model cannot show interannual variability reliably.

5 Conclusions

In conclusion, this study shows that the dynamics of the AMOC can be represented by an empirical linear regression model380

using boundary density anomalies as proxies for water mass layer transports. More than one layer, represented by boundary

density anomalies, are required to capture lower frequency changes to UMO transport. Deep density anomalies combined

with Ekman transport are successful in reconstructing LNADW transport, the deepest limb of the AMOC in the subtropical

North Atlantic. Previous proxies for AMOC or UMO at 26°N that rely on single layer dynamics (e.g. Frajka-Williams (2015);

Longworth et al. (2011)) cannot capture this low frequency variability. This is also the case for similar reconstructions at other385

latitudes, for example Willis (2010). Single layer dynamics are also fundamental to estimates of the AMOC that use fixed levels

of no motion such as the MOVE array (Send et al., 2011) or inverted echo sounders (see McCarthy et al. (2020) for details).

We have shown the importance of the inclusion of deep density measurements in AMOC reconstructions and believe these to

be key to identifying the fingerprint of anthropogenic AMOC change (e.g. Baehr et al. (2008)).

Our model, applied to historical hydrographic data, has increased the resolution of the observed AMOC between 1981 and390

2004 from approximately decadal to approximately annual, and in doing so we have shown decadal and four-yearly variability

of the AMOC and its associated layer transports. The result is the creation of an AMOC timeseries extending over 3 decades,

including for the first time deep density anomalies in an AMOC reconstruction.

Our model has not revealed an AMOC decline indicative of anthropogenic climate change (Stocker et al., 2013) nor the

long-term decline reported in SST-based reconstructions of the AMOC (Caesar et al., 2018). It has accurately reproduced the395

variability observed in the RAPID data, showing that the downturn between 2008 and 2012 (McCarthy et al., 2012) marked not

only the weakest AMOC of the RAPID era but the weakest AMOC since the mid-1980s. Since this minimum, the strength of

the AMOC has recovered in line with observations from the RAPID array (Moat et al., 2020). In fact, according to our model,
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southward flowing LNADW has regained a vigour not seen since the 1980s. Recent cold and fresh anomalies in the surface of

the North Atlantic subpolar gyre seemed to indicate a return to a cool Atlantic phase associated with a weak AMOC (Frajka-400

Williams et al., 2017). However, a weakened AMOC was not the primary cause of these anomalies (Josey et al., 2018; ?)

:::::::::::::::::::::::::::::::::
(Josey et al., 2018; Holliday et al., 2020). Whether a restrengthened AMOC will ultimately have a strong impact on Atlantic

climate such as was believed to have occurred in the 1990s (Robson et al., 2012) remains to be seen.
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