
Response to Reviewer #2 1 

I thank the authors for considering my comments on the initial submission. I think that 2 

manuscript has been improved, but I still have some concerns, as I explained below. Some of 3 

them might be a matter of style, and thus are debatable, but the authors and the editor may 4 

want to think about them once more. 5 

 6 

Improvements: The main message of the manuscript is now clearer. The study defines a 7 

transient sensitivity and attempts to estimate from observations and from model runs. These 8 

estimation shows a discrepancy, and the authors conclude that the models may be 9 

underestimating future sea-level rise. 10 

We agree that the manuscript has improved a lot based on your feedback. Thank you. We hope 11 

we have improved it further this time around and made the conclusion(s) even more clear. 12 

 13 

1) One main concern is again related to the length of the manuscript, whereas at the same time 14 

it compresses important information too strongly. I do not really understand why the authors 15 

want to cram all that information, as the length of the manuscript is by far not close to usual 16 

limits. 17 

We agree that we are not pressed for space. We will see what we can add to accommodate your 18 

concerns. Therefore, we have expanded the manuscript considerably and now include a section 19 

that articulates some of the potential caveats related to non-linearity and non-stationarity that 20 

were raised in the discussion of the manuscript 21 

 22 

For instance, the the main point of the study is the disagreement between the estimations of the 23 

transient sensitivity from observations and models. The reader would think that the 24 

methodology, including a clear description of the uncertainties, biases, etc. is crucial. Yet, the 25 

method section devotes just one sentence to describe the estimation of uncertainties (We use 26 

Monte Carlo sampling...)- Well, Mane Carlo sampling can be accomplished in many different 27 

ways, for instance to preserve autocorrelation of the regression residuals, with replacement or 28 

without replacement. The reader does not even know how many samples enter the regression - it 29 

seems that just 3 data points (?). If this is true, how is Monte Carlo re sampling really 30 

accomplished ? 31 

It appears to us that this is the primary concern: That the referee would like a more expanded 32 

description of the methods section in particular.  33 

It really is very simple what we are doing in this Monte Carlo sampling, hence the brief 34 

explanation. The number of observational/historical points is 3, as should be clear from the data 35 

section, and figure 2. But we have no space concerns and so you are correct, it would be good to 36 
state it in the methods section too. The three estimates come from different studies, and are well 37 

separated in time and it is therefore reasonable to assume the uncertainties are independent 38 

which makes the MC sampling trivial. We have added more detail to make this clear. We have 39 

revised the description in the methods text accordingly: 40 

“The relationship between temperature and GMSL rate is estimated for each group of points using 41 

linear regression.  The three observational estimates of both temperature and sea level rate 42 



(Figure 2, black) are uncertain. We take the uncertainties to be independent as the three estimates 43 

are sourced from separate studies using different data sources, different methods, and are well 44 

separated in time. We assume independent gaussian errors which we propagate to our estimates 45 

of the line parameters listed in Table 1 using Monte Carlo sampling.” 46 

 47 

Just to be 100% clear in this reply then here’s a verbose description and a code block (Python) 48 

that you can compare to the above description. We have three x-y pairs, each with their own σx 49 

and σy errors. We treat these errors as independent and gaussian.  The source for the σy-values 50 

are the same three publications that provide the y-values (I.e. the sea level rate estimates). The 51 

σx errors are obtained from the HadCRUT4 ensemble as described in the data section.  52 

Nmc = 10000  
slopes = np.full((Nmc),np.nan) 
T0s = np.full((Nmc),np.nan) 
o_intercept = np.full((Nmc),np.nan) 
for ii in range(Nmc): 
    p = np.polyfit(x+np.random.randn(x.size)*sigmax, 
                   y+np.random.randn(y.size)*sigmay,1) 
    slopes[ii] = p[0] 
    o_intercept[ii] = p[1] 
    T0s[ii] = -p[1] / p[0] 

 53 

Note that we have compared the above MC derived uncertainties to traditional weighted least 54 

squares regression (using statsmodels.regression.linear_model.WLS). The results are virtually 55 

identical.  Also note: WLS also assume gaussian independent errors, but only allows for errors in 56 

the y-direction. 57 

 58 

2) Perhaps my most important concerns is indeed related to that very limited number of 59 

samples. The study claims that although the physical processes relating global mean 60 

temperature and sea level rise would in principle render that link non-linear,, the data indicate 61 

that the link is close to linear., at least in the range of the observed changes. I struggle to 62 

understand this claim when the available number of samples is just 3. … 63 

First: We do not just use the three historical points as an argument for linearity. So, the criticism 64 

here seems somewhat misplaced. We observe that the models (AR5 and SROCC) show a near-65 

linear behavior. That is not just three points. In the case of AR5 we have a near perfect linear 66 

relationship for 15 pairs of values (including the upper and lower ranges), and similar for the 9 67 

SROCC points. We then also find that the observations are close to linear. That may not be very 68 

impressive given that N=3, but this observation does not stand alone. Thus, we have three 69 

separate groups of points, and all of them are near linear. For all groups of points the linear 70 

correlation coefficients are greater than 0.98 (see table R1). Because of this we think we are 71 

justified in saying: “We find that both model projections and observations show a near linear 72 

relationship between century averaged temperature change and the average rate of sea level rise 73 

(Figure 2)”. 74 

The relationship between the SL rate and temperature may not be completely linear. We agree, 75 

and we explicitly state this in the manuscript already. However, we presume that we can agree 76 

that the rate is highly correlated with temperature. The relationship might not be linear, but if it 77 

is reasonably close to monotonic, then it makes sense to make a first order linear approximation 78 

over a given range. And this is precisely what we are doing. We do not argue that the 79 

relationship is linear. Indeed, we very explicitly note that it could very well be non-linear and 80 



that there are limits to an extrapolation. But within those limits the linearization we perform 81 

makes sense. 82 

Table R1: Linear Pearson correlation coefficients of all the points in the historical, AR5 and 83 

SROCC. For the AR5/SROCC values two separate correlations are calculated either including or 84 

excluding the upper and lower likely limits. Correlation and p-values were calculated using 85 

scipy.stats.pearsonr. 86 

 N Pearson Corr p-value 
Historical observations 3 0.9993 0.023 
AR5 (incl. upper/lower) 15 0.997 4*10-16 
AR5 (only central estimates) 5 0.994 0.0006 
SROCC (incl. upper/lower) 9 0.982 2*10-6 
SROCC (only central estimates) 3 0.998 0.034 

 87 

We have added some correlations to the results section and explicitly state N.  88 

 89 

… Even when looking at Fig 1, I would even go so far to say that a regression line drawn using 90 

the first two observational data points, PI and TG would not hit the third data point Sat even 91 

considering the uncertainty ranges. 92 

We perform this test in Figure R2. It turns out that the Sat estimate *is* consistent with the 93 

extrapolation of a line based on PI and TG alone.  94 

 
Figure R2: A version of figure 2 where the satellite altimetry data has been excluded 
from the observational regression (black line). The uncertainties in the regression 
become much greater. Note how the extrapolation based on TG and PI alone is 
consistent with the satellite altimetry estimate.  

 95 

I wonder if the claim of linearity would hold in the perfect world of climate models. For instance, 96 

if we also include the corresponding pre-industrial and 20th century data points derived from 97 

one one model run, would we see a linear relationship through the whole period from pre-98 

industrial to 2100 ? If the linear assumption of this study holds, this should be the case. Actually 99 

it should be the case for all individual model runs, as each run would be a surrogate for 100 

observations. If this assumption does not hold for the individual model runs - for instance if the 101 



the scenario data points fall bellow or above the regression line drawn with the PI and 20th 102 

century data points, then the linear hypothesis would not be correct, and the comparison shown 103 

in Figure 1 would not be indicative of an under or overestimation by the models. 104 

We also wonder what models would say for the past. At the moment it is impossible to do 105 

anything but speculate, because unfortunately there are no hindcasts with the same models 106 

used for projections and we very much encourage such studies. Here’s how we frame this in the 107 

manuscript: 108 

“Ideally, we would test the models using hindcasts to verify their ability to reproduce the past. 109 

Unfortunately, such hindcasts are unavailable for sea level projection models assessed in both AR5 110 

and SROCC. This is critical as Slangen et al. (2017) identified substantial biases in hindcasts of 111 

Greenland surface mass balance, glacier mass loss, and deep ocean heating. Adjusting for these 112 

systematic biases increase the modelled sea level rise over the 20th century by ~50%.” 113 

Note that we restrict our claim of linearity to exactly what we observe. We observe a linearity 114 

for the 21stC model response. We do not claim nor do we want to that this is universal and 115 

necessarily leave open whether the same linearity could hold for the past. We explicitly discuss 116 

how the relationship can be broken by non-linearities and non-stationarities.  117 

We have added a new section called “reflections on the method”. In this new section we discuss 118 

how comparisons between past and future TSLS, vs hindcasts and propose using past TSLS as 119 

an emergent constraint. We write:  120 

“Sea level projections in the IPCC Fifth Assessment Report (AR5; Church et al., 2013), and the 121 

Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC; Oppenheimer et al., 122 

2019) are unfortunately not accompanied by hindcasts using the same model framework used for 123 

projections. It is therefore impossible to verify that these models can reproduce historical sea level 124 

rise. We can, however, compare the TSLS of model projections to the TSLS implied by historical 125 

records, and this can serve as a reality check. We have to keep in mind that TSLS potentially can 126 

change over time, and that a comparison between different periods cannot be as conclusive. We 127 

therefore appeal that future sea level based on modelling are not only used for projections but also 128 

include results based on model hindcasts. Ice sheets and ocean heat content has multi century 129 

response times and this can lead to model drift if the model is not perfectly initialized. To inform 130 

about the future, it is therefore a necessity but not sufficient that model can reproduce the total sea 131 

level rise over the 20th century. It is critical that sea level models also have sensitivities that are 132 

compatible with observations. We therefore propose that the historical TSLS should be used as an 133 

emergent constraint of sea level models.”  134 

 135 

  136 

This would be one possibility., perhaps there are others. What I mean here is that the manuscript 137 

leaves open some avenues to support or reject the main linear hypothesis, and I do not see why 138 

they are not pursued further in this study. 139 

Looking into hindcasts is impossible because these model hindcasts do not exist. So 140 

unfortunately, we will have to leave some questions open. We now draw attention to these open 141 

questions and the importance of hindcasts in the both the conclusion and the new “reflections 142 

on the method section”. 143 



Further we would argue that it is incorrect to consider the linear approximation a hypothesis, 144 

and an approximation is not a hypothesis that can be rejected. The linear approximation is 145 

supported by the very high Pearson correlation coefficients (See table R1).  146 

 147 

 148 

3) The linear hypothesis raises some additional points. … 149 

… The authors agree that the two main process causing sea level rise (thermal expansion and 150 

land ice melting) have a vastly different temperature sensitivities. Then the question arises as to 151 

why the linear link between temperature and sea level rise would hold. Is it because the sea level 152 

rise is still too small to show that non-linearly ? is it because of these two processes only one has 153 

been dominant so far ? There are estimations of the contribution of these processes to 20th 154 

century sea level rise. Frederike et al 2020, (doi: /10.1038/s41586-020-2591-3) found that the 155 

main mechanisms during the 20th century was land-ice melting and that that contribution has 156 

grown larger through time. . It is plausible to assume that for the preindustrial period the main 157 

mechanism was water expansion. Thus, why is the link still linear? 158 

I am of course aware that these questions are not easily to solve, but why not include here a a 159 

first step ? 160 

 161 

First, we want to stress that we do not have a linear hypothesis as already alluded to above. We 162 

have a linear first order approximation. This is an important distinction, and in our opinion, this 163 

also reduces the burden of proof drastically. We believe that our manuscript already makes this 164 

very clear. E.g. “Nature is complex and will be both non-linear and non-stationary, and this places 165 

limits on extrapolation. Regardless, the sea level response can always be characterized using the 166 

TSLS metric, and we can compare and contrast different estimates. “ 167 

We acknowledge the shifting balance of the budget as nicely demonstrated by Frederikse et al. 168 

2020. We also acknowledge that the different contributors have different sensitivities. However, 169 

it is simply wrong to conclude that this must give rise to a non-linearity. Consider the 170 

illustrative example in figure R2. Here, we have two contributors, both modelled as being 171 

completely linear in temperature, yet in relative terms the sea level budget starts out being 172 

dominated by expansion, but eventually ice melt takes over.  173 



 
Figure R2: Illustrative example demonstrating how changing relative sea level 
contributions can arise in a world where all contributors respond linearly to 
temperature. a) temperature forcing; b) The rate of sea level rise (�̇�) is modelled as 
the sum of two contributors: ice melt (�̇�) and steric expansion (�̇�); both 
contributions are modelled as linear in T. c) The sea level curve obtained by 
integrating �̇�. d) The relative contributions from Ice Melt and Steric expansion (e.g. 

�̇�/�̇�).  
 

 174 

To conclude, the referee presents an intuitive argument for why one might think that it must be 175 

non-linear and changing over time. However, in this case intuition turns out to be insufficient, 176 

and leads one to the wrong conclusion. Figure R2  demonstrate that you can easily have 177 

changing relative proportions in a linear world. We believe this to be a common 178 

misunderstanding, and so we have added this illustrative example and an explanation of it in a 179 

new section called “reflections on the method”.  180 

 181 

In summary, essentially the very short manuscript is based just in a few regressions - with s very 182 

small sample size. The process leading to those results is not clearly explained and the 183 

consequences of those results are not really explored. 184 

We have expanded the manuscript, and we hope that the methods are sufficiently clear now.  185 

The main contribution is the idea and the concept of TSLS rather than the results of the 186 

regressions. The idea is motivated by the physical reasoning that the initial response to a change 187 

in forcing is change in the balance of fluxes to the ocean heat reservoir and the land ice 188 

reservoir. That said the regressions are all based on data with extremely high correlations (See 189 

table R1). The linearization (=linear approximation) is thus clearly justified by both models and 190 

data.  191 

 192 

                        
    

 

   

 
  

                        
    

 

   

   

   
  

     

                  

                  

                        

    

 

    

   

    
  

   

      

                        

    

 

   

   

   

   

 
  



We explore the consequences of the idea by comparing the TSLS implied by the different 193 

regressions. In those comparisons we find that model sensitivity for the 21st century falls below 194 

the sensitivity in historical data. It would of course be better if we could calculate the model 195 

sensitivity over the exact same period we have observations. Unfortunately, this is impossible as 196 

the required hindcasts do not exist. So, we are in a situation where no proper historical 197 

validation is currently possible. The past vs future TSLS comparison we perform may not be as 198 

conclusive, but it is the next best thing. There are of course caveats in this past/future 199 

comparison. We spend a lot of text discussing the caveats and TSLS can change over time.  200 

In the new revision we propose that next gen sea level models should include hindcasts and 201 

further argue that TSLS can serve as a valuable emergent constraint of sea level models.  202 

 203 

 204 
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Abstract. Recent assessments from the Intergovernmental Panel on Climate Change (IPCC) imply that global mean sea level 

is unlikely to rise more than about 1.1m within this century, but will increase further beyond 2100. Even within the most 

intensive future anthropogenic greenhouse gas emission scenarios are higher levels assessed to be unlikely. However, some 

studies conclude that considerably greater sea level rise could be realized, and a number of experts assign a substantially higher 

likelihood of such a future. To understand this discrepancy, it would be useful to have scenario independent metrics that can 10 

be compared between different approaches. The concept of a transient climate sensitivity has proven to be useful to compare 

the global mean temperature response of climate models to specific radiative forcing scenarios. Here, we introduce a similar 

metric for sea level scienceresponse. By analyzing mean rate of change in sea level (not sea level itself), we identify a near 

linear relationship with global mean surface temperature (and therefore accumulated carbon dioxide emissions) in both model 

projections, and in observations on a century time scale. This motivates us to define the ‘Transient Sea Level Sensitivity’ as 15 

the increase in the sea level rate associated with a given warming in units of m/century/K. We find that model future projections 

estimated on climate model responses  fall below extrapolation based on recent observational records. This comparison 

suggests that the likely upper level of sea level projections in recent IPCC reports would be too low. 

1 Introduction 

Our planet is warming as anthropogenic emissions are increasing the atmospheric concentration of carbon dioxide. This 20 

warming causes sea levels to rise as oceans expand and ice on land melts. A perturbation in greenhouse gas concentrations 

changes the balance of energy fluxes between the atmosphere and the ocean surface, and the balance of mass fluxes to and 

from glaciers and ice sheets. However, the oceans and ice sheets are vast and it takes centuries to heat the oceans, and millenia 

for ice sheets to respond and retreat to a new equilibrium (Clark et al. 2018; Li et al., 2013; De Conto and Pollard, 2016; 

Oppenheimer et al. 2019; Clark et al., 2018). In this sense the ice sheets and oceans have a large inertia: An increase in forcing 25 

result in a long-term commitment to sea level rise. Simulations by Clark et al. (2018) indicate an equilibrium sea level 

sensitivity of ~2m/100 GtC emitted CO2. The equilibrium sensitivity can be compared to paleo-data (e.g. Foster and Rohling, 

2013). Initially the response to a perturbation in forcing is a flux imbalance, i.e. a change in the rate of sea level rise. Hence, 

sea level rise by 2100 does not immediately reflect the temperature in 2100, instead the entire pathway since the forcing change 

was introduced is important. We therefore expect 21st century sea level rise to better correlate with the century averaged 30 
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temperature than temperature itself by 2100. Following this, we here therefore propose to linearize the relationship between 

average rate of sea level rise and temperature increase representing the entire preceding century. The slope of this relationship 

shows then expresses how sensitive sea level is to century time-scale warming, and is we will refer red to it as the transient 

sea level sensitivity (TSLS). The intercept - where the sea level rate of change is zero - we interpret as a balance temperature. 

The relationship between the temperature and the rate of sea level rise has previously been noted (e.g. Warrick and Oerlemans, 35 

1990), and has been used to motivate semi-empirical models of sea level rise (Rahmstorf, 2007; Grinsted et al. 2010; Church 

et al. 2013; Kopp et al., 2016; Mengel et al., 2016). A key assumption behind such semi-empirical model projections is that 

the sensitivity implied by historical records is stationary and hence can be extrapolated into the future. However, there may be 

processes that can cause future sensitivity to be different from the past (Church et al., 2013). These changes can broadly be 

categorized as being due to a non-linear response to forcing, or due to a non-stationary response where the response depends 40 

on the state of the system. E.g. the sensitivity of small glaciers to warming will depend on how much glacier mass there is left 

to be lost, and we therefore expect this to have a non-stationary response. Nature is complex and will be both non-linear and 

non-stationary, and this places limits on extrapolation. Regardless, the sea level response can always be characterized using 

the TSLS metric, and we can compare and contrast different estimates.  

2 Reflections on the method 45 

Sea level projections in the IPCC Fifth Assessment Report (AR5; Church et al., 2013), and the Special Report on the Ocean 

and Cryosphere in a Changing Climate (SROCC; Oppenheimer et al., 2019) are unfortunately not accompanied by hindcasts 

using the same model framework used for projections. It is therefore impossible to verify that these models can reproduce 

historical sea level rise. We can, however, compare the TSLS of model projections to the TSLS implied by historical records, 

and this can serve as a reality check. We have to keep in mind that TSLS potentially can change over time, and that a 50 

comparison between different periods cannot be as conclusive. We therefore appeal that future sea level based on modellings 

are not only used for projections but also include results based on model hindcasts. Ice sheets and ocean heat content has multi 

century response times and this can lead to model drift if the model is not perfectly initialized. To inform about the future, iIt 

is therefore a necessity but not sufficient that models are able tocan reproduce the total sea level rise over the 20th century. It 

is critical that sea level models also have sensitivities that are compatible with observations. We therefore propose that the 55 

historical TSLS should be used as an emergent constraint of sea level models. 

 

Frederikse et al. (2020) find multi-decadal variability in the relative contributions of the major sea level contributors over the 

20th century. In recent years the contribution from ice melt has increased relative to that from thermal expansion. We also 

expect the individual major sea level contributors to have different sensitivities to warming. One might be misled to conclude 60 

that TSLS must be changing substantially already. Here, we demonstrate that even in a completely linear world we would 
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expect to have the budget to be changing over time (see Figure 1). For illustrative purposes we construct a simple linear model 

where global sea level rise (�̇�) only has two contributors: ice mass loss (�̇�) and thermal expansion (�̇�). We write: 

�̇� = �̇� + �̇�. 

These two contributions each respond linearly to warming.  65 

�̇� = 𝑎ெ𝑇 + 𝑏ெ  

�̇� = 𝑎ா𝑇 + 𝑏ா   

We insert and get a linear model for the sea level rate: 

�̇� = (𝑎ெ + 𝑎ா)𝑇 + 𝑏ெ + 𝑏ா    

The proportion of sea level rise due to ice melt becomes 70 

ெ̇

ௌ̇
=

ಾ்ାಾ

(ಾାಶ)்ାಾାಶ
 . 

This is not generally constant in T (see Ffigure 1), demonstrating that a changing proportion of ice melt does not necessarily 

imply a changing sensitivity to warming. Church et al. (2013) note that it is very likely that ice-sheet dynamical changes have 

contributed only a small part of the historical sea level rise, implying that semi-empiric models are unlikely to be able predict 

a large future contribution. The fact that ice dynamical changes have only been a minor contributor historically, while we 75 

expect it to play an increasingly important role in the future (Church et al., 2013) does not imply that TSLS cannot be close to 

stationary. 

 

32 Data 

Here we restrict our analysis to published estimates of the Global Mean Sea Level (GMSL) rate. We use three estimates of the 80 

historical rate: 1) the tide gauge record (TG) for the period 1900-1990 (Dangendorf et al., 2017); 2) the satellite-altimetry 

record (Sat; Ablain et al., 2019) from 1993-2017; 3) a reconstruction for the 1850-1900 pre-industrial period (PI; Kopp et al., 

2016). The corresponding temporally averaged temperature anomalies and uncertainties are calculated from the HADCRUT4 

observationally based ensemble of Global Mean Surface Temperature (GMST) reconstructions (Morice et al., 2012). We 

follow IPCC’s fifth assessment report (AR5; Church et al., 2013) AR5 and use a 1986-2005 baseline for temperature anomalies 85 

to avoid introducing additional uncertainties from in re-baselining the IPCC assessed projections. The historical estimates are 

compared to the projected sea level rate and temperature from 2000-2100 from two recent IPCC reports for a range of scenarios: 

the AR5 (Church et al., 2013), and the Special Report on the Ocean and Cryosphere in a Changing Climate SROCC (SROCC; 

Oppenheimer et al., 2019). Finally, we show the results of an expert elicitation (Bamber et al., 2019) which pertain to scenarios 

with 2°C and a 5°C warming by 2100 relative to the pre-industrial. These estimates are shown in Figure 21.  90 
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43 Methods  

The relationship between temperature and GMSL rate is estimated for each group of points using linear regression.  The three 

observational estimates  of both temperature and sea level rate (Figure 21, black) are uncertain. We take the uncertainties to 

be independent as the three estimates are sourced from separate studies using different data sources, different methods, and 

are well separated in time. We assume independent gaussian errors which we propagate to our estimates of the line parameters 95 

listed in Table 1 using We use Monte Carlo sampling to propagate these uncertainties to our estimates of the line parameters 

listed in Table 1.  Uncertainties in the projections assessed in AR5 and SROCC are specified as a central estimate and a likely 

range for both temperature and sea level (Church et al., 2013; Oppenheimer et al. 2019; Mastrandea et al., 2010). The IPCC 

sources do not provide information on the uncertainty covariance between projections of temperature and sea level. However, 

we observe that the upper and lower likely limits of temperature paired with the corresponding limit of sea level falls very 100 

close to the curve between central estimates (see Figure 21). This indicates that there is may well be a very high degree of 

covariance. For simplicity, we therefore assume full covariance between uncertainties in projected temperature and projected 

sea level, and depict this using the slanted error bars displayed in Figure 21. This assumption allows us to derive the upper and 

lower limit of the likely TSLS range by fitting a lines to the corresponding limit of sea level projections. Similarly, we assume 

covariance between the elicitation derived uncertainties of the two warming scenarios.  105 

 

Table 1 reports several estimates of TSLS, and we want to understand if each is substantially different to the corresponding 

observational estimate considering the uncertainties. We therefore test if the absolute difference is larger than zero considering 

uncertainties in both estimates, using a standard two-tailed hypothesis test assuming normality. 

 110 

We show the total cumulated anthropogenic CO2 emissions associated with a given temperature as a secondary horizontal axis 

in Figure 21 (IPCC, 2013; Meinshausen et al., 2011). We established this relationship using both historical data, and the mid-

range temperature projections for the RCP scenarios, and thus does not account for uncertainties in the e.g. climate sensitivity. 

The cumulated emission and temperatures were averaged over the same time intervals.  

54 Results 115 

The estimates of the temporal average rate of sea level rise against corresponding temporal average of GMST from a variety 

of sources are shown in Figure 21. The AR5 and SROCC projected rate of sea level rise over the 21st century from different 

scenarios show a close correspondence with projected temperatures (Figure 21, red and blue). The Pearson correlations are 

above 0.98 with p<0.001 in a two-tailed test for both AR5 (N=15) and SROCC (N=9), where N is three times the number of 

scenarios as we include the lower, mid, and upper likely estimates from the reports. We fit straight lines to these projections, 120 

and the slope gives a TSLS of 0.27ି.ଵ
ା.ଷ  m/century/K for AR5, and 0.39ି.ଷ

ା.ସ m/century/K for the models assessed in SROCC 

(Table 1). The historical rate of sea level rise in three different periods (PI, TG, and Sat) also show a close relationship to 
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warming (Figure 21, black) with a correlation coefficient of 0.998 (N=3; p<0.05). From this we estimate a TSLS of 

0.40±0.05  m/century/K. Finally, we represent the results of expert elicitation of 21st century sea level rise under two different 

warming scenarios (Bamber et al. 2019), which yield a sensitivity of 0.42ି.ଽ
ା.ଷଵ  m/century/K. The balance temperatures 125 

corresponding to all TSLS estimates are listed in Table 1. 

65 Discussion 

We find that both model projections and observations show a near linear relationship between century averaged temperature 

change and the average rate of sea level rise (Figure 21). A linearization captures the bulk of the sea level response on these 

time scales. This shows that the concept is sound and that TSLS is a suitable new metric for assessing the graveness of global 130 

mean sea level changes.  

 

The relationship deduced from model projections differs systematically from extrapolation of the observational relationship 

(Table 1 and Figure 21). Sea level projections assessed in AR5 have a substantially smaller TSLS than exhibited by historical 

observations, whereas SROCC is more comparable (Table 1). The greater SROCC sensitivity is driven by the warmest scenario 135 

and the higher TSLS is accompanied by a warmer balance temperature that is far from the observationally based estimate 

(Table 1). Future TSLS may well be different from the past due to non-linearities or non-stationarities in the relationship 

(Church et al., 2013). Thus, the discrepancy highlighted by Figure 21 does not necessarily demonstrate a bias in model 

projections, but as a minimum call for a yet to be prepared detailed explanation. Ideally, we would test the models using hind 

casts to verify their ability to reproduce the past. Unfortunately, such hind-casts are unavailable for sea level projection models 140 

assessed in both AR5 and SROCC. This is critical as Slangen et al. (2017) identified substantial biases in hind-casts of 

Greenland surface mass balance, glacier mass loss, and deep ocean heating. AccountingAdjusting for tThese systematic biases 

increase the modelled sea level rise over the 20th century by ~50%. The discrepancy between historical and projected 

sensitivities is puzzling considering the lack of possibilities for a validation of the model projections. 

 145 

In order for non-linearities to explain the discrepancy between the past and future relationship between warming and the rate 

of sea level rise rate, it is evident from Figure 21 that these would have to be sub-linear. This is incompatible with our current 

understanding. Major non-linearities are not expected this century according to the process knowledge encoded in the model 

projections assessed in both AR5 and SROCC, with SROCC presenting some signs of a super linear response (Figure 21). 

Antarctica, in particular, may have a super-linear response (Oppenheimer et al. 2019; DeConto and Pollard, 2016; Edwards et 150 

al. 2019; Bamber et al. 2019). Further, expert elicitation results overlap with the relationship found for the historical period 

but with a higher sensitivity (Table 1), which may be due to an anticipated super-linear response not captured by AR5 and 

SROCC assessment of model results. Antarctic rapid ice dynamics was considered as scenario independent in the IPCC fifth 



6 
 

assessment report AR5 (AR5; Church et al., 2013), in stark contrast to later results (Oppenheimer et al. 2019; DeConto and 

Pollard, 2016; Edwards et al. 2019). We therefore propose AR5 to have a TSLS likely upper bound, which is biased low.  155 

 

76 Conclusion 

We define a new Transient Sea Level Sensitivity (TSLS) metric, which relates the rate of global mean sea level rise to global 

century-long mean surface temperature change. We find that this metric can account for most of sea level response to 

temperature increase on a hundred-yearthis time scale. The TSLS metric is useful as it allows for model sensitivity 160 

comparisons, even if the models have not been run for the same set of scenarios, e.g. different radiative forcing. By framing 

the transient sensitivity in terms of temperature we separate the sea level sensitivity from climate sensitivity to a large extent. 

This allows for easier comparison between sea level models that are forced by different Earth system models. We propose that 

TSLS estimated from hindcast simulationss can serve as a valuable emergent constraint of sea level models, although this is 

currently hampered by the lack of information needed to construct these.  165 

 

We compare the model projections over the 21st century assessed by the IPCC with historical records from 1850-2017. We 

find that the model projections assessed in both AR5 and SROCC fall substantially below an extrapolation of historical records 

(Figure 21). This is reflected in the estimates of TSLS and balance temperature, which does not match the historical estimate 

(Table 1). Future sensitivity may be different from the past as the relationship between warming and sea level rate may be non-170 

linear or non-stationary. We reason that a non-linearity cannot explain the mismatch as the required curvature would be 

inconsistent with process knowledge encoded by model projections assessed in SROCC and expert expectations (Oppenheimer 

et al. 2019; Bamber et al., 2019). Based on our analyses we cannot fully reject that the sensitivity has changed between the 

historical period (1850-2017) and the projection period (2000-2100) differs. The major sea level contributors have 

characteristic response times of several centuries (Clark et al. 2018; Li et al., 2013; DeConto and Pollard, 2016; Oppenheimer 175 

et al. 2019; Church et al. 2013), which suggests that the sensitivity is unlikely to change substantially between these periods. 

The outcome of an expert elicitation is more consistent with an extrapolation of the historical relationship than AR5 and 

SROCC (Figure 21 and Table 1). Further, Slangen et al. (2017) identified substantial biases in process model hind-casts, which 

draws into question whether the AR5 and SROCC assessed models would be able to reproduce the time evolution of historical 

sea level rise. This is supported by our interpretation of the TSLS discrepancy between past and future. Our analysis implies 180 

that the model states used for the assessment in SROCC are too close to balance for present-day conditions and at the same 

time underestimate TSLS. Taken together this suggests that the projected global sea level rise by the end of this century in 

various IPCC reports are at best conservative and consequently underestimate the upper bound of what is referred to as the 

likely sea level rise by the end of this century.  
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Table 1: Transient sea level sensitivity, and balance temperatures estimated from different sources. Intervals are likely ranges (17-250 
83%). Symbols indicate that the difference from the observational estimate is significant at p<0.05 (*), and p<0.1 (†) using a two-
tailed test assuming normality. 

 Sea level sensitivity 

m/century/K 

Balance Temperature 

°C 

Observations 0.40 [0.35 – 0.44] -0.70 [-0.77 – -0.64] 

SROCC 0.39 [0.36 – 0.43] -0.14† [-0.42 – 0.23] 

AR5 0.27* [0.26 – 0.30] -0.63 [-0.70 – -0.41] 

Expert elicitation 0.47 [0.33 – 0.85] -0.37* [-0.36 – -0.05] 

 

 

 255 
 
Figure 1: Illustrative example demonstrating how changing relative sea level contributions can arise in a world where all 
contributors respond linearly to temperature. a) temperature forcing; b) The rate of sea level rise (�̇�) is modelled as the sum of two 
contributors: ice melt (�̇�) and steric expansion (�̇�); both contributions are modelled as linear in T. c) The sea level curve obtained 
by integrating �̇�. d) The relative contributions from ice melt and steric expansion (e.g. �̇�/�̇�).  260 
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Figure 21: The rate of sea level rise versus long term average temperature as seen in observations (black), in model projections 265 
(red/blue), and expectations in an expert elicitation (orange). Each point represents an average over a time period (PI: 1850-1900; 
TG: 1900-1990; SAT: 1993-2017; AR5/SROCC/Experts: 2000-2100). Sea level projections as assessed in AR5 and SROCC 
systematically fall below what would be expected from extrapolating observations to warmer conditions, as well as below the expert 
elicitation. Error bars show estimated likely ranges (17-83%). Likely ranges for SROCC and AR5 are shown as slanted error bars.  


