

1 **A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and**
2 **southwest Atlantic Oceans to ash deposition and trace metal release from the Calbuco**
3 **volcanic eruption in 2015**

4 Maximiliano J. Vergara-Jara^{1,2}, Mark J. Hopwood^{3*}, Thomas J. Browning³, Insa Rapp⁴,
5 Rodrigo Torres^{2,5}, Brian Reid⁵, Eric P. Achterberg³, José Luis Iriarte^{2,6}.

6

7 ¹Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto
8 Montt, Chile.

9 ²Instituto de Acuicultura & Centro de Investigación Dinámica de Ecosistemas Marinos de
10 Altas Latitudes - IDEAL, Universidad Austral de Chile, Puerto Montt, Chile.

11 ³GEOMAR, Helmholtz Centre for Ocean Research, 24148 Kiel, Germany.

12 ⁴Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada

13 ⁵Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile.

14 ⁶COPAS-Sur Austral, Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental
15 (COPAS), Universidad de Concepción, Concepción, Chile.

16

17 Key words: volcanic ash, iron, Fe(II), phytoplankton, carbonate chemistry, Reloncaví Fjord

18 Corresponding author*: mhopwood@geomar.de

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 **Abstract**

39 Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread
40 across northern Patagonia and into the southeast Pacific and southwest Atlantic Oceans. Here
41 we report on field surveys conducted in the coastal region receiving the highest ash load
42 following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring
43 station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics
44 and carbonate chemistry during April-May 2015. Satellite derived chlorophyll-a
45 measurements over the ocean regions affected by the ash plume in May 2015 were obtained
46 to determine the spatial-temporal gradients in offshore phytoplankton response to ash.
47 Additionally, leaching experiments were performed to quantify the release from ash into
48 solution of total alkalinity, trace elements (dissolved Fe, Mn, Pb, Co, Cu, Ni and Cd) and
49 major ions (F⁻, Cl⁻, SO₄²⁻, NO₃⁻, Li⁺, Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺). Within Reloncaví Fjord,
50 integrated peak diatom abundances during the May 2015 austral bloom were approximately
51 2-4 times higher than usual (up to 1.4×10^{11} cells m⁻², integrated to 15 m depth), with the
52 bloom intensity perhaps moderated due to high ash loadings in the two weeks following the
53 eruption. Any mechanistic link between ash deposition and the Reloncaví diatom bloom can
54 however only be speculated on due to the lack of data immediately preceding and following
55 the eruption. In the offshore southeast Pacific, a short duration phytoplankton bloom
56 corresponded closely in space and time to the maximum observed ash plume, potentially in
57 response to Fe-fertilization of a region where phytoplankton growth is typically Fe-limited
58 at this time of year. Conversely, no clear fertilization on the same time-scale was found in
59 the area subject to an ash plume over the southwest Atlantic where the availability of fixed
60 nitrogen is thought to limit phytoplankton growth. This was consistent with no significant
61 release of fixed nitrogen (NO_x or NH₄) from Calbuco ash.

62

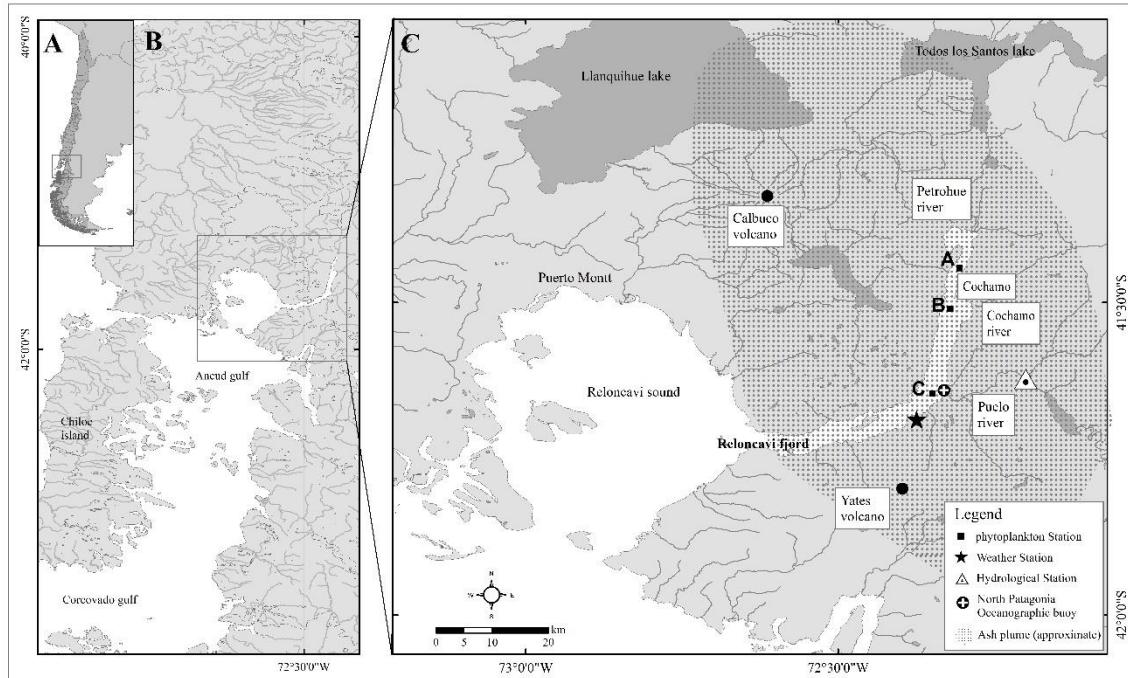
63 In addition to release of nanomolar concentrations of dissolved Fe from ash suspended in
64 seawater, it was observed that low loadings ($< 5 \text{ mg L}^{-1}$) of ash were an unusually prolific
65 source of Fe(II) into chilled seawater (up to $1.0 \text{ }\mu\text{mol Fe g}^{-1}$), producing a pulse of Fe(II)
66 typically released mainly during the first minute after addition to seawater. This release
67 would not be detected, either as Fe(II) or dissolved Fe, following standard leaching protocols
68 at room temperature. A pulse of Fe(II) release upon addition of Calbuco ash to seawater made
69 it an unusually efficient dissolved Fe source. The fraction of dissolved Fe released as Fe(II)
70 from Calbuco ash (~18-38%) was roughly comparable to literature values for Fe released
71 into seawater from aerosols collected over the Pacific Ocean following long range
72 atmospheric transport.

73 **1. Introduction**

74 Volcanic ash has long been considered a large, intermittent source of trace metals to the ocean
75 (Frogner et al., 2001; Sarmiento, 1993; Watson, 1997) and its deposition is now deemed a
76 sporadic generally low-macronutrient, high-micronutrient supply mechanism (Ayris and
77 Delmelle, 2012; Jones and Gislason, 2008; Lin et al., 2011). As volcanic ash can be a
78 regionally significant source of allochthonous inorganic material to affected water bodies,
79 volcanic eruptions have the potential to dramatically change light availability, the carbonate
80 system, properties of sinking particles and ecosystem dynamics (Hoffmann et al., 2012;
81 Newcomb and Flagg, 1983; Stewart et al., 2006). Surveys directly underneath the ash plume
82 from the 2010 eruption of Eyjafjallajökull (Iceland) over the North Atlantic found, among
83 other biogeochemical perturbations, high dissolved Fe (dFe) concentrations of up to 10 nM
84 in affected surface seawater (Achterberg et al., 2013) which could potentially result in
85 enhanced primary production. The greatest potential positive effect of ash deposition on
86 marine productivity would generally be expected in high-nitrate, low-chlorophyll (HNLC)
87 areas of the ocean (Hamme et al., 2010; Mélançon et al., 2014), where low Fe concentrations
88 are a major factor limiting primary production (Martin et al., 1990; Moore et al., 2013).
89 Special interest is therefore placed on the ability of volcanic ash to release dFe, and other
90 bio-essential trace metals such as Mn (Achterberg et al., 2013; Browning et al., 2014;
91 Hoffmann et al., 2012), into seawater. In contrast, apart from inducing light limitation, there
92 are several adverse effects of ash deposition on aquatic organisms. These include metal
93 toxicity (Ermolin et al., 2018), particularly under high dust loading (Hoffmann et al., 2012),
94 and the ingestion of ash particles by filter feeders, phagotrophic organisms or fish (Newcomb
95 and Flagg, 1983; Wolinski et al., 2013). Transient shifts to low pH have also been reported
96 in some, but not all, ash leaching experiments and in some freshwater bodies following

97 intense ash deposition events, suggesting that significant ash deposition on weakly buffered
98 aquatic environments can also impact and perturb their carbonate system (Duggen et al.,
99 2010; Jones and Gislason, 2008; Newcomb and Flagg, 1983). The greatest negative impact
100 of ash on primary producers would therefore be expected closest to the source where the ash
101 loading is highest and in areas where macronutrients or light, rather than trace elements, limit
102 primary production.

103


104 In contrast to the 2010 Eyjafjallajökull plume over the North Atlantic, the 2015 ash plume
105 over the region from the Calbuco eruption (northern Patagonia, Chile) was predominantly
106 deposited over an inshore and coastal region (Romero et al., 2016) (Fig. 1). This led to visible
107 high ash loadings in affected surface waters in the weeks after the eruption (Fig. 2), providing
108 a case study for a concentrated ash deposition event in a coastal system; Reloncaví Fjord,
109 which is the northernmost fjord of Patagonia. It receives the direct discharge from three major
110 rivers, creating a highly stratified and productive fjord system in terms of both phytoplankton
111 biomass and aquaculture production of mussels (González et al., 2010; Molinet et al., 2017;
112 Yevenes et al., 2019). Here we combine in situ observations from moored arrays which were
113 fortuitously deployed in Reloncaví Fjord (Vergara-Jara et al., 2019), with satellite-derived
114 chlorophyll data for offshore regions subject to ash deposition, and leaching experiments
115 carried out on ash collected from the fjord region, to investigate the inorganic consequences
116 of ash addition to natural waters. We thereby evaluate the potential positive and negative
117 effects of ash from the 2015 Calbuco eruption on marine primary production in three
118 geographical regions; Reloncaví Fjord and the areas of the SE Pacific and SW Atlantic
119 Oceans beneath the most intense ash plume.

120

121 **2. Materials and methods**

122 **2.1. Study area**

123 The Calbuco volcano (Fig. 1) is located in a region with large freshwater reservoirs and in
124 close proximity to Reloncaví Fjord. The predominant bedrock type is andesite (López-
125 Escobar et al., 1995). Reloncaví Fjord is 55 km long and receives freshwater from 3 main
126 rivers, the Puelo, Petrohué, and Cochamó, with mean stream flows of $650 \text{ m}^3 \text{ s}^{-1}$, $350 \text{ m}^3 \text{ s}^{-1}$
127 and $100 \text{ m}^3 \text{ s}^{-1}$, respectively (León-Muñoz et al., 2013). River discharge strongly influences
128 seasonal patterns of primary production across the region, supplying silicic acid and strongly
129 stratifying the water column (Castillo et al., 2016; González et al., 2010; Torres et al., 2014).
130 Seasonal changes in light availability rather than macronutrient supply are thought to control
131 marine primary production across the Reloncaví region with high marine primary production
132 ($>1 \text{ g C m}^{-2} \text{ day}^{-1}$) throughout austral spring, summer and early autumn (González et al.,
133 2010).

135 Figure 1. The Calbuco region showing the location of Reloncaví Fjord, 3 major rivers
136 (Petrohué, Cochamó and Puelo) discharging into the fjord, the 3 stations (black squares; A,
137 B and C) used to assess changes in phytoplankton abundance following the eruption, a
138 hydrological station that monitors Puelo river flow, a weather station and the location of a
139 long-term mooring within the fjord. The approximate extent of the ash plume in the week
140 following the first eruption is illustrated, as estimated in technical reports issued by the
141 Servicio Nacional de Geología y Minería (Chile).

142

143 On 22 April 2015 the Calbuco volcano erupted after 54 years of dormancy. Two major
144 eruption pulses lasted <2 hours on 22 April and 6 hours on 23 April, releasing a total volume
145 of 0.27 km³ ash which was projected up to 20 km height above sea level (Van Eaton et al.,
146 2016; Romero et al., 2016). Ash layers of several cm thick were deposited mainly to the NE
147 of the volcano in subsequent days (Romero et al., 2016). A smaller eruption occurred on 30
148 April projecting ash 4-5 km above sea level which was then mainly deposited south of the
149 volcano. Smaller volumes of ash were released semi-continuously for three weeks after the
150 main eruption, leading to intermittent ash deposition events. Fortunately, as part of a long-
151 term deployment, an ocean acidification buoy in the middle of Reloncaví Fjord (Vergara-
152 Jara et al., 2019) and an associated meteorological station close to the volcano (Fig. 1) were
153 well placed to assess the impact of ash deposition immediately after the eruption. To
154 complement data from these facilities, after the regional evacuation order was removed,
155 weekly sampling campaigns were conducted in the fjord commencing one week after the
156 eruption. The Chilean Geological-mining Survey (Servicio Nacional de Geología y Minería,
157 SERNAGEOMIN) produced daily technical reports including the estimated area of ash
158 dispersion (<http://sitiohistorico.sernageomin.cl/volcan.php?pagina=4&iId=3>). This

159 information was used to create a reference aerial extent of ash deposition for the week after
160 the eruption (Fig. 1, C) and this approximation represents a full week of coverage for this
161 dynamic feature.

162

163 **2.2. Ash samples – trace metal leaching experiments**

164 On 6 May (2015, Cochamó, Chile, approximately 30 km from the volcano) after the third,
165 and smallest, eruptive pulse of ash from the Calbuco volcano (Fig. 2, A), and with the volcano
166 still emitting material, ash was collected using a plastic tray wrapped with plastic sheeting
167 (40 × 94 cm). The plasticware was left outside for 24 hours until sufficient ash (~500 g) was
168 collected to provide a bulk sample. Ambient weather over the period of ash collection, and
169 the preceding day, was dry (no precipitation). The collected ash was double sealed in low
170 density polyethylene (LDPE) plastic bags and stored in the dark. A sub-sample was analyzed
171 for particle size using a Mastersizer 2000 at The University of Chile.

172 Ash may affect in situ phytoplankton dynamics in several ways, for example via moderating
173 the carbonate system, macronutrient availability and/or micronutrient availability. As
174 micronutrient (e.g. Fe and Mn) availability is expected to be the main chemical mechanism
175 via which phytoplankton dynamics in the offshore marine environment could be affected, we
176 primarily focus our investigation on the release of dissolved trace metals from ash in
177 seawater. Yet to rule out other potential affects, we also conduct complementary leaches to
178 assess the significance of changes to total alkalinity and macronutrient availability (Table 1).
179 For trace metal leaches, a variety of methods have been used in the literature (Duggen et al.,
180 2010; Witham et al., 2005) depending on the purpose of specific studies. De-ionized water
181 leaches with ash loadings that are high in an offshore environmental context are preferable

182 for intercomparison studies. The trace metals released under such conditions are however
183 difficult to compare quantitatively to metal exchange processes in the ambient marine
184 environment, especially for elements such as Fe where solubility is strongly influenced by
185 pH, salinity and the nature of dissolved organic carbon present (Baker and Croot, 2010). For
186 prior work conducted specifically using volcanic ash in seawater, 3 main methods have been
187 employed: suspension experiments followed by analysis of the leachate, flow-through
188 reactors, and continuous voltammetric determination of dFe concentrations in situ during
189 suspension experiments (Sup. Table 1). The most commonly used ash:solute ratio in prior
190 seawater experiments is 1:400 (g:mL), with leach lengths varying from 15 minutes to 24
191 hours (Sup. Table 1). Conversely, incubation experiments designed to test the response of
192 marine phytoplankton to ash deposition have used lower ash:solute ratios of 1:400 to 1:10⁷
193 which are based on estimates of the ash loading expected to be mixed within the offshore
194 surface mixed layer underneath ash plumes (Browning et al., 2014; Hoffmann et al., 2012).
195 Existing data suggests that ash:solute ratio is not a major factor in determining the release
196 behavior of Fe from ash, however this is acknowledged to be difficult to assess due to other
197 differences between experimental setups used to date (Duggen et al., 2010). Both the age of
198 particles since collection and the organic carbon content of seawater are however known to
199 be critical factors influencing the exchange of Fe, and other trace elements, following any
200 aerosol deposition into seawater (Baker and Croot, 2010; Duggen et al., 2010). Whilst UV-
201 treatment of seawater has been used in some experiments (to remove a large part of any
202 natural organic ligands present, Duggen et al., 2007; Jones and Gislason, 2008), and a strong
203 synthetic organic ligand added in others (to impede dissolved Fe precipitation, Duggen et al.,
204 2007; Olgun et al., 2011; Simonella et al., 2015), to improve reproducibility and
205 standardisation, these steps are not well suited specifically for investigating the release of

206 Fe(II) from ash. Herein we therefore adopt ash:solute ratios comparable to the lower end of
207 the range used in leaching experiments and comparable to the range used in incubation
208 experiments. Seawater was used after prolonged storage in the dark (to reduce biological
209 activity to low background levels) and without UV treatment (to maintain an environmentally
210 relevant level of natural organic material in solution). A short leaching time (10 minutes +
211 filtration) was adopted to minimize bottle effects and recognising that most prior work
212 suggests a large fraction of Fe release occurs on short timescales (minutes), followed by more
213 gradual changes on timescales of hours to days (Duggen et al., 2007; Frogner et al., 2001;
214 Jones and Gislason, 2008).

215 A variety of leaches were conducted in de-ionized water, brackish (fjord) water or offshore
216 South Atlantic seawater (Table 1) with the choice of leaching conditions based on the
217 expected environmental significance in different water masses. Offshore oligotrophic
218 seawater for incubation experiments was collected from an underway transect of the mid-
219 South Atlantic (across 40° S) using a towfish and trace metal clean tubing in a 1 m³ high
220 density polyethylene tank which had been pre-rinsed with 1 M HCl. This water was stored
221 in the dark for >12 months prior to use in leaching experiments and was filtered
222 (AcroPak1000 capsule 0.8/0.2 µm filters) when subsampling a batch for use in all leaching
223 experiments. All labware for trace metal leaching experiments was pre-cleaned with Mucasol
224 and 1 M HCl. 125 ml LDPE bottles (Nalgene) for trace metal leach experiments were pre-
225 cleaned using a 3-stage procedure with three de-ionized water (Milli-Q, Millipore,
226 conductivity 18.2 MΩ cm⁻¹) rinses after each stage (3 days in Mucasol, 1 week in 1 M HCl,
227 1 week in 1 M HNO₃).

228 Leach experiments were conducted by adding a pre-weighed mass of ash into 100 ml South

229 Atlantic Seawater, gently mixing the suspension for 10 minutes, and then syringe filtering
230 the suspension (0.2 μm , polyvinylidene fluoride, Millipore). Eight different ash loadings
231 from 2-50 mg L⁻¹ were used, selected to be environmentally relevant and comparable to prior
232 incubation experiments, with each treatment run in triplicate. Samples for dissolved trace
233 metals (Fe, Cd, Pb, Ni, Cu, Co and Mn) were acidified within 1 day of collection by the
234 addition of 140 μL concentrated HCl (UPA grade, ROMIL) and analysed by inductively
235 coupled plasma mass spectroscopy following preconcentration exactly as per Rapp et al.,
236 (2017).

237 Leach experiments specifically to measure Fe(II) release were conducted in a similar manner
238 but in cold seawater with continuous in-line analysis (5-7°C see Sup. Table 2) due to the
239 rapid oxidation rate of Fe(II) at room temperature (~21°C), which makes accurate
240 measurement of Fe(II) concentrations challenging (Millero et al., 1987). For these
241 experiments, a pre-weighed mass of ash was added to 250 ml South Atlantic seawater and
242 manually shaken for approximately one minute, using an expanded loading range from 0.2-
243 4000 mg L⁻¹. Fe(II) was measured via flow injection analysis using luminol
244 chemiluminescence (Jones et al., 2013) without pre-concentration or filtration. The inflow
245 line feeding the flow injection apparatus was positioned inside the ash suspension
246 immediately after mixing and measurements begun thereafter at 2 minutes resolution.
247 Reported mean values (\pm standard deviation) are determined from the Fe(II) concentrations
248 measured 2-30 minutes after adding ash into solution. Calibrations were run daily using
249 standard additions of 0.2-10 nM Fe(II) to aged South Atlantic seawater at the same
250 temperature with integrated peak area used to construct calibration curves. Following each
251 leaching experiment the apparatus was rinsed with 0.1 M HCl (reagent grade) followed by

252 flushing with de-ionized water to ensure the removal of ash particles. Blank measurements
253 before/after Fe(II) measurements from experiments with different ash loadings verified that
254 there was no discernable interference from ash particles in the Fe(II) flow-through
255 measurements. Fe(II) leaches were conducted 2 weeks, 4 months and 9 months after the
256 eruption. Fe(II) leaches 2 weeks after the eruption were run for 30 minutes. Fe(II) leaches
257 after 4 or 9 months were run for 1 hour to further investigate the temporal development of
258 Fe(II) concentration. The trace metal leach experiments (above) were conducted at the same
259 time as the first Fe(II) incubation experiments (2 weeks after ash collection).

260 For trace metal leaches, the initial (mean \pm standard deviation) dissolved trace metal
261 concentrations were deducted from the final concentrations, in order to calculate the net
262 change as a result of ash addition. For Fe(II) measurements, background levels of Fe(II) were
263 below detection (<0.1 nM) and so no deduction was made.

264 **2.3 Ash samples – de-ionized and brackish water leaching experiments**

265 Fresh brackish sub-surface water from the Patagonia study region was obtained from the
266 Aysén Fjord, at Ensenada Baja (45°21'S: 72°40'W, salinity 16.3), close to the Coyhaique
267 laboratory (Aysén region, Chile) and free from the influence of ash from the 2015 eruption.
268 The oceanographic conditions in these waters are similar to the adjacent Reloncaví fjord
269 (Cáceres et al., 2002). De-ionized water, along with the Aysén fjord brackish water, were
270 used for leaching experiments using two size fractions of ash following the general
271 recommendations of Duggen et al., (2010) and Witham et al., (2005) to consider the effects
272 of different size fractions and leachates. Leaches were conducted in 50 ml LDPE bottles filled
273 with either 40 ml brackish or DI-water with 4 replicates of each treatment. Bottles were

274 incubated inside a mixer at room temperature after the addition of 0.18 g ash, using two ash
275 size fractions (<63 μm and 250-1000 μm) which were separated using sieves (ASTM e-11
276 specification, W.S. Tyler). The mass distribution of the ash as determined by sieving was
277 4.54% >2360 μm ; 6.85% <2360 μm and >1000 μm ; 31.12% <1000 μm and >250 μm ;
278 24.14% <250 μm and >125 μm ; 18.04% <125 μm and >63 μm ; 15.31% <63 μm . The
279 dominant size fraction by mass was thereby the 250-1000 μm fraction which was analyzed
280 in addition to the finest fraction (<63 μm) with the greatest surface area to mass ratio. The
281 sampling times were at time zero (defined as just after the addition of the ash and a few
282 minutes of mixing), 2 h and 24 h later. Leaching experiments conducted with brackish water
283 were analyzed for total alkalinity (A_T) via a potentiometric titration using reference standards
284 (Haraldsson et al., 1997) ensuring a reproducibility of <2 $\mu\text{mol/kg}$. For the de-ionized water
285 leaching experiment, A_T was analyzed by titration of unfiltered 5 ml subsamples to a pH 4.5
286 endpoint (Bromocresol Green/Methyl Red) using a Dosimat (Metrohm Inc) and 0.02 N
287 H_2SO_4 titrant. Alkalinity was calculated as CaCO_3 equivalents following APHA (American
288 Public Health Association) 2005-Methods 2320 (2320 Alkalinity, titration method).
289 Additional 5 ml subsamples were filtered, stored at 4°C and analyzed within 3 days for major
290 ions (F^- , Cl^- , SO_4^{2-} , NO_3^- , Li^+ , Na^+ , NH_4^+ , K^+ , Mg^{2+} , Ca^{2+}) using a DionexTM 5000 Ion
291 Chromatography system with Eluent Generation (APHA). All measurements were then
292 corrected for initial water concentrations prior to ash addition. Saturation indices for species
293 in solution following leaching from <63 μm ash particles were obtained from the MINTEQ
294 3.1. IAP Ion Activity Product chemical equilibrium model (see Sup. Table 6).

295 Table 1. Summary of different leaching experiments and samples.

Ash/ particle source	De-ionized water leaches	Brackish (fjord) water	South Atlantic seawater	Nº of replicates
Calbuco ash, sieved <63 µm	Total alkalinity, ion and macronutrients	Total alkalinity	-	4
Calbuco ash, sieved 250-1000 µm	Total alkalinity, ion and macronutrients	Total alkalinity	-	4
Calbuco ash, unsieved	-	-	Trace metals, Fe(II)	3 for trace elements, 1 time series for Fe(II)

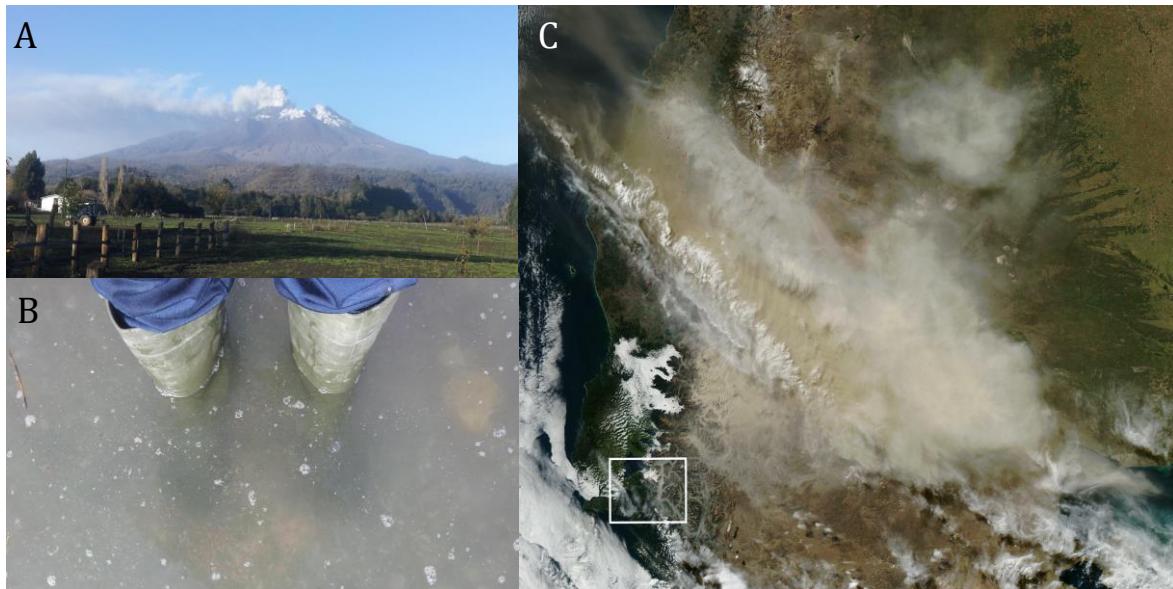
296 **2.4 Environmental data – continuous Reloncaví Fjord monitoring**

297 High temporal resolution (hourly) in situ measurements were taken in the Reloncaví fjord
 298 (Fig. 1 C, North Patagonia Oceanographic Buoy) at 3 m depth using SAMI sensors that
 299 measured spectrophotometric CO₂ and pH (DeGrandpre et al., 1995; Seidel et al., 2008)
 300 (Sunburst Sensors, LLC), and an SBE 37 MicroCAT CTD-ODO (SeaBird Electronics) for
 301 temperature, conductivity, depth and dissolved O₂, as per Vergara-Jara et al., (2019). Sensor
 302 maintenance and quality control is described by Vergara-Jara et al., (2019). The error in pCO₂
 303 concentrations is estimated to be at most 5% which arises mainly due to a non-linear sensor
 304 response and reduced sensitivity at high pCO₂ levels >1500 ppm (DeGrandpre et al., 1999).
 305 The SAMI-pH instruments used an accuracy test instead of a calibration procedure (Seidel
 306 et al., 2008). With the broad pH and salinity range found in the fjord, pH values are subject
 307 to a maximum error of ± 0.02 (Mosley et al., 2004).
 308 A meteorological station (HOBO-U30, Fig. 1) measured air temperature, solar radiation,

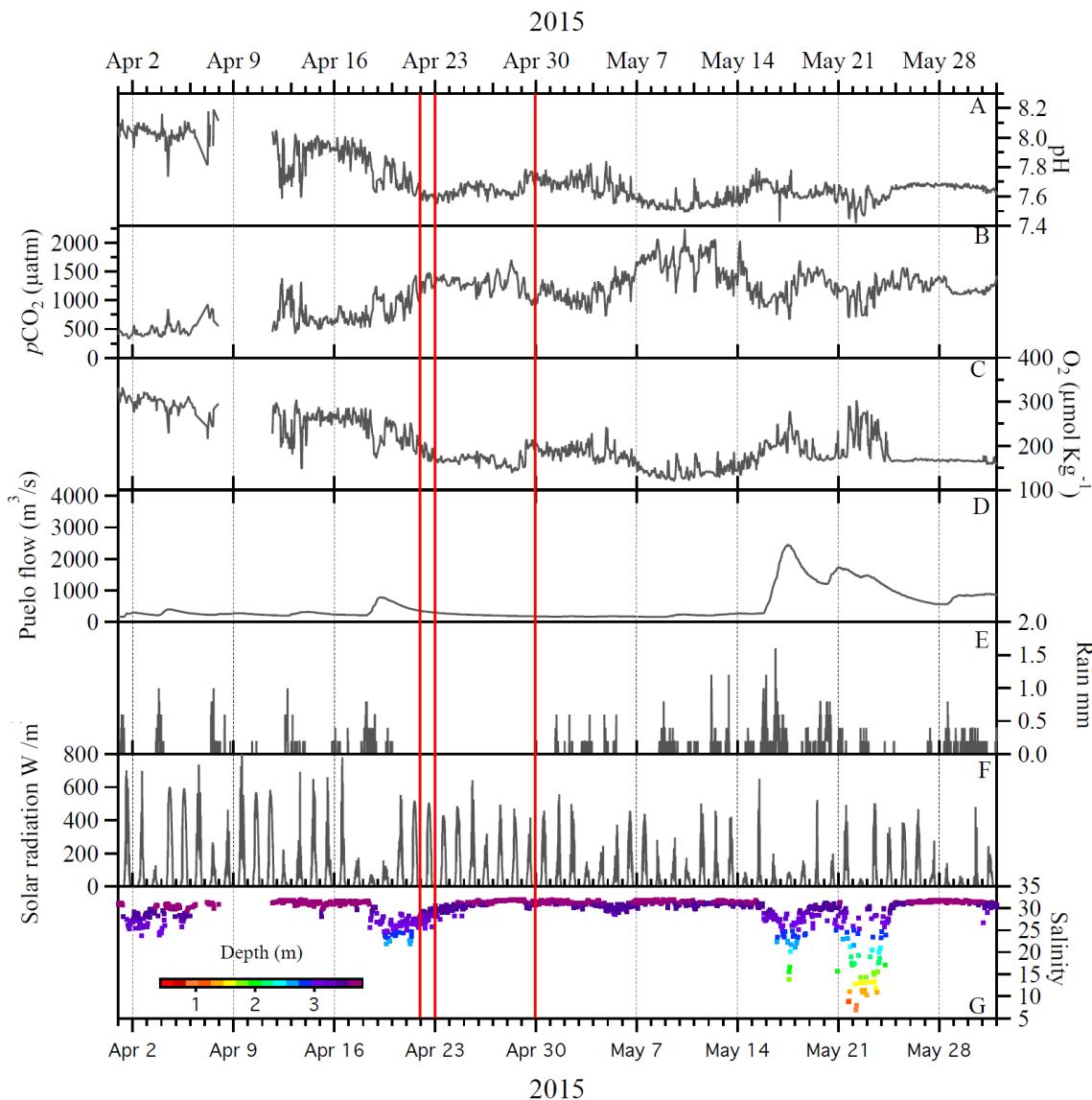
309 wind speed and direction, rainfall, and barometric pressure every 5 minutes. Puelo River
310 streamflow was obtained from the Carrera Basilio hydrological station (Fig. 1), run by
311 Dirección General de Aguas de Chile (<http://snia.dga.cl/BNAConsultas/reportes>).

312 **2.5 Field surveys in Reloncaví Fjord post eruption**

313 During May 2015, weekly field campaigns were undertaken in the Reloncaví Fjord.
314 Phytoplankton samples were collected at 3 depths (1 m, 5 m and 10 m) for taxonomic
315 characterization and abundance determination at 3 stations (A, B and C; Fig. 1) using a 5 L
316 Go-Flo bottle. Samples were analyzed using an Olympus CKX41 inverted phase contrast
317 microscope using a 10 ml sedimentation chamber and the Utermöhl method (Utermöhl,
318 1958). The phytoplankton community composition was then statistically analyzed in R
319 (RStudio V 1.2.5033) using general linear models in order to find statistically significant
320 differences between dates and group abundances. Additionally, as part of a long-term
321 monitoring program at station C (Fig. 1), chlorophyll-a samples were retained from 6 depths
322 (1, 3, 5, 7, 10 and 15 m) on 6 occasions during March-May 2015. Chlorophyll-a was
323 determined by fluorometry after filtering 250 ml of sampled water through GFF filters
324 (Whatman) as per Welschmeyer (1994). Two additional profiles close to Station C were
325 obtained from Yevenes et al., (2019). Integrated chlorophyll-a (mg m^{-2}) and diatom
326 abundance (cells m^{-2}) were determined to 15 m depth. Chlorophyll-a within Reloncaví Fjord
327 is invariably concentrated in the upper ~10 m (González et al., 2010; Yevenes et al., 2019)
328 and thus, for comparison to prior reported data integrated to 10 m, only a small difference is
329 anticipated. For all profiles considered herein, there is a 20% difference between integrating
330 to 10 m or 15 m depth.


331 **2.6 Satellite data**

332 Daily, 4 km resolution chlorophyll-a images from the MODIS Aqua sensor (OCI algorithm;
333 Hu et al., 2012) were downloaded from the NASA Ocean Color website
334 (<https://oceancolor.gsfc.nasa.gov>) for the period 4 April 2015–2 May 2015. As the UV
335 Aerosol Index largely reflects strongly UV-absorbing (dust) aerosols (Torres et al., 2007),
336 this was used as a proxy for the spatial extent and loading of the ash plume. The UV aerosol
337 index product from the Ozone Monitoring Instrument (OMI) on the EOS-Aura was
338 downloaded for the same time period. Daily images were composited into 5-day mean
339 averages.


340 **3. Results**

341 **3.1 In situ observations**

342 The Calbuco ash plume reached up to 20 km height and was dispersed hundreds of kilometers
343 across Patagonia and the Pacific and Atlantic Oceans (Fig. 2) (Van Eaton et al., 2016;
344 Reckziegel et al., 2016; Romero et al., 2016). The ash loading in water bodies near the cone
345 was visually observed to be high, especially near the Petrohué river catchment that drains
346 into the head of the Reloncaví fjord. This ash loading into the fjord was clearly visible on 6
347 May 2015 when ash samples were collected for leaching experiments (Fig. 2).

349 Figure 2. A Calbuco volcano ash plume 6 May 2015. B Reloncaví Fjord water with atypical
350 high turbidity due to the ash loading, Cochamó town 6 May. C Ash cloud visible on MODIS
351 Aqua satellite from the NASA Earth Observatory, 23 April
352 (<http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=85767&eocn=home&eoci=nh>). The highlighted box in C corresponds to Fig. 1 C.


354

355 Figure 3. Continuous data from the Reloncaví Fjord mooring and nearby hydrological and
 356 weather stations for April-May 2015. The vertical red lines mark the eruption dates. All
 357 locations are marked in Fig 1. Carbonate chemistry and salinity data from Vergara-Jara et
 358 al., (2019). Wind and tidal mixing caused small changes in the depth of the sensors which
 359 are shown alongside the salinity data.

360

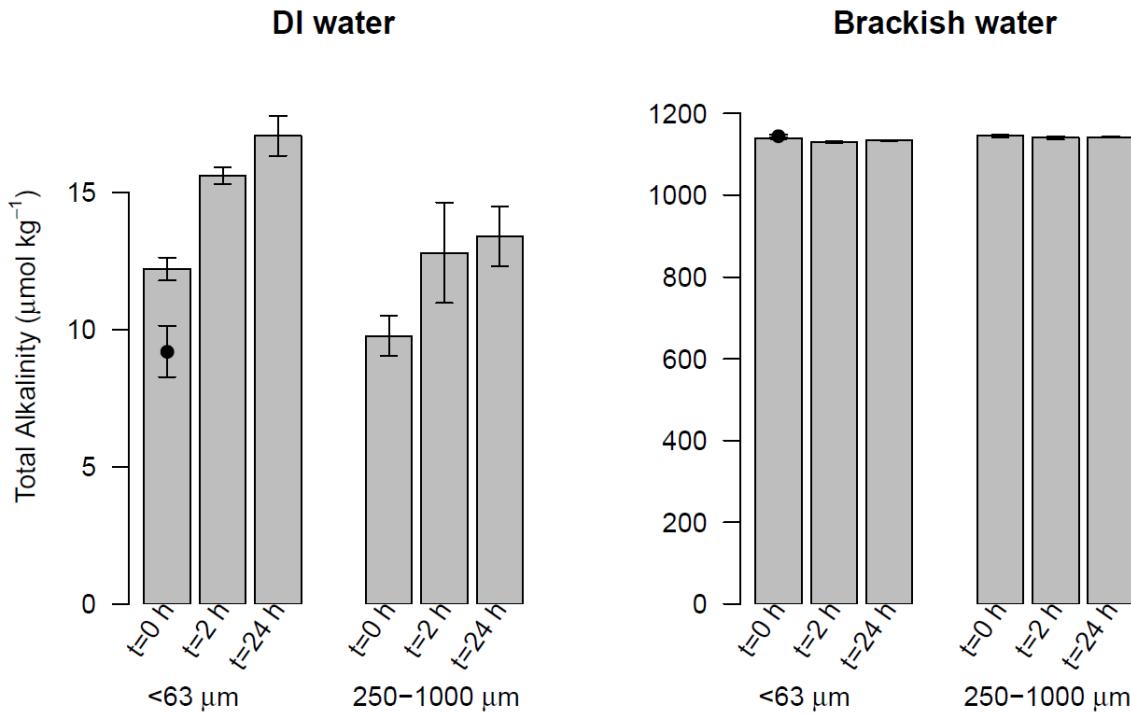
361 Carbonate chemistry data from the Reloncaví Fjord mooring demonstrated that pH declined
362 and pCO₂ increased in the week prior to the first eruption (22 April, Fig. 3). Oxygen and pH
363 reached a minimum and pCO₂ a maximum during the time period 7-14 May, which indicates
364 a state of high respiration. In this stratified environment, the brackish fjord surface layer has
365 generally low pH, high pCO₂ with seasonal changes in salinity and respiration leading to a
366 large annual range of pCO₂ and pH (Vergara-Jara et al., 2019). The depth of the sensors
367 varied temporally due to changes in tides and river flow. This accounts for some of the
368 variation in measured salinity due to the strong salinity gradient with depth in the brackish
369 surface waters (Fig. 3). Any changes to pCO₂ or pH occurring as a direct result of the
370 eruptions, or associated ash deposition, are therefore challenging to distinguish from
371 background variation due to short-term (intra-day) or seasonal shifts in the carbonate system
372 which are pronounced in this dynamic and strongly freshwater influenced environment (Fig.
373 3). Freshwater discharge from the Puelo increased sharply from 16 May which is an annually
374 recurring event (González et al., 2010).

375 **3.2 Phytoplankton in Reloncaví fjord post-eruption**

376

377 Figure 4. Changes in integrated (0-15 m) diatom abundance and chlorophyll-a for Reloncaví
 378 Fjord in April-May 2015. Locations as per Fig. 1, the eruption dates are marked with red
 379 lines. Historical diatom data from Reloncaví Sound (2001-2008, integrated to 10 m depth,
 380 mean \pm standard error, González et al., 2010) and additional chlorophyll data from 2015
 381 ('Station 3' from Yevenes et al., 2019, approximately corresponding to Station C herein) are
 382 also shown.

383


384 Phytoplankton abundances observed in May 2015 within Reloncaví Fjord were assessed by
 385 diatom cell counts and chlorophyll-a concentrations (Sup. Table 3) and were proportionate
 386 to, or higher than, those previously observed in the region (Fig. 4). When comparing
 387 observations to prior data from González et al., (2010) it should be noted that there is a slight
 388 depth discrepancy (earlier work was integrated to 10 m depth rather than 15 m herein). Yet
 389 as the phytoplankton bloom is overwhelmingly present within the upper 10 m these data do

390 provide a useful comparison. Diatom abundance integrated to 15 m depth peaked at Stations
391 B and C around 14 May, with notably lower abundances at the innermost station A (Fig. 4).
392 The highest measured chlorophyll-a concentrations were on 30 April at Station C, then
393 chlorophyll-a values declined to much lower concentrations in late May which is expected
394 from patterns in regional primary production (González et al., 2010). No measurements were
395 available for 10-30 April 2015 (Fig. 4) and thus it is not possible to determine the timing of
396 the onset of the austral autumn phytoplankton bloom with respect to the volcanic eruptions
397 from the available chlorophyll-a or diatom data. Within this time period, the mooring at
398 Station C (Fig. 3) however did record a modest increase in pH and O₂ from 28-29 April,
399 during a time period when river discharge and salinity were stable, which could be indicative
400 of the autumn phytoplankton bloom onset.

401

402 **3.3 Total alkalinity and macronutrients in leach experiments**

403 Size analysis of the collected ash determined a mean particle diameter of 339 µm. Small ash-
404 particles (<63 µm) resulted in minor, or no significant, changes to A_T in brackish fjord waters
405 (Fig. 5). With larger ash-particles (250-1000 µm) no effect was evident. Conversely, a
406 leaching experiment with de-ionized water showed a small increase in A_T (Fig. 5) for both
407 size fractions. By increasing the A_T of freshwater, ash would act to increase the buffering
408 capacity of river outflow into a typically weak carbonate system like the Reloncaví Fjord
409 (Vergara-Jara et al., 2019). However, the absolute change in A_T was relatively small despite
410 the large ash loading used in all incubations (< 20 µmol kg⁻¹ A_T for ash loading >4 g L⁻¹) and
411 therefore it is expected that the direct effect of ash on A_T in situ was limited. Other effects on
412 carbonate chemistry may however arise due to ash moderating the timing and intensity of
413 primary production and thus biological pCO₂ drawdown.

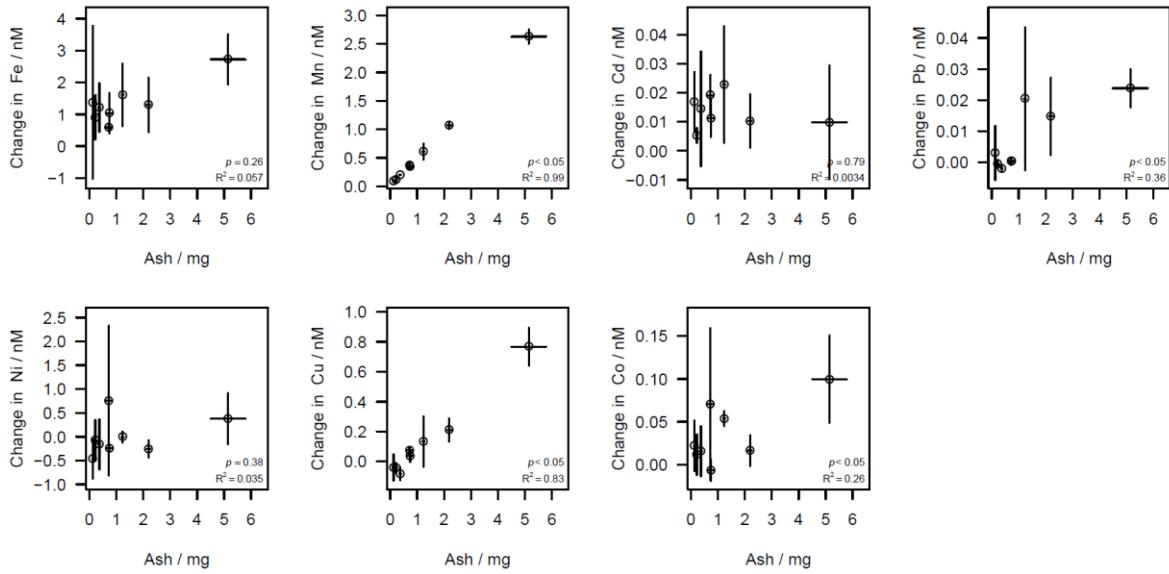
414

415 Figure 5. Total alkalinity released after leaching 4.5 g L^{-1} ash of two size fractions ($<63 \mu\text{m}$
416 and $250\text{--}1000 \mu\text{m}$) in de-ionized water (DI water) and brackish water. T_0 = ‘time zero’,
417 measured after one minute of mixing, T_{2h} = after two hours of mixing, T_{24h} = after 24 hours
418 of mixing. $n=4$ for all treatments (mean \pm standard deviation plotted). The initial (pre-ash
419 addition) alkalinity is marked by a black dot superimposed on the left T_0 . Source data is
420 provided in Supplementary Table 4.

421

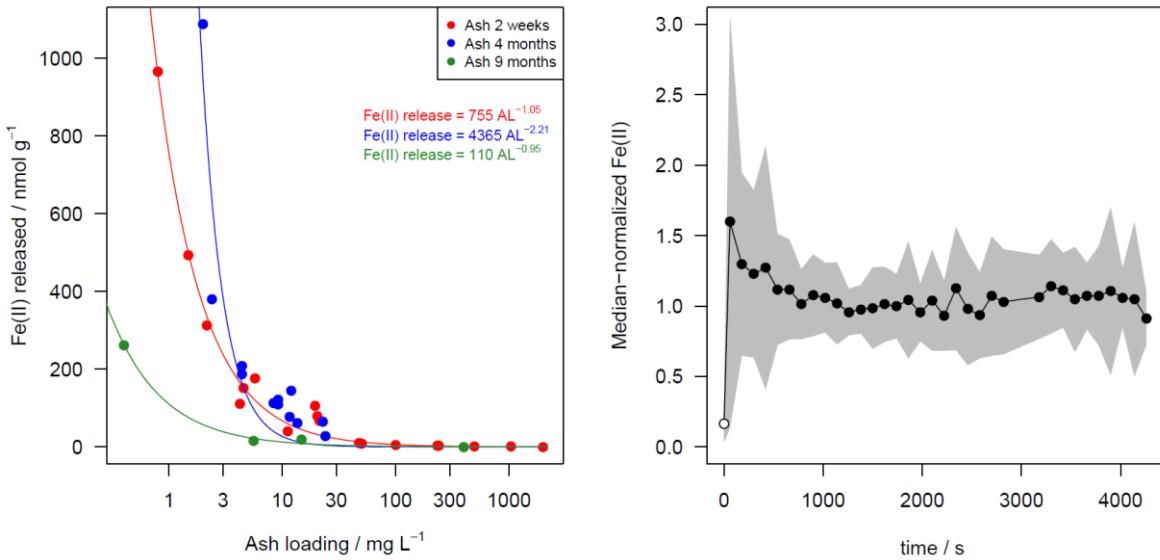
422 Ion chromatography results for Na^+ , K^+ , Ca^{2+} , F^- , Cl^- , NO_3^- and SO_4^{2-} showed that in the
423 presence of smaller ash size particles, ion inputs were generally higher (Table 2) as has been
424 reported previously (Jones and Gislason, 2008; Óskarsson, 1980; Rubin et al., 1994). The
425 leaching from ash components into de-ionized water occurred almost instantly with limited,
426 or no increases in leached concentrations observed between 0, 2 and 24 h (Table 2). For larger
427 particles there was less release of most ions. In the case of Ca^{2+} and SO_4^{2-} a more gradual

428 leaching effect was apparent (Table 2). The concentrations of NO_3^- and NH_4^+ were generally
 429 below detection suggesting that ash was a minor source of fixed-nitrogen into solution. These
 430 observations are consistent with the trends in prior work using a range of volcanic ash and
 431 incubation conditions (Duggen et al., 2010; Witham et al., 2005). Major ion analysis was
 432 only conducted in de-ionized water as no significant changes would be observable for most
 433 of these ions in brackish or saline waters under the same conditions.


	Time [h]	Na^+	K^+	Ca^{2+}	F^-	Cl^-	SO_4^{2-}	NO_3^-	NH_4^+
<i>Detection limit</i>		0.17	0.43	0.30	0.28	1.31	1.64	0.34	0.13
<i>Proced. Blank</i>		b.d.	b.d.	0.39	b.d.	b.d.	b.d.	b.d.	b.d.
250-1000 μm [$\mu\text{mol/l}$]	0.1	3.4 (2.8)	0.83 (0.3)	18.3 (3.3)	0.16 (0.05)	3.7 (1.9)	3.7 (2.2)	b.d.	0.15 (0.2)
	2	5.1 (2.0)	1.0 (0.2)	18.5 (4.5)	0.21 (0.08)	4.4 (1.6)	4.9 (2.0)	b.d.	0.38 (0.4)
	24	7.3 (0.1)	1.4 (0.2)	23.4 (3.2)	0.52 (0.18)	5.7 (0.5)	8.3 (2.1)	b.d.	b.d.
<63 μm [$\mu\text{mol/l}$]	0.1	16.2 (12.7)	3.2 (0.3)	25.1 (5.4)	0.29 (0.0)	17.1 (13.6)	13.5 (1.3)	0.53 (0.2)	1.70 (1.1)
	2	16.7 (1.0)	3.8 (0.1)	31.8 (2.7)	0.63 (0.2)	15.2 (0.9)	19.0 (0.3)	b.d.	0.52 (1.0)
	24	17.3 (0.8)	3.9 (0.3)	33.8 (3.3)	0.69 (0.3)	14.6 (1.0)	18.8 (0.5)	b.d.	1.32 (2.6)
<63 μm [$\mu\text{mol/g ash}$]	24	3.84	0.87	7.50	0.15	3.25	4.18	0.048	0.29
	Range (lit.)	1.5-84.3	0.1-5.4	0.6-589	0.1-9	2-92.9	1-554	0-6.4	0.3-0.6

434
 435 Table 2. Major ion and macronutrient concentrations in $\mu\text{mol/l}$ leached from the two size
 436 fractions of ash (< 63 μm and 250-1000 μm) into deionized water (b.d. = below detection).
 437 Shown are mean, with standard deviation in parentheses (n=4). Also shown are mass
 438 normalized values [$\mu\text{mol/g ash}$], and a comparison to the range of values reported by Jones
 439 and Gislason (2008).

440 3.4 Trace elements in leach experiments


441 Release of nanomolar concentrations of dissolved Fe and Mn was evident when ash was re-
 442 suspended in aged seawater for 10 minutes (Fig. 6). The net release of dissolved metals
 443 proceeded with varying relationships with ash loading over the applied gradient (2-50 mg L^-

444 ¹). Dissolved Mn, Pb, Cu and Co release exhibited significant ($p < 0.05$) positive relationships
445 with ash loading, with Mn and Cu exhibiting the most linear behavior (R^2 0.99 and 0.83,
446 respectively). Dissolved Fe, Cd and Ni showed no significant relationships with ash loading
447 over the applied range. The initial concentration of metals in South Atlantic seawater should
448 however also be considered when interpreting the trends. The magnitude of changes in Cd
449 and Ni concentrations were smallest relative to both the initial concentration and the standard
450 deviation on the initial concentration (0.38 ± 0.04 nM Cd and 6.58 ± 0.76 nM Ni,
451 respectively). It thus would be difficult to extract a clear relationship irrespective of their
452 chemical behavior. For other elements (Fe, Co and Pb), non-linearity between ash addition
453 and trace metal concentrations, and some negative changes in concentrations, both likely
454 reflect scavenging of metal ions onto ash particle surfaces (Rogan et al., 2016). Fe, Co and
455 Pb are all scavenged type elements and so increasing the surface area of ash present may
456 affect the net change in metal concentration. The divergence between the behaviour of Mn
457 and Fe, with Mn showing a stronger relationship with ash loading, supports the hypothesis
458 of Mendez et al., (2010), that the release of dissolved Mn from aerosols into seawater depends
459 primarily on ash Mn availability whereas the release of dissolved Fe is more dependent on
460 the nature of organic material present in solution.

461

462 Figure 6. Change in trace metal concentrations after varying ash addition to 100 ml South
 463 Atlantic seawater for a 10-minute leach duration at room temperature. Initial (mean ±
 464 standard deviation) dissolved trace metal concentrations - deducted from the final
 465 concentrations to calculate the change as a result of ash addition - were 0.98 ± 0.03 nM Fe,
 466 0.38 ± 0.04 nM Cd, 13 ± 2 pM Pb, 6.58 ± 0.76 nM Ni, 0.84 ± 0.07 nM Cu, 145 ± 9 pM Co,
 467 0.72 ± 0.05 nM Mn. Error bars are standard deviations from triplicate treatments with similar
 468 ash loadings. p values and R² for a linear regression are annotated. Source data is provided
 469 in Supplementary Table 5. The same data with individual replicates is shown in
 470 Supplementary Figure 1.

471

472 Figure 7. Fe(II) release from Calbuco ash into seawater. Mean Fe(II) released into South
 473 Atlantic seawater over a 30 minute leach at 5-7°C (left). The same batch of Calbuco ash was
 474 subsampled and used to conduct experiments on 3 occasions after the 2015 eruption (2 weeks,
 475 4 months and 9 months since ash collection). The lines are power law fits, with associated
 476 equations shown in the legend. The 3 time-series of Fe(II) concentrations following ash
 477 addition is considered collectively by normalizing the measured concentrations (right), such
 478 that 1.0 represents the median Fe(II) concentration measured in each experiment. All
 479 experiments were conducted for at least 30 minutes, those conducted with 4/9 months old
 480 ash were extended for 1 hour. The black line shows the mean response over 34 leach
 481 experiments with varying ash loading, the shaded area shows ± 1 standard deviation. The
 482 initial Fe(II) concentration (pre-ash addition at 0 s) in all cases was below detection and thus
 483 the detection limit is plotted at 0 s (open circle). Source data is provided in Supplementary
 484 Table 2.

485

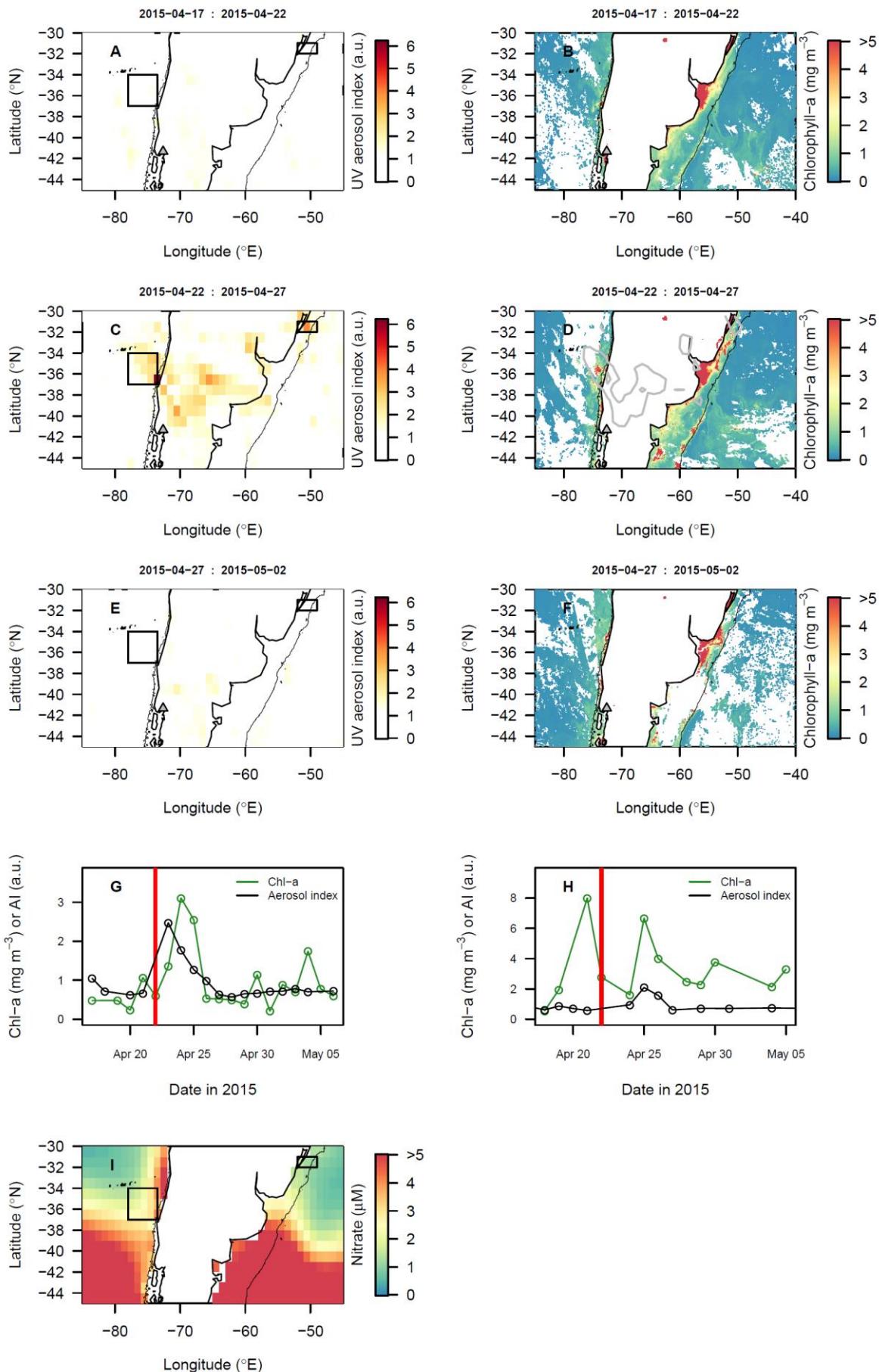
486 In addition to the release of dFe in solution, which generally exists as Fe(III) species in oxic
487 seawater (Gledhill and Buck, 2012), the release of Fe(II) was evident on a similar timescale
488 when cold (5-7°C) aged S Atlantic seawater was used as leachate (Fig. 7). The half-life of
489 Fe(II) decreases more than tenfold as temperature is increased from 5 to 25°C, leading to
490 Fe(II) decay on timescales shorter than the time required for analysis (approximately 60 s for
491 solution to enter the flow injection apparatus, mix with reagent and generate a peak)
492 (Santana-Casiano et al., 2005). Elevated Fe(II) concentrations (mean 0.8 nM, Sup. Table 2)
493 were evident at this temperature (5-7°C), which represents an intermediate sea surface
494 temperature for the high latitude ocean. A sharp decline in Fe(II) dissolution efficiency with
495 increasing ash load was also evident (Fig. 7). Both the highest Fe(II) concentration and the
496 highest net release of Fe(II) were observed at the lowest ash loading (Fig. 7 and Sup. Fig. 2).
497 Fe(II) concentration following dust addition into seawater was possibly reduced when the
498 same experimental leaches with ash were repeated 9 months after the initial experiment. The
499 first leaches were conducted ~2 weeks after ash collection. The absence of a clear change
500 between 2 weeks and 4 months precludes an accurate assessment of the rate at which Fe(II)
501 solubility may have decreased.

502

503 As Fe(II) concentrations were measured continuously using flow injection analysis, the
504 temporal development of Fe(II) concentration after ash addition to cold seawater can also be
505 shown (Fig. 7). Considering the set of leach experiments collectively, all ash additions were
506 characterized by a sharp increase in Fe(II) concentrations in the first minute after ash addition
507 into seawater. This was typically followed by a decline and then a relatively stable Fe(II)
508 concentration (Fig. 7).

509 **3.5 Satellite observations**

510 Five-day composite images of atmospheric aerosol loading (UV aerosol index, which largely
511 represents strongly UV-absorbing dust, Torres et al., 2007) indicated two main volcanic
512 eruption plume trajectories following the major eruptions on 22 and 23 April: (i) northwards
513 over the Pacific, and (ii) northeast over the Atlantic. Daily resolved time series were
514 constructed for regions in the Atlantic and Pacific with elevated atmospheric aerosol loading
515 (UV Aerosol Index ~2 a.u.; Fig. 8). The Pacific time series indicated a pronounced peak in
516 aerosol index followed by chlorophyll-a one day later. A control region to the south of the
517 ash-impacted Pacific region showed no clear changes in chlorophyll-a matching that
518 observed in the higher UV aerosol index region to the north (Sup. Fig. 3).


519

520 Conversely, in the Atlantic, where the background chlorophyll-a concentration was higher
521 throughout the time period of interest, the main area with enhanced aerosol index was not
522 clearly associated with a change in chlorophyll-a dynamics on a timescale comparable to that
523 observed following other volcanic ash fertilized events (Fig. 8). In a smaller ash impacted
524 area to the south of the Rio de la Plata (Sup. Fig. 3), where nitrate levels are expected to be
525 higher than to the north and Fe levels also expected to be elevated due its location on the
526 continental shelf, a chlorophyll-a peak was evident 7 days after the UV aerosol peak.
527 However, this was not well constrained due to poor satellite coverage in the period after the
528 eruption.

529

530 Prior eruptions have been attributed with driving time periods of enhanced regional marine
531 primary production beginning 3-5 days post-eruption (Hamme et al., 2010; Langmann et al.,
532 2010; Lin et al., 2011) and bottle experiments showing positive chlorophyll changes in

533 response to ash addition are typically significant compared to controls within 1-4 days
534 following ash addition (Browning et al., 2014; Duggen et al., 2007; Mélançon et al., 2014).

536 Figure 8. Potential biological impact of the 2015 Calbuco eruption observed via satellite
537 remote sensing. (A-F) Spatial maps showing the distribution of ash in the atmosphere (UV
538 Aerosol Index) and corresponding images of chlorophyll-a. Images were composited over 5-
539 day periods. Grey lines in chlorophyll maps corresponds to the UV Aerosol index = 2 a.u.
540 contour. (G, H) Time series of UV Aerosol Index and chlorophyll-a for regions of the Pacific
541 (G) and Atlantic (H) identified by boxes in maps. Red vertical lines (22 April) indicate the
542 first eruption date. (I) Mean World Ocean Atlas surface NO_3 concentrations. Thin black lines
543 indicate the 500 m bathymetric depth contour.

544

545 **4 Discussion**

546 **4.1 Local drivers of 2015 bloom dynamics in Reloncaví Fjord**

547 The north Patagonian archipelago and fjord region have a seasonal phytoplankton bloom
548 cycle with peaks in productivity occurring in May and October (austral autumn and spring)
549 and the lowest productivity consistently in June (austral winter)(González et al., 2010).
550 Diatoms normally dominate the phytoplankton community during the productive period due
551 to high light availability and high silicic acid supply, both of which are influenced by
552 freshwater runoff (González et al., 2010; Torres et al., 2014). The austral fall season,
553 encompassing the April-May 2015 ash deposition events, is therefore expected to have a high
554 phytoplankton biomass (Iriarte et al., 2007; León-Muñoz et al., 2018) which terminates
555 abruptly with decreasing light availability in austral winter (González et al., 2010).

556

557 Whilst not directly comparable, the magnitude of the 2015 bloom in terms of diatom
558 abundance (Fig. 4) was more intense than that reported in Reloncaví Sound 2001-2008. With
559 respect to the timing of the phytoplankton bloom, the low diatom abundances and

560 chlorophyll-a concentrations at the end of May (Fig. 4) are consistent with prior observations
561 of sharp declines in primary production moving into June (González et al., 2010). Peaks in
562 diatom abundance were measured at two stations on 14 May one week after the third (small)
563 eruptive pulse, and measured chlorophyll-a concentrations were highest close to Station C
564 on 30 April (Fig. 4). The high-resolution pH and O₂ data collected at Station C from mooring
565 data is consistent with an intense phytoplankton bloom between ~29 April and 7 May (Fig.
566 3) indicated by a shift to slightly higher pH and O₂ during this time period when river flow
567 into the fjord was stable.

568

569 Without a direct measure of ash deposition per unit area in the fjord, turbidity, or higher
570 resolution chlorophyll/diatom data, it is challenging to unambiguously determine the extent
571 to which the austral autumn phytoplankton bloom was affected by volcanic activity. The high
572 abundance of diatoms at two of three stations sampled could have resulted from ash
573 fertilization. Yet if this was the case, it is not clear which nutrient was responsible for this
574 fertilization, why the bloom initiation occurred about one week after the third eruptive pulse
575 (several weeks after the main eruption events) and to what extent the timing was coincidental
576 given that productivity normally peaks in May. Reloncaví Fjord was to the south of the
577 dominant ash deposition from the 22 and 23 April eruptions (Romero et al., 2016) and thus
578 ash was delivered by a mixture of vectors including runoff and rainfall. The Petrohue river
579 basin was particularly severely affected by ash with deposition of up to 50 cm ash in places.
580 This complicates the interpretation of the time series provided by high resolution data (Fig.
581 3). With incident light also highly variable over the time series (Fig. 3F), there are clearly
582 several factors, other than volcanic ash deposition, which will have exerted some influence
583 on diatom and chlorophyll-a abundance throughout May 2015.

584

585 Primary production in the Reloncaví region is thought to be limited by light availability rather
586 than macronutrient availability (González et al., 2010). Whilst micronutrient availability
587 relative to phytoplankton demand has not been extensively assessed in this fjord, with such
588 higher riverine inputs across the region- which are normally a large source of dissolved trace
589 elements into coastal waters (e.g. Boyle et al., 1977)- limitation of phytoplankton growth by
590 Fe, or another micronutrient, seems implausible. Reported Fe concentrations determined by
591 a diffusive gel technique in Reloncaví Fjord in October 2006 were relatively high; 46-530
592 nM (Ahumada et al., 2011). Similarly, reported dFe concentrations in the adjacent Comau
593 Fjord at higher salinity are generally in the nanomolar range and remain >2 nM even under
594 post-bloom conditions which suggests dFe is not a limiting factor for phytoplankton growth
595 (Hopwood et al., 2020; Sanchez et al., 2019).

596

597 Silicic acid availability could have been increased by ash deposition. Whilst not quantified
598 herein, an increase in silicic acid availability from ash in a region where silicic acid was sub-
599 optimal for diatom growth could plausibly explain higher than usual diatom abundance
600 (Siringan et al., 2018). Silicic acid concentrations were indeed high (up to 118 μ M) in
601 Reloncaví Fjord surface waters and >30 μ M at 15 m depth (salinity 33.4) (Vergara-Jara et
602 al., 2019; Yevenes et al., 2019). However concentrations >30 μ M are typical during periods
603 of high runoff and accordingly are not thought to limit primary production or diatom growth
604 in this area (González et al., 2010). The $\text{Si(OH)}_4:\text{NO}_3$ ratio in Reloncaví Fjord and
605 downstream Reloncaví Sound also indicates an excess of Si(OH)_4 , with ratios of
606 approximately 2:1 observed in fjord surface waters throughout the year (González et al.,
607 2010; Yevenes et al., 2019). For comparison, the ratio of Si:N for diatom nutrient uptake is

608 15:16 (Brzezinski, 1985). Furthermore, experimental incubations making additions of
609 macronutrients to fjord waters in Reloncaví and adjacent fjords, have found strong responses
610 of phytoplankton to additions of silicic acid only when $\text{Si}(\text{OH})_4$ and NO_3 were added in
611 combination, further corroborating the hypothesis that an excess of silicic acid is normally
612 present in surface waters of these fjord systems (Labbé-Ibáñez et al., 2015). It is therefore
613 doubtful that changes in nutrient availability from ash alone could explain such high diatom
614 abundances in mid-May.

615

616 Alternative reasons for high diatom abundances in the absence of a chemical fertilization
617 effect are plausible and could include, for example, ash having reduced zooplankton
618 abundance or virus activity in the fjord, thus facilitating higher diatom abundance than would
619 otherwise have been observed by decreasing diatom mortality rates in an environment where
620 nutrients were replete. The role of volcanic ash in driving such short-term ecological shifts
621 in the marine environment is almost entirely unstudied (Weinbauer et al., 2017). However,
622 volcanic ash deposition of 7 mg L^{-1} in lakes within this region during the 2011 Puyehue-
623 Cordón Caulle eruption was reported to increase post-deposition phytoplankton biomass and
624 decrease copepod and cladoceran biomass (Wolinski et al., 2013). The proposed mechanism
625 was ash particle ingestion negatively affecting zooplankton, and ash-shading positively
626 affecting phytoplankton via reduced photoinhibition (Balseiro et al., 2014; Wolinski et al.,
627 2013).

628

629 Considering the more modest peak in diatom abundance at the most strongly ash affected
630 station (Station A, Fig. 4) and the timing of the peak diatom abundance 3 weeks after the
631 main eruption, it is clear that the interaction between ash and phytoplankton in the Reloncaví

632 Fjord was more complex than the simple Fe-fertilization proposed for the SE Pacific (Fig.
633 8g). In the absence of an immediate diatom fertilization effect from Fe or silicic acid, we
634 hypothesize that any change in phytoplankton bloom dynamics within Reloncaví Fjord was
635 mainly a ‘top-down’ effect driven by the physical interaction of ash and different ecological
636 groups in a nutrient replete environment, rather than a ‘bottom-up’ effect driven by
637 alleviation of nutrient-limitation from ash dissolution.

638 **4.2 Volcanic ash as a unique source of trace elements**

639 The release of the bioessential elements Fe and Mn from ash here ranged from 53 - 1200
640 nmol g⁻¹ (dFe) and 48 - 71 nmol g⁻¹ (dissolved Mn). For dFe this is comparable to the rates
641 determined in other studies under similar experimental conditions for subduction zone
642 volcanic ash, with reported Fe-release in prior work ranging 2-570 nmol g⁻¹ (Sup. Table 1).
643 For Mn, less prior work is available, but these values are within the 17-1300 nmol g⁻¹ range
644 reported by Hoffmann et al., (2012). Fe(II) release was particularly efficient at ash loadings
645 <5 mg L⁻¹ (Fig. 7), whereas dFe release was less sensitive to ash loading (Fig. 6). The timing
646 of Fe(II) release in the first 60 s of incubations suggests a fast dissolution process. Fe(II) is
647 short lived in oxic surface seawater with an observed half-life of only 10-20 minutes even in
648 the Southern Ocean where cold surface waters slow Fe(II) oxidation (Sarthou et al., 2011).
649 Yet, relative to Fe(III), Fe(II) is also more soluble and, from an energetic perspective,
650 expected to be more bioaccessible to cellular uptake (Sunda et al., 2001). Whilst it is known
651 that the vast majority of dFe leached from ash into seawater tends to occur in the first minutes
652 of ash addition (Duggen et al., 2007; Jones and Gislason, 2008), and this could be consistent
653 with rapid dissolution of highly soluble phases on ash surfaces, we note that there is not yet
654 conclusive evidence concerning the precise origin of this dFe pulse. Fe(II) salts may be
655 present on the surface of ash particles (Horwell et al., 2003; Hoshayaripour et al., 2015) and

656 thus the Fe(II) observed herein (Fig. 7) may reflect almost instantaneous release following
657 dissolution of thin layers of salt coatings in ash surfaces (Ayris and Delmelle, 2012; Delmelle
658 et al., 2007; Olsson et al., 2013). Alternatively Fe(II) could be released from more crystalline
659 Fe(II) phases. Prior work, at much lower pH (pH 1 H_2SO_4 representing conditions that ash
660 surfaces may experience during atmospheric processing, but not in aquatic environments)
661 suggests that short-term release of Fe(II) or Fe(III) is determined by the surface Fe(II)/Fe
662 ratio which may differ from the bulk Fe(II)/Fe ratio due to plume processing (Maters et al.,
663 2017).

664 Different leaching protocols are widely recognised as a major challenge for interpreting and
665 comparing different dissolution experiment datasets for all types of aerosols (Duggen et al.,
666 2007; Morton et al., 2013). When Fe(II) is released into solution as a considerable fraction
667 of the total dFe release this is particularly challenging to monitor, as Fe(II) oxidises on
668 timescales of seconds to minutes depending on temperature, pH and O_2 conditions (Santana-
669 Casiano et al., 2005). The dFe and Fe(II) leaching protocols used herein are only comparable
670 qualitatively, as the Fe(II) method using cooler seawater and larger seawater volumes was
671 specifically designed to test for the presence of rapid Fe(II) release and to evaluate the short-
672 term temporal trend of any such release. Yet, for rough comparative purposes, the Fe(II)
673 released was equivalent to $38 \pm 25\%$ (mean \pm standard deviation) of dFe released at ash
674 loadings from $1\text{-}10 \text{ mg L}^{-1}$ and $19 \pm 17\%$ of dFe for ash loadings from $10\text{-}50 \text{ mg L}^{-1}$. These
675 values are reasonably comparable to the 26% median Fe(II)/dFe fraction measured in Fe
676 released into seawater from aerosols collected across zonal transects of the Pacific Ocean
677 (Buck et al., 2013) suggesting that fresh Calbuco ash is roughly comparable in terms of Fe(II)
678 lability to these environmentally processed aerosols.

679 **4.3 A potential fertilization effect in the SE Pacific**

680 Experiments with ash suspensions have shown that ash loading has a restricted impact on
681 satellite chlorophyll-a retrieval (Browning et al., 2015), therefore offering a means to assess
682 the potential biological impact of the 2015 Calbuco eruption in offshore waters. We found
683 evidence for fertilization of offshore Pacific seawaters in the studied area (Fig. 8). Following
684 the eruption date, mean chlorophyll-a concentrations increased ~2.5 times over a broad
685 region where elevated UV aerosol index was detected (Fig. 8G). Both the timing and location
686 of this chlorophyll-a peak were consistent with ash fertilization, with the peak of elevated
687 chlorophyll-a being located within the core of highest atmospheric aerosol loading, and the
688 peak date occurring one day after the main passage of the atmospheric aerosol plume. A
689 similar phytoplankton response timeframe was reported following ash deposition in the NE
690 Pacific following the August 2008 Kasatochi eruption (Hamme et al., 2010) which was
691 similarly thought to be triggered by relief of Fe-limitation (Langmann et al., 2010). At the
692 same time, a control region to the south of the ash-impacted Pacific region showed no clear
693 changes in chlorophyll-a matching that observed in the higher UV aerosol index region to
694 the north (Sup. Fig. 3).

695

696 In the SW Atlantic, two ash impacted areas are highlighted; one to the north (Fig. 8), and one
697 to the south of the Rio de la Plata (Sup. Fig. 3). Nitrate levels are expected to be higher in the
698 south than to the north, with Fe levels expected to be elevated across both locations as a result
699 of their position on the continental shelf. In the area to the north of the Rio de la Plata (Fig.
700 8), ash deposition indicated by the UV aerosol index did not lead to such a clear
701 corresponding change in chlorophyll-a concentrations (Fig. 8H), although with the available
702 data it is not possible to rule out the possibility of fertilisation completely (e.g., whilst also
703 being proceeded by a larger chlorophyll-a peak on 21 April, there is a peak in chlorophyll-a

704 at 25 April coinciding with elevated UV aerosol index). Phytoplankton growth in this region
705 of the Atlantic is expected to be limited by fixed nitrogen availability, as a result of strong
706 stratification (Moore et al., 2013) and thus dFe release from ash particles alone would not be
707 expected to result in short-term increases to primary production. In the second area of ash
708 deposition, to the south (Sup. Fig. 3), a chlorophyll-a peak was evident 7 days after the UV
709 aerosol peak. However, this was not well constrained due to poor satellite coverage in the
710 period after the eruption. Considering the dynamic spatial and temporal variation in
711 chlorophyll within this coastal area, it is challenging to associate any change in chlorophyll
712 specifically with ash arrival.

713

714 The change in chlorophyll-a observed in the SE Pacific contrasts with results in Reloncaví
715 Fjord where phytoplankton abundances likely peaked much later than the first ash arrival-
716 after 28 April. The fertilized region of the Pacific (Fig. 8) hosts upwelling of deep waters,
717 supplying nutrients in ratios that are deficient in dFe (Bonnet et al., 2008; Torres and
718 Ampuero, 2009). Fe-limitation of phytoplankton growth in this region is therefore
719 anticipated, which could have been temporarily relieved following ash deposition and dFe
720 release (Fig. 6). The differential responses observed in the Pacific and Atlantic are therefore
721 consistent with the anticipated nutrient limitation regimes (Fe-limited and nitrogen-limited,
722 respectively), and the supply of dFe but not fixed N (NO_3 or NH_4) from the Calbuco ash (Fig.
723 6 and Table 2).

724

725 **5 Conclusions**

726 The contrasting effects of volcanic ash on primary producers in Reloncaví Fjord, the SE
727 Pacific and SW Atlantic Oceans support the hypothesis that the response of primary

728 producers is dependent on both the ash loading and the resources limiting primary production
729 in a region at a specific time of year. Leach experiments using ash from the 2015 Calbuco
730 eruption demonstrated a small increase in the alkalinity of de-ionized water from fine, but
731 not coarse ash, and no significant addition of fixed nitrogen (quantified as NO_3 and NH_4) into
732 solution. In saline waters, release of dissolved trace metals including Mn, Cu, Co, Pb, Fe and
733 specifically Fe(II) was evident.

734

735 Strong evidence of a broad-scale ‘bottom-up’ fertilization effect of ash on primary production
736 was not found locally within Reloncaví Fjord, although it is possible that the timing and peak
737 diatom abundance of the autumn phytoplankton bloom may have shifted in response to high
738 ash loading in the weeks following the first eruption. High diatom abundances at some
739 stations within the fjord several weeks after the eruption may have arisen from a ‘top-down’
740 effect of ash on filter feeders, although the mechanism can only be speculated herein. No
741 clear positive effect of ash deposition on chlorophyll-a was evident in the SW Atlantic,
742 consistent with expected patterns in nutrient deficiency which suggest the region to be
743 nitrogen-limited. However, in offshore waters of the SE Pacific where Fe is anticipated to
744 limit phytoplankton growth, a chlorophyll-a increase was related with maximum ash
745 deposition and we presume that this increase in chlorophyll-a was likely driven by Fe-
746 fertilization.

747

748 **6. Data availability**

749 The complete 2015 time series from the Reloncaví Fjord mooring is available online
750 (https://figshare.com/articles/Puelo_Bouy/7754258). Source data for Figures 4-7 is included
751 in the Supplement.

752

753 **7. Acknowledgements**

754 The authors thank the Dirección de Investigación & Desarrollo UACh for its partial support
755 during this project. The data presented are part of the second chapter of the PhD Thesis of
756 MVJ at Universidad Austral de Chile. Cristian Vargas (Universidad de Concepción) is
757 thanked for making additional chlorophyll a data available, Manuel Díaz for providing Fig.
758 1, Lorena Rebolledo for running the particle size test, Miriam Beck for assistance with Fe(II)
759 flow injection analysis and 3 reviewers for constructive comments that improved the
760 manuscript.

761

762 **8. Funding**

763 JLI and EA gratefully acknowledge funding from the European Commission (OCEAN-
764 CERTAIN, FP7- ENV- 2013-6.1-1; no: 603773). JLI received funding by CONICYT-
765 FONDECYT 1141065 and is partially funded by Center IDEAL (FONDAP 15150003).
766 Partial funding came from CONICYT-FONDECYT 1140385 (RT). MVJ received financial
767 support from a CONICYT Scholarship (Beca Doctorado Nacional 2015 No 21150285). IR
768 and MH received funding from the Deutsche Forschungsgemeinschaft as part of
769 Sonderforschungsbereich (SFB) 754: 'Climate-Biogeochemistry Interactions in the Tropical
770 Ocean'.

771

772 **9. Author contributions**

773 MVJ, MH, JLI and EA designed the study. MVJ, IR, MH, RT and BR conducted analytical
774 and field work. TB conducted satellite data analysis. MV, MH and TB wrote the initial
775 manuscript with all authors contributing to its revision.

776

777 **10. References**

778 Achterberg, E. ., Moore, C. M., Henson, S. A., Steigenberger, S., Stohl, A., Eckhardt, S.,

779 Avendano, L. C., Cassidy, M., Hembury, D., Klar, J. K., Lucas, M. I., MacEy, A. I.,

780 Marsay, C. M. and Ryan-Keogh, T. J.: Natural iron fertilization by the Eyjafjallajokull

781 volcanic eruption, *Geophys. Res. Lett.*, 40(5), 921–926, doi:10.1002/grl.50221, 2013.

782 Ahumada, R., Rudolph, A., Gonzalez, E., Fones, G., Saldias, G. and Ahumada Rudolph, R.:

783 Dissolved trace metals in the water column of Reloncavi Fjord, Chile, *Lat. Am. J. Aquat.*

784 Res., 39, 567–574, doi:10.3856/vol39-issue3-fulltext-16, 2011.

785 Ayris, P. and Delmelle, P.: Volcanic and atmospheric controls on ash iron solubility: A

786 review, *Phys. Chem. Earth*, doi:10.1016/j.pce.2011.04.013, 2012.

787 Baker, A. R. and Croot, P. L.: Atmospheric and marine controls on aerosol iron solubility

788 in seawater, *Mar. Chem.*, 120(1–4), 4–13, doi:10.1016/j.marchem.2008.09.003, 2010.

789 Balseiro, E., Souza, M. S., Olabuenaga, I. S., Wolinski, L., Navarro, M. B.,

790 Laspoumaderes, C. and Modenutti, B.: Effect of the Puyehue-Cordon Caulle volcanic

791 complex eruption on crustacean zooplankton of Andean Lakes, *Ecol. Austral*, 24, 75–82,

792 2014.

793 Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T.,

794 Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L. and Claustre, H.:

795 Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise),

796 *Biogeosciences*, 5(1), 215–225, doi:10.5194/bg-5-215-2008, 2008.

797 Boyle, E. A., Edmond, J. M. and Sholkovitz, E. R.: Mechanism of iron removal in

798 estuaries, *Geochim. Cosmochim. Acta*, 41(9), 1313–1324, doi:10.1016/0016-

799 7037(77)90075-8, 1977.

800 Browning, T. J., Bouman, H. A., Henderson, G. M., Mather, T. A., Pyle, D. M., Schlosser,
801 C., Woodward, E. M. S. and Moore, C. M.: Strong responses of Southern Ocean
802 phytoplankton communities to volcanic ash, *Geophys. Res. Lett.*, 41(8), 2851–2857,
803 doi:10.1002/2014GL059364, 2014.

804 Browning, T. J., Stone, K., Bouman, H., Mather, T. A., Pyle, D. M., Moore, M. and
805 Martinez-Vicente, V.: Volcanic ash supply to the surface ocean – remote sensing of
806 biological responses and their wider biogeochemical significance, *Front. Mar. Sci.*, 2,
807 doi:10.3389/fmars.2015.00014, 2015.

808 Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific variability and the
809 effect of some environmental variables, *J. Phycol.*, 21(3), 347–357, doi:10.1111/j.0022-
810 3646.1985.00347.x, 1985.

811 Buck, C. S., Landing, W. M. and Resing, J.: Pacific Ocean aerosols: Deposition and
812 solubility of iron, aluminum, and other trace elements, *Mar. Chem.*, 157, 117–130,
813 doi:10.1016/j.marchem.2013.09.005, 2013.

814 Cáceres, M., Valle-Levinson, A., Sepúlveda, H. H. and Holderied, K.: Transverse
815 variability of flow and density in a Chilean fjord, in *Continental Shelf Research.*, 2002.

816 Castillo, M. I., Cifuentes, U., Pizarro, O., Djurfeldt, L. and Caceres, M.: Seasonal
817 hydrography and surface outflow in a fjord with a deep sill: The Reloncaví fjord, Chile,
818 *Ocean Sci.*, 12, 533–544, doi:10.5194/os-12-533-2016, 2016.

819 DeGrandpre, M. D., Hammar, T. R., Smith, S. P. and Sayles, F. L.: In situ measurements of
820 seawater pCO₂, *Limnol. Oceanogr.*, 40(5), 969–975, doi:10.4319/lo.1995.40.5.0969, 1995.

821 DeGrandpre, M. D., Baehr, M. M. and Hammar, T. R.: Calibration-free optical chemical
822 sensors, *Anal. Chem.*, 71(6), 1152–1159, doi:10.1021/ac9805955, 1999.

823 Delmelle, P., Lambert, M., Dufrêne, Y., Gerin, P. and Óskarsson, N.: Gas/aerosol-ash

824 interaction in volcanic plumes: New insights from surface analyses of fine ash particles,
825 *Earth Planet. Sci. Lett.*, 259, 159–170, doi:10.1016/j.epsl.2007.04.052, 2007.

826 Duggen, S., Croot, P., Schacht, U. and Hoffmann, L.: Subduction zone volcanic ash can
827 fertilize the surface ocean and stimulate phytoplankton growth: Evidence from
828 biogeochemical experiments and satellite data, *Geophys. Res. Lett.*,
829 doi:10.1029/2006GL027522, 2007.

830 Duggen, S., Olgun, N., Croot, P., Hoffmann, L., Dietze, H., Delmelle, P. and Teschner, C.:
831 The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a
832 review, *Biogeosciences*, 7(3), 827–844, doi:10.5194/bg-7-827-2010, 2010.

833 Van Eaton, A. R., Amigo, Á., Bertin, D., Mastin, L. G., Giacosa, R. E., González, J.,
834 Valderrama, O., Fontijn, K. and Behnke, S. A.: Volcanic lightning and plume behavior
835 reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile,
836 *Geophys. Res. Lett.*, 43(7), 3563–3571, doi:10.1002/2016GL068076, 2016.

837 Ermolin, M. S., Fedotov, P. S., Malik, N. A. and Karandashev, V. K.: Nanoparticles of
838 volcanic ash as a carrier for toxic elements on the global scale, *Chemosphere*, 200, 16–22,
839 doi:10.1016/j.chemosphere.2018.02.089, 2018.

840 Frogner, P., Gislason, S. R. and Oskarsson, N.: Fertilizing potential of volcanic ash in
841 ocean surface water, *Geology*, 29(6), 487–490, doi:10.1130/0091-
842 7613(2001)029<0487:f povai>2.0.co;2, 2001.

843 Gledhill, M. and Buck, K. N.: The organic complexation of iron in the marine environment:
844 a review, *Front. Microbiol.*, 3, 69, doi:10.3389/fmicb.2012.00069, 2012.

845 González, H. E., Calderón, M. J., Castro, L., Clement, A., Cuevas, L. A., Daneri, G., Iriarte,
846 J. L., Lizárraga, L., Martínez, R., Menschel, E., Silva, N., Carrasco, C., Valenzuela, C.,
847 Vargas, C. A. and Molinet, C.: Primary production and plankton dynamics in the Reloncaví

848 Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile, Mar. Ecol. Prog. Ser., 402,
849 13–30, 2010.

850 Hamme, R. C., Webley, P. W., Crawford, W. R., Whitney, F. A., Degrandpre, M. D.,
851 Emerson, S. R., Eriksen, C. C., Giesbrecht, K. E., Gower, J. F. R., Kavanaugh, M. T., Pea,
852 M. A., Sabine, C. L., Batten, S. D., Coogan, L. A., Grundle, D. S. and Lockwood, D.:
853 Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific, Geophys. Res.
854 Lett., 37(19), L19604, doi:10.1029/2010GL044629, 2010.

855 Haraldsson, C., Anderson, L. G., Hassellöv, M., Hulth, S. and Olsson, K.: Rapid, high-
856 precision potentiometric titration of alkalinity in ocean and sediment pore waters, Deep Sea
857 Res. Part I Oceanogr. Res. Pap., 44(12), 2031–2044, doi:10.1016/S0967-0637(97)00088-5,
858 1997.

859 Hoffmann, L. J., Breitbarth, E., Ardelan, M. V., Duggen, S., Olgun, N., Hassellöv, M. and
860 Wängberg, S.-Å.: Influence of trace metal release from volcanic ash on growth of
861 *Thalassiosira pseudonana* and *Emiliania huxleyi*, Mar. Chem., 132–133, 28–33,
862 doi:10.1016/j.marchem.2012.02.003, 2012.

863 Hopwood, M. J., Santana-González, C., Gallego-Urrea, J., Sanchez, N., Achterberg, E. P.,
864 Ardelan, M. V., Gledhill, M., González-Dávila, M., Hoffmann, L., Leiknes, Ø., Magdalena
865 Santana-Casiano, J., Tsagaraki, T. M. and Turner, D.: Fe(II) stability in coastal seawater
866 during experiments in Patagonia, Svalbard, and Gran Canaria, Biogeosciences,
867 doi:10.5194/bg-17-1327-2020, 2020.

868 Horwell, C. J., Fenoglio, I., Vala Ragnarsdottir, K., Sparks, R. S. J. and Fubini, B.: Surface
869 reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West
870 Indies with implications for health hazards, Environ. Res., 93(2), 202–215,
871 doi:10.1016/S0013-9351(03)00044-6, 2003.

872 Hoshyaripour, G. A., Hort, M. and Langmann, B.: Ash iron mobilization through
873 physicochemical processing in volcanic eruption plumes: A numerical modeling approach,
874 *Atmos. Chem. Phys.*, 15, 9361–9379, doi:10.5194/acp-15-9361-2015, 2015.

875 Hu, C., Lee, Z. and Franz, B.: Chlorophyll aalgorithms for oligotrophic oceans: A novel
876 approach based on three-band reflectance difference, *J. Geophys. Res. Ocean.*, 117(C1),
877 doi:10.1029/2011JC007395, 2012.

878 Iriarte, J. L., González, H. E., Liu, K. K., Rivas, C. and Valenzuela, C.: Spatial and
879 temporal variability of chlorophyll and primary productivity in surface waters of southern
880 Chile (41.5–43° S), *Estuar. Coast. Shelf Sci.*, 74(3), 471–480,
881 doi:10.1016/j.ecss.2007.05.015, 2007.

882 Jones, M. R., Nightingale, P. D., Turner, S. M. and Liss, P. S.: Adaptation of a load-inject
883 valve for a flow injection chemiluminescence system enabling dual-reagent injection
884 enhances understanding of environmental Fenton chemistry, *Anal. Chim. Acta*, 796, 55–60,
885 doi:10.1016/j.aca.2013.08.003, 2013.

886 Jones, M. T. and Gislason, S. R.: Rapid releases of metal salts and nutrients following the
887 deposition of volcanic ash into aqueous environments, *Geochim. Cosmochim. Acta*, 72(15),
888 3661–3680, doi:10.1016/j.gca.2008.05.030, 2008.

889 Labbé-Ibáñez, P., Iriarte, J. L. and Pantoja, S.: Respuesta del microfitoplancton a la adición
890 de nitrato y ácido silícico en fiordos de la Patagonia chilena, *Lat. Am. J. Aquat. Res.*, 43(1),
891 80–93, doi:10.3856/vol43-issue1-fulltext-8, 2015.

892 Langmann, B., Zakšek, K., Hort, M. and Duggen, S.: Volcanic ash as fertiliser for the
893 surface ocean, *Atmos. Chem. Phys.*, 10, 3891–3899, doi:10.5194/acp-10-3891-2010, 2010.

894 León-Muñoz, J., Marcé, R. and Iriarte, J. L.: Influence of hydrological regime of an Andean
895 river on salinity, temperature and oxygen in a Patagonia fjord, Chile, *New Zeal. J. Mar.*

896 Freshw. Res., 47(4), 515–528, doi:10.1080/00288330.2013.802700, 2013.

897 León-Muñoz, J., Urbina, M. A., Garreaud, R. and Iriarte, J. L.: Hydroclimatic conditions
898 trigger record harmful algal bloom in western Patagonia (summer 2016), *Sci. Rep.*, 8(1),
899 1330, doi:10.1038/s41598-018-19461-4, 2018.

900 Lin, I. I., Hu, C., Li, Y. H., Ho, T. Y., Fischer, T. P., Wong, G. T. F., Wu, J., Huang, C. W.,
901 Chu, D. A., Ko, D. S. and Chen, J. P.: Fertilization potential of volcanic dust in the low-
902 nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and
903 laboratory study, *Global Biogeochem. Cycles*, 25, GB1006, doi:10.1029/2009GB003758,
904 2011.

905 López-Escobar, L., Parada, M. A., Hickey-Vargas, R., Frey, F. A., Kempton, P. D. and
906 Moreno, H.: Calbuco Volcano and minor eruptive centers distributed along the Liquiñe-
907 Ofqui Fault Zone, Chile (41°–42° S): contrasting origin of andesitic and basaltic magma in
908 the Southern Volcanic Zone of the Andes, *Contrib. to Mineral. Petrol.*, 119(4), 345–361,
909 doi:10.1007/BF00286934, 1995.

910 Martin, J. H., Fitzwater, S. E. and Gordon, R. M.: Iron deficiency limits phytoplankton
911 growth in Antarctic waters, *Global Biogeochem. Cycles*, 4(1), 5–12, 1990.

912 Maters, E. C., Delmelle, P. and Gunnlaugsson, H. P.: Controls on iron mobilisation from
913 volcanic ash at low pH: Insights from dissolution experiments and Mössbauer
914 spectroscopy, *Chem. Geol.*, 449, 73–81, doi:10.1016/j.chemgeo.2016.11.036, 2017.

915 Mélançon, J., Levasseur, M., Lizotte, M., Delmelle, P., Cullen, J., Hamme, R. C., Peña, A.,
916 Simpson, K. G., Scarratt, M., Tremblay, J. É., Zhou, J., Johnson, K., Sutherland, N.,
917 Arychuk, M., Nemcek, N. and Robert, M.: Early response of the northeast subarctic Pacific
918 plankton assemblage to volcanic ash fertilization, *Limnol. Oceanogr.*, 59,
919 doi:10.4319/lo.2014.59.1.0055, 2014.

920 Mendez, J., Guieu, C. and Adkins, J.: Atmospheric input of manganese and iron to the
921 ocean: Seawater dissolution experiments with Saharan and North American dusts, Mar.
922 Chem., 120(1), 34–43, doi:10.1016/j.marchem.2008.08.006, 2010.

923 Millero, F. J., Sotolongo, S. and Izaguirre, M.: The oxidation-kinetics of Fe(II) in seawater,
924 Geochim. Cosmochim. Acta, 51(4), 793–801, doi:10.1016/0016-7037(87)90093-7, 1987.

925 Molinet, C., Díaz, M., Marín, S. L., Astorga, M. P., Ojeda, M., Cares, L. and Asencio, E.:
926 Relation of mussel spatfall on natural and artificial substrates: Analysis of ecological
927 implications ensuring long-term success and sustainability for mussel farming,
928 Aquaculture, 467, 211–218, doi:10.1016/j.aquaculture.2016.09.019, 2017.

929 Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W.,
930 Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J.,
931 Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T.,
932 Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A. and Ulloa, O.: Processes and
933 patterns of oceanic nutrient limitation, Nat. Geosci., doi:10.1038/ngeo1765, 2013.

934 Morton, P. L., Landing, W. M., Hsu, S. C., Milne, A., Aguilar-Islas, A. M., Baker, A. R.,
935 Bowie, A. R., Buck, C. S., Gao, Y., Gichuki, S., Hastings, M. G., Hatta, M., Johansen, A.
936 M., Losno, R., Mead, C., Patey, M. D., Swarr, G., Vandermark, A. and Zamora, L. M.:
937 Methods for the sampling and analysis of marine aerosols: Results from the 2008
938 GEOTRACES aerosol intercalibration experiment, Limnol. Oceanogr. Methods, 11,
939 doi:10.4319/lom.2013.11.62, 2013.

940 Mosley, L. M., Husheer, S. L. G. and Hunter, K. A.: Spectrophotometric pH measurement
941 in estuaries using thymol blue and m-cresol purple, Mar. Chem., 91, 175–186,
942 doi:10.1016/j.marchem.2004.06.008, 2004.

943 Newcomb, T. W. and Flagg, T. A.: Some effects of Mt. St. Helens volcanic ash on juvenile

944 salmon smolts., Mar. Fish. Rev., 45(2), 8–12, 1983.

945 Olgun, N., Duggen, S., Croot, P. L., Delmelle, P., Dietze, H., Schacht, U., Óskarsson, N.,
946 Siebe, C., Auer, A. and Garbe-Schönberg, D.: Surface ocean iron fertilization: The role of
947 airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes
948 into the Pacific Ocean, Global Biogeochem. Cycles, 25(4), doi:10.1029/2009GB003761,
949 2011.

950 Olsson, J., Stipp, S. L. S., Dalby, K. N. and Gislason, S. R.: Rapid release of metal salts and
951 nutrients from the 2011 Grímsvötn, Iceland volcanic ash, Geochim. Cosmochim. Acta,
952 doi:10.1016/j.gca.2013.09.009, 2013.

953 Óskarsson, N.: The interaction between volcanic gases and tephra: Fluorine adhering to
954 tephra of the 1970 hekla eruption, J. Volcanol. Geotherm. Res., doi:10.1016/0377-
955 0273(80)90107-9, 1980.

956 Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. and Achterberg, E. P.: Automated
957 preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using
958 high-resolution sector field inductively-coupled plasma mass spectrometry, Anal. Chim.
959 Acta, 976, 1–13, doi:10.1016/j.aca.2017.05.008, 2017.

960 Reckziegel, F., Bustos, E., Mingari, L., Báez, W., Villarosa, G., Folch, A., Collini, E.,
961 Viramonte, J., Romero, J. and Osores, S.: Forecasting volcanic ash dispersal and coeval
962 resuspension during the April-May 2015 Calbuco eruption, J. Volcanol. Geotherm. Res.,
963 doi:10.1016/j.jvolgeores.2016.04.033, 2016.

964 Rogan, N., Achterberg, E. P., Le Moigne, F. A. C., Marsay, C. M., Tagliabue, A. and
965 Williams, R. G.: Volcanic ash as an oceanic iron source and sink, Geophys. Res. Lett.,
966 43(6), 2732–2740, doi:10.1002/2016GL067905, 2016.

967 Romero, J. E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F., Viramonte, J.,

968 Díaz-Alvarado, J., Polacci, M., Burton, M. and Perugini, D.: Eruption dynamics of the 22–
969 23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits, J.
970 Volcanol. Geotherm. Res., 317, 15–29, doi:10.1016/j.jvolgeores.2016.02.027, 2016.

971 Rubin, C. H., Noji, E. K., Seligman, P. J., Holtz, J. L., Grande, J. and Vittani, F.:
972 Evaluating a fluorosis hazard after a volcanic eruption, Arch. Environ. Health,
973 doi:10.1080/00039896.1994.9954992, 1994.

974 Sanchez, N., Bizsel, N., Iriarte, J. L., Olsen, L. M. and Ardelan, M. V.: Iron cycling in a
975 mesocosm experiment in a north Patagonian fjord: Potential effect of ammonium addition
976 by salmon aquaculture, Estuar. Coast. Shelf Sci., 220, 209–219,
977 doi:10.1016/j.ecss.2019.02.044, 2019.

978 Santana-Casiano, J. M., Gonzalez-Davila, M. and Millero, F. J.: Oxidation of nanomolar
979 levels of Fe(II) with oxygen in natural waters, Environ. Sci. Technol., 39(7), 2073–2079,
980 doi:10.1021/es049748y, 2005.

981 Sarmiento, J. L.: Atmospheric CO₂ stalled, Nature, doi:10.1038/365697a0, 1993.

982 Sarthou, G., Bucciarelli, E., Chever, F., Hansard, S. P., Gonzalez-Davila, M., Santana-
983 Casiano, J. M., Planchon, F. and Speich, S.: Labile Fe(II) concentrations in the Atlantic
984 sector of the Southern Ocean along a transect from the subtropical domain to the Weddell
985 Sea Gyre, Biogeosciences, 8(9), 2461–2479, doi:10.5194/bg-8-2461-2011, 2011.

986 Seidel, M. P., DeGrandpre, M. D. and Dickson, A. G.: A sensor for in situ indicator-based
987 measurements of seawater pH, Mar. Chem., 109(1), 18–28,
988 doi:10.1016/j.marchem.2007.11.013, 2008.

989 Simonella, L. E., Palomeque, M. E., Croot, P. L., Stein, A., Kupczewski, M., Rosales, A.,
990 Montes, M. L., Colombo, F., García, M. G., Villarosa, G. and Gaiero, D. M.: Soluble iron
991 inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions

992 from the Patagonian Andes, *Global Biogeochem. Cycles*, 29(8), 1125–1144,
993 doi:10.1002/2015GB005177, 2015.

994 Siringan, F. P., Racasa, E. D. R., David, C. P. C. and Saban, R. C.: Increase in Dissolved
995 Silica of Rivers Due to a Volcanic Eruption in an Estuarine Bay (Sorsogon Bay,
996 Philippines), *Estuaries and Coasts*, 41, 2277–2288, doi:10.1007/s12237-018-0428-1, 2018.

997 Stewart, C., Johnston, D. M., Leonard, G. S., Horwell, C. J., Thordarson, T. and Cronin, S.
998 J.: Contamination of water supplies by volcanic ashfall: A literature review and simple
999 impact modelling, *J. Volcanol. Geotherm. Res.*, 158(3), 296–306,
1000 doi:10.1016/j.jvolgeores.2006.07.002, 2006.

1001 Sunda, W. G., Buffle, J. and Van Leeuwen, H. P.: Bioavailability and Bioaccumulation of
1002 Iron in the Sea, in *The Biogeochemistry of Iron in Seawater*, vol. 7, edited by D. R. Turner
1003 and K. A. Hunter, pp. 41–84, John Wiley & Sons, Ltd, Chichester., 2001.

1004 Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P.
1005 and Levelt, P.: Aerosols and surface UV products form Ozone Monitoring Instrument
1006 observations: An overview, *J. Geophys. Res. Atmos.*, doi:10.1029/2007JD008809, 2007.

1007 Torres, R. and Ampuero, P.: Strong CO₂ outgassing from high nutrient low chlorophyll
1008 coastal waters off central Chile (30°S): The role of dissolved iron, *Estuar. Coast. Shelf Sci.*,
1009 83(2), 126–132, doi:10.1016/j.ecss.2009.02.030, 2009.

1010 Torres, R., Silva, N., Reid, B. and Frangopoulos, M.: Silicic acid enrichment of subantarctic
1011 surface water from continental inputs along the Patagonian archipelago interior sea (41–
1012 56°S), *Prog. Oceanogr.*, 129, 50–61, doi:10.1016/j.pocean.2014.09.008, 2014.

1013 Utermöhl, H.: Zur Vervollkommnung der quantitativen Phytoplankton-Methodik, *SIL*
1014 *Commun.* 1953–1996, doi:10.1080/05384680.1958.11904091, 1958.

1015 Vergara-Jara, M. J., DeGrandpre, M. D., Torres, R., Beatty, C. M., Cuevas, L. A., Alarcón,

1016 E. and Iriarte, J. L.: Seasonal Changes in Carbonate Saturation State and Air-Sea CO₂
1017 Fluxes During an Annual Cycle in a Stratified-Temperate Fjord (Reloncaví Fjord, Chilean
1018 Patagonia), *J. Geophys. Res. Biogeosciences*, 124(9), 2851–2865,
1019 doi:10.1029/2019JG005028, 2019.

1020 Watson, A. J.: Volcanic iron, CO₂, ocean productivity and climate, *Nature*,
1021 doi:10.1038/385587b0, 1997.

1022 Weinbauer, M. G., Guinot, B., Migon, C., Malfatti, F. and Mari, X.: Skyfall - neglected
1023 roles of volcano ash and black carbon rich aerosols for microbial plankton in the ocean, *J.*
1024 *Plankton Res.*, 39(2), 187–198, doi:10.1093/plankt/fbw100, 2017.

1025 Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence of chlorophyll
1026 b and pheopigments, *Limnol. Oceanogr.*, doi:10.4319/lo.1994.39.8.1985, 1994.

1027 Witham, C. S., Oppenheimer, C. and Horwell, C. J.: Volcanic ash-leachates: a review and
1028 recommendations for sampling methods, *J. Volcanol. Geotherm. Res.*, 141(3), 299–326,
1029 doi:10.1016/j.jvolgeores.2004.11.010, 2005.

1030 Wolinski, L., Laspoumaderes, C., Bastidas Navarro, M., Modenutti, B. and Balseiro, E.:
1031 The susceptibility of cladocerans in North Andean Patagonian lakes to volcanic ashes,
1032 *Freshw. Biol.*, 58, 1878–1888, doi:10.1111/fwb.12176, 2013.

1033 Yevenes, M. A., Lagos, N. A., Farías, L. and Vargas, C. A.: Greenhouse gases, nutrients
1034 and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia):
1035 Implications on aquaculture of the mussel, *Mytilus chilensis*, during an episodic volcanic
1036 eruption, *Sci. Total Environ.*, doi:10.1016/j.scitotenv.2019.03.037, 2019.

1037