Changes in detrital sediment supply to the central Yellow Sea since the Last Glacial Maximum

Hyo Jin Koo, Hyen Goo Cho

Department of Geology and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea

Correspondence to: Hyen Goo Cho (hgcho@gnu.ac.kr)

Abstract. The sediment supply to the central Yellow Sea since the Last Glacial Maximum was uncovered through clay mineralogy and geochemical analysis of core 11YS-PCL14 in the Central Yellow Sea mud (CYSM). The core can be divided into four units: Unit 4 (700–520 cm; 15.5–14.8 ka), Unit 3 (520–280 cm; 14.8–12.1 ka), Unit 2 (280–130 cm; 12.1–8.8 ka), and Unit 1 (130–0 cm; < 8.8 ka). Comparison of the clay mineral compositions, rare earth elements, and εNd values indicated distinct provenance shifts in core PCL14. Moreover, the integration of clay mineralogical and geochemical indices showed different origins according to particle size. The late last deglaciation (Units 3 and 4) sediments originated from all potential provenance rivers, while the source of coarse sediments changed to Huanghe in Unit 3. Early Holocene (Unit 2) sediments were characterized by oscillating grain size, clay minerals, and moderate εNd values. In this period, the dominant fine sediment provenance changed from the Huanghe to the Changjiang, whereas coarse sediments most likely originated from western Korean rivers. The Unit 1 CYSM sediments were sourced primarily from the Changjiang, along with minor contributions from the western Korean rivers. Possible transport mechanisms in the riverine sediment sources change and contributions to this include position shifts of river mouths, tidal stress evolution, and the development of the Yellow Sea Warm Current and coastal circulation systems.

Keywords: Central Yellow Sea mud (CYSM), clay mineralogy, sediment provenance, Sr–Nd isotopes, Rare earth elements
1 Introduction

The Yellow Sea, located between the China continent and Korean Peninsula, is a semi-enclosed epicontinental shelf with a complex oceanic circulation system (Fig. 1). It is notable for its large amount of runoff and terrigenous sediment supplied from several adjacent rivers, including two of the world’s largest rivers, the Changjiang and Huanghe, as well as from several smaller Korean rivers, including the Han, Keum, and Yeongsan River. Although most riverine sediments are trapped in estuaries and along coastal areas, some are deposited on adjacent shelves (Milliman et al., 1985; Milliman et al., 1987), forming several shelf mud patch depositions such as Central Yellow Sea Mud (CYSM), Southeastern Yellow Sea Mud and Southwestern Cheju Island Mud (Fig 1). These deposits provide abundant information on paleo-environmental changes as well as sediment supply, marine hydrodynamics, and climate variation (e.g. Wang et al., 1999; Kim and Kucera, 2000; Li et al., 2014a; Cho et al., 2015; Kwak et al., 2016; Hu et al., 2018).

The provenance of CYSM sediments have attracted many researchers over the last three decades. Many studies have indicated that CYSM sediments originated mostly from the Huanghe considering the large amount of sediment load carried by that river (Milliman et al., 1987; Lee and Cough, 1989; Liu et al., 2002; Yang and Liu, 2007; Shinn et al., 2007; Xiang et al., 2008). On the other hand, other studies have used mineralogical, geochemical, and magnetic observations and determined that the CYSM was formed from a complex mixture of sediments from the Huanghe as well as the Changjiang and several Korean rivers (Zhao et al., 1990; Wei et al., 2003; Zhang et al., 2008; Li et al., 2014a; Wang et al., 2014; Koo et al., 2018). In addition, recent studies using core sediments suggested that the provenance of CYSM changed mainly from Huanghe to Changjiang with minor contribution from the Korean rivers during the Holocene (Lim et al., 2015; Hu et al., 2018). However, the timing of the CYSM formation and the deposition environment prior to the Holocene remains unclear.

Discrimination of sediment source and reconstruction of paleo-environmental changes can be undertaken based on grain size, clay mineralogy, and elemental signals. In particular, clay mineralogy and geochemistry have been utilized as a powerful tool to trace provenance of the terrigenous fraction of marine sediments in the Yellow sea (Yang et al., 2002; Yang and Youn, 2007; Liu et al., 2007, 2010b; Dou et al., 2010; Hu et al., 2012; Wang and Yang, 2013; Li et al., 2014a; Koo et al., 2018). Several additional factors can also control sedimentary characteristics, including terrigenous inputs, sea level and climate conditions (Wang et al., 1999; Duck et al., 2001; Hwang et al., 2014; Li et al., 2014a; Lim et al., 2015; Badejo et al., 2016; Hu et al., 2018). Particularly, paleo-river pathway associated with sea-level change that was recently reconstructed using high-resolution seismic data in the Yellow Sea can be explained reasonable for understanding CYSM formation during low stand period (KIGAM, 1993; Xu et al., 1997; Yoo et al., 2015, 2016).

In this study, we aimed to determine the sediment provenance and transport mechanism of CYSM using clay mineralogy and geochemistry multi-proxy. The purposes are to provide a broad insight into the supply of CYSM sediments and to reconstruct the paleo-environment since the last glacial maximum.

2. Oceanography

The Yellow Sea is characterized by a complex hydrodynamic system (Fig. 1), with two major circulation patterns. One is a basin-scale counterclockwise (cyclonic) gyre consisting of northward inflow via the Yellow Sea Warm Current (YSWC) in the central Yellow Sea and southward inflow via the Yellow Sea Coastal Current (YSCC) along the east coast of China (Beardsley et al., 1985; Yang et al., 2003) (Fig. 1). The other is a clockwise gyre in the eastern part made up of the YSWC and southward inflow from the Korea Coastal Current (KCC) (Beardsley et al., 1985; Yang et al., 2003). The YSCC is one of the most important dynamic phenomena in the East China Sea and Yellow Sea. It is a branch of the Kuroshio Current that carries warm, salty water into the Yellow Sea roughly along the Yellow Sea Trough (Xu et al., 2009; Liu et al., 2010a; Wang et al., 2011, 2012). The Transversal Current (TC), identified in recent studies, separates from the KCC southwest of the Korean Peninsula, and some of its water flows northward along the YSWC (Lie et al., 2013, 2016; Hwang et al., 2014) (Fig. 1).
Changjiang Diluted Water (CDW) that provides the most freshwater discharge into the Yellow Sea from the Changjiang spreads eastward, reaching as far as Cheju Island and Tsushima Strait (Hwang et al., 2014; Li et al., 2014a). The oceanic fronts include the Shandong Front (SDF), Jiangsu Coastal Front (JSCF) and Western Korean Coastal Front (WKCF) located in the western and eastern boundaries of the Yellow Sea. These fronts play an important role in shaping Yellow Sea currents, as they separate different water masses (Huang et al., 2010; Li et al., 2014a) (Fig. 1).

3. Materials and methods

Core PCL14 (35°785' N, 124°115' E), which was 702 cm in length, was collected from CYSM at a water depth of approximately 80 m for multi-proxy paleo-environmental reconstruction. The core was subsampled at 10 cm intervals for grain size, clay mineralogy and geochemical analyses. The grain size and AMS14C data were reported in Badejo et al. (2016). Radiocarbon ages for five selected depths (99 cm, 300 cm, 540 cm, 580 cm, and 698 cm) and the age-depth model was constructed based on the linear interpolation between the calibrated calendar ages (Badejo et al., 2016) (Table 1). The bottom of the core PCL14 dated approximately 15.5 ka, that PCL14 provides a continuous record of the late last deglaciation to Holocene in the CYSM.

The clay mineral analysis for was conducted using X-ray diffraction (XRD) on preferred-orientation specimens of clay-sized particles (< 2 µm) following the method in Cho et al. (2015). Semi-quantitative estimation of clay mineral abundances was completed using the Eva 3.0 program with the empirical factors from Biscaye (1965).

The composition of major and trace elements in 13 bulk samples was determined by Actlabs, Ontario, Canada, following the ‘4 LithoRes’ methodology. The samples were fused using a lithium metaborate-tetraborate mixture. The melt produced by this process was completely dissolved with 5% HNO$_3$. Major elements were analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES), with an analytical accuracy of < 6%. Trace element analyses were done by inductively coupled plasma-mass spectrometry (ICP-MS). The analytical reproducibility ranged between 5 and 12%.

A total 18 samples of core PCL14 and riverine (Huanghe, Changjiang and Keum River) were selected for Sr‒Nd isotopic analysis (Table 3). Sr‒Nd isotopic measurements were performed on a thermal ionization mass spectrometry (TIMS) at the Korea Basic Science Institute. Sr and Nd isotope ratios were normalized to 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. Analysis of the Sr standard NBS 987 and the Nd standard JNd-1 resulted in 87Sr/86Sr = 0.710246 ± 3 (2SD, n = 10) and 143Nd/144Nd = 0.512115 ± 6 (2SD, n = 10). For convenience, the εNd parameter was calculated using a 143Nd/144Nd value of 0.512638 for the Chondritic Uniform Reservoir (Hamilton et al., 1983).

4. Results

Core PCL14 could be divided mainly into four units considering downcore patterns especially mean grain size and clay mineral compositions (Figs. 2 and 3): Unit 4 (700–520 cm; 15.5–14.8 ka), Unit 3 (520–310 cm; 14.8–12.8 ka), Unit 2 (310–130 cm; 12.8–8.8 ka), and Unit 1 (130–0 cm; < 8.8 ka). In addition, Unit 2 could be subdivided into Unit 2-2 (310–210 cm; 12.8–10.5 ka), Unit 2-1 (210–130 cm; 10.5–8.8 ka) based on the variation trends. Wang et al. (2014) reported that the CYSM mud blanket becomes thicker going westward based on a seismic profile. The mud layers in core sediments are thinner than expected from the seismic profile, but the trend is consistent (Fig. 2). Core EZ06-2, located east of PCL14, contains a 100-cm-thick mud layer, while YSC-1, to the west, has a 300-cm-thick layer (Fig. 2). The lower part of the mud layer is known as the transgressive deposit and contains many sands (Fig. 2). This coarse layer appears in all cores in the CYSM, with a boundary of ~10 ka (Li et al., 2014a; Lim et al., 2015). However, core PCL14 has additional mud layers with a high proportion of silt underneath the transgressive deposit and a coarse layer at the bottom. Therefore, core PCL14 provides more records of the CYSM since the LGM, which could not be reconstructed in previous cores.
The vertical granularity, clay mineralogical, and geochemical characteristics of core PCL14 are plotted against the calibrated age on the y-axis in Fig. 3. The four clay minerals were dominated by illite (60.1–74.7%), followed by chlorite (12.0–22.6%), kaolinite (9.6–14.8%), and smectite (1.2–6.8%). The 87Sr/86Sr ratios ranged from 0.719 to 0.724 (mean 0.721) and the εNd values from −16.2 to −12.3 (mean −14.0).

Tables 2 and 3 list the detailed characteristics of the clay minerals and geochemistry in each unit and their main potential provenances (the Huanghe, Changjiang, and western Korean rivers). Each unit had distinct dissimilarities in clay mineral content and mean grain size, especially the sand content (Fig. 2). The Unit 2 sediments were 1.8–44.2% (mean 17.6%) sand with a mean grain size of 6.6 ϕ (10.3 μm) and Unit 4 sediments had a high sand content (8–58.7%, mean 26.3%) with a mean grain size of 6.0 ϕ (15.6 μm). In comparison, Unit 1 contained only fine sediment with a mean grain size of 8.8 ϕ (2.2 μm) and Unit 3 sediments were clayey silt with a mean grain size of 7.3 ϕ (6.3 μm). The downcore variation in the clay mineral composition showed that the illite content decreased gradually from Unit 2 to 3 and was constant in the other parts of the core. Overall, the variations in the smectite and kaolinite+chlorite contents were opposite that of illite (Fig. 3). Units 3 and 4 had relatively constant compositions in terms of clay minerals, although their granularity was heterogeneous. The 87Sr/86Sr ratio was constant at the bottom and tended to increase in the upper part. The εNd value was low in Units 2 and 4. ΣLREE/ΣHREE was low only in Unit 3, and was mostly constant.

5. Discussion

5.1. Provenance discrimination based on clay mineralogy

Relative clay mineral contents and ratios can be used as powerful proxies for determining fine-grained marine sediment provenance, especially in terms of the rivers from China and Korea that may contribute to CYSM (Yang et al., 2003; Choi et al., 2010; Li et al., 2014a; Xu et al., 2014; Lim et al., 2015; Kwak et al., 2016). Generally, Huanghe sediments are characterized by high smectite, and Changjiang sediments contain a lot of illite contents. Western Korean rivers (e.g. the Han, Keum, and Yeongsan) contain more kaolinite and chlorite than do Chinese rivers (Table 2).

A ternary diagram of smectite–(kaolinite+chlorite)–illite was utilized to determine the provenance of fine sediments in core PCL14 (Fig. 4). Although Unit 4 and 3 sediments differed in granularity, they had similar clay mineral compositions and plotted near the center of the three possible provenance end-members, indicating that clay-sized sediments were supplied with constant amounts from all potential rivers to the study area during these periods (Fig. 4a). Unit 2 sediments overall were characterized by an increasing illite content (Figs. 3 and 4b). It means that the influence of Changjiang-derived materials began to increase during this period. However, Unit 2-2 sediments displayed an increase in smectite content with illite, and then every clay mineral composition except illite decrease in Unit 2-1 (Fig. 4b). Variation of smectite content in Unit 2 appears to be closely related to the change in coarse sediments (Figs. 3 and 4b). The relationship between smectite and coarse grains was also observed in the early Holocene sedimentary unit of core YSC-1 (Li et al., 2014a) and nearby core EZ06-2 between −14.1 and −9.0 ka (Lim et al., 2015). Unit 1 sediments had clay mineral compositions quite similar to those of Changjiang sediments, indicating that they might be originate mainly from the Changjiang (Fig. 4b).

Consequently, clay mineralogical results were suggested that the finer detrital sediments in Units 3 and 4 were affected by all potential provenances. During Unit 2, the influence of the Changjiang increased gradually with temporary influx containing coarse particles and high smectite, and the later Unit 1 sediments were derived primarily from Changjiang inputs.

5.2. Geochemical approaches

Geochemical proxies for provenance discrimination in the Yellow Sea have been investigated actively and verified by several studies (e.g. Yang et al., 2002; Xu et al., 2009; Song and Choi, 2009; Jung et al., 2012; Ha et al., 2013; Lim et al., 2015; Hu...
The fine grains in the Unit 2-2 sediments were derived primarily from Chinese rivers, especially the Huanghe, while silt-sized fractions were predominantly affected by the Huanghe. Unit 2 represented a period of great change in the sediment sources. Consequently, the estimated sediment provenances in each unit based on the clay mineralogical and geochemical indices were biased towards Chinese rivers (Fig. 6), especially close to the Huanghe. A scatter plot of clay mineral ratio vs. εNd distinguished three possible provenances for particles smaller than 63 μm (Fig. 6c). Unit 3 sediments in this plot are certainly plotted close to the Huanghe. This is caused by the many silt fractions in Unit 3 and probably represents a relatively close supply from the Huanghe. Interestingly, the clay-sized particles of Unit 2 were a composite of the Huanghe and Changjiang, and the geochemical data were similar to Unit 4 (Fig. 6). This probably means that a significant amount of coarse sediments in Unit 2 was supplied from Korean rivers with a high LREE and low εNd. The association between an increased impact of Korean rivers and coarse sediments was identified in an isotope analysis before ~8 ka in core YSC-1 (Hu et al., 2018). Therefore, we used only the UCC-normalized REE and εNd values for discriminating sediment provenance; these could be useful indicators for distinguishing the contributions of Chinese and Korean rivers.
the Unit 2-1 samples were supplied mainly from the Changjiang, with minor contributions from the Huanghe and western Korean rivers. However, coarse sediments source in Unit 2 were identified as western Korean rivers based on geochemical indices. The source of CYSM sediments in Unit 1 was primarily the Changjiang.

5.3. Paleo-environmental implications for sediment provenance changes

The four units could be distinguished based on the characterization of the major sediment source changes in the CYSM over the last 15.5 kyr (Figs. 4–6). Identification of sediment sources is a useful method for understanding paleo-environmental dynamics and sediment transport mechanisms in the Yellow Sea since the late last deglaciation. The main factors that potentially influenced provenance changes in the Yellow Sea include pronounced sea-level fluctuations that regulate the positions of shorelines, paleo-river pathways, tidal stress amplitude, and the formation of modern ocean currents (Liu et al., 2004; Lim et al., 2007, 2015; Choi et al., 2010; Wang et al., 2014; Yoo et al., 2015, 2016). Here, we discuss how these complex processes have affected sedimentation in the CYSM during the last 15.5 kyr.

The sea level during Units 3 and 4, which corresponds to the late last deglaciation (15.5–12.1 ka), was approximately 60–100 m lower than the present sea level (Li et al., 2014b). The high signatures of C/N values in Unit 4 indicated a significant influx of terrigenous materials (Badejo et al., 2016). Mixed deposits of fine and coarse sediments with high influx and sedimentation rates (Figs. 2 and 3) allows us to infer Unit 4 as a delta or prodelta environment. The paleo-river pathways of potential provenances, recently reconstructed based on seismic profiles, merged around the study area and were connected to the East China Sea (Yoo et al., 2015, 2016). During sedimentation of Unit 4, sediments in the study area would have been affected most strongly by direct inflow from paleo-rivers, because the low sea level led to the exposure of shelves in and near the Yellow Sea (Li et al., 2014b).

Sediment fining during Unit 3 reflects an increase in distance between the river mouths and study area due to transgression, and the study area probably formed a mud flat during sedimentation of Unit 3. During this period, clay-sized particles were still supplied from all rivers (Fig. 4), while silt-sized particles were supplied only from the Huanghe (Fig. 5). The record for the same period in core EZ06-1 showed significant coarse sediments with a high sand content (Lim et al., 2015), indicating that the Huanghe was relatively close to the west side of the study area (Fig. 2). In addition, the substantial flux from the Huanghe would have supported the distant movement of coarse grains.

In Unit 2 (12.1–8.8 ka), corresponding to the early Holocene, the sea level was approximately 20–60 m lower than at present (Li et al., 2014b). The Unit 2 period was thought to be cold and dry (Badejo et al., 2016) and was characterized by oscillating grain sizes and clay mineral and geochemical compositions (Fig. 3). In addition, increasing and decreasing trends of grain size with sand content, S/I ratio divided into two subsections (Fig. 3). This variation is also reported in the surrounding YSC-1 (Li et al., 2014a) EZ06-1, and EZ06-2 cores. In this period, the low sea level led to the seaward progradation of the shoreline and formation of a thin sand layer (generally < 3 m) called the transgressive deposit throughout the Yellow Sea (Cummings et al., 2016). The change in the coastline configuration caused shifts of the tidal fields therein, with tidal currents being more energetic than at present (Uehara and Saito, 2003; Lim et al., 2015), which supplied coarse grains to the central Yellow Sea. In addition, the bottom stress in the Unit 2 period was stronger around the Korean Peninsula (Uehara and Saito, 2003), which caused most of the coarse sediment to be of western Korean river origin (Fig. 6). The supply of fine sediments from the Huanghe was temporarily strengthened during sedimentation of Unit 2-2, but weakened in Unit 2-1 (Fig. 4). This could be due to a change in distance between the Huanghe and study area as the sea level rose. In addition, the paleo-Changjiang Shoal moved northeastward into the Yellow Sea at ~12 ka (Li et al., 2000) and may have contributed some materials to the study area (Lim et al., 2015). The reduction in Huanghe-derived materials due to the increased distance could be strengthen the influence of the Changjiang in Unit 2-1.
Since sedimentation of Unit 1 (< 8.8 ka), the sea level rose slowly from −20 m to the present level (Li et al., 2014b). The tidal field of the Yellow Sea became similar to that of the present (Uehara and Saito, 2003), leading to obviously decreasing contributions from sea bed erosion. A modern-type circulation in the Yellow Sea may have developed between 8.47 and 6.63 ka, characterized by an increase in bottom-water salinity (Kim and Kucera, 2000). The clay minerals and geochemical composition generally point to the Changjiang, with minor influence from the western Korean rivers (Figs. 4 and 6), which is consistent with the reported ‘multiple origin’ concept (Wei et al., 2003; Li et al., 2014a; Lim et al., 2015; Koo et al., 2018). Therefore, the formation of the CYSM and modern ocean circulation could have been synchronous around ~8 ka. The timing of mud patch formation in the central Yellow Sea was inferred to be 9–8 ka with low tidal bottom stress (< 0.35 N/m²) (Uehara and Saito, 2003), which is consistent with our results.

The YSWC played a major role in the unique passage of sediment into the study area since the Unit 1 (Li et al., 2014a; Lim et al., 2015; Koo et al., 2018). The Changjiang Diluted Water can spread some finer sediments to Cheju and nearby areas (Hwang et al., 2014; Kwak et al., 2014; Li et al., 2014a; Lim et al., 2015; Koo et al., 2018). And then, fine-grained materials could be carried northward along the YSWC path to the CYSM, where the weak tidal-current system and cyclonic eddies provided favorable environment for the formation and maintenance of muddy sedimentations (Shi et al., 2003; Lim et al., 2015). Meanwhile, barrier effect of oceanic fronts and strong coastal currents restricts to enter the sediments from the Huanghe and western Korean rivers into the CYSM (Li et al., 2014a; Koo et al., 2018). However, some fine-grained particles from western Korean rivers may influence the CYSM through the Transversal Current (Hwang et al., 2014; Koo et al., 2018).

6. Conclusions

The purpose of this study is to better understand the CYSM in terms of provenance changes and transport mechanisms and to reconstruct the paleo-environment of the Yellow Sea since late last deglaciation using clay mineralogy and geochemical indices from core PCL14. The major conclusions are as follows.

Core PCL14 provides a continuous record of the late last deglaciation to Holocene in the CYSM. The core could be divided mainly into four units: Unit 4 (700–520 cm; 15.5–14.8 ka), Unit 3 (520–280 cm; 14.8–12.1 ka), Unit 2 (280–130 cm; 12.1–8.8 ka), and Unit 1 (130–0 cm; < 8.8 ka). The integration of clay mineralogical and geochemical data distinguished the CYSM sediments into different provenances by grain size. In fine particles, Unit 3 and 4 sediments originated from all possible provenances in the Korea and China, after which the sediment source is gradually shifted to the Changjiang. The inflow of Huanghe-derived fine sediments temporarily increased during Unit 2. On the other hand, the origin of coarse sediments changed in order of all possible rivers (Unit 4), Huanghe (Unit 3), and western Korean rivers (Unit 2). Change in sediment supply are closely related to variations in sea level, positions of paleo-river mouths and tidal stress. Meanwhile, our data suggest that the formation of modern CYSM mud deposition began around ~8 ka with modern ocean circulation and the CYSM sediments are composed mainly of the Changjiang.

Author contribution

H.G. Cho designed the experiment, and H.J. Koo carried them out and wrote the paper. All authors contributed to interpreting and discussing the results and reviewing the paper.

Competing interests

The authors declare that they have no conflict of interest
Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1D1A1B03027818) and Korea Polar Research Institute project PM16050 funded by the Ministry of Oceans and Fisheries, Korea.

References

Milliman, J.D., Qin, Y.S., Ren, M.E. and Saito, Y.: Man’s influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example, J. Geol., 95, 751–762, https://doi.org/10.1086/629175, 1987.

Figure captions

Figure 1. Schematic map showing the location of core PCL14 as well as the surface circulation in the Yellow Sea (modified from Li et al., 2014a; Wang et al., 2014). The gray dotted line indicate the paleo-river pathways (Yoo et al., 2016). ① Central Yellow Sea Mud (CYSM); ② Southeastern Yellow Sea Mud (SEYSM); ③ Southwestern Cheju Island Mud (SWCIM); KC = Kuroshio Current; YSWC = Yellow Sea Warm Current; SDCC = Shandong Coastal Current; YSCC = Yellow Sea Coastal Current; KCC = Korean Coastal Current; SDF = Shandong Front; JSCF = Jiangsu Coastal Front; WKCF = Western Korean Coastal Front.

Figure 2. (a) Isolines in thickness of mud deposit CYSM (after Wang et al., 2014), (b) vertical lithology profile of core PCL14, YSC-1 (Li et al., 2014a) and EZ06 cores (Lim et al., 2015).

Figure 3. Downcore variations of mean grain size, clay mineralogical and geochemical data in core PCL14 with sea level changes (Li et al., 2014b). Note the overall distribution into four units.

Figure 4. Ternary diagrams showing variations in clay mineral compositions of core PCL14. Published data of potential source sediments including the Changjiang, Huanghe, and western Korean rivers (the Han, Keum, and Yeongsan Rivers) (Cho et al., 2015; Koo et al., 2018), which are plotted for comparison.

Figure 5. Correlation plots of grain size or clay/silt ratio with (a) major elements, (b) Zr/Th and La/Sc, (c) UCC-normalized REEs, and (d) 87Sr/86Sr and εNd for core PCL14.

Figure 6. Discrimination plots showing variations in (a) ΣLREE/Yb vs. (La/La)$_{UCC}$, (b) (La/Yb)$_{UCC}$ vs. εNd, and (c) (smectite+kaolinite+chlorite)/illite vs. εNd. Clay mineral (Cho et al., 2015; Koo et al., 2018), rare earth element (Xu et al., 2009), and isotope data of potential sources are also shown for comparison.

Figure 7. Schematic diagram showing the influence of shoreline changes, and paleo-river pathways on riverine sediment supplied to the study area during (a) Unit 4 and 3 (15.5–12.1 ka), (b) Unit 2 (12.1–8.8 ka), and (c) Unit 1 (8.8 ka–present) (modified Lim et al., 2015).
Core 11YS-PCL14

Contents (%) Smectite (%) (Smectite/illite)*100

Mean Grain Size (φ)

Sr/86Sr LREE (ppm) LREE/HREE Relative sea level (m)

Mean Grain Size (Cl>) Sr/86Sr LREE/HREE

Sr/86Sr LREE (ppm) LREE/HREE Relative sea level (m)

Unit 1
Unit 2–1
Unit 2–2
Unit 3
Unit 4

Unit 1
Unit 2–1
Unit 2–2
Unit 3
Unit 4
Table 1. Representative accelerator mass spectrometer radiocarbon age data for core PCL14 from Badejo et al. (2016). OM = organic matter, Cali. Age = calibrated age.

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth (cm)</th>
<th>Sample type</th>
<th>14C age (yr BP)</th>
<th>Cali. age (cal yr BP) ± 95% probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 YS PCL 14</td>
<td>90</td>
<td>OM</td>
<td>7,160 ± 40</td>
<td>8,040 ± 90</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Shell</td>
<td>10,360 ± 40</td>
<td>12,630 ± 190</td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>Shell</td>
<td>12,400 ±50</td>
<td>15,030 ± 290</td>
</tr>
<tr>
<td></td>
<td>580</td>
<td>Shell</td>
<td>12,530 ±50</td>
<td>15,160 ± 210</td>
</tr>
<tr>
<td></td>
<td>698</td>
<td>Shell</td>
<td>12,720 ±50</td>
<td>15,430 ± 250</td>
</tr>
</tbody>
</table>

Table 2. Average compositions of clay minerals in core PCL14 sediments and their potential provenance rivers.

<table>
<thead>
<tr>
<th>Samples</th>
<th>n</th>
<th>Illite (%)</th>
<th>Chlorite (%)</th>
<th>Kaolinite (%)</th>
<th>Smectite (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL14_Unit 1</td>
<td>9</td>
<td>69.0 ± 1.6</td>
<td>18.2 ± 1.3</td>
<td>10.9 ± 0.6</td>
<td>1.8 ± 0.4</td>
<td>This study</td>
</tr>
<tr>
<td>PCL14_Unit 2</td>
<td>16</td>
<td>67.0 ± 3.0</td>
<td>16.5 ± 2.3</td>
<td>12.1 ± 1.2</td>
<td>4.5 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>PCL14_Unit 3</td>
<td>24</td>
<td>63.0 ± 1.1</td>
<td>19.7 ± 1.0</td>
<td>13.7 ± 0.6</td>
<td>3.6 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>PCL14_Unit 4</td>
<td>18</td>
<td>63.2 ± 1.4</td>
<td>20.0 ± 1.3</td>
<td>13.0 ± 0.7</td>
<td>3.8 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>Changjiang</td>
<td>8</td>
<td>66.1</td>
<td>17.0</td>
<td>13.3</td>
<td>1.6</td>
<td>Koo et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>61.7</td>
<td>24.5</td>
<td>9.8</td>
<td>3.9</td>
<td>Choi et al. (2010)</td>
</tr>
<tr>
<td>Huanghe</td>
<td>13</td>
<td>62.2</td>
<td>15.8</td>
<td>13.1</td>
<td>8.9</td>
<td>Koo et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>56.7</td>
<td>17.7</td>
<td>14.1</td>
<td>11.5</td>
<td>Cho et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>62</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>Yang et al. (2003)</td>
</tr>
<tr>
<td>Western Korean rivers (Han / Keum / Yeongsan)</td>
<td>14/9/3</td>
<td>59.5</td>
<td>21.3</td>
<td>17.4</td>
<td>1.8</td>
<td>Cho et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>52</td>
<td>44</td>
<td>4</td>
<td>Lim et al. (2015)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Isotopic and geochemical data of core PCL14 and riverine samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>$^{87}\text{Sr}/^{86}\text{Sr}$ ($\pm 2\sigma \times 10^6$)</th>
<th>$^{143}\text{Nd}/^{144}\text{Nd}$ ($\pm 2\sigma \times 10^6$)</th>
<th>εNd</th>
<th>$\text{La/Yb}_{\text{ucc}}$</th>
<th>$\text{La/Lu}_{\text{ucc}}$</th>
<th>$\Sigma\text{LREE}/\Sigma\text{HREE}$</th>
<th>$\Sigma\text{LREE}/\text{Yb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL14-2 (47 cm)</td>
<td>0.722591 (14)</td>
<td>0.511999 (4)</td>
<td>-12.5</td>
<td>1.09</td>
<td>1.08</td>
<td>4.07</td>
<td>63.1</td>
</tr>
<tr>
<td>PCL14-4 (67 cm)</td>
<td>0.723603 (11)</td>
<td>0.511988 (5)</td>
<td>-12.7</td>
<td>1.18</td>
<td>1.11</td>
<td>4.09</td>
<td>68.1</td>
</tr>
<tr>
<td>PCL14-8 (107 cm)</td>
<td>0.720661 (11)</td>
<td>0.511971 (4)</td>
<td>-13.0</td>
<td>1.18</td>
<td>1.14</td>
<td>4.2</td>
<td>68.1</td>
</tr>
<tr>
<td>PCL14-11 (137 cm)</td>
<td>0.723536 (17)</td>
<td>0.511880 (5)</td>
<td>-14.8</td>
<td>1.2</td>
<td>1.15</td>
<td>4.18</td>
<td>70.5</td>
</tr>
<tr>
<td>PCL14-17 (197 cm)</td>
<td>0.719741 (11)</td>
<td>0.511860 (5)</td>
<td>-15.2</td>
<td>1.2</td>
<td>1.09</td>
<td>4.21</td>
<td>69.5</td>
</tr>
<tr>
<td>PCL14-25 (277 cm)</td>
<td>0.719819 (14)</td>
<td>0.511908 (3)</td>
<td>-14.2</td>
<td>1.15</td>
<td>1.07</td>
<td>4.06</td>
<td>65.8</td>
</tr>
<tr>
<td>PCL14-30 (327 cm)</td>
<td>0.718528 (27)</td>
<td>0.512010 (5)</td>
<td>-12.3</td>
<td>1.01</td>
<td>0.99</td>
<td>3.64</td>
<td>58.5</td>
</tr>
<tr>
<td>PCL14-37 (397 cm)</td>
<td>0.720341 (17)</td>
<td>0.511900 (4)</td>
<td>-12.8</td>
<td>1.12</td>
<td>1.04</td>
<td>3.75</td>
<td>64.8</td>
</tr>
<tr>
<td>PCL14-42 (447 cm)</td>
<td>0.720495 (50)</td>
<td>0.511965 (7)</td>
<td>-13.1</td>
<td>1.07</td>
<td>1.01</td>
<td>3.77</td>
<td>62.7</td>
</tr>
<tr>
<td>PCL14-54 (567 cm)</td>
<td>0.720250 (8)</td>
<td>0.511883 (6)</td>
<td>-14.7</td>
<td>1.17</td>
<td>1.10</td>
<td>4.09</td>
<td>67.5</td>
</tr>
<tr>
<td>PCL14-60 (627 cm)</td>
<td>0.720886 (8)</td>
<td>0.511808 (10)</td>
<td>-16.2</td>
<td>1.12</td>
<td>1.04</td>
<td>3.96</td>
<td>65.1</td>
</tr>
<tr>
<td>PCL14-67 (697 cm)</td>
<td>0.719559 (8)</td>
<td>0.511817 (5)</td>
<td>-16.0</td>
<td>1.19</td>
<td>1.18</td>
<td>4.09</td>
<td>67.4</td>
</tr>
</tbody>
</table>

| Huanghe | 0.715759 (9) | 0.512073 (5) | -11.0 | | 51.2 | 67.4 |
| | 0.717260 (10) | 0.512063 (4) | -11.2 | | 51.2 | 67.4 |

| Changjiang | 0.722954 (8) | 0.511999 (6) | -12.5 | | 51.2 | 67.4 |
| | 0.726549 (7) | 0.512018 (5) | -12.1 | | 51.2 | 67.4 |

| Keum River | 0.724526 (6) | 0.511609 (4) | -20.1 | | 51.2 | 67.4 |
| | 0.724881 (5) | 0.511700 (3) | -18.3 | | 51.2 | 67.4 |