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Abstract.

Satellite-derived surface chlorophyll data are assimilated daily into a three-dimensional 24 member ensemble configuration

of an online-coupled NEMO-PISCES model for the North Atlantic Ocean. A one-year multivariate assimilation experiment

is performed to evaluate the impacts on analyses and forecast ensembles. Our results demonstrate that the integration of data

improves surface analysis and forecast chlorophyll representation in a major part of the model domain, where the assimilated5

simulation outperforms the probabilistic skills of a non-assimilated analogous simulation. However, improvements are depen-

dent on the reliability of the prior free ensemble. A regional diagnosis shows that surface chlorophyll is overestimated in the

northern limit of the subtropical North Atlantic, where the prior ensemble spread does not cover the observation’s variability.

There, the system cannot deal with corrections that alter the equilibrium between the observed and unobserved state variables

producing instabilities that propagate into the forecast. To alleviate these inconsistencies, a one-month sensitivity experiment10

in which the assimilation process is only applied to model fluctuations is performed. Results suggest the use of this methodol-

ogy may decrease the effect of corrections on the correlations between state vectors. Overall, the experiments presented here

evidence the need of refining the description of model’s uncertainties according to the biogeochemical characteristics of each

oceanic region.

1 Introduction15

Estimating the biogeochemical state of the ocean has become fundamental under the current climate change context due to

its key role mediating global carbon stocks (e.g., Houghton et al., 2001). Currently, the optimal combination of observational

data with the dynamical equations embedded in models through data assimilation (DA) is the most comprehensive strategy to

meet this goal. Therefore, there is a growing effort towards the development of effective DA techniques to improve hindcasts,

forecasts, nowcasts, and scenario simulations of ocean biogeochemistry (e.g., Brasseur et al., 2009; Yu et al., 2018; Fennel20

et al., 2019). At present, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers DA biogeochemical

products for only selected regions (von Schuckmann et al., 2019), though the operational production of the data-assimilated

biogeochemical state of the ocean is one of its challenging core objectives.
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In order to achieve model / data integration it is of utmost importance to explicitly identify the structure of the uncertainties

that affect the model and the observations (Lahoz et al., 2010). In this sense, ensemble methods (e.g., Bessières et al., 2017)25

are designed to provide a statistical description of the inaccuracies associated with a complex model system by describing the

evolution of the probability density function (PDF). An appropriate approach to perform ensemble simulations is by introducing

stochastic noise into the (deterministic) model equations to simulate the effect of the uncertainties. Stochastic parameterizations

have been used in meteorological forecasting (e.g., Buizza et al., 1999; Leutbecher et al., 2017), and are becoming the standard

procedure for climate modelling (see Palmer, 2012; Berner et al., 2017). In oceanography, the implementation of this type of30

probabilistic approach has increased in the last decade (e.g., Brankart et al., 2015; Juricke et al., 2017), although its application

in physical-biogeochemical models is quite unusual.

In a precursory study, stochastic perturbations were applied into a deterministic solution of the Mercator Ocean (http://

www.mercator-ocean.fr.) North Atlantic 1/4◦ configuration of the NEMO-PISCES coupled model to parameterize selected

model uncertainties associated with some poorly-resolved processes (see Garnier et al., 2016, for more details). Ensemble35

simulations involving 60 members were performed using a probabilistic version of the NEMO-PISCES simulation for the year

2005. An objective diagnosis of this ensemble simulation showed its probability distribution is quite consistent with ocean

color observations in the most productive regions of the North Atlantic, a prerequisite to undertake DA applications.

Ocean color data have been successfully used in DA procedures for improving the simulation of nutrients and primary

production in ocean models (e.g., Gregg, 2008; Ciavatta et al., 2011; Ford et al., 2012; Fontana et al., 2013; Teruzzi et al.,40

2018). However, none of the latter studies explicitly incorporates the uncertainties in the ocean biogeochemistry introduced by

stochastic approaches on the model formulation. In this context, the overarching aim of the present work is to investigate to

what extent the parameterizations developed in Garnier et al. (2016) can be implemented to build a complete 4D assimilation

system using ocean color data that will update the state-of-the-art of biogeochemical DA. Our strategy will rely on the daily

integration of surface chlorophyll (Chl-a hereafter) data within the latter probabilistic solution. To that end, 24 trajectories of45

the original ensemble are daily updated by a square root algorithm based on the SEEK (singular evolutive extended Kalman)

filter (Pham et al., 1998; Brasseur and Verron, 2006) using daily composites of ocean colour observations extracted from

MERIS (MEdium Resolution Imaging Spectrometer). Following this strategy, a one year experiment is performed in order to

investigate the effects of the assimilation in contrasted periods (e.g., bloom vs nutrient-depleted periods) throughout the annual

cycle.50

The paper is structured as follows: section 2 presents the coupled model, the assimilation scheme, and the validation metrics.

Section 3 presents the results of the experiment, and provides a probabilistic assessment as compared it with a non-assimilated

ensemble simulation. A discussion of the most relevant outputs is carried out in section 4. In particular, we assess how the

DA system based on parameterized uncertainties can reduce the model uncertainties, and evaluate its performance at selected

regions. Lastly, a summary, conclusions and future perspectives are proposed in section 5 in which we suggest directions for55

next possible developments.
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2 Material and methods

2.1 Hydrodynamical model

The assimilation system presented here is based on a realistic three-dimensional physical-biogeochemical simulation. The

physical component is simulated using the primitive equation free-surface ocean circulation model NEMO (Nucleus for Euro-60

pean Modeling of the Ocean, version 3.4; Barnier et al., 2006; Madec et al., 2015), whose prognostic variables are temperature,

salinity and the three-dimensional velocity fields.

Figure 1. Schematic map of the North Atlantic basin showing the NATL-025/PISCES domain. Longhurst et al. (1995) biogeochemical

provinces are indicated and numbered. Provinces indicated by acronyms NADR (North Atlantic Drift), NATR (North Atlantic tropical gyre),

NASTE (Northeast Atlantic subtropical gyre), and NASTW (Northwest Atlantic subtropical gyre) are used throughout the text. A 2018

yearly composite of sea surface Chl-a is superimposed.

The model configuration is a duplicate of the North Atlantic configuration developed within the framework of the project

DRAKKAR (referred to here as NATL025; Barnier et al., 2006, https://www.drakkar-ocean.eu), which covers the North At-

lantic region from 20◦ S to 80◦ N and 98◦ W to 23◦ E (Fig. 1). The numerical grid has a horizontal resolution of a quarter65

of degree, and 46 geopotential levels in the vertical from surface to 6000 m depth. Such an eddy-permitting resolution en-

ables some rough representation of mesoscales features, which are key elements for primary production (Oschlies and Garçon,

1998; Lévy et al., 2012). The dynamical component is forced by ERA-INTERIM atmospheric fields (Simmons, 2006; Dee
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et al., 2011). This configuration has already been coupled to biogeochemistry modules and evaluated in recent numerical

studies (e.g., Ourmières et al., 2009; Doron et al., 2011, 2013; Fontana et al., 2013; Garnier et al., 2016).70

2.2 Biogeochemical model

The biogeochemical component coupled to hydrodynamics is PISCES (Pelagic Interaction Scheme of Carbon and Ecosystem

Studies, version 2; Aumont et al., 2015). PISCES is a complex carbon-based model that simulates marine biological produc-

tivity and carbon biomass based upon five main nutrients: nitrate, ammonium, phosphate, silicate and iron. Its architecture

includes 24 biogeochemical variables grouped into four main compartments: nutrients, phytoplankton, zooplankton, and detri-75

tus. PISCES has been used in global simulations (e.g., Bopp et al., 2015), environmental studies (e.g., Brasseur et al., 2009),

climate studies (Lefort et al., 2015), basin scale studies (e.g., Jose et al., 2014) and, more recently, in regional scale studies

(e.g., Auger et al., 2015). For more details see Aumont et al. (2015) where a complete description of PISCES equations along

with a brief validation are presented.

PISCES differentiates two phytoplankton functional types: diatoms and nanophytoplankton. The parameterization of di-80

atoms differs from nanophytoplankton in their requirements of silicate (Si), an increased consumption of iron (Fe), and a

higher level of nutrient saturation due to its larger size. Both Chl-a content on nanophytoplankton and diatoms are param-

eterized using the photo-adaptative model of Geider et al. (1997). We refer Chl-a to here as the direct sum of these two

compartments, and it will be used as a proxy for primary production. Besides biomass of Chl-a, carbon ratios with Fe, and Si

(only for diatoms) are explicit prognostic variables of the model. Furthermore, PISCES discretises two sizes of zooplankton:85

micro- and mesozooplankton, and three classes of non-living compartments: the semi-labile dissolved organic carbon pool,

and two sizes of particulate organic carbon that differ by their sinking velocities (3 m d−1 for small particles, and 50 to 200 m

d−1 for large particles).

PISCES is coupled on-line to NEMO with a coupling frequency equal to the circulation model time-step (i.e., 40 min). Note

that on-line coupling means here one-way forcing of the ecosystem model by the circulation model, since no feed-back of the90

ecosystem model is taken into account. This strategy of on-line coupling with a maximum frequency is thought to be useful

for simulating the ecosystem evolution, while avoiding possible problems brought by the use of averaged physical fields, as in

off-line coupling.

A realistic dynamical adjustment of the modeled ocean state is obtained after a 13 years spin-up (1989-2002) starting from

the Levitus climatology for temperature and salinity (Levitus et al., 1998). After physical spin-up, the biogeochemical compo-95

nent is initialized in January 2002 from outputs of a global 1/4◦ PISCES operational simulation performed by MERCATOR

Ocean (Elmoussaoui et al., 2011). Between January 2002 and December 2004, a three years spin-up is performed to ensure a

consistent biological initial state. After this period, a deterministic simulation of the coupled system, i.e., NATL025-PISCES,

is performed for a period of six years, extending from January 2005 to December 2010. This simulation is used to build a

probabilistic configuration upon which a data assimilation system is performed.100
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2.3 Probabilistic version of the coupled system

Any realistic description of the state of a system involves uncertainties. In the case of coupled ocean models, uncertainties may

originate from external forcings (e.g.,the atmospheric data), parameterizations of physical and biological processes that are

not explicitly resolved by the model, omission of unresolved scales, and reduced complexity to limit computational costs. In

a previous study (Garnier et al., 2016), two classes of those uncertainties were parameterized to explicitly simulate the errors105

associated with the deterministic model formulation; (1) the limitations of the spatial scales resolved by the model, and (2)

the simplification of the description of the biogeochemical system to a limited number of state variables and parameters. The

first ones were described by following the approach proposed in Brankart et al. (2015), and the second ones were simulated

by introducing log-normal stochastic perturbations on seven key biogeochemical parameters whose uncertainties may have a

direct impact on the estimation of primary production. Specifically, the parameters perturbed are the phytoplankton growth rate110

at 0º C, the initial P-I slope for both nanophytoplankton and diatoms, the phytoplankton temperature sensitive of growth, the

zooplankton temperature sensitive of grazing and the growth dependency to the day length for both nanophytoplankton and

diatoms. For the perturbations, the starting point is a first-order autoregressive process setting up with a standard deviation of

0.3 and a decorrelation time scale of 1 month, at which a random noise is drawn at each grid point and at each time step. After

spatial filtering, Gaussian noises are transformed in Lognormal noises to guarantee positivity. Stochastic perturbations are then115

introduced by multiplying by these Lognormal noises. To preserve vertical consistency, all perturbations are set identical for

the whole water column. In addition, as the effects of unresolved scales will have an impact on the large scale biogeochemical

representation, we create a perturbation that simulates the unresolved fluctuation of the concentration of each parameter within

every model grid box.

The stochastic formulation was introduced to produce an ensemble spread that is large enough for building a DA system120

while keeping the coupled model stable. A 60 member ensemble simulation for year 2005 was performed by Garnier et al.

(2016) who show that the resulting probability distribution (of the annual ensemble simulation) is quite consistent with SeaW-

iFS (Sea-viewing Wide Field-of-View Sensor) ocean color observations. Specifically, they assessed the reliability or statistical

consistency of the ensemble simulation by comparing it with satellite Chl-a data assuming 30% of observation error.

The present study is based on these previous developments, with some additional adjustments to prepare for DA. In particular,125

we carried out sensitivity experiments to select an ensemble size that is more cost-efficient, but with the same level of agreement

to observations as in Garnier et al. (2016). More explicitly, 1-month assimilation experiments were performed by reducing

the ensemble size from the original 60 members to 12 and 24 members. We first compared each of them with the original

experiment, and observed surface Chl-a differences below 0.5 mg Chl m−3 for most regions between the 24 and the 60 member

ensembles. A comparison against the observations used for the assimilation process was also assessed. Both reduced ensemble130

simulations were able to reproduce the main patterns of surface Chl-a displayed by satellite observations. However, global

probabilistic metrics showed that only the 24 member ensemble experiment conserves the same level of statistical consistency

as the original ensemble, while reducing computational costs of the forecast step by up to 60%. The probability distribution of

the 12 member ensemble showed an underdispersed distribution, while the 24 member ensemble showed the ensemble spread
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covers a major part of the observations. Therefore, a total of 24 trajectories of the inherited stochastic simulation developed by135

Garnier et al. (2016) are used here as the prior PDF for the assimilation problem.

2.4 Assimilation scheme

The assimilation system integrates daily composites of MERIS Chl-a observations to daily update the ensemble forecast. The

methodology behind this process is based onto a SEEK filter (Pham et al., 1998; Brasseur and Verron, 2006), implemented in

the ensemble system using the System of Sequential Assimilation Modules (SESAM) assimilation platform (Brankart et al.,140

2012) that deals with all matrix operations required by the assimilation scheme. Though using a probabilistic approach is more

resource-costing, it produces a probability distribution that allows for an objective validation with observations using proba-

bilistic scores, unlike a deterministic assimilation system that provides only one estimated trajectory. As another advantage,

the explicit simulation of model uncertainties in the ensemble approach is necessary to produce a description of uncertainties

that is consistent with observations.145

The assimilation scheme proceeds in two steps. (1) An ensemble forecast in which each ensemble member, i.e., state vector,

is propagated forward in time using the full model equations. (2) When a set of observations, i.e., daily swaths of ocean color

retrieved from MERIS, is available, the statistical information contained in the ensemble is combined with observations to

update the forecasted ensemble. The most relevant aspects of this second step, referred to as analysis, will be commented on

below. To propagate the system, the initial condition of the subsequent daily forecast is the updated analysis ensemble obtained150

by the assimilation of Chl-a observations.

The state vector entering the analysis step is composed of all prognostic biogeochemical state variables of the three-

dimensional grid following a multivariate approach. To keep the analysis computationally affordable, a prior diagnosis of

the multivariate correlations between the observed (Chl-a in this case) and non-observed biogeochemical variables have been

carried out. Following the results obtained from this test, 12 out of the 24 biogeochemical state variables are included into the155

updated state vector. These state variables correspond to nutrients, oxygen, zooplankton, phytoplankton, and Chl-a.

The probability distribution of the observed variable, i.e., Chl-a, is usually considered as log-normal (Campbell, 1995). A

well-known strategy to accommodate the characteristic non-Gaussian distributions of biogeochemical parameters is applying

a log-normal transformation (e.g., Ciavatta et al., 2011; Mattern et al., 2017). However, this transformation assumes that the

shape of the probability distribution does not change. As this is not often verified, we adopted here another non-linear strat-160

egy dependent on the shape of the probability distribution. Anamorphosis transformations (Bertino et al., 2003; Béal et al.,

2010) are applied to each variable of the state vector prior to the ensemble analysis step to ensure that marginal PDFs are

close to Gaussian. The strategy of these transformations relies on remapping the quantiles of each marginal distribution such

that the probability distribution is as close as possible to a Gaussian. These transformations ensure that no value of the vari-

ables becomes negative after the analysis update, improve the description of the correlations between Chl-a and non-observed165

variables, and exclude possible causes of breakdown of the simulation. To be compliant with the new variables, observations

are also transformed into the anamorphic space defined by the ensemble simulation. After analysis, the corresponding inverse

transformations are performed to come back into the original model space and initialize the subsequent daily ensemble forecast.
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Relatively small ensembles like the one used here can lead to spurious correlations between distant model grid points. In

order to avoid the potential negative effects of these correlations, we employ a domain localization methodology in which170

a separate analysis for each local domain is applied. In practice, this means that an analysis update is performed for each

horizontal grid point, but including all vertical levels and state variables. To ensure continuity between analyses, each analysis

uses the observations within a certain localization radius (of one degree in the present case), with an observation error that

increases with distance.

2.5 Assimilated and independent observations175

The observation data set assimilated by our system corresponds to daily swaths of ocean color retrieved from MERIS. Specif-

ically, we use Level-3 binned data accessible at http://earth.esa.int/level3/meris-level3/, that consist on daily-accumulated

Level-2 products with standard bin size of 4.6 km. Among other properties, this product provides Chl-a estimations (in mg

Chl m−3) used here to update the ensemble simulation. Additionally, the system performance will be assessed by compari-

son with ocean color SeaWiFS data accessible through https://oceancolor.gsfc.nasa.gov/data/seawifs/, and with daily surface180

Chl-a fields obtained from the Global Ocean Satellite Observations provided by Copernicus-GlobColour service, and accessi-

ble through http://marine.copernicus.eu. This latter product is based on the merging of several sensors (Data from SeaWiFS,

MODIS-Aqua, and MERIS sensors are used for year 2005) delivered at 4 km of spatial resolution.

The limited accuracy of ocean color products is taken into account in the assimilation process. Imperfections in the re-

trieval process of the Chl-a concentrations may be due to the presence of chromophoric dissolved organic matter, atmospheric185

aerosols, or errors in the algorithms at some specific regions, among others (e.g., Gregg and Casey, 2004; Le Fouest et al.,

2006). Therefore, a 30% of observational error is considered in agreement with global average standard deviation estimates

(e.g., Gregg and Casey, 2004; Mélin et al., 2016).

While inter-comparisons between the data-assimilated simulation and the assimilated observations are necessary to assess

the experiment efficiency, the validation strategy is not totally conclusive since they are not independent (Gregg et al., 2009).190

We thus use an additional independent data set for an objective validation of the assimilation process. Specifically, we use bio-

geochemical fields extracted from the World Ocean Atlas 2018 (WOA2018; Garcia et al., 2019). The historical in situ nutrient

measurements available in this data set were produced by the NOAA’s (National Oceanic and Atmospheric Administration)

National Oceanographic Data Center - Ocean Climate Laboratory as part of the World Ocean Database project (WOD; Boyer

et al., 2013). They will be used to assess the simulation performance on matching the non-observed variables patterns.195

2.6 Probabilistic validation

Unlike for deterministic simulations, the validation of our DA experiment requires many realizations (members) to be properly

evaluated given its probabilistic nature. For that purpose, reliability and resolution scores (see Toth et al., 2003; Candille et al.,

2015, for more information) will be computed from the ensemble. Reliability evaluates the capacity of a model to produce

an ensemble probability distribution in agreement with the statistical distribution of a given observation data set. Resolution200

measures the ability of a model to discriminate distinct observed situations. In other words, the reliability informs of the
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system’s ability to produce PDFs that agree with a given observations’ PDF, while resolution informs of the spread of the

system’s PDFs. These metrics will allow us to measure the skills of our ensemble simulation for predicting the true state of the

ocean biogeochemistry.

To evaluate reliability and resolution, several probabilistic metrics will be employed. We first check the reliability of the205

DA system by introducing the rank histogram (Anderson, 1996). Rank histograms are computed by sorting all 24 members

in ascending order (in the present case according to their Chl-a concentration) for each grid point and at a given date. Each

observation is then ranked relatively to its location within this sorted ensemble. Observations smaller than the minimum of

the ensemble will take rank ’0’, while those observations higher than the maximum of the ensemble will take rank ’n’. The

statistical consistency of the ensemble can then be evaluated by studying its shape (Candille et al., 2015; Germineaud et al.,210

2019). Rank histograms may be: (1) flat, which indicates the distribution of the model is accurate with the observations,

i.e., perfect reliability, (2) under-dispersed or U-shaped, which indicates the spread of the ensemble is too small (too many

observations lay outside the extremes of the ensemble), or (3) over-dispersed or dome-shaped, which indicates the spread of

the ensemble is too large (too many observations lay near the center of the ensemble).

For measuring the resolution of the system, and obtain a full probabilistic validation of the ensemble, we use the continuous215

rank probability score (CRPS). Let x to be a parameter of interest (Chl-a in our case) to which corresponds a real observation.

Then, CRPS corresponds to the distance between the simulation and the observation, as defined in

CRPS = E

[∫
R

(Fp(x)−Fo(x))
2dx

]

where E is the mean over all observations at a given date, and Fp(x) and Fo(x), the cumulative distributions of the model and

the observations.220

CRPS can be decomposed as the sum of the ensemble reliability (Reli) and the ensemble potential resolution (Resol), i.e.,

the resolution in the case of perfect reliability (see Hersbach, 2000, for more details).

CRPS =Reli+Resol

According to CRPS, a skillful probabilistic system must satisfy two criteria: Reli should be null, and Resol must tend to zero

and, in any case, much inferior than the reference value of the CRPS when it is only based on the reference data set (without225

data assimilation).

3 Results

It is instructive to evaluate how the assimilation process affects the original ensemble simulation. In this section, the impacts

of the assimilation on the variability in space and time of key biogeochemical parameters are assessed by comparing the
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assimilated experiment with an analogous 24 member ensemble of model simulations in which no observational data have230

been assimilated. This ensemble run is performed over the same period, and referred to as ‘free run’.

3.1 Skill on reproducing surface Chl-a

Both the assimilated and the free run simulations are compared to daily surface Chl-a fields obtained from the Global Ocean

Satellite Observations (see section 2.5). Merged satellite products are selected here to minimize missing data due to cloud cover

and still resolve mesoscale spatio-temporal variability. For the assimilated simulation, the analysis step, which corresponds to235

the ensemble computed after the update, is shown. Surface Chl-a daily composites are presented for three different dates; 19th

April 2005, 15th May 2005, and 5th October 2005 (Fig. 2). These dates are selected for representing contrasting periods. The

first two dates coincide roughly with the well documented spring-bloom period of the North Atlantic. The availability of light

and nutrients during this period drives phytoplankton growth, which leads to relatively high values of Chl-a at surface. The last

date represents a period after summer when conditions change due to the reduction of sunlight over the surface.240

The large-scale spatial distribution of surface Chl-a is captured by the DA simulation. High Chl-a values at regions such as

the Gulf Stream, the North Sea, the Amazonian delta, and the western coast of Africa, are successfully reproduced during the

first days of the experiment (Fig. 2 top panels). However, there is a too strong gradient between the oligotrophic conditions of

the North Atlantic subtropical gyre and temperate waters to the north. The ensemble median of the free run experiment displays

a stronger gradient, indicating that the assimilation of surface Chl-a data slightly improves this situation.245

About a month later (Fig. 2 middle panels), the inferred large-scale picture of surface Chl-a distribution remains close to

that displayed by satellite observations. The bloom of Chl-a in temperate waters is well reproduced by the DA simulation both

attending to magnitude and geographical location. Upwelling areas along with other zones with high Chl-a concentrations are

also well depicted showing a good performance to match highly productive regions. By contrast, the gradient northwards of

the oligotrophic open ocean is too pronounced, showing no transition between both regimes as evidenced in the satellite map.250

Moreover, corrections made by daily satellite swaths leave imprints of their trajectory in the analysis map. These imprints are

caused by using a small localization radius. This radius needs to be small due to the small correlation length scale of forecast

uncertainties in the Chl-a field. Thus, the impact of a given observation on the update remains local. They should disappear

over time as the magnitude of the innovation decreases. In this experiment, however, the time lag between observations is

quite large with respect (5 to 7 days) to the typical time scale of the system. By its part, the free run overestimates Chl-a in255

high-latitude regions while it underestimates it within the North Atlantic subtropical gyre.

After the summer period, at the beginning of October 2005 (Fig. 2 lower panels), the Chl-a distribution changes; regions with

the highest concentrations relaxed their values, while concentrations at the open ocean slightly increased. The representation

of surface Chl-a degrades during this period. Concentrations within the subtropical gyre agree with observations, but gradients

both at its northern and southern boundaries are too strong. In this transition zone, inferred values double the concentrations260

displayed by observations. In the rest of the domain, the Chl-a pattern improves that showed by the non-assimilated simulation.

The free run experiment exhibits a strong overestimation at the Gulf Stream region as already observed by Garnier et al. (2016)
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Figure 2. Surface maps of Chl-a (mg Chl m−3) for 19th April 2005 (top panels), 15th May 2005 (middle panels), and 5th October 2005 (bot-

tom panels). The ensemble median of the non-assimilated free run experiment (left panels), the analysis ensemble median of the assimilation

experiment (middle panels), and merging daily surface Chl-a fields obtained from the Global Ocean Satellite Observations (right panels) are

represented.

with a 60 member non-assimilated version of the coupled model. Moreover, oligotrophic conditions at the subtropical gyre are

too low, which may indicate the spread of the ensemble is unable to capture the whole observation’s variability.

3.2 Probabilistic regional assessment265

An ensemble system should be statistically consistent with observations in order to be objectively considered as realistic. To

evaluate the reliability metric, we present rank histograms (Fig. 3) computed for each grid point by accumulation over all 24

members of the ensemble at four different Longhurst provinces (Longhurst et al., 1995, Fig. 1 provides the location of the
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provinces). The provinces used are NADR (North Atlantic Drift), NATR (North Atlantic tropical gyre), NASTE (Northeast

Atlantic subtropical gyre), and NASTW (Northwest Atlantic subtropical gyre). Both the assimilation analysis and free run270

ensembles are displayed. Ranks are computed against SeaWiFS ocean color data extracted for the same day with a considered

30% of observation error. In practice, the latter error means that for each realization a Gaussian white noise with a standard

deviation of 30% of the satellite Chl-a concentration is added to each ensemble member.

Histograms are good indicators of how the assimilation of surface Chl-a affects the probability distribution of the ensemble.

The histogram for province NADR (Fig. 3 first row), which corresponds to a major part of the eastern North Atlantic temper-275

ate waters (∼40-60◦N; ∼10-45◦W), displays the good performance of the non-assimilated simulation reproducing the given

observations. The histogram is flat except for a slightly tall rank ’1’ that indicates the highest observations are not included in

the spread of the ensemble. When observations are assimilated, the distribution of ranks flattens with respect to the shape of

the histogram of the non-assimilated experiment. The shape of the histogram illustrates the ensemble is now able to include

the highest values of Chl-a, though few ranks accumulate in the left side of the histogram.280

An accumulation of ranks forms a dome in the middle of the histogram for province NATR (second row), which corresponds

to the southern boundary of the North Atlantic subtropical gyre (∼13-26◦N; ∼16-75◦W). The free run surface map (see Fig. 2

middle panels) showed too low values in the northern part of the province, and too high values in the southern part, that differ

from the smooth gradient showed by the observations. When ocean colour data is assimilated, ranks’ distribution becomes

more homogeneous. A moderate dome of ranks in the right side of the histogram still appears, yet the envelope of the ensemble285

reconciles well with the given observations.

The histogram of the free run shows an accumulation of ranks at the left side, i.e., too many ranks ’0’, for province NASTE

(third row). This is the eastern branch of the subtropical gyre of the North Atlantic that goes roughly from the center of the

Atlantic to the east European and African coasts (from 30 to ∼44◦N). The surface map (Fig. 2 middle panels) showed an

overestimation of Chl-a for most of the region, except for the oligotrophic center of the subtropical gyre where values were290

almost negligible. When observations are assimilated, the values of the oligotrophic area increased while values closer to the

coasts tended to decrease. These corrections are also reflected into the histograms by a re-distribution of the lowest ranks to the

right. Nonetheless, improvements are limited, and there is an overpopulated left side of the histogram.

Lastly, the right branch of the North Atlantic subtropical gyre is included within province NASTW (∼30-40◦N; ∼30-75◦W;

last row). In this area, the free run histogram shows a strong accumulation of ranks at the left extreme, i.e, the ensemble295

systematically overestimates observations (positive bias). This under-dispersed shape indicates that the ensemble is unable to

cover the lowest observations. In this case, the assimilation of satellite data is unable to improve the reliability of the system.

Moreover, the accumulation of lower values not included within the probability distribution of the ensemble increases after

assimilation.

To see the time evolution of the reliability of the ensemble in province NADR, Fig. 4 shows rank histograms computed at300

three different periods. A week after the initialization of the experiments, i.e., 19 April 2005, there is an accumulation of ranks

in the right side of the free run histogram (negative bias). The assimilation of satellite information redistributes ranks to the

left. Yet there is still an underestimation, the probability distribution of the analysis ensemble fits better with observations thus
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Figure 3. Surface Chl-a rank histograms of the 24 member free run experiment (magenta; left panels) and the 24 member analysis ensemble

assimilation experiment (light green: right panels), in comparison with SeaWiFS data for 15th May 2005. A 30% SeaWiFS observation error

is taken into account. Longhurst provinces NADR, NATR, NASTE, and NASTW are represented.

decreasing the bias. A month after, as we observed in Fig. 3, both the free run and DA simulations display flat histograms

indicating a good performance of the system. In particular, the system reproduces the increasing on Chl-a that occurs during305
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Figure 4. Surface Chl-a rank histograms of the 24 member free run experiment (magenta; left panels) and the 24 member analysis ensemble

assimilation experiment (light green: right panels) in comparison with SeaWiFS data for province NADR. Ranks are computed for 19 April,

15 May, and 5 October 2005. A 30% SeaWiFS observation error is taken into account.

the spring bloom period, which takes place around this date in the province (e.g., Follows and Dutkiewicz, 2001). In October,

the free run tends to accumulate ranks on the right side, while an accumulation on the left side of the histogram is depicted for

DA analysis. Notwithstanding, the distribution of ranks is more homogeneous after the assimilation process.

To complement reliability measurements, we present an analysis of the CRPS metrics for an in-depth evaluation of the

assimilation effects. Using all daily satellite observations available during the simulation period, we calculated the Reli and310

Reso terms of the CRPS decomposition for provinces NADR and NASTW; two provinces with contrasted behaviours. Rank

histograms (Fig. 3) showed the ensemble is consistent with observations in NADR while it underestimates them in NASTW.

Similarly, the reliability term of the CRPS metric (Fig. 5a) shows the improvements (closer to zero) made by the assimilation
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process on province NADR, in which the prior probability distribution was already coherent with observations. This pattern,

however, reverses around August when the integration of data deteriorates the metric. This situation lasts until mid-December,315

when reliability for both simulations begin to coincide each other until the end of the experiment. By contrast, reliability of the

free run simulation is generally closer to zero for province NASTW during the whole experiment.

Figure 5. Time series (6th April 2005 to 5th April 2006) of reliability (upper panel) and resolution (lower panel) computed from CRPS

decomposition for the 24 member free run (in magenta) and the 24 member forecast ensemble assimilation (in light green) experiments.

Longhurst provinces NADR and NASTW are represented.

Time series of the resolution part of CRPS (Fig. 5b) show the metric is close to zero for both systems, indicating a good

global performance. As expected after precedent metrics diagnostics, the analysis update generally improves the resolution for

province NADR. A marked seasonality is observed in the CRPS time series. During summer, the resolution of both simulations320

increases until the end of the season when it returns back to lower values.

3.3 Assessment of the multivariate scheme

The multivariate scheme employed here allows corrections on surface Chl-a to extend to other variables. Considering a complex

model such as PISCES, these changes may provoke several variables to no longer satisfy model equations, and thus results

produced by these adjustments should be assessed. Moreover, surface corrections both in the observed and non-observed325

quantities are projected vertically in the water column thus altering the vertical structure of the water column. In order to
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evaluate the balances between Chl-a and those variables that have important relations with it such as nutrients, monthly means

of nitrate and phosphate extracted from the WOA2018 data set are compared with data depicted by our simulations. Specifically,

vertical profiles of Chl-a and nutrient concentrations at two points placed at regions 4 and 6 are presented (Fig. 6).

Figure 6. Vertical profiles (0-200 m) of Chl-a (mg Chl m−3), nitrate (mmol N m−3) and phosphate (mmol P m−3) for provinces NADR

(left panels; at 50◦ N, 15◦ W) and NASTW (right panels; at 35◦ N, 60◦ W) for 19th April 2005, 15th May 2005, and 5th October 2005.

The 24 member free run (in magenta) and analysis (in green) ensembles are represented. Black dots correspond to monthly mean nitrate and

phosphate concentrations extracted from WOA2018 database. Blue dots correspond to daily mean surface Chl-a obtained from the Global

Ocean Satellite Observations.

Vertical profiles show that both ensembles are capable of displaying a wide range of Chl-a values within the first meters330

of the water column. As expected, the spread of the analysis reduces while the subsequent forecast (not shown) will restore

it accordingly to match the satellite’s uncertainty for the next update. The envelopes of both simulations decrease towards the

bottom of the mixed layer. From there, concentrations displayed by both simulations coincide. This indicates the extension up

to which surface corrections are projected into the vertical. The spread of the ensemble reduces when nutrients are represented.

In general, the assimilation process increases their concentrations within the mixed layer.335

In province NADR (left panels on Fig. 6), the concentrations of nutrients in the mixed layer decrease over time. In October,

mixing is close to its lowest (Zhang et al., 2018) and so are nutrients’ concentrations. Inferred nutrients follow the seasonal

pattern of decreasing towards October. However, their values are relatively high in comparison with climatological data. The
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assimilation process tends to further increase nutrient’s availability within the mixed layer, yet being capable of correctly

simulating surface Chl-a.340

The water column is poor in nutrients at province NASTW (right panels in Fig. 6). However, both simulations show their

concentrations to be up to seven times higher than WOA data. Weaknesses on the physical model to appropriately represent

the mixed layer dynamics in the region impairs the representation of biogeochemistry as shown in Ourmières et al. (2009). As

observed for province NADR, nutrients concentrations decrease towards the end of the summer. The free run simulates this

decreasing, especially during October when concentrations are close to observations. By contrast, the analysis moves away345

the distribution of nutrients from climatology. Corrections made by surface information are unable here to include the given

Chl-a observations. Surface data is overestimated by both ensembles. The assimilation process approaches the ensemble to

observations in the first cycles of assimilation, but it strongly overestimates them in October. The free run shows a too wide

spread that reproduces Chl-a concentrations up to an order of magnitude higher than satellite data.

3.4 Impact on the subtropical region350

Figures presented in precedent sections indicate an erratic behaviour of the system representing the transition zone between the

oligotrophic subtropical area and temperate waters northwards. In order to illustrate the vertical distribution of biogeochemical

properties before and after assimilation in this area, we consider meridional vertical sections of Chl-a crossing the subtropical

gyre and temperate waters at 45◦ W with nutrients (nitrate + ammonium) isolines superimposed (Fig. 7). The same three dates

used before are represented.355

During April (Fig. 7a), high values of Chl-a deepen up to ∼50 m depth in both experiments. However, the oligotrophic region

reaches further north after the assimilation due to a deeper nutrient-depleted subsurface layer south of ∼30◦ N. The deep Chl-a

maximum (DCM) of the subtropical region is placed below 100 m depth in both simulations in agreement with observational

studies (Pérez et al., 2006). After assimilation, the DCM is disconnected from the subsurface maximum of temperate waters

by the vertical slumping of nutrients isolines.360

A horizontal strong gradient of nutrient isolines is observed in the DA analysis section of May (Fig. 7b). Several patches of

high Chl-a values are evident south of ∼35◦ N, from where the water column setting becomes similar to that displayed by the

free run simulation. These patches may be caused by the vertical propagation of surface corrections. By contrast, the free run

simulation shows a more logical distribution of parameters in which high Chl-a waters are related to nutrients’ availability.

During October (Fig. 7c), differences after assimilation are more noticeable. In this period, the vertical distribution of nu-365

trients has a key role controlling phytoplankton growth in the region (e.g., Dutkiewicz et al., 2001), and concentrations of

Chl-a are relatively low as the nutricline is deep enough to limit production. Since the free run overestimates Chl-a during this

period in the region, the assimilation process reduces its concentrations. As a consequence, nutrients accumulate in the first

100 m of the water column north of ∼30◦ N after the update, and destabilize the equilibrium between the biomass of producers

(that decreases) and the availability of nutrients (that increases). Since biogeochemical dynamics is highly dependent on this370

equilibrium, subsequent forecasts lead to a rapid increase of Chl-a, and into a severe overestimation over time that reduces the

extension of the oligrotrophic region to the north.
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Figure 7. Meridional vertical sections (0-300 m) of Chl-a (mg Chl m−3) at 45◦ W, 25 to 50◦ N, for 19th April 2005, 15th May 2005, and 5th

October 2005. The ensemble median of the free run (left panels) and the assimilated (DA Analysis; right panels) simulations are represented.

Nitrate+ammonium isolines (mmol N m−3) are included in solid black lines.

4 Discussion

4.1 Impact of the assimilation in the observed variable

The North Atlantic ocean is a complex basin that includes a large number of biogeochemical regimes (see Fig. 1) that make it375

difficult to simulate using an holistic modelling system (DeYoung et al., 2004). By employing DA, we aim to reduce the impacts

of model errors on the representation of ocean biogeochemistry by combining model information with available observations

(Gregg et al., 2009; Ciavatta et al., 2011; Ford and Barciela, 2017). Accordingly, surface maps presented in Fig. 2 show that

the assimilation process reduces the discrepancies between satellite observations and the non-assimilated free run experiment

over a major part of the domain. In particular, the DA simulation better represents values and geographical location of some380

structures and events such as the spring bloom period, the Gulf Stream, or phytoplankton fronts. By contrast, the assimilation

scheme appears to be unable to deal with an unrealistic too abrupt front that separates the oligotrophic and temperate waters

conditions (from about 25 to 35◦N).
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By using rank histograms, we evaluate the capability of the assimilated and the free run ensembles to agree with observations

on selected Longhurst provinces (see Fig. 3). Histograms illustrate that the response of the system to the assimilation of satellite385

data depends upon the reliability of the prior ensemble. The assimilation process improves the statistical consistency of the

system where the free run probability distribution is homogeneous as in province NADR. The DA process also enhances

reliability in those regions where the shape of the free run histogram is over-dispersed as in province NATR. In these regions, the

stochastic parameterization is enough to describe properly the variability of the system, and only a relatively small percentage of

the observations lie outside of the limits of the ensemble (∼10%). Then, the assimilation process makes use of this information390

to increase the model skills both by reducing the dispersion and by redistributing ranks to a more homogeneous shape. The

redistribution of the ensemble also raises its resolution showing that the posterior ensemble better describes a wide variety of

biogeochemical situations (see lower panel of Fig. 5).

By contrast, in regions where the prior probability distribution is strongly under-dispersed as in provinces NASTW and

NASTE, the assimilation of satellite information is unable to raise the reliability. Since corrections are computed in the range395

explored by the prior ensemble, the assimilation scheme cannot correct prior distributions that exclude the full variability

of the observations. In these provinces, the spread of the prior ensemble is insufficient to represent the range displayed by

the observations; the ensemble consistently overestimates them during the annual cycle, and so ranks accumulate at the left

extreme of the histograms (positive bias). These two provinces occupy a major part of the oligotrophic subtropical gyre of the

North Atlantic where Chl-a is generally low during the whole year. Since Chl-a values can never become negative, the random400

perturbations introduced into the model formulation to create a probabilistic simulation (Garnier et al., 2016) preferentially

induce to increase Chl-a concentrations.

The inability of the assimilation process to improve the skills of the simulation in these latter regions points out the necessity

to appropriate define the stochastic parameterizations of the prior PDF as a prerequisite to use DA. Particularly, uncertainties

should be described accordingly with the biogeochemical characteristics of each region in order to include a major part of the405

observation variability.

4.2 Non-observed variables

The effects of the assimilation process to unobserved variables is a major issue in biogeochemical DA (e.g., Rousseaux and

Gregg, 2012; Ciavatta et al., 2018). Several studies (e.g., Ciavatta et al., 2011) have found that the integration of surface ocean

color may cause problems in the nutrients vertical distribution when model’s equation are not ’plastic’, in the sense of con-410

straining the ability of the assimilation process to correct the inferred variables. In this regard, it is important to notice that our

multivariate analysis scheme allows corrections on five nutrients, the Chl-a content of each phytoplankton group, phytoplank-

ton and zooplankton biomasses, and oxygen, while it only uses Chl-a satellite data to constrain the ocean biogeochemistry. It

is plausible that modifications on biogeochemical variables would make some of them not to comply with the governing model

equations anymore. Particularly in those regions where the model is not plastic enough to absorb modifications on the tight415

correlations between observed and unobserved state vectors. In some cases, these modifications may develop into simulation

instabilities that can lead subsequent forecasts to deteriorate both the observed and unobserved variables (Ciavatta et al., 2011,
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2018; Gregg et al., 2009). For instance, large discrepancies between observations (high concentrations of Chl-a) and the model

(lower concentrations) in Gregg (2008) caused their model to become unstable due to nutrient depletion. In the present case, the

assimilation process has two effects on the vertical distribution of nutrients (see Fig. 6 and Fig. 7): (1) it significantly reduces420

the spread of the ensemble, and (2) it tends to increase their concentrations within the first ∼100 m depth.

Nutrients were not perturbed by the stochastic parameterizations (see Garnier et al., 2016) and so increases during the

analysis update cannot be attributed but to the assimilation process. In the northern region of the North Atlantic subtropical

gyre, Chl-a is overestimated by the prior ensemble and so surface corrections preferentially reduce their concentrations. Since

nutrients are negatively correlated with the observed variable, the corrections made by the assimilation process would increase425

nutrient’s availability. Ourmières et al. (2009) observed that the distribution of nitrate controls the biogeochemical dynamics

of the subtropical region. As a consequence, the amount of nutrients available in the water column after the analysis would

alter the correlations with the observed variable during the subsequent forecast in this area. If the ensemble spread were

correctly established in the region, PISCES equations would be capable to absorb these corrections. However, the ensemble

has insufficient spread in provinces NASTW and NASTE, and the increasing of nutrients lead to a consistent overestimation430

of Chl-a. By contrast, in the rest of the domain, the parameterizations of the uncertainties are consistent with observations, and

extrapolation of the assimilated information to non-observed variables works correctly. The assimilation process increases the

reliability of the ensemble, and the information spreads appropriately to the rest of the variables. As a result, the subsequent

daily forecast is based on an ensemble that has more appropriate spread thus improving its general performance.

4.3 Assimilation on fluctuations435

The previous section has shown that, despite the stochastic parameterization, PISCES equations are still not plastic enough

in the region north of the subtropical gyre to produce an ensemble spread that is compatible with the observations, and thus

to absorb the corrections made by data assimilation. A possible way to alleviate these inconsistencies without enhancing the

stochastic model would be to reduce the ambition of the data assimilation system, and only apply corrections to components of

the observation misfit that are compatible with the ensemble spread. This approach requires a procedure to separate all model440

fields into two components: one component that displays uncertainties that are not correctly represented by the stochastic

model, which will be kept untouched by the assimilation scheme, and another component for which the ensemble simulations

can be assumed reliable enough to apply ensemble corrections.

In our system, in the region covered by province NASTW, the main reason for which the ensemble spread is not able to

include ocean colour observations is a bias in the model climatology, which is left mostly unexplained by the two sources of445

uncertainties that have been simulated in the stochastic model. A possible approach to reduce the ambition of data assimilation

is thus to separate the model field into a climatological component and a fluctuating component, and apply the assimilation

process to the fluctuating component only. The main problem is then to define an operator to separate these two components.

The model climatology on the one hand and the observation climatology on the other hand can be both defined as the

distribution of all values that a given variable can take over time at a given location, and can be constructed by compiling all450

values given by the model or by the observations, at that specific location. In practice, these two distributions can be described
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Figure 8. Schematics of the assimilation process including time-independent transformations. Both daily ensemble forecast (Xf ) and daily

satellite observations (yo) are transformed by their own climatologies. Then, they are projected into the anamorphic space prior of entering

the analysis step. After the update, the ensemble analysis (Xa) is converted back to initialize the subsequent daily forecast.

by computing a series of quantiles (for instance deciles), which can be saved as 2D or 3D fields for all model variables on

the one hand and for all observed variables on the other hand. The idea is then to keep the model climatology unchanged,

and only correct the rank of the model solution within its own climatology, by assimilating the rank of the observation within

the observed climatology. This means for instance that if an observation of Chl-a falls on the first quartile of the observed455

climatology, then the model would be corrected to move towards the first quartile of its own climatology. In this way, the

fluctuations should be improved, but not the bias between the climatologies, with the expected advantage of not bringing

unobserved variables to unrealistic situations.

In practice, a direct solution to extract the fluctuating component is to apply the anamorphic operator transforming the

climatological distribution into normalized Gaussian distribution (with zero mean and unit variance). This can be done using460

the same technique used in the assimilation scheme to transform the prior ensemble into Gaussian marginal distributions. As

explained in Brankart et al. (2012), the transformation operator is described by the quantiles of the probability distribution

to be transformed (here the climatological distributions). Thus, as explained by the schematics in Fig. 8, observations are

transformed using the quantiles of the observed climatology, and the prior ensemble is transformed using the quantiles of the

model climatology. These two quantities represent the fluctuating component of the system, and the same data assimilation465

system (described in section 2) can then be applied to this fluctuating component instead of the full field.

A one-month assimilation experiment (TrDA) using this methodology is performed. In order to illustrate the effect of trans-

formations on the ensemble simulation, vertical profiles of Chl-a, nitrate, and phosphate are presented for 5th May 2005 (Fig.

9), the last day of the experiment. Profiles are placed at province NATSW since the methodology aims to reduce the incon-
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sistencies between observed and non-observed variables found in this region. Profiles illustrate that the transformed ensemble470

keeps the Chl-a values displayed by the non-transformed simulation, while it increases the envelope of the ensemble by repro-

ducing lower values. On the other hand, when climatologies are taken into account, the increase of the concentrations of both

nitrate and phosphate after corrections is reduced. However, despite these improvements, we see that, even with the modified

observational update, it is still difficult to maintain the corrections of the nutrients within reasonable bounds. Climatological

variations can indeed be too wide to avoid unrealistic values occurring at a given time. Looking for a reliable synoptic ensem-475

ble with a sufficient dynamical spread to explain the full misfit to the observations of the day should thus certainly remain an

important step to improve the assimilation system.

Figure 9. Vertical profiles (0-200 m) of Chl-a (mg Chl m−3), nitrate (mmol N m−3) and phosphate (mmol P m−3) at province NASTW (35◦

N, 60◦ W) for 5th May 2005. The 24 member analysis (in green) and the 24 member transformed analysis (in red) ensembles are represented.

Black dots correspond to monthly mean nitrate and phosphate concentrations extracted from WOA2018 database. Blue dots correspond to

daily mean surface Chl-a obtained from the Global Ocean Satellite Observations.

5 Summary and conclusions

Satellite-derived surface Chl-a data are daily assimilated into a three dimensional 24 member ensemble configuration of a

coupled NEMO-PISCES model for the North Atlantic. As shown throughout the text, the assimilated system has brought480

us promising results. A regional diagnosis of a one-year assimilation experiment has revealed that the integration of surface

information increases the skills of the ensemble system in a major part of the model grid when compared to an analogous

non-assimilated free run simulation. Particularly, the assimilation of satellite data improves the representation of the surface

Chl-a variability both in location (upwelling areas, subtropical gyre, Gulf Stream, etc) and seasonality (spring bloom, winter

mixing, etc). Therefore, the stochastic parameterizations introduced into the system by Garnier et al. (2016) have shown to be485

adequate for undertaking DA in most of the considered domain. Where the prior ensemble includes the variability shown by

the observations and their uncertainties, the assimilation process improves its probability distribution increasing the agreement
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with observations (reliability), and its capability to display different community behaviours (resolution). Moreover, corrections

are appropriately transferred to unobserved state vectors by the multivariate scheme.

In the northern region of the North Atlantic subtropical gyre, however, the multivariate corrections produce values that are490

often inconsistent with model dynamics, which can affect the correlations between the biogeochemical variables. In this region,

the simulation cannot absorb adequately the corrections brought by the observations, i.e., the simulation is not plastic, and the

system’s performance deteriorates after the assimilation process. Particularly, the analysis update increases the concentrations

of nutrients producing instabilities that lead the subsequent forecast to degrade biogeochemical fields. These results suggest

that the description of uncertainties needs to be refined according to the biogeochemical characteristics of each Longhurst495

province.

One possible approach to reduce these instabilities would be to relax the assimilation effects on those areas. Therefore, we

carried out a experiment in which corrections are only applied to the fluctuation part of the model. For that end, we apply

transformations both to observations and the forecast ensemble before entering the analysis update using their climatologies.

Results from a one-month experiment show that these transformations reduce the strong effects of the assimilation increasing500

nutrients concentrations in the region that lead to inconsistencies.

In addition, an improved simulation of the dynamics is needed. Ourmières et al. (2009) carried out a detailed analysis on

the mixed layer dynamics at mid-latitudes. They observed that the distribution of nitrate controls the biogeochemical dynamics

of the subtropical region by employing physical - only , biogeochemical - only (nitrate data), and physical - biogeochemical

combined assimilation techniques over a coupled system. Their results showed a too deep mixed layer during March that505

extended over an abnormally large area in the Gulf Stream region and its north eastern extension, and an overestimation of

the stratification in the north-east Atlantic. This biased representation of the dynamics has a significant impact on the present

model, and should be addressed in future realizations.

Including information of biogeochemical fields in the water column into the assimilation scheme would also improve the

representation of the biogeochemical state of the ocean. In situ information would be thus explicitly included by the system510

at depth. Nowadays, the only sources of such measurements are limited to the prospects of BIO-Argo floats (Claustre, 2009;

Xing et al., 2012). Terzić et al. (2018) assimilated BIO-Argo information into a one-dimensional model and improved the DCM

spatial and seasonal representation. Cossarini et al. (2019) succeed in improving the Chl-a depiction over the Mediterranean

Sea by assimilating vertical Chl-a information supplied by BIO-Argo floats. These recent works open a horizon to constrain

biogeochemical model simulations from vertical information. However, at basin scales, the current state of the network allows515

it to be used for validation purposes, but their limited spatial coverage makes them insufficient for assimilation procedures. In

the other hand, a possibility to include nutrients information is to introduce synthetic information (e.g., Xiao and Friedrichs,

2014; Yu et al., 2018) from a non-perturbed analogue simulation. In this direction, synthetic observations would be important

in future efforts heading the improvement of biogeochemical data assimilation systems.
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