
Reply to the reviewers 
We thank the anonymous reviewers of the manuscript for their careful revision and their              
thoughtful comments and suggestions. They have also highlighted some shortfall in the original             
submission. We have considered all of their suggestions and responded below (in blue) to each               
individual comment (in black). We hope that we have been able to solve the gaps and answer                 
other queries in our revised text. 
 
Reviewer 1: 
This study presents an ensemble data assimilation scheme for ocean colour, based on stochastic              
parameterisations and the SEEK filter. A 24-member ensemble is run for one year with and               
without assimilation, and assessment made of the ensemble spread and fit to observations. The              
assimilation generally improves both of these, as long as the prior ensemble spread is sufficient.               
If not, then the assimilation can degrade unobserved variables. This impact was reduced in a               
short experiment where the assimilation was applied only to anomalies from model climatology.             
The paper is interesting and well written, and the assessment clear and balanced. A few things                
need expanding on or clarifying, as detailed below, but if those are addressed then I recommend                
publication in Ocean Science. 
 
Major comments: 
Given that the paper is taking a previously used deterministic assimilation scheme (e.g.Fontana             
et al., 2013) and turning it into an ensemble scheme, I was surprised that no comparison was                 
made to a static implementation of the SEEK filter. I appreciate that the main focus of the paper                  
is to study the ensemble aspects, and that ensembles give probabilistic information that is more               
widely useful, but given the 24-fold increase in computational cost, it would be useful to see how                 
the ensemble median compares to a deterministic assimilation run. A deterministic run is             
mentioned in the text (lines 98-99) but not presented, so hopefully this would not involve too                
much extra effort. It could either be an extra sub-section of the results, or incorporated into some                 
of the existing figures.  
We agree with the reviewer that ensemble data assimilation is computationally much more             
expensive than the static implementation of the SEEK filter previously used for instance in              
Fontana et al. (2013), and that this increase in the cost must be compensated by substantial                
benefits. However, it is important to remark that these two assimilation systems do not exactly               
solve the same problem. One is only providing one estimated trajectory for the state of the                
system, while the other is providing a probability distribution. This is already an important              
benefit because it provides information about uncertainties to the users, and because it allows an               
objective validation of the system using probabilistic scores (like rank histograms), as it is done               
in this paper. Second, in this kind of system, the explicit simulation of model uncertainties is                
necessary to produce a description of uncertainties that is consistent with observations, even in              
the free simulation, as was shown in Garnier et al. (2016). In a deterministic system, it is thus                  



very difficult to provide forecast error covariance matrices that are consistent with the real error.               
Thus, even if the estimated trajectory is not too far from the observations (as in Fontana et al.,                  
2013), this is still a problematic limitation of the assimilation system.  
For these reasons, we did not try to perform data assimilation experiments with the deterministic               
assimilation scheme anymore. The deterministic run mentioned in the text in lines 98-99 is a free                
run, not an assimilation run, and this deterministic free run was compared to an ensemble free                
run in Garnier et al. (2016), showing that the description of model uncertainties was very               
important here. No deterministic assimilation run is thus available to make the comparison             
required by the reviewer. However, the following text has been introduced in line 126 of the                
paper to better explain this point: 
“Though using a probabilistic approach is more resource-costing, it produces a probability            
distribution that allows for an objective validation with observations using probabilistic scores,            
unlike a deterministic assimilation system that provides only one estimated trajectory. As another             
advantage, the explicit simulation of model uncertainties in the ensemble approach is necessary             
to produce a description of uncertainties that is consistent with observations.”. 
 
The last paragraph of Section 2.3 briefly states that ensemble sizes of 12, 24 and 60 members                 
were compared, and 24 able to give similar results to 60. The issue of ensemble size is an                  
important one that will be of wider interest, so I think this assessment should be presented in the                  
paper. 
Following the suggestion of the reviewer, we have extended the comments on the assessment              
used to choose a 24 member ensemble as the most appropriate ensemble size for our final                
system. Next lines replace the text previously dedicated to explaining the sensitivity experiment             
performed to choose the size of the ensemble: “More explicitly, 1-month assimilation            
experiments were performed by reducing the ensemble size from the original 60 members to 12               
and 24 members. We first compared each of them with the original experiment, and observed               
surface chlorophyll differences below 0.5 mg Chl m​-3 for most regions between the 24 and the 60                 
member ensembles. A comparison against the observations used for the assimilation process was             
also assessed. Both reduced ensemble simulations were able to reproduce the main patterns of              
surface chlorophyll displayed by satellite observations. However, global probabilistic metrics          
showed that only the 24 member ensemble experiment conserves the same level of statistical              
consistency as the original ensemble, while reducing computational costs of the forecast step by              
up to 60%. The probability distribution of the 12 member ensemble showed an underdispersed              
distribution, while the 24 member ensemble showed the ensemble spread covers a major part of               
the observations. Therefore, a total of 24 trajectories of the inherited stochastic simulation             
developed by Garnier et al. (2016) are used here as the prior PDF for the assimilation problem.”. 
 
Section 4.3 is very interesting but also brief. It’s fine for it to just be a one-month experiment,                  
but it would be useful to expand on both the methodology (e.g. is the seasonal cycle considered                 



in calculating the climatology?) and the assessment (what’s the general impact on chlorophyll             
skill?).  
We agree that this section was too short to be clear. To answer this request, this section has been                   
rewritten to provide a more detailed explanation of the method, and to enhance the interpretation               
of the results. 
 
Minor comments: 
Figures: Many use a rainbow colour scheme, which is increasingly discouraged (e.g.Hawkins et             
al., 2015; https://doi.org/10.1038/519291d). There is no “best” colour scheme I can recommend,            
but it is worth considering if there is a more appropriate colour scheme for these plots. 
Following the recommendations of the reviewer, figures 1, 2, and 7 have been replotted using a                
new colormap.  
 
Figure 1: It would be best to mask out areas which are not in the model domain (e.g. the Pacific                    
and eastern Mediterranean). 
Though we agree these areas would be better masked out, to mask them requires interpolating               
satellite data into the model mask file or building a specific mask for it. We think the goal of the                    
figure is just to illustrate the region of interest, and thus we consider it is not essential to make                   
this process.  
 
Line 65: “eddy-resolving” should be “eddy-permitting”. 
Line 173: “NOOA” should be “NOAA”. 
These two suggestions are amended in the new version. 
 
Line 67: “ERA-INTERIM atmospheric fields (Brodeau et al., 2010).” The reference refers to             
ERA40, not ERA-Interim. 
The reference to ERA-Interim has been corrected. Simmons, (2006), and Dee et al., (2011), are               
cited in the new version. 
 
Lines 98-99: “a deterministic simulation...for a period of six years” – this doesn’t seem to be                
presented? 
In order to clarify this statement, this sentence has been included at the end of the paragraph:                 
“This simulation is used to build a probabilistic configuration upon which a data assimilation              
system is performed.” 
 
Lines 107-108: Please provide a little more detail on the perturbations, so the casual reader               
doesn’t need to read the references. 
Following the suggestion of the reviewer we have provided more details on the perturbations on               
the text by adding: “...whose uncertainties may have a direct impact on the estimation of primary                



production. Specifically, the parameters perturbed are the phytoplankton growth rate at 0ºC, the             
initial P-I slope for both nanophytoplankton and diatoms, the phytoplankton temperature           
sensitive of growth, the zooplankton temperature sensitive of grazing and the growth dependency             
to the day length for both nanophytoplankton and diatoms. For the perturbations, the starting              
point is a first-order autoregressive process setting up with a standard deviation of 0.3 and a                
decorrelation time scale of 1 month, at which a random noise is drawn at each grid point and at                   
each time step. After spatial filtering, Gaussian noises are transformed in Lognormal noises to              
guarantee positivity. Stochastic perturbations are then introduced by multiplying by these           
Lognormal noises. To preserve vertical consistency, all perturbations are set identical for the             
whole water column. In addition, as the effects of unresolved scales will have an impact on the                 
large scale biogeochemical representation, we create a perturbation that simulates the unresolved            
fluctuation of the concentration of each parameter within every model grid box.” 
  
Line 163: Worth clarifying that only SeaWiFS, MODIS and MERIS are used for 2005. 
This is amended in the text by : “Data from SeaWiFS, MODIS and MERIS sensors are used for                  
year 2005”. 
 
Line 170: Remove “completely”. 
It has been removed. 
 
Line 232: “satellite swaths leave imprints of their trajectory”. It would be good to discuss why                
this might be happening in the Discussions section. Is it due to the 1 degree localisation radius?                 
Does it imply that the increments are not being retained by the model? 
As the reviewer points out, this is due to the small localization radius that is used. This radius                  
needs to be small because the horizontal correlation length scale of the forecast uncertainties in               
the chlorophyll field is also small. Because of this local behaviour of the system, the impact of a                  
given observation on the observational update must remain local as well, and it is difficult to                
avoid seeing the imprints of the border between the observed and non-observed regions on the               
updated fields.  
The fact that this imprint can still be seen in the forecast actually means that the increment is                  
well retained by the model, and that the model keeps it local (over a few days) consistently with                  
what is said above. However, these imprints should progressively disappear with time as more              
and more observations are assimilated, so that the error in the system and thus the magnitude of                 
innovation decreases. In our experiment, this does not happen everywhere because the time lag              
between observations is quite large with respect to the typical time scale of the system. The                
model error is also substantial, so that innovation does not become small enough to avoid               
producing quite large increments with a visible imprint of the borders of the observed area. This                
behaviour of the system is now better explained in the paper: “These imprints are caused by                
using a small localization radius. This radius needs to be small due to the small correlation length                 



scale of forecast uncertainties in the chlorophyll field. Thus, the impact of a given observation on                
the update remains local. They should disappear over time as the magnitude of the innovation               
decreases. In this experiment, however, the time lag between observations is quite large with              
respect (5 to 7 days) to the typical time scale of the system.” 
 
Lines 254-255: “preserves its reliability...showing a better reliability.” I understand what’s           
meant, but it’s maybe worth rephrasing these two sentences to be clear about how the reliability                
has/has not changed. 
To clarify, these two sentences have been rephrased as “When observations are assimilated, the              
distribution of ranks flattens with respect to the shape of the histogram of the non-assimilated               
experiment.” 
 
Line 293: “ the metric tends to zero”. Perhaps I misunderstand what’s meant, but it looks to me                  
like this is a seasonal feature, and the resolution is starting to increase again the following spring,                 
rather than it tending to zero and staying near zero.  
We have wrongly used the term “tends to zero” in this sentence. We meant that CRPS is close to                   
zero (note values are 10​-7​) in both the non-assimilated and the assimilated simulation. We have               
changed this sentence appropriately: “...the metric is close to zero...”. 
As the reviewer correctly noted, the metric follows a seasonal variability that is now commented               
in the text as: “A marked seasonality is observed in the CRPS time series. During summer, the                 
resolution of both simulations increases until the end of the season when it returns back to lower                 
values.” 
 
Figures 6 and 9: In the labels, the black text on dark blue for “Satellite product” is very hard to                    
read, and “WOA2008” is grey in the label but black on the plot. I think it worth altering how the                    
labels are plotted for clarity. Also, what’s the reason for the dotted grey line at 50m depth? 
Labels have been changed in the figures. The dotted grey line at 50 m depth was a typo. We have                    
amended this as well in the new version of the manuscript. 
 
Figure 7: The x-axes should be labelled with “N” rather than “W”. What is the reason for the                  
bold dotted lines at 150m and 200m? 
X-axes is now correctly labeled in the new figure. Grid lines and tick label sizes were                
highlighted for aesthetic reasons. These highlights are removed in the new version.  
 
Line 375: “An inferior boundary that may cause this overestimation.” I think this needs              
expanding on. 
The message of the sentence is that when and where concentrations are small, the perturbations               
can hardly make them decrease thus only producing overestimation of chlorophyll. As this is not               
essential information, we have decided to remove it from the manuscript.  



 
Line 404: “the ensemble is not stochastic enough”. I think a more accurate phrasing would be                
“the ensemble has insufficient spread” or something similar. 
As the reviewer correctly proposed, this has been changed appropriately in the new version by               
“the ensemble has insufficient spread in provinces...”. 
 
Line 409: “a more homogeneous ensemble”. Again, I think this needs rephrasing. The histogram              
is more homogeneous, which means the ensemble has more appropriate spread, rather than being              
homogeneous itself. 
As proposed, this has been rephrased to a more convenient: “As a result, the subsequent daily                
forecast is based on an ensemble that has more appropriate spread thus improving its general               
performance.”. 
 
Lines 450-454: Is the assimilation just having a weaker impact, or is it having a better impact due                  
to the reduction of model bias in the assimilation? 
We think this question may have been solved with the expansion of section 4.3.  
 
Line 462: “unusable”. Arguably, but I would suggest “of limited use” or “insufficient”. 
“Insufficient” is used to substitute the “unusable” term. 
 
 
Reviewer 2: 
This paper describes the assimilation of chlorophyll into a model of the North Atlantic Ocean               
using the SEEK assimilation method. The method relies on an ensemble of 24 members. The               
results show that the models’ chlorophyll, which is the variable that is assimilated is improved               
after assimilation, however not in all regions. In some regions the model variability does not               
cover the observations and there the assimilation does not improve the chlorophyll. The model              
results also show that the non-observed variables (nutrients) are not necessarily updated to a              
better state and in some regions it increases in the upper 100 meters. Finally, they propose a                 
method for alleviating this problem by only applying assimilation to the model fluctuations, this              
method is demonstrated for one month only. 
 
Overall, I find the paper well written with very interesting results that contribute to the               
development of data assimilation methods for biogeochemical models and is therefore relevant            
for OS. However, there are a few things that are unclear, so I propose some minor revisions to                  
this manuscript before it is accepted for publication.  
 
Main comments: 
1) Method of generating the ensemble: here the paper simply refers to two publications and refer                



the reader to those. The method of generating the ensemble is very important and I think the                 
reader deserves a short description of how this was done. 
As suggested by the reviewer, a simplified explanation of the methodology employed in Garnier              
et al. (2016) to generate the ensemble is included in the text: “...whose uncertainties may have a                 
direct impact on the estimation of primary production. Specifically, the parameters perturbed are             
the phytoplankton growth rate at 0º C, the initial P-I slope for both nanophytoplankton and               
diatoms, the phytoplankton temperature sensitive of growth, the zooplankton temperature          
sensitive of grazing and the growth dependency to the day length for both nanophytoplankton              
and diatoms. For the perturbations, the starting point is a first-order autoregressive process             
setting up with a standard deviation of 0.3 and a decorrelation time scale of 1 month, at which a                   
random noise is drawn at each grid point and at each time step. After spatial filtering, Gaussian                 
noises are transformed in Lognormal noises to guarantee positivity. Stochastic perturbations are            
then introduced by multiplying by these Lognormal noises. To preserve vertical consistency, all             
perturbations are set identical for the whole water column. In addition, as the effects of               
unresolved scales will have an impact on the large scale biogeochemical representation, we             
create a perturbation that simulates the unresolved fluctuation of the concentration of each             
parameter within every model grid box.”. 
 
2) Update the paper structure: The method of only assimilating the model fluctuations around the               
climatology, should be introduced in the method section and the results presented in the result               
section. Then reserve the discussion section for discussion of the results. I am also confused by                
the sentence that starts with “For the sake of.. “ on line 416, so please clarify what you mean by                    
the climatology in this case. Also specify which period is run. What happens to chlorophyll in                
this case, is the spread of the profiles increases or does it just appear that way in the figure 9? 
We considered the structure proposed by the reviewer when first starting to write the manuscript.               
However, we finally decided to present first the results of the main two simulations (the free run                 
and the assimilated) and discussed them, and then explain the sensitivity experiment developed             
in order to cope with the inconsistencies found in the system. We think this structure is the most                  
appropriate as we first present the strengths and weaknesses of the system, and then try to solve                 
them by only assimilating model fluctuations. 
Section 4.3. has been rewritten to provide a more detailed explanation of the method, and to                
enhance the interpretation of the results. We expect these issues are clearer after modifications.  
  
3) Trying to understand the results in context of the physical model performance: It would be                
useful to have some information on the physical models’ performance, I am thinking especially              
of the representation of the extent of the subtropical gyre, since that seems to be a problem area. 
We agree with the reviewer in that physical model performance is of utmost importance to               
understand some general flaws of our system. The eddy-permitting physical model used in the              
present study was first documented in Barnier et al. (2006), in the context of numerical schemes                



tested in a global, ¼° configuration to reduce the known biases in the representation of western                
boundary currents and subtropical gyres, such as in the North Atlantic. In Ourmières et al.               
(2009), a detailed analysis was made on the mixed layer dynamics at mid-latitudes, which is               
known to have a decisive impact on primary production. Comparisons were made between a free               
simulation (as in the present study), experiments with assimilation of physical observations            
(SST, altimetry) and climatological data (T, S and nutrients), and a seasonal climatology of              
mixed layer depth. They observe that in March, the free solution exhibits a too deep mixed layer                 
extended over an abnormally large area compared to the climatology, in the Gulf Stream region               
and its north eastern extension. In April, stratification takes place in the model, in agreement               
with the climatology, despite a remaining area of large MLD east of Cape Hatteras and an                
overestimated zone in the north-east Atlantic above 45°N. They also show that the combined              
assimilation of physical and nutrient data has a positive impact on the phytoplankton patterns by               
comparison with SeaWiFS ocean colour data. It is obvious that this biased representation of the               
dynamics has a significant impact on the results of our study, which is dedicated solely to the                 
control of sources of uncertainty in the biological model. Therefore, in the revised manuscript,              
we refer more explicitly to the MLD analysis of Ourmières et al. (2009). 
 
Other: 
In the title and abstract ‘ocean’ is spelled with a capital O.  
This has been amended in the new version. 
 
Abstract “. . . are assimilated daily into. . .! 
Line 42: “ . . .to what extent. . .”  
Line 45: “To that end..” 
Line 115: It should be “cost efficient” 
Line 118: “We observed that the. . .” 
Line 123 exchange “one-day” with “daily composites” 
Line 130 “commented on below. . .” 
Line 136 delete “biomass” at the end of the sentence. 
Line 215: suggest “minimize” instead on “diminish” 
Line 393: “. . ..(1) it significantly reduces . . .” 
Precedent suggestions have been taken into account and change accordingly in the new version              
of the manuscript. 
 
Line 40 and onwards: Please explain the statement: “However, none of the latter studies              
explicitly incorporates the uncertainties in the ocean biogeochemistry introduced by stochastic           
approaches.” For example Ciavatta et al 2011, generates an ensemble by perturbing the             
background light attenuation, that would also be considered a stochastic approach, no? Do you              
mean that in this case the perturbations are done on the model parameters and not on the forcing? 



In this system, in contrast to similar works, the ensemble has been explicitly developed by               
introducing perturbation on model parameters. To clarify this point, we have added a short              
comment on the manuscript: “However, none of the latter studies explicitly incorporates the             
uncertainties in the ocean biogeochemistry introduced by stochastic approaches on the model            
formulation.”. 
 
Line 65: I would characterize 1/4 degree resolution as eddie permitting rather than eddie              
resolving. 
Following the suggestion of the reviewer, we have changed the term to “eddy permitting”. 
 
Line 85: the model description mentions iron input from rivers, are any other nutrients supplied               
from rivers? 
Yes, riverine inputs of other nutrients are also taken into account by PISCES. As a default, river                 
supply of all elements but DIC and alkalinity is taken from GLOBAL-NEWS2 (Mayorga et al.,               
2010). We consider that mentioning iron inputs is not relevant for the sake of this manuscript,                
and it has been removed in this new version. 
 
Line 106: Do you mean the “biogeochemical system”? 
Seven biogeochemical parameters were perturbed to include uncertainties arising from the           
limitation of the simulation to describe the biogeochemical system. We have included explicitly             
in this version that we refer to the biogeochemical system by “..the simplification of the               
description of the biogeochemical system to a limited number of state variables and             
parameters.”. 
 
Line 108: Specify which key biogeochemical parameters were perturbed?  
The parameters that were perturbed in the system presented in Garnier et al. (2016), and that we                 
use here to build the subsequent assimilation system are presented now in the text as: “...whose                
uncertainties may have a direct impact on the estimation of primary production. Specifically, the              
parameters perturbed are the phytoplankton growth rate at 0º C, the initial P-I slope for both                
nanophytoplankton and diatoms, the phytoplankton temperature sensitive of growth, the          
zooplankton temperature sensitive of grazing and the growth dependency to the day length for              
both nanophytoplankton and diatoms.”. 
 
Line 224-225: suggest: “However, there is a too strong gradient between the oligotrophic             
conditions of the North Atlantic subtropical gyre and temperate waters to the north.” 
The sentence has been changed as suggested. 
 
For the discussion: What could be done to reduce the ‘stripes’ left by the satellite swaths on the                  
DA analysis? 



Satellite imprints are due to the small localization radius that is used. This radius needs to be                 
small because the horizontal correlation length scale of the forecast uncertainties in the             
chlorophyll field is also small. Because of this local behaviour of the system, the impact of a                 
given observation on the observational update must remain local as well, and it is difficult to                
avoid seeing the imprints of the border between the observed and non-observed regions on the               
updated fields.  
The fact that this imprint can still be seen in the forecast actually means that the increment is                  
well retained by the model, and that the model keeps it local (over a few days) consistently with                  
what is said above. However, these imprints should progressively disappear with time as more              
and more observations are assimilated, so that the error in the system and thus the magnitude of                 
innovation decreases. In our experiment, this does not happen everywhere because the time lag              
between observations is quite large with respect to the typical time scale of the system. The                
model error is also substantial, so that innovation does not become small enough to avoid               
producing quite large increments with a visible imprint of the borders of the observed area. This                
behaviour of the system is now better explained in the paper: “These imprints are caused by                
using a small localization radius. This radius needs to be small due to the small correlation length                 
scale of forecast uncertainties in the chlorophyll field. Thus, the impact of a given observation on                
the update remains local. They should disappear over time as the magnitude of the innovation               
decreases. In this experiment, however, the time lag between observations is quite large with              
respect (5 to 7 days) to the typical time scale of the system.” 
 
The very northward region would be ice-covered during part of the season, is that included in the                 
model? 
Yes, the physical model code corresponds to NEMO version 3.4. This model benefits from the               
LIM-2 sea ice parameterization presented in Fichefet and Maqueda (1997), which includes the             
most relevant thermodynamics (exchanges of heat) and dynamics (exchanges of mass and            
momentum) sea ice-related processes. 
 
Please provide the name of the Longhurst provinces by names in addition to numbers in the                
figures, there is room for that and it will make the reading of the paper easier. 
Longhurst provinces are now named both in Figure 1 and its label, and into the text.  
Label of Figure 1 now includes: “Provinces indicated by acronyms NADR (North Atlantic Drift),              
NATR (North Atlantic tropical gyre), NASTE (Northeast Atlantic subtropical gyre), and           
NASTW (Northwest Atlantic subtropical gyre) are used throughout the text.”. 
In the text we have included: “The provinces used are NADR (North Atlantic Drift), NATR               
(North Atlantic tropical gyre), NASTE (Northeast Atlantic subtropical gyre), and NASTW           
(Northwest Atlantic subtropical gyre).”. Then, acronyms substitute province numbers throughout          
the manuscript. 
 



Figure 6 and 9: it is very difficult to read the black text on the dark blue background, try white                    
text? 
Labels have been conveniently modified in the figures. 
 
Figure 6: In province 6, the deeper nutrients also quite far off from the climatology also in the                  
free run, why is that? Does it persist far down into the deeper layers? 
The climatology used to compare with model data contains data up to 800 m deep. Through the                 
water column between surface and this depth, nutrients are overestimated consistently in            
province 6. The shape is reproduced but values are far from climatological data. 
One possible explanation for this overestimation is that comparisons are made between daily             
snapshots extracted from our assimilated and non-assimilated simulations, and an          
observational-based climatology. On the other hand, the deterministic simulation already          
overestimates chlorophyll in province 6 (NASTW) as observed in Garnier et al., 2016. As              
commented above, Ourmières et al. (2009) carried out a detailed analysis on the mixed layer               
dynamics at mid-latitudes. They observed a band with too high concentrations of nitrate in the               
northern part of this region (35-40º N) that triggers a chlorophyll overshoot in the following               
months as we observed here.  
 
Figure 7: Could you add a third column where you show the isolines of climatological nitrate? 
Figure 7 was intended to show the effects of assimilation by comparing the water column before                
and after the procedure. The WOA nitrate fields correspond to monthly climatological data, and              
offer a coarse grid resolution of 1º. We consider that a section from this data is not appropriately                  
comparable to the ensemble simulations presented here.  
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Abstract.

Satellite-derived surface chlorophyll data are daily assimilated
:::::::::
assimilated

::::
daily

:
into a three-dimensional 24 member en-

semble configuration of an online-coupled NEMO-PISCES model for the North Atlantic ocean
:::::
Ocean. A one-year multivariate

assimilation experiment is performed to evaluate the impacts on analyses and forecast ensembles. Our results demonstrate that

the integration of data improves surface analysis and forecast chlorophyll representation in a major part of the model domain,5

where the assimilated simulation outperforms the probabilistic skills of a non-assimilated analogous simulation. However, im-

provements are dependent on the reliability of the prior free ensemble. A regional diagnosis shows that surface chlorophyll

is overestimated in the northern limit of the subtropical North Atlantic, where the prior ensemble spread does not cover the

observation’s variability. There, the system cannot deal with corrections that alter the equilibrium between the observed and un-

observed state variables producing instabilities that propagate into the forecast. To alleviate these inconsistencies, a one-month10

sensitivity experiment in which the assimilation process is only applied to model fluctuations is performed. Results suggest the

use of this methodology may decrease the effect of corrections on the correlations between state vectors. Overall, the experi-

ments presented here evidence the need of refining the description of model’s uncertainties according to the biogeochemical

characteristics of each oceanic region.

1 Introduction15

Estimating the biogeochemical state of the ocean has become fundamental under the current climate change context due to

its key role mediating global carbon stocks (e.g., Houghton et al., 2001). Currently, the optimal combination of observational

data with the dynamical equations embedded in models through data assimilation (DA) is the most comprehensive strategy to

meet this goal. Therefore, there is a growing effort towards the development of effective DA techniques to improve hindcasts,

forecasts, nowcasts, and scenario simulations of ocean biogeochemistry (e.g., Brasseur et al., 2009; Yu et al., 2018; Fennel20

et al., 2019). At present, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers DA biogeochemical

products for only selected regions (von Schuckmann et al., 2019), though the operational production of the data-assimilated

biogeochemical state of the ocean is one of its challenging core objectives.

1



In order to achieve model / data integration it is of utmost importance to explicitly identify the structure of the uncertainties

that affect the model and the observations (Lahoz et al., 2010). In this sense, ensemble methods (e.g., Bessières et al., 2017)25

are designed to provide a statistical description of the inaccuracies associated with a complex model system by describing the

evolution of the probability density function (PDF). An appropriate approach to perform ensemble simulations is by introducing

stochastic noise into the (deterministic) model equations to simulate the effect of the uncertainties. Stochastic parameterizations

have been used in meteorological forecasting (e.g., Buizza et al., 1999; Leutbecher et al., 2017), and are becoming the standard

procedure for climate modelling (see Palmer, 2012; Berner et al., 2017). In oceanography, the implementation of this type of30

probabilistic approach has increased in the last decade (e.g., Brankart et al., 2015; Juricke et al., 2017), although its application

in physical-biogeochemical models is quite unusual.

In a precursory study, stochastic perturbations were applied into a deterministic solution of the Mercator Ocean (http://

www.mercator-ocean.fr.) North Atlantic 1/4◦ configuration of the NEMO-PISCES coupled model to parameterize selected

model uncertainties associated with some poorly-resolved processes (see Garnier et al., 2016, for more details). Ensemble35

simulations involving 60 members were performed using a probabilistic version of the NEMO-PISCES simulation for the year

2005. An objective diagnosis of this ensemble simulation showed its probability distribution is quite consistent with ocean

color observations in the most productive regions of the North Atlantic, a prerequisite to undertake DA applications.

Ocean color data have been successfully used in DA procedures for improving the simulation of nutrients and primary

production in ocean models (e.g., Gregg, 2008; Ciavatta et al., 2011; Ford et al., 2012; Fontana et al., 2013; Teruzzi et al.,40

2018). However, none of the latter studies explicitly incorporates the uncertainties in the ocean biogeochemistry introduced by

stochastic approaches
::
on

::
the

::::::
model

::::::::::
formulation. In this context, the overarching aim of the present work is to investigate to what

extend
:::::
extent the parameterizations developed in Garnier et al. (2016) can be implemented to build a complete 4D assimilation

system using ocean color data that will update the state-of-the-art of biogeochemical DA. Our strategy will rely on the daily

integration of surface chlorophyll (Chl-a hereafter) data within the latter probabilistic solution. For
::
To

:
that end, 24 trajectories45

of the original ensemble are daily updated by a square root algorithm based on the SEEK (singular evolutive extended Kalman)

filter (Pham et al., 1998; Brasseur and Verron, 2006) using daily composites of ocean colour observations extracted from

MERIS (MEdium Resolution Imaging Spectrometer). Following this strategy, a one year experiment is performed in order to

investigate the effects of the assimilation in contrasted periods (e.g., bloom vs nutrient-depleted periods) throughout the annual

cycle.50

The paper is structured as follows: section 2 presents the coupled model, the assimilation scheme, and the validation metrics.

Section 3 presents the results of the experiment, and provides a probabilistic assessment as compared it with a non-assimilated

ensemble simulation. A discussion of the most relevant outputs is carried out in section 4. In particular, we assess how the

DA system based on parameterized uncertainties can reduce the model uncertainties, and evaluate its performance at selected

regions. Lastly, a summary, conclusions and future perspectives are proposed in section 5 in which we suggest directions for55

next possible developments.
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2 Material and methods

2.1 Hydrodynamical model

The assimilation system presented here is based on a realistic three-dimensional physical-biogeochemical simulation. The

physical component is simulated using the primitive equation free-surface ocean circulation model NEMO (Nucleus for Euro-60

pean Modeling of the Ocean, version 3.4; Barnier et al., 2006; Madec et al., 2015), whose prognostic variables are temperature,

salinity and the three-dimensional velocity fields.

Figure 1. Schematic map of the North Atlantic basin showing the NATL-025/PISCES domain. Longhurst et al. (1995) biogeochemical

provinces are indicated and numbered.
:::::::
Provinces

:::::::
indicated

::
by

::::::::
acronyms

:::::
NADR

:::::
(North

:::::::
Atlantic

:::::
Drift),

:::::
NATR

:::::
(North

::::::
Atlantic

::::::
tropical

:::::
gyre),

::::::
NASTE

::::::::
(Northeast

::::::
Atlantic

:::::::::
subtropical

:::::
gyre),

:::
and

:::::::
NASTW

:::::::::
(Northwest

::::::
Atlantic

:::::::::
subtropical

:::::
gyre)

::
are

::::
used

:::::::::
throughout

:::
the

::::
text. A 2018

yearly composite of sea surface Chl-a is superimposed.

The model configuration is a duplicate of the North Atlantic configuration developed within the framework of the project

DRAKKAR (referred to here as NATL025; Barnier et al., 2006, https://www.drakkar-ocean.eu), which covers the North At-

lantic region from 20◦ S to 80◦ N and 98◦ W to 23◦ E (Fig. 1). The numerical grid has a horizontal resolution of a quarter65

of degree, and 46 geopotential levels in the vertical from surface to 6000 m depth. Such an eddy-resolving
:::::::::::::
eddy-permitting

resolution enables some rough representation of mesoscales features, which are key elements for primary production (Os-

chlies and Garçon, 1998; Lévy et al., 2012). The dynamical component is forced by ERA-INTERIM atmospheric fields

(Brodeau et al., 2010)
::::::::::::::::::::::::::::
(Simmons, 2006; Dee et al., 2011). This configuration has already been coupled to biogeochemistry mod-
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ules and evaluated in recent numerical studies (e.g., Ourmières et al., 2009; Doron et al., 2011, 2013; Fontana et al., 2013;70

Garnier et al., 2016).

2.2 Biogeochemical model

The biogeochemical component coupled to hydrodynamics is PISCES (Pelagic Interaction Scheme of Carbon and Ecosystem

Studies, version 2; Aumont et al., 2015). PISCES is a complex carbon-based model that simulates marine biological produc-

tivity and carbon biomass based upon five main nutrients: nitrate, ammonium, phosphate, silicate and iron. Its architecture75

includes 24 biogeochemical variables grouped into four main compartments: nutrients, phytoplankton, zooplankton, and detri-

tus. PISCES has been used in global simulations (e.g., Bopp et al., 2015), environmental studies (e.g., Brasseur et al., 2009),

climate studies (Lefort et al., 2015), basin scale studies (e.g., Jose et al., 2014) and, more recently, in regional scale studies

(e.g., Auger et al., 2015). For more details see Aumont et al. (2015) where a complete description of PISCES equations along

with a brief validation are presented.80

PISCES differentiates two phytoplankton functional types: diatoms and nanophytoplankton. The parameterization of di-

atoms differs from nanophytoplankton in their requirements of silicate (Si), an increased consumption of iron (Fe), and a higher

level of nutrient saturation due to its larger size. Both Chl-a content on nanophytoplankton and diatoms are parameterized using

the photo-adaptative model of Geider et al. (1997). We refer Chl-a to here as the direct sum of these two compartments, and

it will be used as a proxy for primary production. Besides biomass of Chl-a, carbon ratios with Fe, and Si (only for diatoms)85

are explicit prognostic variables of the model. External inputs of iron are specified using forcing data which reproduce iron

supplies from rivers, continental-shelf sediments and atmospheric deposition (Tagliabue et al., 2009). Furthermore, PISCES

discretises two sizes of zooplankton: micro- and mesozooplankton, and three classes of non-living compartments: the semi-

labile dissolved organic carbon pool, and two sizes of particulate organic carbon that differ by their sinking velocities (3 m d−1

for small particles, and 50 to 200 m d−1 for large particles).90

PISCES is coupled on-line to NEMO with a coupling frequency equal to the circulation model time-step (i.e., 40 min). Note

that on-line coupling means here one-way forcing of the ecosystem model by the circulation model, since no feed-back of the

ecosystem model is taken into account. This strategy of on-line coupling with a maximum frequency is thought to be useful

for simulating the ecosystem evolution, while avoiding possible problems brought by the use of averaged physical fields, as in

off-line coupling.95

A realistic dynamical adjustment of the modeled ocean state is obtained after a 13 years spin-up (1989-2002) starting from

the Levitus climatology for temperature and salinity (Levitus et al., 1998). After physical spin-up, the biogeochemical compo-

nent is initialized in January 2002 from outputs of a global 1/4◦ PISCES operational simulation performed by MERCATOR

Ocean (Elmoussaoui et al., 2011). Between January 2002 and December 2004, a three years spin-up is performed to ensure a

consistent biological initial state. After this period, a deterministic simulation of the coupled system, i.e., NATL025-PISCES,100

is performed for a period of six years, extending from January 2005 to December 2010.
::::
This

:::::::::
simulation

::
is

::::
used

::
to
:::::

build
::
a

::::::::::
probabilistic

:::::::::::
configuration

:::::
upon

:::::
which

:
a
::::
data

::::::::::
assimilation

::::::
system

::
is
::::::::::
performed.
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2.3 Probabilistic version of the coupled system

Any realistic description of the state of a system involves uncertainties. In the case of coupled ocean models, uncertainties may

originate from external forcings (e.g.,the atmospheric data), parameterizations of physical and biological processes that are105

not explicitly resolved by the model, omission of unresolved scales, and reduced complexity to limit computational costs. In

a previous study (Garnier et al., 2016), two classes of those uncertainties were parameterized to explicitly simulate the errors

associated with the deterministic model formulation; (1) the limitations of the spatial scales resolved by the model, and (2)

the simplification of the description of the
:::::::::::::
biogeochemical

:
system to a limited number of state variables and parameters. The

first ones were described by following the approach proposed in Brankart et al. (2015), and the second ones were simulated110

by introducing log-normal stochastic perturbations on seven key biogeochemical parameters .
::::::
whose

::::::::::
uncertainties

::::
may

:::::
have

:
a
:::::
direct

::::::
impact

:::
on

:::
the

:::::::::
estimation

::
of

:::::::
primary

:::::::::
production.

:::::::::::
Specifically,

:::
the

:::::::::
parameters

::::::::
perturbed

:::
are

:::
the

:::::::::::::
phytoplankton

::::::
growth

:::
rate

::
at

::
0º

:::
C,

:::
the

:::::
initial

:::
P-I

::::
slope

:::
for

::::
both

::::::::::::::::
nanophytoplankton

::::
and

:::::::
diatoms,

:::
the

::::::::::::
phytoplankton

::::::::::
temperature

::::::::
sensitive

::
of

:::::::
growth,

::
the

:::::::::::
zooplankton

::::::::::
temperature

:::::::
sensitive

::
of

:::::::
grazing

:::
and

:::
the

::::::
growth

::::::::::
dependency

::
to

:::
the

:::
day

::::::
length

::
for

::::
both

::::::::::::::::
nanophytoplankton

::::
and

:::::::
diatoms.

:::
For

:::
the

::::::::::::
perturbations,

:::
the

::::::
starting

:::::
point

::
is

:
a
:::::::::
first-order

::::::::::::
autoregressive

::::::
process

::::::
setting

:::
up

::::
with

:
a
::::::::
standard

::::::::
deviation

::
of115

:::
0.3

:::
and

:
a
:::::::::::
decorrelation

::::
time

:::::
scale

::
of

:
1
:::::::
month,

::
at

:::::
which

:
a
:::::::
random

:::::
noise

:
is
::::::
drawn

::
at

::::
each

::::
grid

::::
point

::::
and

::
at

::::
each

::::
time

::::
step.

:::::
After

:::::
spatial

::::::::
filtering,

:::::::
Gaussian

::::::
noises

:::
are

::::::::::
transformed

::
in

:::::::::
Lognormal

::::::
noises

::
to

::::::::
guarantee

::::::::
positivity.

:::::::::
Stochastic

:::::::::::
perturbations

:::
are

::::
then

:::::::::
introduced

::
by

::::::::::
multiplying

:::
by

::::
these

::::::::::
Lognormal

::::::
noises.

:::
To

:::::::
preserve

::::::
vertical

:::::::::::
consistency,

::
all

:::::::::::
perturbations

::::
are

::
set

::::::::
identical

:::
for

::
the

::::::
whole

:::::
water

:::::::
column.

::
In

:::::::
addition,

:::
as

:::
the

:::::
effects

:::
of

:::::::::
unresolved

:::::
scales

::::
will

::::
have

::
an

::::::
impact

:::
on

:::
the

::::
large

:::::
scale

:::::::::::::
biogeochemical

::::::::::::
representation,

:::
we

:::::
create

:
a
::::::::::
perturbation

::::
that

::::::::
simulates

:::
the

:::::::::
unresolved

:::::::::
fluctuation

::
of

:::
the

:::::::::::
concentration

:::
of

::::
each

::::::::
parameter

::::::
within120

::::
every

::::::
model

::::
grid

::::
box.

The stochastic formulation was introduced to produce an ensemble spread that is large enough for building a DA system

while keeping the coupled model stable. A 60 member ensemble simulation for year 2005 was performed by Garnier et al.

(2016) who show that the resulting probability distribution (of the annual ensemble simulation) is quite consistent with SeaW-

iFS (Sea-viewing Wide Field-of-View Sensor) ocean color observations. Specifically, they assessed the reliability or statistical125

consistency of the ensemble simulation by comparing it with satellite Chl-a data assuming 30% of observation error.

The present study is based on these previous developments, with some additional adjustments to prepare for DA. In particular,

we carried out sensitivity experiments to select an ensemble size that is more costly-efficient
::::::::::
cost-efficient, but with the same

level of agreement to observations as in Garnier et al. (2016). More explicitly, monthly assimilation experiments with three

different ensemble sizes
::::::
1-month

:::::::::::
assimilation

::::::::::
experiments were performed by reducing the

::::::::
ensemble

:::
size

:::::
from

:::
the original 60130

member ensemble
::::::::
members to 12 and 24 members. These experiments were assessed by comparing

::
We

::::
first

::::::::
compared

:::::
each

::
of them with the

::::::
original

::::::::::
experiment,

:::
and

::::::::
observed

::::::
surface

::::
Chl-

:
a
:::::::::
differences

::::::
below

:::
0.5

:::
mg

:::
Chl

::::
m−3

:::
for

::::
most

:::::::
regions

:::::::
between

::
the

:::
24

:::
and

:::
the

:::
60

:::::::
member

:::::::::
ensembles.

::
A
::::::::::
comparison

::::::
against

:::
the

:
observations used for the assimilation process . We observed

the
:::
was

::::
also

:::::::
assessed.

:::::
Both

:::::::
reduced

::::::::
ensemble

:::::::::
simulations

:::::
were

::::
able

::
to

::::::::
reproduce

:::
the

::::
main

:::::::
patterns

::
of

:::::::
surface

::::
Chl-

:
a

::::::::
displayed

::
by

:::::::
satellite

:::::::::::
observations.

::::::::
However,

::::::
global

:::::::::::
probabilistic

::::::
metrics

:::::::
showed

:::
that

:::::
only

:::
the 24 member experiment was capable to135

conserve
::::::::
ensemble

:::::::::
experiment

:::::::::
conserves the same level of statistical consistency as the original 60 member ensemble

::::::::
ensemble,
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while reducing computational costs of the forecast step by up to 60%.
:::
The

:::::::::
probability

::::::::::
distribution

::
of

:::
the

:::
12

:::::::
member

::::::::
ensemble

::::::
showed

::
an

:::::::::::::
underdispersed

::::::::::
distribution,

:::::
while

:::
the

:::
24

:::::::
member

::::::::
ensemble

::::::
showed

:::
the

::::::::
ensemble

::::::
spread

::::::
covers

:
a
:::::
major

::::
part

::
of

:::
the

:::::::::::
observations. Therefore, a total of 24 trajectories of the inherited stochastic simulation developed in

::
by Garnier et al. (2016)

are used here as the prior PDF for the assimilation problem.140

2.4 Assimilation scheme

The assimilation system integrates one-day
::::
daily

::::::::::
composites

:::
of

:
MERIS Chl-a observations to daily update the ensemble

forecast. The methodology behind this process is based onto a SEEK filter (Pham et al., 1998; Brasseur and Verron, 2006),

implemented in the ensemble system using the System of Sequential Assimilation Modules (SESAM) assimilation plat-

form (Brankart et al., 2012) that deals with all matrix operations required by the assimilation scheme.
::::::
Though

:::::
using

::
a145

::::::::::
probabilistic

::::::::
approach

::
is

:::::
more

::::::::::::::
resource-costing,

::
it

::::::::
produces

:
a
::::::::::
probability

:::::::::
distribution

::::
that

::::::
allows

:::
for

::
an

::::::::
objective

:::::::::
validation

::::
with

::::::::::
observations

::::::
using

::::::::::
probabilistic

:::::::
scores,

::::::
unlike

:
a
::::::::::::

deterministic
::::::::::
assimilation

:::::::
system

:::
that

::::::::
provides

::::
only

::::
one

:::::::::
estimated

::::::::
trajectory.

:::
As

:::::::
another

:::::::::
advantage,

:::
the

:::::::
explicit

:::::::::
simulation

:::
of

::::::
model

:::::::::::
uncertainties

::
in

:::
the

:::::::::
ensemble

::::::::
approach

::
is

::::::::
necessary

:::
to

::::::
produce

::
a
:::::::::
description

::
of

:::::::::::
uncertainties

::::
that

:
is
:::::::::
consistent

::::
with

:::::::::::
observations.

:

The assimilation scheme proceeds in two steps. (1) An ensemble forecast in which each ensemble member, i.e., state vector,150

is propagated forward in time using the full model equations. (2) When a set of observations, i.e., daily swaths of ocean color

retrieved from MERIS, is available, the statistical information contained in the ensemble is combined with observations to

update the forecasted ensemble. The most relevant aspects of this second step, referred to as analysis, will be commented
::
on

below. To propagate the system, the initial condition of the subsequent daily forecast is the updated analysis ensemble obtained

by the assimilation of Chl-a observations.155

The state vector entering the analysis step is composed of all prognostic biogeochemical state variables of the three-

dimensional grid following a multivariate approach. To keep the analysis computationally affordable, a prior diagnosis of

the multivariate correlations between the observed (Chl-a in this case) and non-observed biogeochemical variables have been

carried out. Following the results obtained from this test, 12 out of the 24 biogeochemical state variables are included into the

updated state vector. These state variables correspond to nutrients, oxygen, zooplankton, phytoplankton, and Chl-abiomass.160

The probability distribution of the observed variable, i.e., Chl-a, is usually considered as log-normal (Campbell, 1995). A

well-known strategy to accommodate the characteristic non-Gaussian distributions of biogeochemical parameters is applying

a log-normal transformation (e.g., Ciavatta et al., 2011; Mattern et al., 2017). However, this transformation assumes that the

shape of the probability distribution does not change. As this is not often verified, we adopted here another non-linear strat-

egy dependent on the shape of the probability distribution. Anamorphosis transformations (Bertino et al., 2003; Béal et al.,165

2010) are applied to each variable of the state vector prior to the ensemble analysis step to ensure that marginal PDFs are

close to Gaussian. The strategy of these transformations relies on remapping the quantiles of each marginal distribution such

that the probability distribution is as close as possible to a Gaussian. These transformations ensure that no value of the vari-

ables becomes negative after the analysis update, improve the description of the correlations between Chl-a and non-observed

variables, and exclude possible causes of breakdown of the simulation. To be compliant with the new variables, observations170
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are also transformed into the anamorphic space defined by the ensemble simulation. After analysis, the corresponding inverse

transformations are performed to come back into the original model space and initialize the subsequent daily ensemble forecast.

Relatively small ensembles like the one used here can lead to spurious correlations between distant model grid points. In

order to avoid the potential negative effects of these correlations, we employ a domain localization methodology in which

a separate analysis for each local domain is applied. In practice, this means that an analysis update is performed for each175

horizontal grid point, but including all vertical levels and state variables. To ensure continuity between analyses, each analysis

uses the observations within a certain localization radius (of one degree in the present case), with an observation error that

increases with distance.

2.5 Assimilated and independent observations

The observation data set assimilated by our system corresponds to daily swaths of ocean color retrieved from MERIS. Specifi-180

cally, we use Level-3 binned data accessible at http://earth.esa.int/level3/meris-level3/, that consist on daily-accumulated Level-

2 products with standard bin size of 4.6 km. Among other properties, this product provides Chl-a estimations (in mg
:::
Chl m−3)

used here to update the ensemble simulation. Additionally, the system performance will be assessed by comparison with ocean

color SeaWiFS data accessible through https://oceancolor.gsfc.nasa.gov/data/seawifs/, and with daily surface Chl-a fields ob-

tained from the Global Ocean Satellite Observations provided by Copernicus-GlobColour service, and accessible through185

http://marine.copernicus.eu. This latter product is based on the merging of several sensors (
::::
Data

::::
from

:
SeaWiFS, MODIS-

Aqua, MERIS, VIIRSN, and OLCI-S3A
:::
and

:::::::
MERIS

::::::
sensors

:::
are

::::
used

:::
for

::::
year

:::::
2005) delivered at 4 km of spatial resolution.

The limited accuracy of ocean color products is taken into account in the assimilation process. Imperfections in the re-

trieval process of the Chl-a concentrations may be due to the presence of chromophoric dissolved organic matter, atmospheric

aerosols, or errors in the algorithms at some specific regions, among others (e.g., Gregg and Casey, 2004; Le Fouest et al.,190

2006). Therefore, a 30% of observational error is considered in agreement with global average standard deviation estimates

(e.g., Gregg and Casey, 2004; Mélin et al., 2016).

While inter-comparisons between the data-assimilated simulation and the assimilated observations are necessary to assess

the experiment efficiency, the validation strategy is not totally conclusive since they are not completely independent (Gregg

et al., 2009). We thus use an additional independent data set for an objective validation of the assimilation process. Specifically,195

we use biogeochemical fields extracted from the World Ocean Atlas 2018 (WOA2018; Garcia et al., 2019). The historical in

situ nutrient measurements available in this data set were produced by the NOOA
:::::
NOAA’s (National Oceanic and Atmospheric

Administration) National Oceanographic Data Center - Ocean Climate Laboratory as part of the World Ocean Database project

(WOD; Boyer et al., 2013). They will be used to assess the simulation performance on matching the non-observed variables

patterns.200

2.6 Probabilistic validation

Unlike for deterministic simulations, the validation of our DA experiment requires many realizations (members) to be properly

evaluated given its probabilistic nature. For that purpose, reliability and resolution scores (see Toth et al., 2003; Candille et al.,

7
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2015, for more information) will be computed from the ensemble. Reliability evaluates the capacity of a model to produce

an ensemble probability distribution in agreement with the statistical distribution of a given observation data set. Resolution205

measures the ability of a model to discriminate distinct observed situations. In other words, the reliability informs of the

system’s ability to produce PDFs that agree with a given observations’ PDF, while resolution informs of the spread of the

system’s PDFs. These metrics will allow us to measure the skills of our ensemble simulation for predicting the true state of the

ocean biogeochemistry.

To evaluate reliability and resolution, several probabilistic metrics will be employed. We first check the reliability of the210

DA system by introducing the rank histogram (Anderson, 1996). Rank histograms are computed by sorting all 24 members

in ascending order (in the present case according to their Chl-a concentration) for each grid point and at a given date. Each

observation is then ranked relatively to its location within this sorted ensemble. Observations smaller than the minimum of

the ensemble will take rank ’0’, while those observations higher than the maximum of the ensemble will take rank ’n’. The

statistical consistency of the ensemble can then be evaluated by studying its shape (Candille et al., 2015; Germineaud et al.,215

2019). Rank histograms may be: (1) flat, which indicates the distribution of the model is accurate with the observations,

i.e., perfect reliability, (2) under-dispersed or U-shaped, which indicates the spread of the ensemble is too small (too many

observations lay outside the extremes of the ensemble), or (3) over-dispersed or dome-shaped, which indicates the spread of

the ensemble is too large (too many observations lay near the center of the ensemble).

For measuring the resolution of the system, and obtain a full probabilistic validation of the ensemble, we use the continuous220

rank probability score (CRPS). Let x to be a parameter of interest (Chl-a in our case) to which corresponds a real observation.

Then, CRPS corresponds to the distance between the simulation and the observation, as defined in

CRPS = E

[∫
R

(Fp(x)−Fo(x))
2dx

]

where E is the mean over all observations at a given date, and Fp(x) and Fo(x), the cumulative distributions of the model and

the observations.225

CRPS can be decomposed as the sum of the ensemble reliability (Reli) and the ensemble potential resolution (Resol), i.e.,

the resolution in the case of perfect reliability (see Hersbach, 2000, for more details).

CRPS =Reli+Resol

According to CRPS, a skillful probabilistic system must satisfy two criteria: Reli should be null, and Resol must tend to zero

and, in any case, much inferior than the reference value of the CRPS when it is only based on the reference data set (without230

data assimilation).
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3 Results

It is instructive to evaluate how the assimilation process affects the original ensemble simulation. In this section, the impacts

of the assimilation on the variability in space and time of key biogeochemical parameters are assessed by comparing the

assimilated experiment with an analogous 24 member ensemble of model simulations in which no observational data have235

been assimilated. This ensemble run is performed over the same period, and referred to as ‘free run’.

3.1 Skill on reproducing surface Chl-a

Both the assimilated and the free run simulations are compared to daily surface Chl-a fields obtained from the Global Ocean

Satellite Observations (see section 2.5). Merged satellite products are selected here to diminish
:::::::
minimize

:
missing data due

to cloud cover and still resolve mesoscale spatio-temporal variability. For the assimilated simulation, the analysis step, which240

corresponds to the ensemble computed after the update, is shown. Surface Chl-a daily composites are presented for three

different dates; 19th April 2005, 15th May 2005, and 5th October 2005 (Fig. 2). These dates are selected for representing

contrasting periods. The first two dates coincide roughly with the well documented spring-bloom period of the North Atlantic.

The availability of light and nutrients during this period drives phytoplankton growth, which leads to relatively high values of

Chl-a at surface. The last date represents a period after summer when conditions change due to the reduction of sunlight over245

the surface.

The large-scale spatial distribution of surface Chl-a is captured by the DA simulation. High Chl-a values at regions such as

the Gulf Stream, the North Sea, the Amazonian delta, and the western coast of Africa, are successfully reproduced during the

first days of the experiment (Fig. 2 top panels). However,
::::
there

::
is
:
a too strong gradient between the oligotrophic conditions of

the North Atlantic subtropical gyre and temperate waters northwards is shown
:
to

:::
the

:::::
north. The ensemble median of the free run250

experiment displays a stronger gradient, indicating that the assimilation of surface Chl-a data slightly improves this situation.

About a month later (Fig. 2 middle panels), the inferred large-scale picture of surface Chl-a distribution remains close to

that displayed by satellite observations. The bloom of Chl-a in temperate waters is well reproduced by the DA simulation both

attending to magnitude and geographical location. Upwelling areas along with other zones with high Chl-a concentrations are

also well depicted showing a good performance to match highly productive regions. By contrast, the gradient northwards of255

the oligotrophic open ocean is too pronounced, showing no transition between both regimes as evidenced in the satellite map.

Moreover, corrections made by daily satellite swaths leave imprints of their trajectory in the analysis map. The
:::::
These

:::::::
imprints

::
are

::::::
caused

:::
by

::::
using

::
a
::::
small

::::::::::
localization

::::::
radius.

::::
This

:::::
radius

:::::
needs

::
to

::
be

:::::
small

:::
due

::
to
:::
the

:::::
small

:::::::::
correlation

::::::
length

::::
scale

::
of

:::::::
forecast

::::::::::
uncertainties

::
in
:::

the
:::::

Chl-
:
a

::::
field.

:::::
Thus,

:::
the

:::::::
impact

::
of

:
a
:::::
given

::::::::::
observation

:::
on

:::
the

::::::
update

:::::::
remains

:::::
local.

::::
They

::::::
should

:::::::::
disappear

:::
over

:::::
time

::
as

:::
the

:::::::::
magnitude

:::
of

:::
the

:::::::::
innovation

:::::::::
decreases.

::
In

::::
this

::::::::::
experiment,

::::::::
however,

:::
the

::::
time

::::
lag

:::::::
between

:::::::::::
observations

::
is260

::::
quite

:::::
large

::::
with

::::::
respect

::
(5

::
to
::

7
:::::
days)

::
to

:::
the

::::::
typical

::::
time

:::::
scale

::
of

:::
the

:::::::
system.

:::
By

:::
its

::::
part,

:::
the free run overestimates Chl-a in

high-latitude regions while it underestimates it within the North Atlantic subtropical gyre.

After the summer period, at the beginning of October 2005 (Fig. 2 lower panels), the Chl-a distribution changes; regions with

the highest concentrations relaxed their values, while concentrations at the open ocean slightly increased. The representation
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Figure 2. Surface maps of Chl-a (mg Chl m−3) for 19th April 2005 (top panels), 15th May 2005 (middle panels), and 5th October 2005 (bot-

tom panels). The ensemble median of the non-assimilated free run experiment (left panels), the analysis ensemble median of the assimilation

experiment (middle panels), and merging daily surface Chl-a fields obtained from the Global Ocean Satellite Observations (right panels) are

represented.

of surface Chl-a degrades during this period. Concentrations within the subtropical gyre agree with observations, but gradients265

both at its northern and southern boundaries are too strong. In this transition zone, inferred values double the concentrations

displayed by observations. In the rest of the domain, the Chl-a pattern improves that showed by the non-assimilated simulation.

The free run experiment exhibits a strong overestimation at the Gulf Stream region as already observed by Garnier et al. (2016)

with a 60 member non-assimilated version of the coupled model. Moreover, oligotrophic conditions at the subtropical gyre are

too low, which may indicate the spread of the ensemble is unable to capture the whole observation’s variability.270
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3.2 Probabilistic regional assessment

An ensemble system should be statistically consistent with observations in order to be objectively considered as realistic. To

evaluate the reliability metric, we present rank histograms (Fig. 3) computed for each grid point by accumulation over all 24

members of the ensemble at three
:::
four

:
different Longhurst provinces (Longhurst et al., 1995, Fig. 1 provides the location of

the provinces).
:::
The

:::::::::
provinces

::::
used

:::
are

::::::
NADR

:::::
(North

:::::::
Atlantic

::::::
Drift),

::::::
NATR

:::::
(North

:::::::
Atlantic

:::::::
tropical

:::::
gyre),

:::::::
NASTE

:::::::::
(Northeast275

::::::
Atlantic

::::::::::
subtropical

:::::
gyre),

::::
and

::::::::
NASTW

::::::::::
(Northwest

:::::::
Atlantic

:::::::::
subtropical

::::::
gyre). Both the assimilation analysis and free run

ensembles are displayed. Ranks are computed against SeaWiFS ocean color data extracted for the same day with a considered

30% of observation error. In practice, the latter error means that for each realization a Gaussian white noise with a standard

deviation of 30% of the satellite Chl-a concentration is added to each ensemble member.

Histograms are good indicators of how the assimilation of surface Chl-a affects the probability distribution of the ensemble.280

The histogram for province 4
::::::
NADR

:
(Fig. 3 first row), which corresponds to a major part of the eastern North Atlantic

temperate waters (∼40-60◦N; ∼10-45◦W), displays the good performance of the non-assimilated simulation reproducing the

given observations. The histogram is flat except for a slightly tall rank ’1’ that indicates the highest observations are not

included in the spread of the ensemble. When observations are assimilated, the system preserves its reliability but modifies

:::::::::
distribution

:::
of

::::
ranks

:::::::
flattens

::::
with

::::::
respect

:::
to the shape of the histogram . The distribution of ranks flattens showing a better285

reliability
:
of

::::
the

:::::::::::::
non-assimilated

:::::::::
experiment. The shape of the histogram illustrates the ensemble is now able to include the

highest values of Chl-a, though few ranks accumulate in the left side of the histogram.

An accumulation of ranks forms a dome in the middle of the histogram for province 7
:::::
NATR

:
(second row), which corre-

sponds to the southern boundary of the North Atlantic subtropical gyre (∼13-26◦N; ∼16-75◦W). The free run surface map

(see Fig. 2 middle panels) showed too low values in the northern part of the province, and too high values in the southern part,290

that differ from the smooth gradient showed by the observations. When ocean colour data is assimilated, ranks’ distribution

becomes more homogeneous. A moderate dome of ranks in the right side of the histogram still appears, yet the envelope of the

ensemble reconciles well with the given observations.

The histogram of the free run shows an accumulation of ranks at the left side, i.e., too many ranks ’0’, for province 18

::::::
NASTE

:
(third row). This is the eastern branch of the subtropical gyre of the North Atlantic that goes roughly from the center295

of the Atlantic to the east European and African coasts (from 30 to ∼44◦N). The surface map (Fig. 2 middle panels) showed

an overestimation of Chl-a for most of the region, except for the oligotrophic center of the subtropical gyre where values were

almost negligible. When observations are assimilated, the values of the oligotrophic area increased while values closer to the

coasts tended to diminish
:::::::
decrease. These corrections are also reflected into the histograms by a re-distribution of the lowest

ranks to the right. Nonetheless, improvements are limited, and there is an overpopulated left side of the histogram.300

Lastly, the right branch of the North Atlantic subtropical gyre is included within province 6
:::::::
NASTW

:
(∼30-40◦N; ∼30-

75◦W; last row). In this area, the free run histogram shows a strong accumulation of ranks at the left extreme, i.e, the ensemble

systematically overestimates observations (positive bias). This under-dispersed shape indicates that the ensemble is unable to

cover the lowest observations. In this case, the assimilation of satellite data is unable to improve the reliability of the system.
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Figure 3. Surface Chl-a rank histograms of the 24 member free run experiment (magenta; left panels) and the 24 member analysis ensemble

assimilation experiment (light green: right panels), in comparison with SeaWiFS data for 15th May 2005. A 30% SeaWiFS observation error

is taken into account. Longhurst provinces 4
:::::
NADR, 7

::::
NATR, 18

::::::
NASTE, and 6

::::::
NASTW

:
are represented.

Moreover, the accumulation of lower values not included within the probability distribution of the ensemble increases after305

assimilation.
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Figure 4. Surface Chl-a rank histograms of the 24 member free run experiment (magenta; left panels) and the 24 member analysis ensemble

assimilation experiment (light green: right panels) in comparison with SeaWiFS data for province 4.
:::::
NADR.

:
Ranks are computed for 19

April, 15 May, and 5 October 2005. A 30% SeaWiFS observation error is taken into account.

To see the time evolution of the reliability of the ensemble in province 4
::::::
NADR, Fig. 4 shows rank histograms computed

at three different periods. A week after the initialization of the experiments, i.e., 19 April 2005, there is an accumulation of

ranks in the right side of the free run histogram (negative bias). The assimilation of satellite information redistributes ranks to

the left. Yet there is still an underestimation, the probability distribution of the analysis ensemble fits better with observations310

thus decreasing the bias. A month after, as we observed in Fig. 3, both the free run and DA simulations display flat histograms

indicating a good performance of the system. In particular, the system reproduces the increasing on Chl-a that occurs during

the spring bloom period, which takes place around this date in the province (e.g., Follows and Dutkiewicz, 2001). In October,

13



the free run tends to accumulate ranks on the right side, while an accumulation on the left side of the histogram is depicted for

DA analysis. Notwithstanding, the distribution of ranks is more homogeneous after the assimilation process.315

To complement reliability measurements, we present an analysis of the CRPS metrics for an in-depth evaluation of the

assimilation effects. Using all daily satellite observations available during the simulation period, we calculated the Reli and

Reso terms of the CRPS decomposition for provinces 4 and 6
::::::
NADR

:::
and

::::::::
NASTW; two provinces with contrasted behaviours.

Rank histograms (Fig. 3) showed the ensemble is consistent with observations in province 4
:::::
NADR

:
while it underestimates

them in province 6.
::::::::
NASTW. Similarly, the reliability term of the CRPS metric (Fig. 5a) shows the improvements (closer to320

zero) made by the assimilation process on province 4
::::::
NADR, in which the prior probability distribution was already coherent

with observations. This pattern, however, reverses around August when the integration of data deteriorates the metric. This

situation lasts until mid-December, when reliability for both simulations begin to coincide each other until the end of the

experiment. By contrast, reliability of the free run simulation is generally closer to zero for province 6
:::::::
NASTW during the

whole experiment.325

Figure 5. Time series (6th April 2005 to 5th April 2006) of reliability (upper panel) and resolution (lower panel) computed from CRPS

decomposition for the 24 member free run (in magenta) and the 24 member forecast ensemble assimilation (in light green) experiments.

Longhurst provinces 4
:::::
NADR and 6

::::::
NASTW are represented.

Time series of the resolution part of CRPS (Fig. 5b) show the metric tends
:
is
:::::
close to zero for both systems, indicating a good

global performance. As expected after precedent metrics diagnostics, the analysis update generally improves the resolution
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for province 4.
::::::
NADR.

::
A

:::::::
marked

:::::::::
seasonality

::
is
::::::::

observed
:::

in
:::
the

:::::
CRPS

:::::
time

:::::
series.

:
During summer, the resolution of both

simulations increases until the end of the season
::::
when

::
it
::::::
returns

::::
back

::
to

:::::
lower

::::::
values.

3.3 Assessment of the multivariate scheme330

The multivariate scheme employed here allows corrections on surface Chl-a to extend to other variables. Considering a complex

model such as PISCES, these changes may provoke several variables to no longer satisfy model equations, and thus results

produced by these adjustments should be assessed. Moreover, surface corrections both in the observed and non-observed

quantities are projected vertically in the water column thus altering the vertical structure of the water column. In order to

evaluate the balances between Chl-a and those variables that have important relations with it such as nutrients, monthly means335

of nitrate and phosphate extracted from the WOA2018 data set are compared with data depicted by our simulations. Specifically,

vertical profiles of Chl-a and nutrient concentrations at two points placed at regions 4 and 6 are presented (Fig. 6).

Figure 6. Vertical profiles (0-200 m) of Chl-a (mg Chl m−3), nitrate (mmol N m−3) and phosphate (mmol P m−3) for province 4
:::::::
provinces

:::::
NADR (left panels; at 35

::
50◦ N, 60

::
15◦ W) and province 6

::::::
NASTW (right panels; at 50

::
35◦ N, 15

::
60◦ W) for 19th April 2005, 15th May 2005,

and 5th October 2005. The 24 member free run (in magenta) and analysis (in green) ensembles are represented. Black dots correspond to

monthly mean nitrate and phosphate concentrations extracted from WOA2018 database. Blue dots correspond to daily mean surface Chl-a

obtained from the Global Ocean Satellite Observations.
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Vertical profiles show that both ensembles are capable of displaying a wide range of Chl-a values within the first meters

of the water column. As expected, the spread of the analysis reduces while the subsequent forecast (not shown) will restore

it accordingly to match the satellite’s uncertainty for the next update. The envelopes of both simulations decrease towards the340

bottom of the mixed layer. From there, concentrations displayed by both simulations coincide. This indicates the extension up

to which surface corrections are projected into the vertical. The spread of the ensemble reduces when nutrients are represented.

In general, the assimilation process increases their concentrations within the mixed layer.

In province 4
::::::
NADR (left panels on Fig. 6), the concentrations of nutrients in the mixed layer decrease over time. In October,

mixing is close to its lowest (Zhang et al., 2018) and so are nutrients’ concentrations. Inferred nutrients follow the seasonal345

pattern of decreasing towards October. However, their values are relatively high in comparison with climatological data. The

assimilation process tends to further increase nutrient’s availability within the mixed layer, yet being capable of correctly

simulating surface Chl-a.

The water column is poor in nutrients at province 6
:::::::
NASTW (right panels in Fig. 6). However, both simulations show their

concentrations to be up to seven times higher than WOA data.
::::::::::
Weaknesses

::
on

:::
the

::::::::
physical

:::::
model

:::
to

:::::::::::
appropriately

::::::::
represent350

::
the

::::::
mixed

::::
layer

:::::::::
dynamics

::
in

:::
the

:::::
region

:::::::
impairs

:::
the

:::::::::::
representation

:::
of

:::::::::::::
biogeochemistry

:::
as

:::::
shown

::
in

::::::::::::::::::::
Ourmières et al. (2009).

:
As

observed for province 4, their
::::::
NADR,

::::::::
nutrients concentrations decrease towards the end of the summer. The free run simulates

this decreasing, especially during October when concentrations are close to observations. By contrast, the analysis moves away

the distribution of nutrients from climatology. Corrections made by surface information are unable here to include the given

Chl-a observations. Surface data is overestimated by both ensembles. The assimilation process approaches the ensemble to355

observations in the first cycles of assimilation, but it strongly overestimates them in October. The free run shows a too wide

spread that reproduces Chl-a concentrations up to an order of magnitude higher than satellite data.

3.4 Impact on the subtropical region

Figures presented in precedent sections indicate an erratic behaviour of the system representing the transition zone between the

oligotrophic subtropical area and temperate waters northwards. In order to illustrate the vertical distribution of biogeochemical360

properties before and after assimilation in this area, we consider meridional vertical sections of Chl-a crossing the subtropical

gyre and temperate waters at 45◦ W with nutrients (nitrate + ammonium) isolines superimposed (Fig. 7). The same three dates

used before are represented.

During April (Fig. 7a), high values of Chl-a deepen up to ∼50 m depth in both experiments. However, the oligotrophic region

reaches further north after the assimilation due to a deeper nutrient-depleted subsurface layer south of ∼30◦ N. The deep Chl-a365

maximum (DCM) of the subtropical region is placed below 100 m depth in both simulations in agreement with observational

studies (Pérez et al., 2006). After assimilation, the DCM is disconnected from the subsurface maximum of temperate waters

by the vertical slumping of nutrients isolines.

A horizontal strong gradient of nutrient isolines is observed in the DA analysis section of May (Fig. 7b). Several patches of

high Chl-a values are evident south of ∼35◦ N, from where the water column setting becomes similar to that displayed by the370
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Figure 7. Meridional vertical sections (0-300 m) of Chl-a (mg Chl m−3) at 45◦ W, 25 to 50◦ N, for 19th April 2005, 15th May 2005, and 5th

October 2005. The ensemble median of the free run (left panels) and the assimilated (DA Analysis; right panels) simulations are represented.

Nitrate+ammonium isolines (mmol N m−3) are included in solid black lines.

free run simulation. These patches may be caused by the vertical propagation of surface corrections. By contrast, the free run

simulation shows a more logical distribution of parameters in which high Chl-a waters are related to nutrients’ availability.

During October (Fig. 7c), differences after assimilation are more noticeable. In this period, the vertical distribution of nu-

trients has a key role controlling phytoplankton growth in the region (e.g., Dutkiewicz et al., 2001), and concentrations of

Chl-a are relatively low as the nutricline is deep enough to limit production. Since the free run overestimates Chl-a during this375

period in the region, the assimilation process reduces its concentrations. As a consequence, nutrients accumulate in the first

100 m of the water column north of ∼30◦ N after the update, and destabilize the equilibrium between the biomass of producers

(that decreases) and the availability of nutrients (that increases). Since biogeochemical dynamics is highly dependent on this

equilibrium, subsequent forecasts lead to a rapid increase of Chl-a, and into a severe overestimation over time that reduces the

extension of the oligrotrophic region to the north.380
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4 Discussion

4.1 Impact of the assimilation in the observed variable

The North Atlantic ocean is a complex basin that includes a large number of biogeochemical regimes (see Fig. 1) that make it

difficult to simulate using an holistic modelling system (DeYoung et al., 2004). By employing DA, we aim to reduce the impacts

of model errors on the representation of ocean biogeochemistry by combining model information with available observations385

(Gregg et al., 2009; Ciavatta et al., 2011; Ford and Barciela, 2017). Accordingly, surface maps presented in Fig. 2 show that

the assimilation process reduces the discrepancies between satellite observations and the non-assimilated free run experiment

over a major part of the domain. In particular, the DA simulation better represents values and geographical location of some

structures and events such as the spring bloom period, the Gulf Stream, or phytoplankton fronts. By contrast, the assimilation

scheme appears to be unable to deal with an unrealistic too abrupt front that separates the oligotrophic and temperate waters390

conditions (from about 25 to 35◦N).

By using rank histograms, we evaluate the capability of the assimilated and the free run ensembles to agree with observations

on selected Longhurst provinces (see Fig. 3). Histograms illustrate that the response of the system to the assimilation of satellite

data depends upon the reliability of the prior ensemble. The assimilation process improves the statistical consistency of the

system where the free run probability distribution is homogeneous as in province 4.
::::::
NADR.

:
The DA process also enhances395

reliability in those regions where the shape of the free run histogram is over-dispersed as in province 7.
:::::
NATR.

:
In these

regions, the stochastic parameterization is enough to describe properly the variability of the system, and only a relatively small

percentage of the observations lie outside of the limits of the ensemble (∼10%). Then, the assimilation process makes use of

this information to increase the model skills both by reducing the dispersion and by redistributing ranks to a more homogeneous

shape. The redistribution of the ensemble also raises its resolution showing that the posterior ensemble better describes a wide400

variety of biogeochemical situations (see lower panel of Fig. 5).

By contrast, in regions where the prior probability distribution is strongly under-dispersed as in provinces 6 and 18
:::::::
NASTW

:::
and

:::::::
NASTE, the assimilation of satellite information is unable to raise the reliability. Since corrections are computed in the

range explored by the prior ensemble, the assimilation scheme cannot correct prior distributions that exclude the full variability

of the observations. In these provinces, the spread of the prior ensemble is insufficient to represent the range displayed by405

the observations; the ensemble consistently overestimates them during the annual cycle, and so ranks accumulate at the left

extreme of the histograms (positive bias). These two provinces occupy a major part of the oligotrophic subtropical gyre of the

North Atlantic where Chl-a is generally low during the whole year. Since Chl-a values can never become negative, the random

perturbations introduced into the model formulation to create a probabilistic simulation (Garnier et al., 2016) preferentially

induce to increase Chl-a concentrations. An inferior boundary that may cause this overestimation.410

The inability of the assimilation process to improve the skills of the simulation in these latter regions points out the necessity

to appropriate define the stochastic parameterizations of the prior PDF as a prerequisite to use DA. Particularly, uncertainties

should be described accordingly with the biogeochemical characteristics of each region in order to include a major part of the

observation variability.
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4.2 Non-observed variables415

The effects of the assimilation process to unobserved variables is a major issue in biogeochemical DA (e.g., Rousseaux and

Gregg, 2012; Ciavatta et al., 2018). Several studies (e.g., Ciavatta et al., 2011) have found that the integration of surface ocean

color may cause problems in the nutrients vertical distribution when model’s equation are not ’plastic’, in the sense of con-

straining the ability of the assimilation process to correct the inferred variables. In this regard, it is important to notice that our

multivariate analysis scheme allows corrections on five nutrients, the Chl-a content of each phytoplankton group, phytoplank-420

ton and zooplankton biomasses, and oxygen, while it only uses Chl-a satellite data to constrain the ocean biogeochemistry. It

is plausible that modifications on biogeochemical variables would make some of them not to comply with the governing model

equations anymore. Particularly in those regions where the model is not plastic enough to absorb modifications on the tight

correlations between observed and unobserved state vectors. In some cases, these modifications may develop into simulation

instabilities that can lead subsequent forecasts to deteriorate both the observed and unobserved variables (Ciavatta et al., 2011,425

2018; Gregg et al., 2009). For instance, large discrepancies between observations (high concentrations of Chl-a) and the model

(lower concentrations) in Gregg (2008) caused their model to become unstable due to nutrient depletion. In the present case, the

assimilation process has two effects on the vertical distribution of nutrients (see Fig. 6 and Fig. 7): (1) it reduces significantly

::::::::::
significantly

::::::
reduces

:
the spread of the ensemble, and (2) it tends to increase their concentrations within the first ∼100 m depth.

Nutrients were not perturbed by the stochastic parameterizations (see Garnier et al., 2016) and so increases during the anal-430

ysis update cannot be attributed but to the assimilation process. In the northern region of the North Atlantic subtropical gyre,

Chl-a is overestimated by the prior ensemble and so surface corrections preferentially reduce their concentrations. Since nu-

trients are negatively correlated with the observed variable, the corrections made by the assimilation process would increase

nutrient’s availability. Ourmières et al. (2009) observed that the distribution of nitrate controls the biogeochemical dynamics

of the subtropical regionby employing physical - only , biogeochemical - only (nitrate data), and physical - biogeochemical435

combined assimilation techniques over a coupled system. As a consequence, the amount of nutrients available in the water

column after the analysis would alter the correlations with the observed variable during the subsequent forecast in this area.

If the ensemble spread were correctly established in the region, PISCES equations would be capable to absorb these correc-

tions. However, the ensemble is not stochastic enough in provinces 6 and 18
:::
has

::::::::::
insufficient

:::::
spread

::
in
:::::::::
provinces

:::::::
NASTW

::::
and

::::::
NASTE, and the increasing of nutrients lead to a consistent overestimation of Chl-a. By contrast, in the rest of the domain,440

the parameterizations of the uncertainties are consistent with observations, and extrapolation of the assimilated information to

non-observed variables works correctly. The assimilation process increases the reliability of the ensemble, and the information

spreads appropriately to the rest of the variables. As a result, the subsequent daily forecast is based onto a more homogeneous

ensemble
::
on

::
an

::::::::
ensemble

::::
that

:::
has

:::::
more

:::::::::
appropriate

::::::
spread

::::
thus improving its general performance.

4.3 Assimilation on fluctuations445

The precedent
:::::::
previous section has shown that, despite the stochastic parameterization, PISCES equations are still not plastic

enough in the region north of the subtropical gyre as to absorb
:
to

:::::::
produce

:::
an

::::::::
ensemble

::::::
spread

::::
that

::
is

:::::::::
compatible

:::::
with

:::
the
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Figure 8. Schematics of the assimilation process including time-independent transformations. Both daily ensemble forecast (Xf ) and daily

satellite observations (yo) are transformed by their own climatologies. Then, they are projected into the anamorphic space to deal with

non-gaussian distributions prior of entering the analysis step. After the update, the ensemble analysis (Xa) is converted back to initialize the

subsequent daily forecast.

:::::::::::
observations,

:::
and

::::
thus

:::
to

::::::
absorb

:::
the

:
corrections made by observations

::::
data

::::::::::
assimilation. A possible way to alleviate these

inconsistencies
::::::
without

::::::::
enhancing

:::
the

:::::::::
stochastic

:::::
model

:
would be to remove part of the modifications made by the assimilation

process. With that aim, we implement a methodology that aims to
::::::
reduce

:::
the

:::::::
ambition

::
of

:::
the

::::
data

::::::::::
assimilation

::::::
system,

::::
and

::::
only450

::::
apply

::::::::::
corrections

::
to

::::::::::
components

::
of

:::
the

::::::::::
observation

:::::
misfit

:::
that

:::
are

:::::::::
compatible

::::
with

:::
the

::::::::
ensemble

::::::
spread.

::::
This

::::::::
approach

:::::::
requires

:
a
::::::::
procedure

::
to
::::::::

separate
::
all

::::::
model

::::
fields

::::
into

::::
two

::::::::::
components:

::::
one

:::::::::
component

::::
that

:::::::
displays

:::::::::::
uncertainties

:::
that

:::
are

:::
not

::::::::
correctly

:::::::::
represented

:::
by

:::
the

:::::::::
stochastic

::::::
model,

:::::
which

::::
will

:::
be

::::
kept

:::::::::
untouched

::
by

:::
the

:::::::::::
assimilation

:::::::
scheme,

::::
and

::::::
another

::::::::::
component

:::
for

:::::
which

:::
the

::::::::
ensemble

::::::::::
simulations

:::
can

::
be

::::::::
assumed

::::::
reliable

:::::::
enough

::
to

:::::
apply

::::::::
ensemble

:::::::::
corrections.

:

::
In

:::
our

:::::::
system,

::
in

:::
the

::::::
region

:::::::
covered

::
by

::::::::
province

::::::::
NASTW,

:::
the

:::::
main

::::::
reason

:::
for

:::::
which

:::
the

::::::::
ensemble

::::::
spread

::
is
::::
not

::::
able

::
to455

::::::
include

:::::
ocean

::::::
colour

::::::::::
observations

::
is
::
a
::::
bias

::
in

:::
the

:::::
model

:::::::::::
climatology,

:::::
which

::
is
:::
left

::::::
mostly

:::::::::::
unexplained

::
by

:::
the

::::
two

::::::
sources

:::
of

::::::::::
uncertainties

::::
that

::::
have

::::
been

::::::::
simulated

::
in
:::
the

:::::::::
stochastic

::::::
model.

::
A

:::::::
possible

:::::::
approach

::
to
::::::
reduce

:::
the

::::::::
ambition

::
of

::::
data

::::::::::
assimilation

:
is
::::
thus

::
to
::::::::

separate
:::
the

:::::
model

:::::
field

:::
into

::
a
::::::::::::
climatological

:::::::::
component

::::
and

::
a

:::::::::
fluctuating

::::::::::
component,

:::
and

:
apply the assimilation

process only to the fluctuation part of the coupled model. It consists in performing time-independent transformations to both

::
to the ensemble forecast and

:::::::::
fluctuating

:::::::::
component

:::::
only.

:::
The

:::::
main

:::::::
problem

::
is

::::
then

::
to

:::::
define

::
an

::::::::
operator

::
to

:::::::
separate

::::
these

::::
two460

::::::::::
components.

:

:::
The

::::::
model

::::::::::
climatology

:::
on

:::
the

::::
one

::::
hand

::::
and

:::
the

::::::::::
observation

:::::::::::
climatology

::
on

::::
the

::::
other

:::::
hand

::::
can

::
be

::::
both

:::::::
defined

:::
as

:::
the

:::::::::
distribution

::
of

:::
all

::::::
values

:::
that

::
a

:::::
given

:::::::
variable

:::
can

::::
take

::::
over

::::
time

::
at

:
a
:::::
given

::::::::
location,

:::
and

::::
can

::
be

::::::::::
constructed

::
by

:::::::::
compiling

:::
all

:::::
values

:::::
given

::
by

:::
the

::::::
model

::
or

::
by

:::
the

:::::::::::
observations,

::
at
::::
that

::::::
specific

::::::::
location.

::
In

:::::::
practice,

:::::
these

:::
two

:::::::::::
distributions

:::
can

:::
be

::::::::
described
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::
by

:::::::::
computing

::
a
:::::
series

::
of

::::::::
quantiles

::::
(for

:::::::
instance

:::::::
deciles),

::::::
which

:::
can

:::
be

:::::
saved

::
as

::::
2D

::
or

:::
3D

:::::
fields

:::
for

:::
all

:::::
model

::::::::
variables

:::
on465

::
the

::::
one

:::::
hand

:::
and

:::
for

:::
all

::::::::
observed

::::::::
variables

::
on

:::
the

:::::
other

:::::
hand.

::::
The

::::
idea

::
is

::::
then

::
to
:::::

keep
:::
the

::::::
model

::::::::::
climatology

::::::::::
unchanged,

:::
and

::::
only

::::::
correct

:::
the

::::
rank

::
of

:::
the

::::::
model

:::::::
solution

:::::
within

:::
its

::::
own

::::::::::
climatology,

:::
by

::::::::::
assimilating

:::
the

::::
rank

::
of

:::
the

::::::::::
observation

::::::
within

::
the

::::::::
observed

:::::::::::
climatology.

::::
This

::::::
means

:::
for

:::::::
instance

::::
that

::
if

::
an

::::::::::
observation

:::
of

::::
Chl-

:
a

:::
falls

:::
on

:::
the

::::
first

::::::
quartile

:::
of

:::
the

::::::::
observed

::::::::::
climatology,

::::
then

:::
the

::::::
model

::::::
would

::
be

::::::::
corrected

:::
to

:::::
move

:::::::
towards

:::
the

::::
first

::::::
quartile

:::
of

::
its

:::::
own

::::::::::
climatology.

:::
In

:::
this

:::::
way,

:::
the

:::::::::
fluctuations

::::::
should

:::
be

:::::::::
improved,

:::
but

:::
not

::::
the

::::
bias

:::::::
between

:::
the

::::::::::::
climatologies,

:::::
with

:::
the

::::::::
expected

::::::::
advantage

:::
of

:::
not

::::::::
bringing470

:::::::::
unobserved

::::::::
variables

::
to

:::::::::
unrealistic

::::::::
situations.

:

::
In

:::::::
practice,

::
a
:::::
direct

:::::::
solution

:::
to

::::::
extract

:::
the

:::::::::
fluctuating

::::::::::
component

::
is

::
to
::::::

apply
:::
the

::::::::::
anamorphic

:::::::
operator

::::::::::::
transforming

:::
the

:::::::::::
climatological

::::::::::
distribution

::::
into

:::::::::
normalized

::::::::
Gaussian

::::::::::
distribution

:::::
(with

::::
zero

:::::
mean

:::
and

::::
unit

::::::::
variance).

:::::
This

:::
can

::
be

:::::
done

:::::
using

::
the

:::::
same

::::::::
technique

:::::
used

::
in

:::
the

::::::::::
assimilation

:::::::
scheme

::
to

::::::::
transform

:::
the

:::::
prior

::::::::
ensemble

:::
into

::::::::
Gaussian

::::::::
marginal

:::::::::::
distributions.

:::
As

::::::::
explained

::
in

::::::::::::::::::
Brankart et al. (2012),

:
the observations prior to the analysis update (see schematics on

:::::::::::
transformation

::::::::
operator475

:
is
:::::::::

described
::
by

::::
the

:::::::
quantiles

:::
of

:::
the

:::::::::
probability

::::::::::
distribution

:::
to

::
be

:::::::::::
transformed

::::
(here

::::
the

::::::::::::
climatological

::::::::::::
distributions).

:::::
Thus,

::
as

::::::::
explained

:::
by

:::
the

:::::::::
schematics

:::
in Fig. 8). For that end, we compute their climatologies, and use them to separate between

the climatological and the fluctuating components of the system, applying the assimilation only to the latter. For the sake of

clarification, climatologycorresponds to the marginal probability distribution of a considered variable for each specific location

compiling all times. In other words, fluctuations are related to the rank of a given value within the climatological distribution.480

::
8,

::::::::::
observations

:::
are

::::::::::
transformed

:::::
using

:::
the

::::::::
quantiles

::
of

:::
the

::::::::
observed

:::::::::::
climatology,

:::
and

:::
the

:::::
prior

::::::::
ensemble

::
is

::::::::::
transformed

:::::
using

::
the

::::::::
quantiles

::
of

:::
the

::::::
model

::::::::::
climatology.

::::::
These

:::
two

:::::::::
quantities

:::::::
represent

:::
the

:::::::::
fluctuating

::::::::::
component

::
of

:::
the

:::::::
system,

:::
and

:::
the

:::::
same

:::
data

::::::::::
assimilation

:::::::
system

::::::::
(described

::
in
:::::::
section

::
2)

:::
can

::::
then

::
be

:::::::
applied

::
to

:::
this

:::::::::
fluctuating

::::::::::
component

::::::
instead

::
of

:::
the

:::
full

:::::
field.

These transformations would smooth out the influence of the assimilation process on those regions where corrections provoke

strong changes. In addition, this method would presumably increase the agreement between observations and the probability485

distribution of the forecast ensemble by normalizing their marginal PDFs by using their climatologies.

A one-month assimilation experiment (TrDA) using this methodology is performed. In order to illustrate the effect of trans-

formations on the ensemble simulation, vertical profiles of Chl-a, nitrate, and phosphate are presented for 5th May 2005

(Fig. 9), the last day of the experiment. Profiles are placed at province 6
:::::::
NATSW

:
since the methodology aims to reduce the

inconsistencies between observed and non-observed variables found in this region. Profiles illustrate that the transformed en-490

semble keeps the
::::
Chl-

:
a values displayed by the non-transformed simulation, while it increases the envelope of the ensemble

by reproducing lower values.

When
:::
On

:::
the

::::
other

:::::
hand,

:::::
when climatologies are taken into account, the increasing on

::::::
increase

:::
of the concentrations of both

nitrate and phosphate after corrections is reduced. Though these changes are insufficient to include observations at this specific

position, they indicate thatreducing the effect of the assimilation in regions where the plasticity of the model is insufficient495

diminishes the inconsistencies
::::::::
However,

::::::
despite

::::
these

:::::::::::::
improvements,

:::
we

:::
see

::::
that,

::::
even

::::
with

:::
the

:::::::
modified

:::::::::::
observational

:::::::
update,

:
it
::
is

::::
still

:::::::
difficult

::
to

:::::::
maintain

:::
the

::::::::::
corrections

::
of

:::
the

::::::::
nutrients

:::::
within

::::::::::
reasonable

::::::
bounds.

:::::::::::::
Climatological

::::::::
variations

::::
can

::::::
indeed

::
be

:::
too

:::::
wide

::
to

:::::
avoid

:::::::::
unrealistic

:::::
values

:::::::::
occurring

::
at

:
a
:::::
given

:::::
time.

:::::::
Looking

:::
for

::
a
::::::
reliable

::::::::
synoptic

::::::::
ensemble

::::
with

::
a
::::::::
sufficient
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::::::::
dynamical

::::::
spread

::
to
:::::::

explain
:::
the

::::
full

:::::
misfit

::
to

:::
the

:::::::::::
observations

::
of

:::
the

::::
day

::::::
should

::::
thus

:::::::
certainly

:::::::
remain

::
an

:::::::::
important

::::
step

::
to

:::::::
improve

:::
the

::::::::::
assimilation

::::::
system.500

Figure 9. Vertical profiles (0-200 m) of Chl-a (mg Chl m−3), nitrate (mmol N m−3) and phosphate (mmol P m−3) at province 6
:::::::
NASTW

(50
::
35◦ N, 15

::
60◦ W) for 5th May 2005. The 24 member analysis (in green) and the 24 member transformed analysis (in red) ensembles

are represented. Black dots correspond to monthly mean nitrate and phosphate concentrations extracted from WOA2018 database. Blue dots

correspond to daily mean surface Chl-a obtained from the Global Ocean Satellite Observations.

5 Summary and conclusions

Satellite-derived surface Chl-a data are daily assimilated into a three dimensional 24 member ensemble configuration of a

coupled NEMO-PISCES model for the North Atlantic. As shown throughout the text, the assimilated system has brought

us promising results. A regional diagnosis of a one-year assimilation experiment has revealed that the integration of surface

information increases the skills of the ensemble system in a major part of the model grid when compared to an analogous505

non-assimilated free run simulation. Particularly, the assimilation of satellite data improves the representation of the surface

Chl-a variability both in location (upwelling areas, subtropical gyre, Gulf Stream, etc) and seasonality (spring bloom, winter

mixing, etc). Therefore, the stochastic parameterizations introduced into the system by Garnier et al. (2016) have shown to be

adequate for undertaking DA in most of the considered domain. Where the prior ensemble includes the variability shown by

the observations and their uncertainties, the assimilation process improves its probability distribution increasing the agreement510

with observations (reliability), and its capability to display different community behaviours (resolution). Moreover, corrections

are appropriately transferred to unobserved state vectors by the multivariate scheme.

In the northern region of the North Atlantic subtropical gyre, however, the multivariate corrections produce values that are

often inconsistent with model dynamics, which can affect the correlations between the biogeochemical variables. In this region,

the simulation cannot absorb adequately the corrections brought by the observations, i.e., the simulation is not plastic, and the515

system’s performance deteriorates after the assimilation process. Particularly, the analysis update increases the concentrations
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of nutrients producing instabilities that lead the subsequent forecast to degrade biogeochemical fields. These results suggest

that the description of uncertainties needs to be refined according to the biogeochemical characteristics of each Longhurst

province.

One possible approach to reduce these instabilities would be to relax the assimilation effects on those areas. Therefore, we520

carried out a experiment in which corrections are only applied to the fluctuation part of the model. For that end, we apply

transformations both to observations and the forecast ensemble before entering the analysis update using their climatologies.

Results from a one-month experiment show that these transformations reduce the strong effects of the assimilation increasing

nutrients concentrations in the region that lead to inconsistencies.

::
In

:::::::
addition,

:::
an

::::::::
improved

:::::::::
simulation

::
of

:::
the

::::::::
dynamics

:
is
:::::::
needed.

::::::::::::::::::::
Ourmières et al. (2009)

:::::
carried

:::
out

::
a

::::::
detailed

:::::::
analysis

:::
on

:::
the525

:::::
mixed

:::::
layer

::::::::
dynamics

::
at

::::::::::::
mid-latitudes.

::::
They

::::::::
observed

::::
that

:::
the

::::::::::
distribution

::
of

::::::
nitrate

:::::::
controls

:::
the

:::::::::::::
biogeochemical

:::::::::
dynamics

::
of

:::
the

:::::::::
subtropical

::::::
region

::
by

::::::::::
employing

:::::::
physical

:
-
::::
only

:
,
::::::::::::::
biogeochemical

:
-
::::
only

::::::
(nitrate

:::::
data),

::::
and

:::::::
physical

:
-
::::::::::::::

biogeochemical

::::::::
combined

::::::::::
assimilation

::::::::::
techniques

::::
over

:
a
::::::::

coupled
::::::
system.

:::::
Their

::::::
results

:::::::
showed

::
a
:::
too

:::::
deep

:::::
mixed

:::::
layer

::::::
during

::::::
March

::::
that

:::::::
extended

::::
over

:::
an

::::::::::
abnormally

::::
large

::::
area

::
in
:::

the
:::::

Gulf
::::::
Stream

::::::
region

:::
and

:::
its

:::::
north

::::::
eastern

:::::::::
extension,

:::
and

:::
an

::::::::::::
overestimation

:::
of

::
the

:::::::::::
stratification

::
in

:::
the

:::::::::
north-east

:::::::
Atlantic.

::::
This

::::::
biased

::::::::::::
representation

::
of

:::
the

::::::::
dynamics

:::
has

::
a
:::::::::
significant

::::::
impact

::
on

:::
the

:::::::
present530

::::::
model,

::::
and

::::::
should

::
be

::::::::
addressed

:::
in

:::::
future

::::::::::
realizations.

:

Including information of biogeochemical fields in the water column into the assimilation scheme would also improve the

representation of the biogeochemical state of the ocean. In situ information would be thus explicitly included by the system

at depth. Nowadays, the only sources of such measurements are limited to the prospects of BIO-Argo floats (Claustre, 2009;

Xing et al., 2012). Terzić et al. (2018) assimilated BIO-Argo information into a one-dimensional model and improved the DCM535

spatial and seasonal representation. Cossarini et al. (2019) succeed in improving the Chl-a depiction over the Mediterranean

Sea by assimilating vertical Chl-a information supplied by BIO-Argo floats. These recent works open a horizon to constrain

biogeochemical model simulations from vertical information. However, at basin scales, the current state of the network allows

it to be used for validation purposes, but their limited spatial coverage makes them unusable
:::::::::
insufficient

:
for assimilation

procedures. In the other hand, a possibility to include nutrients information is to introduce synthetic information (e.g., Xiao540

and Friedrichs, 2014; Yu et al., 2018) from a non-perturbed analogue simulation. In this direction, synthetic observations would

be important in future efforts heading the improvement of biogeochemical data assimilation systems.
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