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Abstract: Several models for estuarine physical processes and biogeochemistry have been developed over last 

decades. One of the most comprehensive coupled model systems, Finite Volume Community Coastal Model 10 

(FVCOM) coupled with European Regional Seas Ecosystem Model (ERSEM) through the Framework for Aquatic 

Biogeochemical Models (FABM) has been implemented to a high resolution coastal East China Sea (ECS), which 

encompassed complex coastal zone and part of continental shelf. Physical model was assessed by traditional 

univariate comparisons, while a rigorous model skill assessment was conducted for coupled biological model. The 

model system’s ability to reproduce major characteristics both in physical and biological environments was 15 

evaluated. The roles of physical, chemical and environmental parameters on the biogeochemistry of the ECS were 

extensively studied. This work could form a significant basis for future work, e.g. the response of 

biogeochemical flux to physical mechanism. 
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1 Introduction 

Extensive ocean models have been developed over last several decades to serve as tools for research and 

maritime projects. A demand for explicit modeling of combined physical, chemical and biological 

systems begins on a growing realization that biogeochemical state cannot be inferred from their physical 

properties alone (Blackford et al., 2004; Tomasz et al., 2014). Traditional numerical models have been 45 

constructed based on simplified assumptions on the functionality of complex marine ecosystem. Most 

of them failed to simulate important biogeochemical processes, because the models did not consider 

essential features, such as explicit carbon cycling, microbial food dynamics, the role of key functional 

groups and multiple nutrient limitation to primary production (Mateus et al., 2012). In recent years, 

marine ecosystem models have been explored to understand, quantify and estimate biogeochemical 50 

processes in seas and oceans. These models vary in complexity from simple four-compartment Nitrate, 

Phytoplankton, Zooplankton, Detritus (NPZD) pelagic models (Oschlies et al., 2000; Dabrowski et al., 

2013) to more complex multi-functional group models describing ocean biogeochemistry and lower 

trophic food web (Mateus, 2012; Flynn, 2010; Follows et al., 2007; Wild-Allen et al., 2010). European 

Regional Seas Ecosystem Model (ERSEM) is one of the most established and complex ecosystem 55 

models for lower trophic levels of marine food web in use, which assesses over 40 state variables with 

benthic-pelagic process (Baretta et al., 1995). The model has been applied in a wide number of contexts 

that included short-term forecasting (Edwards et al., 2012), ocean acidification (Blackford and Gilbert, 

2007), coupled climate-acidification projections (Polimene et al., 2014), and biogeochemical cycling 

(Wakelin et al., 2012). 60 

The East China Sea (ECS), a marginal sea of western North Pacific Ocean, is characterized by wide 

shelf, complex circulations, and fresh water inputs from the Yangtze River (YR), the Qiangtangjiang 

River (QR), the Oujiang River (OR), and the Minjiang River (MR). Land-source nutrient flux interacts 

with ocean current, making the cycle of nutrients richer and more complicated. In recently years, with 

rapid development of coastal ocean economy, tremendous amounts of pollutants, such as nitrate and 65 

phosphorus, have been exported into coastal oceans due to an increase in anthropogenic activity. 

Consequently, the structure and function of ecosystem may be affected (Wang et al., 2004). 

Eutrophication has been considered as the most serious environmental problem of coastal ECS, e.g. 

harmful algae blooms (mainly red tide), which greatly impacts on human health, aquatic ecosystem, and 
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the economy. Previous research have focused on this ecosystem hazards by illustrating lower nutrient 70 

food web along coastal region of ECS (Wang et al., 2006; Guo et al., 2014; Li et al., 2008; Ye et al., 

2015; Zhang et al., 2004). However, most of these studies were based on either limited field surveys or 

simplified laboratory experiments. There were also defects in providing environmental drivers offline, 

the simple zero-dimensional box biological model, and limited spatial and temporal coverage (Wang et 

al., 2013; Zhu et al., 2005). Online three-dimensional physical and biogeochemical fluxes need to be 75 

considered for more realistic representations. 

In this study, we implemented the high-resolution FVCOM coupled to the ERSEM through the FABM 

framework. The paper was organized as follows. Section 2 briefly described the study area and 

observations used. Section 3 focused on the FVCOM-ERSEM model, and specific setup. Model skill 

assessment was carried out in Section 4. A discussion was further explored in Section 5. Conclusions 80 

were drawn and future work was discussed in Section 6. 

2 Study area and observations 

Study area covers the coast of ECS extending from southern Taiwan Strait to northern Yangtze River 

(YR) water system. Model domain is 117 -124.5°E and 22-33°N within a 174 m-isobath (Fig.1). 

Physical environment of ECS has a distinct seasonality feature at mid-latitude and influenced by 85 

anthropogenic stresses from adjacent landmass, as well as mixing from several principal water types. 

From the north to the south, the domain comprises several important estuaries, including: YR, QR river, 

OR, Aojiang River (AR), Feiyunjiang River (FR), MR and Jiulongjiang River (JR) and empties into 

ECS. The topography of model domain is derived from ETOPO1 (1-minute gridded data) for the open 

ocean region (Amante and Eakins, 2009) and nautical chart for estuarine areas. 90 

Monitored data were collected from 5 ecological buoys monitoring at the Zhejiang coast in May 2019, 

including temperature, salinity, conductivity, pH, dissolved oxygen (DO), dissolved oxygen saturation, 

turbidity, chlorophyll-a (Chla), phosphate, nitrate and ammonia. Meanwhile, tidal level observations 

were also collected at several tidal stations to evaluate model performance. 
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 95 

Fig. 1. Study area (left panel) and bathymetry map with locations of tidal stations and ecological buoys (right panel). 

Tidal stations are marked by square and ecological buoys by triangle. Tidal stations: Shengshan (SS) “1”, Kanmen 

(KM) “2”, Sansha (SS2) “3”, Pingtan (PT) “4”, Xiamen (XM) “5”, Chongwu (CW) “6”, Taishan (TS) “7”, Nanji (NJ) 

“8”, Dachendao (DI) “9”, Zhenhai (ZH) “10”, Ruian (RA) “11”, Luchaogang (LP) “12”, Sanmenjiantiao (S3) “13”. 

Ecological buoys: zs03, jx01, nb03, wz01 and wz02.  100 

3 Model description and setup 

3.1 Hydrodynamic model 

The numerical model used in this study is unstructured grid based, free-surface, 3-D primitive equations 

Finite-Volume Community Ocean Model (FVCOM) ocean model described in detail by Chen et al. 

(2003a). To date, current version is fully coupled ice-ocean-wave-sediment-ecosystem model system 105 

with options of various turbulent mixing schemes, generalized terrain-following coordinates and wet/dry 

treatments. Finite-volume approach combines finite-element method for geometric flexibility and finite-

difference method for simple discrete structures, in order to enhance the computational efficiency. 

Multiple dynamical forces, including river runoff, astronomical tide, waves, mean flow, wind, etc. and 

seasonal temperature, salinity and density, coexist and interact in study area. Therefore, unstructured, 110 

finite-volume ocean model can fit to ECS situation sensationally. 

3.2 Biogeochemical model 

ERSEM was developed in the 1990’s, which is one of the most established ecosystem models for the 

lower trophic levels of the marine food web (Butenschön et al., 2016). The current model release 
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contains the essential elements for the pelagic and benthic parts of the marine ecosystem, including the 115 

microbial food web, the carbonate system, and calcification. 

Trophic structure is defined on the basis of a predatory action of consumers on producers, bacteria, and 

themselves. A benthic module is implemented to estimate the mineralization of sinking organic matter, 

nutrients and oxygen flux at bed-water interface. A pelagic model comprises more than twenty-two 

major state variables: light, producers, consumers, decomposers, pelagic organic matter (dissolved labile, 120 

semi-labile and semi-refractory DOM, small-size, medium-size and large-size POM), benthic organic 

matter (dissolved, particulate and refractory), nutrients (nitrate, ammonium, phosphate and silicate), and 

oxygen. For this simulation, we have considered four types of primary producers: diatoms, 

nanophytoplankton, picophytoplankton and microphytoplankton, and three group of consumers: 

mesozooplankton, microzooplankton, and Heterotrophic flagellates. 125 

The FABM enables complex biogeochemical models for marine and freshwater systems to be developed 

as sets of stand-alone or process specific modules (Bruggeman & Bolding, 2014). It has been coupled 

to many hydrodynamic models including GOTM (General Ocean Turbulence Model), ROMS (Regional 

Ocean Model System), NEMO (Nucleus for European Modelling of the Ocean), MOM (Modular Ocean 

Model), HYCOM (HYbrid Coordinate Ocean Model), FVCOM and SCHISM 130 

(https://sourceforge.net/projects/fabm/).  

Parameter values for each generic type model were listed in Tables 2 to 4. Whenever possible they have 

been adopted from original study performed in similar complexity (Butenschön et al., 2016). Some 

parameters like maximum specific productivity, mimimal specific lysis rate, assimilation efficiency of 

mesozooplankton were estimated from references of ECS (Guo et al., 2014; Li et al., 2008; Gin et al., 135 

1998; Wang et al., 2006). 

3.3 Model configuration 

The computational domain was divided into 102, 688 non-topped triangular cells with 53, 512 grid 

nodes. The resolution at open boundary was set up to 15 km, and refined to ~200 m around riverine 

channel. 140 

The model was forced by realistic tide, river discharge and atmospheric conditions. The tidal forcing 

was imposed using the TPXO7.2 data (Egbert and Erofeeva, 2002), which provides 8 primary harmonic 

constitute to predict ocean tide. Inputs for fresh water were prescribed using climatological monthly 
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values for respective main channels (Fig. 2), derived from China Water & Power Press 

(http://www.waterpub.com.cn/). Riverine inputs of salinity were set to 0 psu. The temperature and 145 

suspended sediment concentration were collected according to multi-year averaged monthly data sets 

(Editorial Board of China Bay Survey). The surface wind forcing, heat flux and 

precipitation/evaporation were acquired from 6-hour Reanalysis data of NOAA/s National Centers for 

Environmental Prediction (NCEP) (ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis2/gaussian_grid). 

Initial conditions for the temperature and salinity were derived from GDEM (Generalized Digital 150 

Environmental Model). Open boundary conditions for temperature and salinity were extracted from an 

ocean reanalysis data set of SODA (Simple Ocean Data Assimilation). 

Surface boundary conditions were prescribed as no-flux for all biogeochemical state variables. Monthly-

averaged nutrients were imposed at riverine boundary of YR in Table 1, including nitrate nitrogen, 

ammonia nitrogen, phosphorus, silicate (Wang, et al., 2013; Liu, 2002; Xu, 2019). Yearly- averaged 155 

nutrients were specified at other riverine boundaries. The Nitrate nitrogen, ammonia nitrogen, 

phosphorus, silicate concentrations were set as 80.4, 2.26, 1.53 and 120 μmol l-1 respectively at QR; 

the corresponding concentrations were set as 20, 5.5, 1 and 150 μmol l-1 at OR, AR and FY; and 53.3, 

13, 0.5 and 221 μmol l-1 at JR. Initial and open boundary conditions for the ecological model properties 

(phosphate, nitrate, oxygen and silicate) were derived from WOA09 (World Ocean Atlas 2009), and the 160 

Chla was from OC_CCI (Ocean Colour Climate Change Initiative). The initial values of ammonium 

were given as a homogeneous constant value, 1.0 mmol N m-3. 

 
Fig. 2. Multi-year monthly averaged river discharge: Datong station of Yangtze River (YR) (a); Qiangtangjiang River 

(QR), Oujiang River (OR), Feiyunjiang River (FR), Aojiang river (AR), and Jiulongjiang river (JR) (b) (m3 s-1). 165 

An initial period of 1 month, January 2018, was used as a spin-off period for tide in barotropic mode, 

and the model was run for 11 months until December in baroclinic mode with an initial tide fields. The 

biogeochemical coupled model was run for a period of eight months, starting in December 2018 and 

(a) (b) 
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finishing in July 2019 which covers the period of harmful algal blooms, with an external time step of 

1.5 s for the numerical simulations. 170 

Table 1. Monthly nutrients input of Yangtze River (μmol l-1). 

 Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. 

NH4 6.1 7.2 7.7 7.7 7.1 7.1 7.7 7.1 6.6 6.6 6.6 8.4 

NO3 103 127 127 127 100 100 100 86 86 86 103 103 

PO4 1.68 1.33 1.33 1.33 1.59 1.59 1.59 1.38 1.38 1.38 1.68 1.68 

SI 120 96 96 96 114 114 114 129 129 129 120 120 

Table 2. List of parameter values used as reference for primary producers: diatoms (P1), nanophytoplankton (P2), 

picophytoplankton (P3), and microphytoplankton (P4). All values are from Butenschön et al. (2016), except a from Guo 

et al. (2014), b from Li et al. (2008), c from Gin et al. (1998), and d Wang et al. (2006). 

Parameter Unit P1 P2 P3 P4 

Max. specific productivity at reference temperature d-1 3.7b 1.625 0.9a 2.0b 

Q10 temperature coefficient - 2.0 2.0 2.0 2.0 

Specific rest respiration at reference temperature d-1 0.04 0.04 0.045 0.035 

Excreted fraction of primary production - 0.2 0.2 0.2 0.2 

Respired fraction of primary production - 0.2 0.2 0.2 0.2 

Minimum nitrogen to carbon ratio mmol P (mg C)-1 0.0042 0.005 0.006 0.0042 

Minimum P:C ratio mmol N (mg C)-1 0.0001 0.00023 0.00035 0.0001 

Maximum P:C (relative to redfield ratio) - 2.0 2.0 1.5 2.7 

Maximum nitrogen :C (relative to redfield ratio) - 1.075 1.075 1.05 1.1 

nitrate affinity m3 mg-1 C d-1 0.0004d 0.004 0.006 0.0004d 

ammonia affinity m3 mg-1 C d-1 0.0025 0.004 0.007 0.002 

phosphate affinity m3 mg-1 C d-1 0.019d 0.004 0.006 0.020d 

Maximum silicate to carbon ratio mmol Si (mg C)-1 0.0118 - - - 

Michaelis-Menten constant for silicate limitation mmol m-3 0.02 - - - 

1.1 of minimal specific lysis rate d-1 0.03c 0.05 0.22a 0.03c 

Initial slope of PI-curve mg C m2 mg-1  4.0 5.0 6.0 3.0 

Photoinhibition parameter mg C m2 mg-1  0.07 0.1 0.12 0.06 

Max. effective chlorophyll to carbon photosynthesis ratio mg Chl (g C)-1 0.06 0.025 0.015 0.045 

Table 3. List of parameter values used as reference for bacteria. Values from Butenschön et al. (2016). 175 

Parameter Unit Value 

M-M constant for oxygen limitation relative to saturation state - 0.31 

M-M constant for nitrogen limitation mmol N m-3 0.5 

M-M constant for phosphorus limitation mmol P m-3 0.1 

Q10 value - 2.0 

Efficient at high oxygen levels - 0.6 

Efficient at low oxygen levels - 0.2 

Specific rest respiration at reference temperature d-1 0.1 

Maximum phosphorus to carbon ratio mmol P (mg C)-1 0.0019 

Maximum nitrogen to carbon ratio mmol N (mg C)-1 0.0167 
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Specific mortality at reference temperature d-1 0.05 

Max. specific uptake at reference temperature d-1 2.2 

Semi-refractory DOC in proportion to activity respiration 1 0.3 

Turn-over of POM relative to DOM d-1 0.01 

Table 4. List of parameter values used as reference for zooplankton. Z4, Z5 and Z6 indicate mesozooplankton, 

microzooplankton and nanoflagellates, respectively. Values from Butenschön et al. (2016). 

Parameter Unit Z4 Z5 Z6 

Q10 temperature coefficient - 2.0 2.0 2.0 

Assimilation efficiency - 0.75 0.5 0.4 

Fraction of unassimilated detritus not respired  0.9 - - 

Specific basal mortality d-1 0.05 0.05 0.05 

Max. mortality due to oxygen limitation d-1 0.2 0.25 0.3 

Fraction of unassimilated prey that is excreted - 0.5 0.5 0.5 

Max. phosphorus to carbon ratio mmol P (mg C)-1 0.00079 0.001 0.001 

Max. nitrogen to carbon ratio mmol N (mg C)-1 0.0126 0.0167 0.0167 

Specific rest respiration at reference temperature d-1 0.015 0.02 0.025 

Max. specific uptake at reference temperature d-1 1.0 1.25 1.5 

Food preference for P3 1 0.0 0.15 0.25 

Food preference for P4 1 0.15 0.1 - 

Food preference for P2 1 0.05 0.15 0.15 

Food preference for P1 1 0.15 0.15 - 

Food preference for B1 1 0.0 0.1 0.45 

4 Model skill assessment 

This section concerned physical and biological response of the model during numerical period. 

Traditional univariate comparisons were used to assess physical model skill. Time-series comparisons 180 

of water level, sea surface temperature, and sea surface salinity were presented in Figs. 3-5, whereas 

Table 5 showed the comparisons of harmonic constants for 8 main astronomical constituents. 

A rigorous model skill assessment was conducted for coupled biological model, thus the model’s 

capabilities were tested and understood. Herein, additional approaches were explored to validate the 

complex biological model performance, e.g. the Percentage of Bias (PB) and the Adjusted Relative 185 

Mean Absolute Error (ARMAE). We also attempted multivariate comparison of the modeled and the 

observed using the Cost Function (CF) to minimize model-data misfit. 
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4.1 Physical fields 

Graphically comparing the modeled with the observed could be a useful way to assess model 

performance. We plotted time-series water level, SST and surface salinity. To quantify the differences 190 

between data and modeled results, the root-mean-square (RMS) error (𝑒𝑟𝑚𝑠 ) and the correlation 

coefficient (𝑟2) were employed as major skill assessment index of physical fields to indicate average 

discrepancy (Taylor, 2000). 

𝑒𝑟𝑚𝑠 = [
1

𝑁
∑ (𝑀𝑛 − 𝑂𝑛)

2𝑁
𝑛=1 ]

1/2
                            (1) 

𝑟2 =
1

𝑁
∑ (𝑀𝑛−𝑀̅)(𝑂𝑛−𝑂̅)
𝑁
𝑛−1

𝜎𝑀𝜎𝑂
                               (2) 195 

where 𝑀 and 𝑂 were for the modeled and the observed, respectively. 𝑀̅ and 𝑂̅ were mean values, 

and 𝜎𝑀 and 𝜎𝑂 were standard deviations of 𝑀 and 𝑂, respectively.  

4.1.1 Tidal analysis 

In coastal and estuarine environment, tidal current represented one of main forcing on biogeochemical 

dynamics. It was crucial to correctly simulate tide propagation along the coast that could be 200 

characterized by water surface elevation. We selected six tidal stations to validate temporal water level 

of May 2019 (Fig. 3). As shown in Fig.3, simulated water levels were in good agreement with 

observations over entire measurement period except for the RA and the PT. The correlation coefficients 

𝑟2 ranged from 0.94 to 0.99, and the root-mean-square (RMS) error 𝑒𝑟𝑚𝑠 from 0.155 to 0.59 m. The 

R station lay near AR estuary, where the coastline and terrain have been modified due to human 205 

reclamation in past several years, thus it appeared that flood tide could not pump high enough. The PT 

located near eastern coast of the PT Island, where the resolution of the terrain was quite coarse. 

Harmonic analysis were also carried out using the T_Tide Toolkit with observed tidal level and 

computed water level. Harmonic constants of eight main tidal constituents were listed in Table 5. 

Generally, maximum deviation of the amplitude was less than ~10 cm, and phase difference was less 210 

than ~20 degree. Compared to tidal ranges of coastal areas, model and observational data are in good 

agreement with each other. 

 

(a) 

(b) 
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 215 

 

 

 

Fig. 3. Validations of time series of water level during May 2019 at six tidal stations, including KM (a), RA (b), S3 (c), 

SS2 (d), SS (e), and PT (f) (blue line for the observed and red line for the modeled). 220 

Table 5. Harmonic constants of 8 main constituents 

Cons. 

Stations 
M2 N2 S2 K2 Q1 O1 P1 K1 

KM 

Amplitude 
181.3 33.0 66.1 18.0 3.3 21.1 8.3 28.6 

187.9 29.6 62.5 18.2 4.2 21.7 9.3 29.6 

Phase 
251.2 228.6 292.0 291.5 164.1 180.2 215.5 216.9 

260.6 238.9 303.5 299.6 162.9 186.0 219.8 219.7 

SS 

Amplitude 
113.1 20.8 52.1 14.1 2.5 16.1 8.1 26.7 

106.2 19.3 48.0 15.0 2.8 15.7 7.4 25.2 

Phase 
278.4 262.7 320.9 319.8 140.2 152.6 191.5 191.4 

273.6 257.9 323.5 320.5 132.3 153.5 194.5 193.1 

S3 

Amplitude 
179.5 32.3 74.6 19.3 4.1 22.2 9.6 30.6 

185.7 29.1 69.2 20.6 3.5 21.3 8.7 29.2 

Phase 
251.0 232.2 297.8 297.8 159.3 175.5 214.8 214.2 

263.5 249.7 316.9 314.0 164.1 186.2 221.8 220.0 

SS2 
Amplitude 

202.7 38.0 67.2 18.6 4.9 24.3 10.0 30.9 

202.2 31.3 56.8 16.2 4.6 22.9 9.6 230.1 

Phase 281.5 256.0 322.0 322.5 184.5 196.5 228.2 232.2 

(f) 

(e) 

(d) 

(c) 
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290.3 263.9 330.6 325.9 174.7 193.5 30.8 231.0 

DI 

Amplitude 
139.8 28.0 60.7 16.0 6.7 19.0 11.3 32.4 

145.1 25.1 55.8 16.5 3.8 21.3 8.9 28.4 

Phase 
250.6 227.0 286.6 289.7 181.1 177.8 220.6 212.8 

247.8 227.9 291.5 288.5 155.2 179.3 211.2 212.6 

PT 

Amplitude 
206.3 37.8 62.8 17.4 4.9 25.2 9.9 31.0 

214.7 32.3 52.1 15.0 4.8 24.4 9.7 31.2 

Phase 
307.6 280.6 350.7 348.5 195.9 212.3 247.0 250.3 

317.1 299.9 5.1 1.0 193.9 211.0 249.7 251.2 

4.1.2 Surface sea salinity and temperature 

Temperature structure was one of major limiting factor on primary productivity in coastal ECS. The 

temperature for prorocentrum donghaiense Lu ranged 20-27 oC, thalassiosira sp. of 15-21 oC, 

skeletonema costatum of 20-25 oC, alexandrium tamarense of 17-25 oC, and pyramidomonas delicatula 225 

of 24-28 oC (He et al., 2007; Chin et al., 1965). Salinity influenced penetration pressure of alga, thus 

physiological state would be changed to some extent. Each group of phytoplankton had suitable specific 

range of the salinity, e.g. prorocentrum donghaiense Lu prefers 25-35 psu (He et al., 2007). Therefore, 

3-D baroclinic fields were significantly important for the modeling for biochemical cycling. 

Time series observations of sea surface temperature and salinity were collected in May 2019 to verify 230 

the simulation (Figs. 4 and 5). Temperature showed a typical gradual increase pattern in late spring 

month, with higher values in southern domain. The maximum RMS error between the observed and the 

modeled was 1.39 psu. Salinity showed a strong signal of tides influence on flood/ebb cycle.  

 

 235 

 

(a) 

(b) 

(c) 
(d) 
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Fig. 4. Validations against hourly water surface temperature during May 2019 at six tidal stations: KM (a), RA (b), SS2 

(d), and PT (e). (blue line for the observed and red line for the modeled).  

 240 

 

 

 

Fig. 5. The same as Fig.4 except for surface salinity. 

4.2 Biochemical fields 245 

Compared to physical oceanography, field observation for chemical and biological oceanography was 

scarce and this remained an obstacle to improve coupled biogeochemical model system (Ward et al., 

2010). The Chla was commonly collected in the estimation of coupled biogeochemical model for wide 

availability of the data, both in-situ and remotely sensed, and was a focus of this model assessment. 

Validation for nutrients and Chla at observed sites were also collected. 250 

4.2.1 Nutrients 

Time series for simulated nutrient concentrations at four stations were shown in Figs. 6-8. Measured 

ammonium indicated large values near the coastal zone, e.g. wz02 and wz01, while it fluctuated over 

1.0 mmol m-3 of offshore station (Fig.7). Nitrate concentrations generally showed higher values in 

(a) 

(b) 

(c) 

(d) 

(e) 
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offshore region, about twice than simulated values (Fig.8). The simulated phosphate was at good 255 

agreement with the observations (Fig. 6). Generally, a reasonable agreement for nutrients was achieved 

in terms of concentration magnitude. The wz01, located near the coastline of the Leqing Bay, was 

affected by pollutants input. The model underestimated the observed NO3 at this site, which 

approximately equaled to the initial fields. 

 260 
Fig. 6. Validations of model results for temporal variation of Chla against the observations at nb03, zs03, wz02 and 

wz01, respectively (Data were marked by the squares and the modeled by solid lines) (unit: mmol m-3). 

 

Fig. 7. The same as Fig.6 except for the ammonium. 

 265 
Fig. 8. The same as Fig.6 except for the nitrate (unit: mmol m-3). 

4.2.2 Chla and DO 

Figures 9 and 10 presented the simulated Chla and DO at four stations (nb03, zs03, wz01 and wz02). 

The range of oxygen concentrations at each station were well reproduced, with some overestimation at 

the wz01. Overall results suggested that oxygen budget in the system was satisfactorily achieved. 270 

A comparison with Chla showed that the model has broadly captured observed variation, although with 

lower magnitude of the nb03 and wz02, where bloom peak occurred in late-spring month. Field values 

could reach to 15.0 mg Chla m-3 at nb03, and almost 35.0 mg Chla m-3 at wz02. Figure 11 showed the 

comparison between modeled Chla and ocean color product of the Sea WiFS. Simulated Chla were in 

https://doi.org/10.5194/os-2020-47
Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



14 
 

typical average range of 0.0-20 mg Chla m-3 with an overestimation near the YR offshore areas, and an 275 

underestimation along the Zhejiang Province coast, e.g. OR estuarine areas. 

Generally, the model was able to reproduce major temporal and spatial variability, although there was a 

mismatch existed in late spring abundance. The reasons were possibly due to followings: (1) input values 

of properties of coastal rivers used were not daily but monthly averaged, (2) inaccurate parameters for 

chlorophyll synthesis, growth rates, etc., (3) absent of suspension of sediments and frequent high 280 

turbidity in tidal estuaries along the coast. 

 

Fig. 9. The same as Fig.6 except for surface Chla. 

 

Fig. 10. The same as Fig.6 except for the oxygen (unit: mmol m-3). 285 

  

Fig. 11. Mean simulated Chla compared to SeaWiFS ocean color products of May 2019. 

4.2.3 Quantitative assessments 

Following statistical measures: the Cost Function (CF), the Percentage of Bias (PB) and the Adjusted 

Relative Mean Absolute Error (ARMAE), were introduced to assess biological models usefulness as 290 

tools in decision-making process. These statistics delivered model performance were defined as follows 

(Tomasz et al., 2014): 

(a) (b) 
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𝐶𝐹 =
∑ |𝑀−𝑂|

𝑛𝜎𝑂
                                    (3) 

𝑃𝐵 = |
∑(𝑂−𝑀)

∑𝑂
⋅ 100|                                  (4) 

𝐴𝑅𝑀𝐴𝐸 =
〈|𝑀−𝑂|−𝑂𝐸〉

〈|𝑂|〉
                                  (5) 295 

where observations, 𝑂 and model 𝑀, fields were defined in a unstructured spatial grid and in time. 𝑛 

represented the number of observations. 𝑂̅ in above equations represented observation averages, 𝜎𝑂 

was the standard deviation of all observations and 𝑂𝐸 was observational error. The angular brackets in 

Eq. (5) denoted the averaged, and negative values in the numerator of this equation were set to zero 

before averaging. A conservative estimate of the observational error was used at 50% (absolute relative 300 

error). The performance indicator cited the three metrics: PB (<10 = excellent, 10-20 = very good, 20-

40=good, >40 = poor/bad), ARMAME (<0.2 = excellent/very good, 0.2-0.4 good, 0.4-0.7 = reasonable, 

0.7-1.0 = poor and >1.0 = bad), and CF (<1 = excellent/very good, 1-2 = good, 2-3 = reasonable and >3 

= poor/bad) (Tomasz et al., 2014). 

The statistic metrics defined by Equations. (3)-(5) for the modeled and the observed were collected in 305 

Table 6. The model was assessed by CF as excellent/very good for ammonium, phosphate and Chla, and 

good for nitrate and DO. The values of ARMAE represented the relative error over and above the 

estimated error in the observations. The model scores good for ammonium and Chla, excellent/very 

good for phosphate and DO, and poor for nitrate. The assessment based on PB was more rigorous, as 

PB showed the bias normalized by the observations rather than standard deviation. The model was 310 

classified as excellent/very good for DO, and poor/bad for the remaining state variables. 

Table 6. Averaged statistical measures of model-observed comparison for the surface Chla, ammonium, nitrate, 

phosphate and DO of the four eco-buoys (highlighted for poor, and the other for good or excellent). 

 NH4 NO3 PO4 Chla DO 

PB 67.8 65.4 53.6 60.1 14.2 

ARMAE 0.22 0.84 0.19 0.33 0.0 

CF 0.68 1.41 0.78 0.45 1.32 
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5 Analysis and discussion 315 

5.1 Nutrients 

Figure 12 showed modeled distribution of the nutrients in May of bloom peak month. Nutrients exerted 

the control to some extent on phytoplankton composition in some systems. It was particular relevant for 

silica because the model estimated a decrease of this nutrient from the inshore region to offshore region. 

Both nutrients showed a higher value near estuarine and nearshore areas, especially the YR estuary and 320 

coastal areas of Zhejiang Province. Affected by the interaction of the YR diluted water and longshore 

current, four type of nutrients roughly kept similar trend that decreased from the inshore plume region 

to offshore region. Nutrient front was formed offshore with different patterns. Nutrients were depleted 

in the well-mixed areas away from the front. The patterns appeared roughly same trend with 

observations in May 2015 (Ye et al., 2015), although the data were collected in a different year. 325 

     

Fig. 12. Model results: mean distribution of ammonium (a), nitrate (b), phosphate (c), and silicate (d) of May 2019.  

5.2 Phytoplankton 

Current pelagic model of ERSEM comprised four functional types for primary producers based on single 

trait size, with the exception of the requirement of the silicate by diatoms and an implicit calcification 330 

potential of nanoflagellates. This lead to the four classes of diatoms, and pico-, nano-, and 

microphytoplankton (Butenschön et al., 2016). As shown in Fig. 13a, high values of diatoms appeared 

at the QT and OR river mouth, and mean value of 2-5 mg C m-3 in plume region and offshore areas. The 

nanophytoplankton occupied almost entire domain except for upstream river mouth with relatively 

smaller values (Fig. 13b). For picophytoplankton, obvious higher values occured outside the YR mouth, 335 

where Guo et al. (2014) also concluded the similar pattern according to two curises in August 2009 (Fig. 

13c). 

(c) (a) (b) (d) 
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Fig. 13. Mean distributions of phytoplankton of May 2019 (units: mg C m-3): diatoms (a), Nanophytoplankton (b), 

Picophytoplankton (c), and Microphytoplankton (d), respectively. 340 

5.3 Zooplankton 

Three predators were considered including the microzooplankton, mesozooplankton and heterotrophic 

flagellates according to their size classes. They predated on different prey types, including cannibalism 

(Butenschön et al., 2016). Grazing was treated as major control on phytoplankton abundance in pelagic 

system, but the lack of field data on trophic structure in coastal areas limited assessing the magnitude of 345 

this control in coastal ECS. Observational data were not available for the model, moreover, zooplankton 

research was outside the aim of our present study, so we only plotted spatial distributions of the three 

zooplankton for the integrity and made some rough estimates (Fig. 14). It showed clearly that 

heterotrophic flagellates occurred mainly outside YR estuary and along the coast of ZP. High values of 

microplankton appeared near offshore plume areas, while the mesozooplankton grew along the coast 350 

and high value could be seen in offshore plume region. 

  

Fig. 14. Mean distributions of the zooplankton of May 2019 (units: mg C m-3): heterotrophic flagellates (a), 

microzooplankton (b), and mesozooplankton (c), respectively. 

5.4 Affecting factors on model accuracy 355 

There are several aspects affecting the accuracy of FVCOM-ERSEM coupled simulations of coastal 

ECS, such as river inputs, open boundary conditions, model parameterization, and initial conditions. 

Along coastal ECS, several significant rivers empty the open sea, e.g. YR, QR, OR, FR, MR and JR. 

Apart from these runoff, there are many small rivers or streams, which affected circulation, especially 

(c) (a) (b) 

(c) (a) (b) (d) 
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water quality near river mouths. Unfortunately, most of those small rivers are not continuously measured. 360 

Biological state variables of rivers including nutrients, DO and biomass, are much more difficult to be 

collected, which usually are assumed with historical data or references. Accurate field data of river 

mouths would improve the accuracy of model simulation greatly, particularly around estuarine areas. 

Model results are dependent on the parameterizations of physical and biological processes in component 

modules of FVCOM-ERSEM. For example, number and type of nutrients influenced biological results. 365 

Adsorption of suspended sediment and resuspension near bed affect the nutrient cycle. Also the 

dynamics of algal groups determined lower trophic food web. 

Compared the above factors, open boundary conditions and initial conditions are the other potential 

factors. Although physical forcing is good enough, biological data are significant insufficient at open 

boundary. The resolutions of initial salinity and temperature are important to circulation and 370 

biogeochemical model results. 

6 Conclusions and future work 

This paper presented a 3-D finite-volume physical-biogeochemical coupled model of coastal ECS. We 

implemented the 3-D baroclinic physical model FVCOM, which utilized a triangular horizontal grid to 

better fit estuarine and coastal geometry, coupling with ERSEM, a well-established ecosystem model 375 

for lower trophic levels of marine food web, through the framework of FABM. 

The model performance was assessed by extensive validation for major characteristics both in physical 

and biological environments, including the variables of water elevation, temperature, salinity, surface 

Chla and nutrients concentrations. Due to the limitation of observational data, we evaluated simulated 

results of phytoplankton on a qualitative basis. The model was capable to reproduce main observed 380 

temporal and spatial features for phytoplankton and nutrients. The nutrients and phytoplankton 

distributions of coastal region of the ECS were discussed briefly in this study. 

This integrated ecosystem model could be further explored to assess the response of biogeochemical 

process to physical, chemical and environmental parameters for coastal ECS. Certainly, we will continue 

to improve the physical model and biogeochemistry model parameter space. 385 
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