Coupled data assimilation:

for oceanography work over South Africa’s shelf

Observations are drawn into a coupled model by data assimilation:
ocean, land, atmosphere

« < 10% of observations are in-situ, the rest come from satellite.

« Operational products use past observations, whereas reanalysis
products use near-future and late-arriving data.

* Ocean & land assimilation have a generous multi-day time window,
but atmospheric assimilation has a narrow cut-off (few hours).

« Observations have ‘influence’ according to the type, accuracy &
reliability, eg. in-situ above remote, calibrated above unknown.

« Ata model grid-point, the observations affect the interpolated value
according to proximity.

* Incoming data are constrained to model physics, climatology,
persistence & prior forecast.



Data assimilation is the technique
whereby observational data are
combined with output from a
numerical model to produce an
optimal estimate of the evolving state
of the system.

Why We Need Data Assimilation
—m
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range of observations
range of techniques
different errors

data gaps

guantities not measured
guantities linked
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Types of Data Assimilation

* |ntermittent
« Continous

The Data Assimilation Process

observations

forecasts

estimates of state & parameters
== errors in obs. & forecasts

Methods of Data Assimilation

Optimal interpolation (or approx. to it)
3D variational method (3DVar)
4D variational method (4DVar)

Kalman filter (with approximations)



Key data streams

« Surface in-situ measurements: ship, buoy
« Sub-surface observations: float, XBT
« Satellite remote sensing:
— De-clouded visible & infrared
— Passive microwave (wide swath)
— Active microwave (narrow swath)
Model forecast, climatology, persistence
— Forcing from atmosphere and land models
— Theoretical calculations by ocean model
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Atmosphere
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https://www.godae-oceanview.org/science/ocean-forecasting-systems/assimilation-characteristics/
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Coupled Data Assimilation

Atmosphere Observations

Fast
variations :
vV Vv
- Realistic condition of
Coupled Model Assimilation the Earth System
Slow
variations

Adapting assimilation to inputs

Ocean Observations

6BN

Multi-day coverage by active MW
radiometers that provide wind fields
for evaporation and Ekman transport

Remember that land-based wind data
are not assimilated due to ‘exposure’. o= ki
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Coupled data assimilation

Model
Simulation

Alternating analysis and forecast cycle
True state (unknown)  accumulates recent observations

time



Ocean model data interpolation
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Model 15t guess i

Climatology —_
Persistence —_
Ocean Physics
Calculations
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multiple
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_~ well distributed
satellite obs, swaths

atmospheric forcing
land surface fields

uneven ship / buoy
observations, float
& XBT profiles

Measurements at earlier (or later) times have less influence than recent



Ocean observing system
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Satellite altimeter obs of geoid-corrected
sea surface height anomaly
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SA involvement in real-time
ocean monitoring is limited

« Weather repOrtS from station / Shlp m W SEA LEVEL STATION MONITORING FACILITY

« Global profiling by floats and aircraft

but g - ; I

« No marine stations (buoys) reporting | - '
X « Harbours tide gauges are ‘quiet’

T ovion lists

Whyis e o

Global Ocean- In-Situ Near-Real-Time Observations S L Off | in e? [0)
Productid: INSITU_GLO_NRT_OBSERVATIONS_013_030 . .
Dataset: Oceanotron-INS-CORIOLIS-GLO-NRT-OBS_PROFILE_LATEST '

Variable: Oceanotron-INS-CORIOLIS-GLO-NRT-OBS_PROFILE_LATEST

Units: Time: |2019-05-02 v | 00:00:00.000Z ¥ */- 1week ¥ | Depth (m):

0

SAWS: best reporting in Africa
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surface aircraft

The SA marine science community is skeptical of ocean reanalysis; users do not
feel confident in their outcomes, so operational research has limited influence.



SST from IR+MW satellite with insitu-calibration,
after de-clouding over multi-day window

Latest L4 sea-surface temperature observations from OSTIA (20180912)
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Overlapping satellite missions
to collect essential data
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Ocean reanalysis products have improving technology, and resolve the
coastal gradient after 2008, with the advent of higher resolution radiometers




Satellite vs reanalysis

Individual satellites have orbital limitations and aging radiometers.

Satellite ‘level-3’ products are corrected for radiometer drift, atmospheric
contamination (reflection, scattering, absorption), coastal contamination

by land fraction within radiometer footprint.

Level-3 products are interpolated to a grid after correction, and usually
represent composites of multiple images within a sliding time window.

SST reanalysis products blend IR and MW products, to reduce
contamination: eg. GHR-MUR Level-4 since 2002.

Ocean reanalysis uses multiple level-3 satellite products from NASA,

ESA, etc, in addition to in-situ & ancillary data, model physics & recent

meaurements.
| Instrument

Radiometer/Orbit

Resolution

Error

Issues

Why use single satellite products? | 2\5x

MODIS
VIIRS
GOES Imager
SEVIRI
MT-SAT
AVHRR
AMSR-E
AMSR2
WindSat
TMI
Buoys/ships

IR/Polar
IR/Polar
IR/Polar
IR/Polar
IR/ Geostationary
IR/ Geostationary
IR/ Geostationary
IR/Polar
/Polar
/Polar
/ Polar
/Equatorial
in situ

1 km
1 km
1 km
1 km
6 km
6 km
6 km
9 km

variable

0.6°C
0.3°C
0.5°C
0.4°C
1.0°C
0.7°C
0.7°C
0.4°C
0.5°C
0.5°C
0.5°C
0.5°C
~ 0.5°C

Clouds, aerosols
Clouds, sparse
Clouds, aerosols
Clouds, aerosols
Clouds, aerosols
Clouds, aerosols
Clouds, aerosols
Clouds, aerosols
Land, rain
Land, rain
Land, rain
Land, rain
Depth, sparse




DA methodology:

ECMWF ORA5

Methodology is 3D-Var-FGAT
Assimilation of in situ profiles, SLA, SIC
Relaxation of SST towards OSTIA

OCEANS is a reanalysis-analysis system with 2 streams - behind real-time and

real-time

Assimilation window varies from 8 days to 12 days and split into two chunks

Minimisations performed separately for sea ice and ocean components

Atmospheric forcing comes from the HRES system

Monthly and
Seasonal
Forecasting

Ocean Weather
Prediction

Nowcasting

NWP

Wave
Forecasting

Long Term
Climate

Coastal Inland




incoming data
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Near real time chunk 1 Near real time chunk 2

Behind Real Time




Incremental Update Cycle

Past » Future
Assim. Run | Forecast Ru1> Forecast I
| :
Analysis Routine First Guess [¢ - Climatology
; ¢
! Analysis (T, S) <+———— Observation
| v
Analysis Increment Inc = Analysis - Forecast
Y Spread to each time step Tm.le T
Assimilation Run Forecast Ru1>‘
Time T dx / | :
0 oM (x)+ e Analysis
dt N
v
* Analysis fields are calculated for T and S alone. Assimilation Run

Current fields are adjusted through the assimilation.




Cold start, has no
prior ‘'knowledge’

Warm start, uses
persistence to
‘nudge’the result

Block run, uses
climatology to
‘nudge’the result

sequential, intermittent assimilation:

- Vo

[enalysls |- > analysis | %" [apalysis | o>

sequential, continuous assimilation:

—

non-sequential, intermittent assimilation:

| R S




PRESENT A non-linear methods

Kﬂ]{l'rmn smoother
(4D-Var or) 4D-PSAS with model error
g r y fixed-lag Kalman smoother
EKF
mtermittent 4D-Var or 4D-PSAS » long 4D-Var or 4D-PSAS
E‘ A A
a,, 3D-Var or 3D-PSAS Operational + late arriving data
8
Optimal Interpolation (OT} Historical data (eg. SADCO)
Cressman  Successive Corrections Latest model technology
nudging
PAST Interpolation of observations




Different time-scales for ocean/land
and atmospheric (NWP) modelling

NWP forecasts have to be produced in a timely fashion

Not all ocean observations are available for current atmospheric cut-off times

Would like coupled assimilation for:

[J Coupled observation operators
[] Atmospheric bias correction of ocean sensitive satellite observations
[] More balanced initial conditions

Quter loop coupling with the atmosphere - lots of potential to help with bias
correction and screening of ocean sensitive satellite observations

» Aligning the ocean analysis window to the current atmospheric window would
mean missing lots of vital in situ observations

» Care needs to be taken not to inherit ocean model biases into the atmospheric
analysis



Atmospheric Model

* Aerosol processes (Microphysics) * Meteorological processes
— Nucleation/condensation — Velocity
— Phage changes — Geopotential
*  Cloud processes — Presgsure
— Conden./evap./deposition/sublim. — Water vapor
— Precipitation — Temperature
— Stability (Vertical/Slantwise Ascent) — Density
— Convection — Turbulence
— Entramnment * Swrface processes
« Radiative transter — Temperatures and water content of
— UVisible/near-IR/thermal -TR. « Sol Water Snow
— Scattering/absorption * Seaice Vegetation Roads
— Snow, 1ce, water albedos + Roofs

— Swurface energy/moisture fluxes
— Ocean-atmogphere exchange
— Ocean dynamicsg, chemstry



Five steps in the generation of a numerical model product

Observations
+ All models require obs from an area larger than their forecast domain
+ Forecasts longer than 2-3 days require global data sets

* Global Telecommunications System (GTS) gathers and disseminates conventional
data to nearly all countries

Analysis

« Objective analysis — obs checked for errors and interpolated to grid on which model
atmosphere is represented

Initialization

+ Adjusts the analyzed data so that the model and data are dynamically consistent
* Ensures no "noise” is generated when forecast begins

Forecast

. Systﬁmdnf forecast eqns marched forward in time until desired forecast length is
reache

Output

+ Forecast maps produced and sent to users, including computations of many quantities
not directly forecast by the model

- Forecasts verified to document model errors and biases in order to formulate
improvements in the future.



Yo Feedback between SST and rain rate

vAg

Heat SST

SUPPIESS Low SST

High SST _
convection

Promote
convection

Coupled data assimilation uses constraints to inhibit rainfall
over high SST regions, so salinity fields follow observations.



Flow (cumecs)

Contribution to ocean data assimilation:
atmos / land hydrology — salinity budget

—— L] T T T T T T T T T T T i . . , .
- o s 0% HYCOM water flux into ocean (mm/day) * AtmOSphe”'C data assimilation
and current (vector) generates rainfall
* Over-land run-off feeds into river
, - catchments, combined with satellite
T shan P - e ‘M soil moisture
i R » Coastal river discharge is diffused
) "?ff’f’:” i and advected by winds, waves,

g T )+ I 1
228% 23.5°E 245 25.5%

turbulence and currents

Eastern Cape Rivers

« Salinity fields incorporate satellite
Fsh and in-situ measurements, thus
effects of upwelling
O _Gamtoos+Sundays ' | &t | —

rrrrrrrrrrrrr

5'E
S E 388833888388 Longitude
Soil Moisture and
Ocean Salinity
Satellite (SMOS)

Public DWA hydrology data Meteosat-blended gauge data




Examples of Amazon plume
and Agulhas Current

Sea Surface Salinity (psu) from OCEANS analysis on 20180913
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Vanishing sea ice

and shrinking beaches?

Global influences
3 420
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Comparison of past & future:

consistent values and trends?
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» PE shelf time series of ECMWF-
ora4 hindcast and HAD-esm
projected 1-50 m zonal current.

For periods of overlap between observed
and projected data, confidence can be
determined according to means, variance,
annual cycle, trends, and other metrics
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projected sea surface height at PE
harbour.



Tide gauge

Local validation studies
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H-model
H-model

Comparison of daily HYCOM model at nearest grid-point and: (left) sea
surface height from tide gauge in western False Bay and (right) sea
surface temperature from NOAA satellite; 2008-2015



HYCOM ability to detect temp gradients within False Bay

Sea temperature (C)
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Intercomparison of products:
3-day SST ~1 Jan 2013

""""""""

warm offshore
- | TE——

.04 GHR OI SST .01 GHR MUR SST .1 HYCOM rean
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Hi-res ocean reanalyses should converge over time, as optimal solutions are achieved
for radiometer engineering, atmospheric correction, bias removal and coupled DA.

Low-res pattern




Chlorophyll fluorescence (eq. mg/m3)

15

12 A

Remote sensing of productivity

h
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What is the appropriate
visible band product for
marine productivity?
green-band chlorophyll?

Or

red-band fluorescence?
Influence of salinity, turbidity?

Why choose?

Use the reanalysis concept:
all obs have value, so blend.

Retain multi-day time-scale
for composite de-clouding.



Local validation studies

CRO site Apr-Dec 2012 04 ADF site Mar 14 - Dec 17
obs = 0.67 mod + 5.47 obs =0.48 mod + 8.5 o g,
22 r*=038 daily r*=0.39 8 8
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Inter-comparison of HYCOM model 10 m temperature and
UTR data at Algoa buoys (y-axis).
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Local validation studies

Durban offshore
30

sat=0.96 mod + 1.1
= 0.91

NOAA SST

Hycom T

30

" obs density

Near-surface temp

/
i

Comparison at shelf-edge of Hycom and NOAA sea

surface temp 2009-2015 off Durban.



Local validation studies

y = 0.55¢ + 0.48
RY= 054

EL waverider Hs (m)
Y

0 2 4 5 8
W3 hindcast Hs (m)

« Comparison of 3-hourly waverider buoy and W3 model
significant wave height (2011-2013) near East London.



Local intercomparisons

Over the shelf, west of PE
Coastal gradientin SADCO ships data

cross-shelf ship obs cross-shelf ship obs
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Seasonal cycle in satellite, reanalysis and coupled model



SST (C)

Changes in variance over time
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Daily SST over the shelf west of PE:

Temporal variability dominated by seasonal cycle pre-2006.
Event scale fluctuations much greater thereafter.
Increased ‘noise’ from inshore upwelling, finally resolved.



Globally available resources:

most starting in the satellite era

LABEL DEFINITION RESOLUTION SOURCE

CCMP Cross-calibrated multi-platiorm marine wind reanalysis 25 km Univ Hawaii APDRC
CFSr2 Coupled ForecastSystem reanalysis v2 (ocean) 30-50 km Univ Hawaii APDRC
ECMWF5  European Centre Medium-range Weather Forecasts 30 km Climate Explorer
GODAS Global ocean data assimilation system (NOAA) 50 km IRI Clim. Library
HYCOM Hybrid Coordinate Ocean Model 10 km Univ Hawaii APDRC
IPCC Coupled model projections (HAD3esm, efc) 100+ km Climate Explorer
MERRA2  Modern Era Reanalysis for Research and Applications 50 km NASA-giovanni
MODIS Moderate-imaging Infrared Spectrometer 1-4 km IRI Clim. Library
NASA National Aeronautics and Space Administration 25-100 km (satellite) NASA-giovanni
NCEPr2 National Centers for Environmental Prediction 180 km (reanalysis) IRI Clim. Library
NOAA National Oceanic and Atmospheric Administration 50 km IRI Clim. Library
ORA5 Ocean Reanalysis v5 from ECMWF 25km Univ Hawaii APDRC
SODA Simple Ocean Data Assimilation (UMD, Carton) 50 km IRI Clim. Library
W3 Wavewatch v3 ocean swell reanalysis 90 km Univ Hawaii PaclOOS
WHOI Woods Hole Ocean Inst (surface fluxes) 50 km Univ Hawaii APDRC

See also: https://reanalyses.org/ocean/overview-current-reanalyses


https://reanalyses.org/ocean/overview-current-reanalyses
https://reanalyses.org/ocean/overview-current-reanalyses
https://reanalyses.org/ocean/overview-current-reanalyses
https://reanalyses.org/ocean/overview-current-reanalyses
https://reanalyses.org/ocean/overview-current-reanalyses

Value of higher resolution and operational reporting

Products of monthly time-scale and spatial resolution > 0.5° can not
resolve the shelf environment and its fluctuations

HYCOM 0.1° resolves the coastal gradient, and shelf-edge eddies
and rings at daily time scale

CFSr2 and MERRAZ2 hourly reanalysis resolve diurnal variability at
0.5° resolution, ECMWEF5 available at 0.3° resolution

Confidence in these products is diminished by the scarcity of in-situ
marine reports over the South African shelf

Global ocean data assimilation will proceed with or without us
More emphasis is needed on real-time measurement and reporting
So satellite and model products are calibrated toward reality,

And able to be trusted for use, not only in research, but in strategic
decision-making



What is the solution?

exchange of emails

From: Mark R Jury 1 Feb 2019 To: T.Morris <weathersa.co.za> [SAWS Marine Coordinator]

QUESTION - | ask how SAWS interacts with SA marine scientists to pass on real-time ocean data
collected in our EEZ, for operational and coupled model [assimilation and prediction]?

ANSWER - ...the team are planning to address these [non-reporting] issues, [possibly with parallel
monitoring systems that duplicate those ‘missing’, such as harbour buoys and tide gauges].

REPLY - ...the IOC website shows that all SA marine platforms are off-line. Could you make it part of your
group's responsibility to get the data back online?

3 Feb 2019 To: C.Rautenbach <weathersa.co.za> [SAWS Marine Dept]

QUESTION - ...path to operational oceanography. | was wondering what existing [marine] data could be
[fed] to ocean models used in coupled forecasts? SAEON has quite a few buoys, and could report
through SAWS GTS? Same for any data [reaching] SADCO...

ANSWER - ...we are having negotiations to add a variety of marine data to our regular GTS reports

21 Feb 2019 To: K.Wilmer-Becker <metoffice.gov.uk> [GODAE Programme Coordinator]

QUESTION - | want to know how much of South Africa's marine observations are reaching the global
ocean DA system on an operational basis?

26 Feb 2019 ANSWER - CMEMS Service Desk <mercator-ocean.eu>

[According to the] Copernicus insitu expert team ...we don't have [any] platforms identified as coming
from South Africa [over the most recent DA cycle]: 7 ships, 2 drifting buoys, 4 argo floats, 12 tagged fish.
All of them are moving platforms [of external origin]...

REPLY - ...in case of ‘privatized’ data that requires confidentiality... is it possible to ‘flag’ reports, so to
assimilate but keep actual data ‘hidden’?

ANSWER - Yes, that is an option many services are using: [ECMWF, UKMET, METEO-FRANCE, etc].



How we solve the problem in Puerto Rico

NOAA contracts the university to provide operational data
monitoring and real-time reporting (CARICOQS)

Graduate students engaged to do much of the work under
supervision of professors

Contractis on-going and stipulates 99% data capture, has budget
for maintenance, replacement equipment, bursarys / internships.

All data are required to be publicly available within 1 hour of
collection, mirrored on government websites, with data QC and
assimilation handled by quasi-government ocean, land & weather
services and NOAA subsidiaries (US-Navy, USGS, etc).

The university does not conduct in-house data assimilation, that is
the work of major centers, given the need for blending with vast
amounts of NASA satellite measurements. \We maintain the
observing & reporting system, and evaluate / validate the DA model
outputs.



Puerto Rico's operational system
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Puerto Rico's operational system

PR economy similar to South Africa,
except many jobs are automated, all
data are publicly available.

Wind Sensors
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University researchers assist gov.
operations via graduate intern field
work, identification of ‘bad’ obs &
systematic DA model errors, applied
research theses, publications, outreach.
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Puerto Rico's operational system
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Value of coupled forecasts

We used to think that coupled modelling was needed only for long-range predictions
(> 2 month lead time) driven by alternating ENSO phase and accumulating
greenhouse gases.

With the advent of hourly-fluctuating, eddy-resolving ocean and land products, it is
evident that short-range predictions (> 2 day lead time) out-perform uncoupled
forecasts.

Coupled models better simulate the diurnal cycle of rainfall and wind speed*,
changes in tropical cyclone intensity, etc.

There is a single assimilation system for environmental data; and converging model
technology for land, ocean, atmosphere (both physical and chemical).

Long-range predictions for South Africa summer climate show increasing skill, via
ENSO influence on slow undulations of the ocean thermocline that modulate
atmospheric convection and circulation.

But model-simulated fields, mainly derived from satellite estimation, need local
calibration (error-constraints) for operational use.
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