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Abstract. The tested data assimilation (DA) method based on EOF (Empirical Orthogonal Functions) reconstruction of 

observations decreased centred root-mean-square difference (RMSD) of surface temperature (SST) and salinity (SSS) in 

reference to observations in the NE Baltic Sea by 22% and 34%, respectively, compared to the control run without DA. The 

method is based on the covariance estimates from long period model data. The amplitudes of the pre-calculated dominating 

EOF modes are estimated from point observations using least-squares optimization; the method builds the variables on a 10 

regular grid. The study used large number of in situ FerryBox observations along four ship tracks from 1 May to 31 December 

2015, and observations from research vessels. Within DA, observations were reconstructed as daily SST and SSS maps on the 

coarse grid with a resolution of 5  10 arc minutes by N and E (ca 5 nautical miles) and subsequently were interpolated to the 

fine grid of the prognostic model with a resolution of 0.5  1 arc minutes by N and E (ca 0.5 nautical miles). The fine grid 

observational fields were used in the DA relaxation scheme with daily interval. DA with EOF reconstruction technique was 15 

found feasible for further implementation studies, since: 1) the method that works on the large-scale patterns (mesoscale 

features are neglected by taking only the gravest EOF modes) improves the high-resolution model performance by comparable 

or even better degree than in the other published studies, 2) the method is computationally effective. 

1 Introduction 

In the coastal oceans and marginal seas, basin-scale observation, modelling and forecasting of oceanographic and 20 

biogeochemical variables is a continuing challenge. As an example from the Baltic Sea, large-scale nutrient dynamics 

(Andersen et al., 2017; Savchuk, 2018) controls the level of eutrophication and hypoxia, affected by nutrient loads and 

changing climate (Meier et al., 2019). Placke et al. (2018) have recently shown by comparison of different models, that 

temperature is much better reproduced than salinity. Similar evaluation has been obtained earlier by Golbeck et al. (2015), 

based on 13 operational models used routinely in the Baltic and North Seas. 25 

  

Data assimilation (DA) is a key element to improve the model accuracy with respect to observations, both in the operational 

forecast and the reanalysis context (Martin et al., 2015; Buiza et al., 2018; Moore et al., 2019). DA methods are built upon 

dynamical models and they are based on some kind of minimization (minimum variance, variational cost function formulation 
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etc.) of modelling errors (Carrassi et al., 2018), using estimated statistical characteristics of the studied variables. Most of the 30 

widespread methods (optimal interpolation, 3DVar, 4DVar, various options of the Kalman filter, including their ensemble 

formulations) use covariance as the basic statistical characteristic. Recent overviews on different DA applications in the Baltic 

Sea can be found in the papers by Liu and Fu (2018), Zujev and Elken (2018), Goodliff et al. (2019), She et al. (2020).  Whereas 

there are several results from Baltic Sea reanalysis studies available (Axell and Liu, 2016; Liu et al., 2017), the operational 

Baltic Sea forecasts within CMEMS (Copernicus Marine Environment Monitoring Service) do not presently include DA 35 

(Huess, 2020) and there is ongoing work to implement automated DA system which would be robust, reliable and well 

validated. 

  

Results of DA based forecasting depend heavily on the spatio-temporal configuration of the observing system (LeTraon et al., 

2019). Unlike the regular weather observing networks, observation systems in marginal seas are rather fragmented, where 40 

areas and periods of dense sampling can be neighboured by large observation gaps. Therefore, special OSE (Observing System 

Experiment) studies have been initiated, to find optimal observation network configurations to achieve best skill of DA (Fuji 

et al., 2019). However, most of the observations of the Baltic Sea surface variables, not yet detectable by remote sensing (like 

salinity, nutrients etc.), stem from the FerryBox systems installed on board regularly cruising commercial passenger or cargo 

ships (She, 2018), and planning can be done only within the existing routes. Therefore, development of improved gap-filling 45 

techniques is a challenge and it would be highly beneficial for a region with sparse observations. 

  

Recently, a novel method for EOF reconstruction of gridded SST and SSS fields, using the data from (mostly) irregular and 

(often) sparse observations was presented and thoroughly tested in the NE Baltic Sea (Elken et al., 2019). The method relies 

on the estimate of covariance matrix from the long-period model data, which is decomposed into the full set of EOF modes. 50 

The mode values at observation points, together with the observed values, enable least-squares estimation of observational 

amplitudes. The method is able to follow on the regular grid the pointwise observed temporal changes of the mean state and 

of the major basin-scale gradients. The aim of the present study is to implement this statistical reconstruction technique into 

the data assimilation of the forecast model, and to study the feasibility of such assimilation method. 

  55 

The paper is organized as follows. In the section of data and methods, firstly, an overview of sub-regional oceanographic 

background and short model description are presented. Observational in situ data have been compiled from three sources, and 

they contain shipborne monitoring and FerryBox platforms. The reconstruction method is presented in detail, and the section 

ends with the description of the used data assimilation method. The results section starts with the presentation of experiments 

in order to find the optimized parameters for reconstruction of gridded fields. The rest of the section is devoted to the analysis 60 

of the results of data assimilation experiments, ending with the performance evaluation. Finally, discussion and conclusions 

are presented. 
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2 Data and methods 

2.1 Study area and the circulation model 

We have chosen the study area in the NE Baltic within 56.983°–60.65° N, 21.633°–30.3° E (Fig. 1), motivated by several 65 

Estonian national interests within the operational forecast of sea state and assessments of the marine environment. The region 

covers the Gulf of Finland, the Gulf of Riga and part of the Baltic Proper adjacent to these gulfs. The region is rather shallow: 

the mean and maximum depths are 26 m and 62 m in the Gulf of Riga (Yurkovskis et al., 1993) and 37 m and 123 m in the 

Gulf of Finland (Alenius et al., 1998), respectively.  

 70 

The region lies in the temperate climatic zone. During the summer, SST exceeds usually 15 °C in July or August (Alenius et 

al., 1998), with highest values up to 25 °C observed in some years in the shallow coastal zones (Stramska and Białogrodzka, 

2015). The warm upper layer of 10–20 m thickness is well mixed down to the thermocline or bottom, whichever of them is 

shallower. Occasionally, wind-driven coastal upwelling processes disrupt this warm layer (Uiboupin and Laanemets, 2009). 

Nearly every winter, sea ice forms with variable extent and thickness; during severe winters, the Gulf of Finland and the Gulf 75 

of Riga are fully ice-covered (Jevrejeva et al., 2004). The region is impacted by large rivers: the Gulf of Finland and the Gulf 

of Riga together receive 34% of the total freshwater discharge to the Baltic Sea as can be calculated from the data by Johansson 

(2017). As a result, there is estuarine increase of SSS from east to west (Alenius et al, 1998; Yurkovskis et al., 1993), reaching 

7–8 g kg-1 in the Baltic Proper (Kõuts and Omstedt, 1993). The Gulf of Finland has a free connection to the Baltic Proper 

without sill or any other topographic restriction, therefore deeper more saline waters of the Baltic Proper penetrate into the 80 

Gulf of Finland and form an estuarine halocline (Liblik et al., 2013). A shallow sill of the depth of 15 m connects the Gulf of 

Riga with the Baltic Proper; therefore deep layers of the Gulf of Riga can receive only surface waters of the Baltic Proper 

(Lilover et al., 1998). The two gulfs, located in the NE Baltic, play an essential role to the dynamics of the whole Baltic Sea 

(Omstedt and Axell, 2003). 

 85 

For the modelling, Estonian sub-regional setup (Fig. 1) of the Baltic-wide HBM model was applied with a resolution of 0.5  

1 arc minutes by N and E (ca 0.5 nautical miles) containing the entire Gulf of Finland, Gulf of Riga and NE portion of Baltic 

Proper (Lagemaa, 2012; Zujev and Elken, 2018). The model fields are three-dimensional having 455  529  30 grid cells (by 

latitude, longitude and depth correspondingly) with 750 088 wet-points, and 71 986 of them on the surface with a layer 

thickness of 3 m. At the western open boundary, the data were taken from the Baltic-wide HBM model (Huess, 2020), operated 90 

by the Copernicus Marine Environment Monitoring Service (CMEMS, https://marine.copernicus.eu/). Atmospheric forcing 

was provided by the Estonian implementation of HIRLAM (Männik and Merilain, 2007). HBM uses the Arakawa C-grid, and 

produces forecast for 16 ocean variables including temperature, salinity, current speed and ice concentration. Detailed 

description of the HBM model and its validation can be found by Berg and Poulsen (2012); further analysis and evaluations 

are given by Golbeck et al., 2015; Hernandez et al., 2015; Tuomi et al., 2018; Huess, 2020; She et al., 2020. In particular, the 95 
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CMEMS Quality Information Document (Golbeck et al., 2018) concludes that temperature forecast between the surface and 

about 100 m depth is one of the major strengths of the CMEMS-V4 product, below the halocline deviations of forecast from 

observations increase. Regarding salinity, the values are slightly underestimated and the underestimation increases with depth. 

 

The model setup has been designed for operational forecast. For computational reasons, it was decided to keep the operational 100 

0.5 nautical mile grid resolution and to perform shorter feasibility experiments, instead of choosing larger grid steps and 

making longer experiments. The model is used routinely by the Estonian Weather Service (implemented by one of the authors, 

Priidik Lagemaa); SST is displayed on the web page https://ilmateenistus.ee/meri/mereprognoosid/merevee-temperatuur/ and 

SSS is shown on the page https://ilmateenistus.ee/meri/mereprognoosid/soolsus/. In compliance and for comparability reasons 

with the recent study by Zujev and Elken (2018), we chose the study period from 1 May to 31 December 2015, to be used for 105 

the DA experiments. The model experiments were conducted in the framework of operational forecast, where the forcing files 

were downloaded daily. There were no gaps during the study period in meteodata nor in open boundary conditions nor any 

other input. 

2.2 Observational data 

All available SST and SSS data from three sources were compiled: 110 

1. Copernicus Marine Environment Monitoring Service (CMEMS, https://marine.copernicus.eu/) contains among other 

data sources the quality-checked data set of Baltic in-situ near-real-time multiparameter observations ftp://nrt.cmems-

du.eu/Core/INSITU_BAL_NRT_OBSERVATIONS_013_032/bal_multiparameter_nrt, downloaded on 24 October 

2019. This data set, accessible through free of charge registration, contains in our study region data from several 

FerryBox systems (automatic observations made from ferries and other ships crossing the sea areas on a regular basis). 115 

There are also a number of coastal stations, but they record mainly sea level and water temperature, whereas salinity 

observations are missing; therefore we are not using coastal stations. In our study area and time interval, there were 

not any operating buoy stations, gliders or Argo floats.  

2. HELCOM/ICES database contains the results from the HELCOM marine monitoring programme and is hosted by 

ICES (https://ocean.ices.dk/helcom, data downloaded on 22 October 2019). It includes mainly the data from 120 

shipborne monitoring stations, where SST and SSS are easily extracted. 

3. National monitoring database KESE (https://kese.envir.ee/kese/listProgram.action, search for “mereseire”), contains 

detailed records of all variables observed under the national environmental monitoring program. The data that were 

downloaded on 18 October 2019, contain different data records for every environmental variable. Except for a few 

cases, these data are also found in the ICES/HELCOM database. Duplicate entries were avoided from the composite 125 

data set by averaging over small time and space intervals. 
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The largest amount of synchronous SST and SSS data originates from the FerryBox systems, accessed through the CMEMS 

(Table 1). There were about 330 k (thousand) initial observation points from FerryBox, distributed over a few ship lanes 

(Fig. 2a) with a few hundred meters resolution and from daily to a few days interval. The analysed water is strongly mixed in 130 

the surface layer by the moving ship. Typical observation depth may be considered 5 m, although variations between the 

ships and due to the variable shipload exist (Lips et al., 2008; Karlson et al., 2016). There were also about 370 observations 

from shipborne monitoring stations. Distribution of the amounts of observations in selected temporal and longitude intervals 

(Fig. 2b) reveals a highly irregular pattern. Most of the observations were concentrated on the Tallinn-Helsinki transect 

located across the Gulf of Finland between the longitudes 24.6°–25° E. FerryBox observations were missing in the Gulf of 135 

Riga and in the eastern part of the Gulf of Finland, east from 26.5° E. In the southern part of the Gulf of Riga, available data 

were missing during the study period. 

 

Two sets of compressed (averaged) FerryBox data were created for further data analysis, containing mean observed values, 

coordinates and observation times over the selected intervals. Firstly, for the model validation study, daily mean spatial 140 

averages over a fine grid with a resolution of 0.5  1 arc minutes by N and E (as in the used model) cells were created, 

resulting in about 110 k values.  Secondly, for the EOF pattern analysis and reconstruction of SST and SSS fields, daily 

mean spatial averages over the coarse grid (5  10 arc minutes by N and E, about 5 nautical miles) were created. The main 

benefit of the coarse grid is to save computational costs while keeping the large-scale patterns well resolved (see Sect. 2.4 for 

more details on the advantages and disadvantages of using the coarse grid). In this procedure, the initial observations were 145 

compressed on the coarse grid by roughly 25 times yielding about 13 k average values for SST and SSS. Within the temporal 

averaging, it was chosen not to apply any diurnal cycle correction and all the observations at different hours were averaged 

to the closest midnight.   

 

For the interpretation of model and DA results, meteorological data were taken from the model forcing fields. For the 150 

occasional comparison, CMEMS remote sensing SST Level 4 (L4) data were retrieved from the service portfolio 

http://marine.copernicus.eu/services-portfolio/access-to-products/ as the product 

SST_BAL_SST_L4_NRT_OBSERVATIONS_010_007_b. 

2.3 Reconstruction of gridded data from point observations 

For the purpose of DA, we chose to use EOF reconstruction of large-scale SST and SSS fields, using the orthogonal patterns 155 

from models following the detailed outline by Elken et al. (2019), and subsequent relaxation of gridded observations within 

the model time-stepping. In order to correct the modelled basin-scale patterns towards observations, the spatio-temporal 

distribution of in-situ data was too irregular to use standard interpolation and filtering algorithms like the Cressman method or 

optimal interpolation with approximated covariance (see an example from the same region by Zujev and Elken, 2018). In this 
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section, we summarize the well-known EOF decomposition and present general features of EOF reconstruction as a problem 160 

when the number of observations is less than the number of EOF modes (equals to the number of model grid cells). 

 

The basic option of EOF reconstruction uses at each DA time step time-fixed amplitudes (Elken et al., 2018), encountering the 

observations spanning over certain time (which can be longer than DA time step) that are transferred to the fixed times by 

some interpolation or filtering/averaging procedure. The amplitudes are estimated using time-fixed observations by minimizing 165 

the root-mean-square-difference between the observations and the EOF reconstruction. The amplitudes at adjacent time 

moments are not directly related, but in case of longer temporal filters when observations overlap on different DA time steps, 

indirect relations between adjacent amplitudes become evident.  

 

Elken at al. (2019) proposed also an advanced method with time-dependent amplitudes. Within this approach, the amplitudes 170 

and their time derivatives are estimated together with observations within a selected time interval, in order to find least squares 

between the observations and EOF reconstruction in the observational framework. 

 

The main steps of EOF reconstruction are the following. During the standard EOF decomposition, the orthonormal eigenvector 

matrix 𝐄 (contains the spatial eigenvectors 𝐞𝑘) is found from the eigenvalue problem 𝐁𝐄 = 𝚲𝐄 , where 𝐁 is 𝑀 × 𝑀spatial 175 

covariance matrix, calculated from the 𝑀 × 𝑁 spatio-temporal matrix 𝐗 of the “values of interest” by time averaging, and 𝚲 is 

a diagonal matrix that contains eigenvalues 𝜆𝑘. The dataset 𝐗 contains time slices 𝐱𝑖 that are spatial state vectors at time 𝑖. 

Although in the present study we use the dataset 𝐗 selection as 2D sub-sets of individual oceanographic fields, applications 

towards multivariate analysis and/or extending over the 3D physical domain are straightforward. While 𝐄 is non-dimensional, 

the dimensional amplitudes (or in other words, factors) of EOF decomposition are found by �̃�𝑖 = 𝐄𝐓𝐱𝑖, and the decomposition 180 

is reconstructed to the “values of interest” by 𝐱𝑖 = 𝐄�̃�𝑖. Here we have used the notation �̃�𝑖 = 𝚲𝐚𝑖, where 𝐚𝑖 is non-dimensional 

amplitude. The eigenvalues 𝜆𝑘  present the variance (energy) of the eigenvectors 𝐞𝑘  over the whole period, the sum of all 

eigenvalues equals to 𝜎2, the variance of 𝐗. EOF decomposition offers the possibility to keep only the most energetic modes 

in the reconstruction and truncate the higher modes in 𝐄. When 𝐿 most energetic modes are taken into account in the sorted 

list of eigenvalues and -vectors, the sum from 𝜆1 to 𝜆𝐿 presents the explained variance and contribution of truncated modes 185 

forms the error variance. If white noise with a variance 휀2 is present in the decomposed data due to sub-grid scale processes 

and/or sampling errors, the noise variance appears only as additive to the diagonal elements of the covariance matrix. The 

eigenvalue problem becomes (𝐁 + 휀2𝐈)𝐄 = 𝚲𝐄, where 𝐈 is a unity matrix. Patterns of spatial modes remain unaffected by 

adding the white noise, but the eigenvalues and energy share of the modes decrease according to a factor (1 + 휀2 𝜎2⁄ )−1. 

When the sum of eigenvalues of the included dominating modes is less than 𝜎2 − 휀2, contribution of noise is effectively 190 

smoothed. 
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During EOF reconstruction from observations 𝐲𝑖, the number of observations 𝐾 is assumedly smaller than the number of points 

𝑀  in the spatial eigenvectors 𝐞𝑘  that are determined on the model grid and evaluated from the model statistics. For the 

comparison with observations, the model data 𝐱𝑖 are transformed to the observation points by the observation operator 𝐇𝑖 by 

the formula 𝐇𝑖 �̂�𝑖 = 𝐇𝑖𝐄�̂�𝑖 , where �̂�𝑖  are the “observational” amplitudes. Further, the �̂�𝑖  values should follow least-square 195 

minimization of reconstruction error in relation to observations ‖𝐲𝑖 − 𝐇𝑖𝐄�̂�𝑖‖
2 ⇒ min. The expressions to find observational 

amplitudes and reconstructed fields are 

 

�̂�𝑖 = (𝐄𝐓𝐇𝑖
𝐓𝐇𝑖𝐄)

−1
𝐄𝐓𝐇𝑖

𝐓𝐲𝑖 ,            �̂�𝑖 = 𝐄�̂�𝑖.               (1) 

 200 

In the reconstruction by Eq. (1), the critical point is a possibility of spurious amplitudes based on few and unfavourable spaced 

observation points. Experiments with pseudo-observations (Elken et al., 2019) revealed that the values of �̂�𝑖 of dominating 𝐿 

modes should match the limits derived from statistics of �̃�𝑖 , whereas higher modes with outlying amplitudes should be 

neglected.  

 205 

Most of the oceanographic observations are not made at the same time. It may take several days or even weeks to cover a 

larger sea area with shipborne monitoring. When 𝑃 observations 𝐲𝑝 are taken at different times 𝑝, then construct an observation 

operator �̂�𝑝 that allows pointwise comparison of 𝐲𝑝 and �̂�𝑝𝐱𝑖 converted from gridded values at specified time 𝑖. Assume that 

within the short time span the amplitudes depend linearly on time and introduce �̂�𝑝 = �̂�𝑖 + 𝐝𝑖 ∙ δ𝑡𝑝, where �̂�𝑖 is the time-fixed 

amplitude, 𝐝𝑖 is the rate of change vector and δ𝑡𝑝 = 𝑡𝑝 − 𝑡𝑖 is the difference between the observation and reference times. The 210 

function to be minimized regarding reconstruction errors is 𝑄 = ‖𝐲𝑝 − �̂�𝑝𝐄�̂�𝑝‖
2

= ‖𝐲𝑝 − �̂�𝑝𝐄(�̂�𝑖 + 𝐝𝑖 ∙ δ𝑡𝑝)‖
2

, which 

yields a system of 2𝐿 linear equations obtained from 𝜕𝑄 𝜕�̂�𝑙⁄ = 0,  𝜕𝑄 𝜕𝑑𝑙⁄ = 0,   𝑙 = 1 … 𝐿  

 

𝐆𝐳 = 𝐰 ,         𝐺𝑚𝑛 = ∑ 𝑓𝑚
𝑝

𝑓𝑛
𝑝𝑃

𝑝=1 ,              𝑤𝑛 = ∑ 𝑦𝑝𝑓𝑛
𝑝𝑃

𝑝=1 .              (2) 

 215 

Here the vector of unknowns combines the amplitudes and their rates of change 𝐳 = {�̂�1 … �̂�𝐿 , 𝑑1 … 𝑑𝐿}. Instead of the full set 

of EOF mode values, as during standard decomposition, we take the modified/interpolated mode values at observation points; 

then 𝑓𝑚
𝑝

= {�̂�1
𝑝

… �̂�𝐿
𝑝

, �̂�1
𝑝

𝛿𝑡𝑝 … �̂�𝐿
𝑝

𝛿𝑡𝑝}. We note that when all observations have the same time stamp and 𝛿𝑡𝑝 = 0, the Eq. (2) 

is reduced to (1). 

 220 

Time-dependent reconstruction allows selecting the reference time and length of time interval. As with the time-fixed 

reconstruction, the highest “usable” mode is determined by checking the amplitude values with statistical limits. The method 

also allows estimation of amplitudes and making reconstruction by only backward observational data. This feature makes the 



8 

 

method useful in operational forecasts, where only past observations can be taken into account for drawing the present nowcast 

maps. 225 

2.4 Method for data assimilation 

Many DA techniques use (irregular) point observations of a variable 𝜓 as the input source. In our approach, gridded maps 𝜓𝑜 

are used; they are optimized by EOF reconstruction as described in Sect. 2.3. Therefore, in the continuous equivalent, DA is 

performed by Newtonian relaxation (e.g. Holland and Malanotte-Rizzoli, 1989) 

 230 

𝜕𝜓 𝜕𝑡⁄ = 𝐹(𝜓) −
1

𝜏
(𝜓 − 𝜓𝑜) ,                 (3) 

 

which discrete form has been applied for DA, for example, using gridded climate data (Moore and Reason, 1993) or using 

optimal interpolation of daily satellite-based SST data (Ravichandran et al., 2013). Equation (3) is then written for DA time 

step Δ𝑡 in two stages as 235 

 

𝜓𝑓 = 𝜓𝑎−1 + Δ𝑡 𝐹(𝜓𝑎−1) ,    𝜓𝑎 = (1 − 𝛼)𝜓𝑓 + 𝛼𝜓𝑜,              (4) 

 

where 𝜓𝑓 is the raw forecast field calculated from the previous analysis field 𝜓𝑎−1 using only the model operator 𝐹 without 

DA during this time step, and  𝜓𝑎  is the new analysis field. Equation (3) contains adjustable relaxation time 𝜏  that is 240 

transformed in Eq. (4) to non-dimensional 𝛼 = ∆𝑡 𝜏⁄ . This is the main DA calibration parameter, since extensive use of 

covariance statistics, including the effects of observation errors, has been included in the estimation of gridded reconstruction 

of point observations. Newtonian relaxation of gridded observations, applied during the model run at DA time steps is named 

also “analysis nudging” (e.g. Stauffer and Seaman, 1990), which has recent meteorological applications (Bullock et al., 2018). 

 245 

In practical calculations, SST and SSS observational data were reconstructed on the coarser grid with a resolution of 5  10 

arc minutes by N and E (ca 5 nautical miles) and interpolated/extrapolated by bilinear procedure to the finer model grid with 

a resolution of 0.5  1 arc minutes by N and E (ca 0.5 nautical miles). Such simple transition of data from coarse to finer grid 

includes smoothing, since 𝜓𝑜  lacks the details that are present on the finer grid. We have tested that the effect of added 

smoothing is smaller than the physical diffusion. In our study area, generation of meso- and small-scale features is of high 250 

intensity; therefore relaxation to the smooth observation fields does not apparently damp the fine grid variability. The approach 

of using two grids with different resolutions is justified by irregular distribution of observations; reliable estimation is possible 

only for large-scale patterns of SST and SSS fields; the computationally more efficient coarser grid resolves these patterns 

with enough details.  

 255 
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The above DA method is computationally efficient. The EOF modes are calculated prior to DA cycles. For each DA time step, 

only one system of linear equations of rank of the number of EOF modes (about 3-6) has to be solved for the entire grid. The 

coefficients of the matrix are found by summation of the products of EOF mode values over the observation points (Eq. 2). 

For comparison, optimal interpolation requires solving the system of linear equations of rank of the number of observation 

points (about 100) for each grid cell (about 1000), with a single inverse matrix calculated for the time step.  260 

 

The model performance with respect to observations was evaluated over those grid cells - time span pairs when observations 

were available. Since observations covered only a small part of the study domain, DA results were also compared with control 

run without DA, but then it is possible to only analyse the changes due to DA, without conclusion of possible improvement. 

Standard statistical characteristics were calculated for individual fields: mean, standard deviation, in case of differences (for 265 

example, relative to observations): bias, RMSD (centred root-mean-square difference that equals to the standard deviation of 

difference field), and the Pearson correlation. 

 

3 Results 

3.1 Experiments on EOF reconstruction 270 

3.1.1 Covariance, modes and reconstruction tests 

The EOF modes were calculated on the coarse grid (5  10 arc minutes by N and E) on the basis of space-averaged results 

from the fine grid (0.5  1 arc minutes by N and E ) model, running from 1 July 2010 to 30 June 30 2015 (Elken et al., 2019). 

This analysis revealed that mean distributions of modelled SST and SSS, serving as the basis for calculation of deviations in 

the variability studies, were close to the climatological maps calculated on the basis of observations (Janssen et al., 1999). 275 

Highest temporal variability was found in the shallow coastal areas for SST, whereas largest SSS variations were revealed near 

the larger river mouths and in the NE area of the Gulf of Finland. While temporal changes strongly dominate in the variability 

of SST, spatial changes prevail in SSS variability.  

 

Calculated SST and SSS covariance matrices have significant spreading of individual values over pairs of points, especially 280 

for the dominating gravest modes where big covariance values may occur over large distances. Covariance of residual fields 

(sum of higher EOF modes) has a decay scale about 30 km with increasing space lag, both for SST and SSS. The first, most 

energetic EOF modes have nearly “flat” patterns without sign change (energy share 97.6% for SST and 36.2% for SSS); their 

amplitudes are dominated by a seasonal signal. Space-dependent mean biharmonic seasonal cycle was not removed from the 

model time series prior to the analysis, since special experiments revealed only a small effect of seasonality suppression on 285 

EOF mode patterns. Second EOF mode of SST (1.3%) presents differential heating and cooling in shallow areas, compared to 
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the deeper offshore waters. Transverse anomaly stripes near northern or southern coasts, like due to coherent upwelling and 

downwelling in the region, were evident in the second SSS mode pattern (16.9%) and third SST mode pattern (0.31%). There 

is also a pattern of SSS changes in the freshwater spreading pathway near the northern coast of the Gulf of Finland (third SSS 

mode, 7.1%) and longitudinal SST changes in east-west direction (fourth SST mode, 0.14%). 290 

 

The data set used in the present DA study (Fig. 2) is rather irregular, compared to the reconstruction experiments by Elken et 

al. (2019). Therefore, we revisit the covariance issues and perform additional reconstruction tests, before finding in the next 

subsection the best options for the automatic reconstruction procedure. Spatial interrelation of observed values at a specific 

point to the values in the rest of the region is found from the extract of the spatial covariance matrix, which can be shown as a 295 

map. One example of SSS covariance with a frequently sampled HELCOM monitoring station BMP F3 is shown in Fig. 3. 

The covariance of three dominating EOF modes (Fig. 3b) comprises most of the unfiltered data covariance (Fig. 3a) at large 

distances. High covariance locations have clear basin-scale geographical explanations:  under the similar weather and seasonal 

forcing, which is spatially nearly uniform, SSS changes in distant river influence areas are closely interlinked. Correlation (not 

shown) may exceed 0.4 at distances greater than 500 km; therefore, assumptions of fast decay of correlation with space lag 300 

(like using the Gaussian covariance approximation), adopted in offshore areas with negligible coastal influence, are not valid. 

Covariance of residuals to the large-scale variations are presented by higher EOF modes (Fig. 3c). Such smaller scale variations 

have nearly Gaussian structure, with elliptical anisotropy stretched along the axis of the basins similar to the results by Høyer 

and She (2007): spatial scales in Fig. 3c are 30 km and 15 km along the main axis and perpendicular to the axis, respectively. 

Similar regularities – physically explained high covariance at large distances, localized covariance patterns for the higher EOF 305 

modes – were found for other points of reference, both for SSS and SST fields. 

 

EOF reconstruction method relies on the full covariance matrix, without any approximation. Covariance is further treated using 

EOF modes. For the reconstruction procedure, we keep the lowest EOF modes without any approximation, covariance from 

higher modes as shown in Fig. 3c is not taken into account. The large-scale features of the EOF reconstruction and associated 310 

DA exclude the possibility of creating spurious “bull-eye” patterns around observation points, that may happen for instance 

during unfavourable selection of optimal interpolation parameters. Subsequently, our DA method handles the large-scale 

features and excludes the possibility to assimilate smaller scale features, which can be described by the higher modes.  

 

Full covariance matrix can be implemented in optimal interpolation as well. While EOF method needs to limit the number of 315 

included modes, smoothing in such way smaller scale variability and observational errors, optimal interpolation needs to 

include observational error variance (“nugget effect” in terms of Kriging method, equivalent to optimal interpolation); 

otherwise the system of underlying linear equations may become close to singular and the result may become unrealistically 

spiky. In some examples (not shown), EOF reconstruction and optimal interpolation based on full covariance produced similar 

results, but these relations need further studies. When observed values were close to the model-computed climatological 320 
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background, visual similarity was caused mainly by the dominance of spatial gradients of mean SSS over the spatio-temporal 

variability. Optimal interpolation with Gaussian approximation to the covariance produced realistic results in the 

neighbourhood of observation points, but gave unrealistic patterns and values in the distant SW extrapolation area.  

 

3.1.2 Finding the parameters for reconstruction of gridded observation fields 325 

Multiple checks performed on our data set suggested that only the three gravest modes were included in the EOF 

reconstruction. In order to find the best options for reconstruction, experiments were made with different intervals (time 

window) 𝑡𝑅  around the reference time 𝑡𝑖; including the observations within time window from 𝑡𝑖 − 𝑡𝑅 2⁄   to 𝑡𝑖 + 𝑡𝑅 2⁄ . The 

results were evaluated to fulfil the goals: 

A. Small RMSD between the observed values and the reconstructed fields; 330 

B. Small number of gaps in the reconstructed time series; 

C. Low number or missing presence of “spikes” and/or “jumps” in the time series. 

 

Two basic options for temporal handling of the reconstruction procedures were tested: 

(a) application of procedure by Eq. (1) of time-fixed amplitudes; time average of observations was taken for each grid cell, 335 

time adopted in each grid cell as constant reference time, 

(b) full application of the procedure by Eq. (2) of time-dependent amplitudes; all the daily mean observations (average was 

taken also over coordinates and time) were kept separate for each coarse grid cell where the observations existed. 

 

In addition, procedure by Eq. (2) was tested with an option with time average of observations in each grid cell, and with 340 

selection of closest to the reference time observations. These experiments provided more spikes and 70% higher RMSD than 

the basic options (a) and (b) and they were neglected from further consideration. 

 

As a first step in all the experiments with variable time window, the EOF amplitudes of the mode 𝑘 were checked for the limit 

|�̂�𝑖,𝑘| < 2√𝜆𝑘 = 2𝜎(�̃�𝑘) , where 𝜎 denotes standard deviation. DA data for the days with higher amplitudes were left blank 345 

since these reconstruction results most frequently became unrealistic. In addition, when the number of observations was less 

than six, reconstruction was not performed and DA step using Eq. (4) was skipped. 

 

The time windows 𝑡𝑅 for experiments (a) and (b) were selected to be 10, 20 and 30 days. Elken et al. (2019) have found that 

the correlation time scales (e-fold drop, correlation value 0.368) of EOF SST amplitudes were 65 days for the seasonal 1st 350 

(overall heating/cooling) and 2nd (faster heating/cooling in shallow coastal areas) modes, and 15 days for the 3rd “upwelling” 
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mode. Time scales of the SSS modes were 65 days for the 2nd and 3rd mode, representing the large-scale gradients, and 110 

days for the 1st mode describing long-term variations of mean salinity. 

 

Methods of time-fixed (a) and time-dependent (b) reconstructions revealed similar statistical results during the study period in 355 

2015, whereas RMSD between observed and reconstructed values of (a) was by 5% larger than of (b). By increasing the time 

window, RMSD of reconstruction slightly increases due to the stronger smoothing. The smoothing effect can be seen from the 

reconstruction examples given in Fig. 4. It should be noted that the reconstruction is designed to yield the best approximation 

to the observations over the entire region; therefore, it does not need to present the local best fit at individual points.  

 360 

Network of observations, available during the study period, appeared favourable for the reconstruction, although observations 

were missing in the southern part of the Gulf of Riga and eastern part of the Gulf of Finland. With a time window of 30 days, 

there were no reconstruction gaps identified during the study period, determined for both of the methods by the above described 

amplitude limit criteria. Smaller time windows yielded some gaps in 2015. During the longer period from 2010 - 2018, gaps 

were found in most of the years (except our study period), whereas shorter time windows result in more reconstruction gaps. 365 

Detailed comparison of the time-fixed (a) and time-dependent (b) methods revealed that time-fixed reconstruction might create 

spurious “jumps” when there is a gap in observations which length is close to the time window. In that case, backward average 

is taken before the gap and forward average after the gap, which may result in “jumpy” results. Time-dependent reconstruction, 

which also accounts for the temporal changes within the time window, handled such situations more smoothly.  

3.2 Data assimilation experiments 370 

We have used two-scale DA approach (see detailed explanation in Sect. 2.4), where observations were reconstructed on the 

coarse grid. Results were interpolated into the fine grid of the model, and subsequently were used for relaxing the fine scale 

model results towards basin-scale observational patterns. More specifically, gridded observational SST and SSS data were pre-

calculated each day using the time-dependent EOF reconstruction method with a time window  𝑡𝑅= 30 days as presented in 

Sect. 3.1. Reconstructed SST and SSS fields were interpolated bilinearly to the fine 0.5 nautical mile grid and used for relaxing 375 

the model results towards observational counterparts, based on the Eqs. (3)–(4) with ∆𝑡 = 1 day. Two basic experiments were 

conducted, with relaxation time 10 days (weight of observations 0.1, experiment code DA01) and with relaxation time 5 days 

(weight 0.2, experiment code DA02). In addition, a variety of short-term trials was performed in a preparatory phase (results 

graphically not presented) which led to the two basic experiments. Comparison data were coded as FR for control run without 

DA, and FB for observed FerryBox data. 380 

3.2.1 Example from the beginning of August 

There was an interesting oceanographic situation in the beginning of August, when moderate but extensive upwelling SST 

pattern at the northern coasts of the basins (Fig. 5), with some effects on SSS (Fig. 6), was combined with fast heating of  thin 
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(6-9 m) surface layer (Fig. 7). Since the middle of July, moderate winds with speeds from 4 to 6 m/s, which had a westerly 

zonal component (favoring upwelling at the northern coasts of the basins), were blowing above the Gulf of Finland. After 3 385 

August 2015 (the maps in Figs. 5 and 6 are taken on this date), wind ceased and air temperatures increased by 10 August across 

the study area up to 25–27 °C in the Gulf of Finland and up to 31 °C in the southern Gulf of Riga, creating a thin layer of warm 

surface water. Heating of surface waters was favored by high nightly air temperatures, higher than SST. Vertical profiles (not 

shown) in the Gulf of Finland revealed a deep thermocline at 40 m depth near the southern (downwelling) coast and a shallower 

thermocline near the northern coast; the warm surface water column was near Tallinn two-three times thicker than near 390 

Helsinki. From the end of July to 10 August, warming resulted in an increase of SST (Fig. 7) near Tallinn from 16.5 °C to 18.5 

°C and near Helsinki from 14.5 °C to 18 °C. 

  

The SST maps presented in Fig. 5 include control run, reconstructed in-situ observations, one experiment with DA (the other 

experiment yielded similar results) and satellite observations. When warm waters with SST above 17 °C dominated the study 395 

area, all the maps revealed moderate upwelling near the northern coasts of the basins. However, the minimum temperatures 

and the spatial extent of the colder waters were different. Warmest “cold” waters were observed on satellite images. While 

satellites measure SST of a thin surface layer, then FerryBox and models acquire temperature over much thicker layer. It is 

known that in the Gulf of Finland satellite and FerryBox can have similar SST values in case of winds stronger than 5 m/s 

(Uiboupin and Laanemets, 2015); at smaller wind speeds the SST bias can be 1–3 °C in reference to FerryBox observations. 400 

Within these accuracy limitations, satellite observations presented in Fig. 5d confirm the model patterns to some extent. The 

control run (Fig. 5a) was characterized by too high SST contrasts, compared to the satellite data (Fig. 5d, for the data source 

see Sect. 2.2). From the earlier study by Zujev and Elken (2018), it is known that the free model without DA forecasts faster 

heating and cooling of shallow coastal areas and slower heat dynamics in offshore areas. Data assimilation (Fig. 5c), made 

using the reconstructed FerryBox data (Fig. 5b) reduced discrepancies with satellite observation. The major large-scale 405 

differences between the satellite data (Fig. 5d) and the best DA02 (Fig. 5c) can be outlined as follows: (1) the colder upwelling 

water extended on the satellite image further to the east, (2) warmer waters were found on the satellite images in the southern 

Gulf of Riga, near the Daugava river, and in the shallow areas between the Estonian islands, (3) in the Gulf of Riga, a strip of 

colder waters was modelled along the western coast, while satellite observations revealed warmer waters near this coast. 

  410 

There were also numerous mesoscale features evident on SST (Fig. 5) and SSS (Fig. 6) maps, like colder upwelling filaments 

along the northern coasts of the Gulf of Finland and the Gulf of Riga, and decaying anticyclonic warm-core eddies near the 

southern coast of the Gulf of Finland. The Irbe Front (Lilover et al., 1998; Raudsepp and Elken, 1999), formed by the salinity 

difference between the Gulf of Riga and the Baltic Proper, was found by the SSS maps in the outward position, stretching from 

the strait towards the open sea. This salinity structure was also repeated in the SST patterns; the satellite observations confirmed 415 

the predicted outward position during the taken snapshot. The model predicted that in the Gulf of Riga the Daugava river 

waters were spreading by narrow coastal strips of lower salinity in both the NE and NW directions (Fig. 6). 
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3.2.2 Time series in the areas of dense observations 

Locations with dense observations allow us to validate the model and visually evaluate assimilation quality. We compared 

SST and SSS data of control run (FR) and DA options DA01 and DA02 with FerryBox data (FB) at two points near Tallinn 420 

and Helsinki (Fig. 7). While SST followed the seasonal cycle, with weather-dependent deviations, then SSS behaviour was 

more irregular. In the given variation scales of SST and SSS (16 °C and 2 g kg-1 respectively), all the compared SST data 

sources were more similar to each other than that of SSS. Still, most of the time the assimilation curve (DA02) was closer to 

the FerryBox observations than the control run, for both SST and SSS. 

  425 

Warm conditions in the beginning of August (Sect. 3.2.1) are clearly visible on SST time series (Fig. 7a, c). Comparing the 

values near Tallinn and Helsinki, the southern part of the Gulf of Finland was roughly 2 °C warmer than the northern part, 

whereas the northern part had an unstable day-to-day pattern, possibly due to the fluctuations of the upwelling pattern. This is 

consistent with the spatial maps given in Fig. 5. Near the southern coast, an upwelling event occurred in September, reducing 

SST during a few days nearly by 4 °C (Fig. 7a). Larger SST drop during the southern coast upwelling (at easterly winds), 430 

compared to the northern coast upwelling (at westerly winds of the same magnitude), is explained by the steeper topography 

slopes in the southern part of the Gulf of Finland (Laanemets at al., 2009). This upwelling event was properly resolved by all 

the data sets, with DA02 being closest to observations. In general, a free model without DA expected warming at a lower rate 

during summer and was more precise in autumn, while both assimilation experiments properly corrected the SST and SSS 

values. However, in some cases, assimilated temperature was somewhat higher than observed and modelled SST.  435 

  

Assimilation resulted in one major SSS improvement in early summer when the model predicted upwelling with too high 

salinity near Helsinki. Nevertheless, in some cases DA made minor corrections at one of the locations, ignoring observations 

and sticking to the control run (e.g. late July - early August near Tallinn, October near Helsinki). When the model overshoots 

at both locations, DA properly corrects temperature and salinity values. This implies that DA of surface observations tends to 440 

better correct the mean values than the cross-gulf gradients, for which 3D circulation (presently not assimilated) has significant 

impact. 

  

In the salinity time series, a “freshwater event” with reduced salinity was observed in the Gulf of Finland at the end of 

September and beginning of October. In the daily SSS data (Fig. 7b, d) the event was spiky, possibly due to the mesoscale 445 

features not assimilated in the present study: without DA, the eddies tend to have random phase, and the spikes in the time 

series of different model options and observations do not need to be coherent. However, in the weekly averaged data (not 

shown) the mesoscale activity was suppressed and the fresh event appeared simultaneously in all the data within the central 

and western part of the Gulf of Finland.  

  450 
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Increasing assimilation weight in Eq. (4) two times did not make assimilation results twice closer to the observations. As can 

be seen from Fig. 7, the results of assimilation experiments DA01 and DA02, with relaxation times of 10 and 5 days 

respectively, were not placed between the free run and the observations proportionally to the corresponding weights 0.1 and 

0.2. They diverged as the study region experienced a temperature drop or daily trend change. Both options of assimilated SST 

could either coincide for a long time or go in parallel, but DA02 was systematically closer to the FerryBox observations. 455 

Salinity fluctuations had larger amplitudes in the free run without assimilation, but both DA options, with a “thumb” rule - the 

bigger the weight, the bigger the change, had properly corrected them. Still, in December DA01 showed better results, being 

closer to the FerryBox salinity than assimilation DA02. 

3.2.3 Spatio-temporal dynamics 

We have chosen to compare assimilation with best results (DA02) to the control run without data assimilation (FR), and track 460 

the continuous time-latitude changes of SST and SSS (Fig. 8) in two sub-basins - Gulf of Finland and Gulf of Riga along the 

coast-to-coast transects given in Fig. 2a. Using DA, temperature was corrected approximately by 1–2 °C, and salinity by less 

than 1 g kg-1. Major systematic change (in the Gulf of Finland this was validated as improvement, see further Sect 3.2.4) was 

seen near the coasts and in spring/autumn periods, while summer temperatures underwent minor corrections. Salinity 

corrections had a more uniform distribution and smooth drifting pattern - DA consistently increased SSS values with time and 465 

southwards in both of the sub-basins.  

  

Data assimilation had increased SST in the Gulf of Finland in open waters during the warming period and in late autumn all 

across the gulf, and had decreased in the coastal areas during the warming period, whereas near the northern coast this decrease 

continued until September. In the Gulf of Riga, SST increase dominated throughout the study period, but it was interrupted 470 

occasionally by basin-wide events when DA had decreased the temperature compared to the results from FR. Largest 

corrections of both SST and SSS were evident in the coastal waters.  Salinity was increased by DA in most of the cases in the 

Gulf of Finland, except for May-July near Tallinn. Largest increase of SSS occurred in November and December, when control 

run results dropped compared to the earlier period.  

  475 

Some unusual basin-wide events can be found on the difference charts in Fig. 9. For example, abrupt warming of the surface 

around 10 August 2015 (Sect. 3.2.1) was correctly predicted by the free run model (Fig. 7c), but it was over-smoothed by the 

data assimilation. Similar line in December on both charts denotes occurrence of fronts of cold and saline water due to strong 

winds and storms. 

  480 

As there are not enough observations available in the Gulf of Riga for validation, we cannot definitely say whether DA 

improved the situation in the region and to what extent.  
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3.2.4 Evaluation of DA-based forecast performance 

Ocean model performance (e.g. Stow et al., 2009; Golbeck et al., 2015; Placke et al., 2018)  is usually evaluated by the 

differences between the observations and the model results, transferred to the times and locations of observations that they can 485 

be directly compared. The overall mean difference (over time and space) is termed bias and the standard deviation of 

differences at all the observation points is denoted as RMSD (centred root-mean-square difference). The forecast skill is usually 

non-dimensional, with the RMSD of the studied option (in our case, DA) scaled to reference data (FR in our case) as skill = 

function of [RMSD(DA,FB) / RMSD(FR,FB)].  

 490 

The present ocean model has a fine resolution of about 0.5 nautical miles (930 m) (Sect. 2.1), therefore for comparison with 

observations we used a simplified approach and took averages of observations over the model grid cells over daily time span 

(Sect. 2.2). Such compressed fine-resolution observational data set, still having about 110 k points for SST and SSS, was 

originating mainly from the FerryBox (FB) lines (Fig. 2), and it covered central and western parts of the Gulf of Finland and 

the neighbouring part of the Baltic Proper. Areas with lower salinity in the eastern Gulf of Finland and in the Gulf of Riga had 495 

only a small number of observations. 

 

Data from the DA experiments DA01 and DA02 were compared to the same compressed observational FB data as the data 

from the control run without assimilation (FR). Hernandez et al. (2015) who reviewed the problems of performance evaluations 

of operational ocean models noted that most available observations are used to adjust models and reduce analysis errors. 500 

Therefore, a widespread approach is withholding part of the dataset for statistical quantification of errors. In our study, the 

option of withholding the observations was performed: it was evaluated how much the DA result will change if DA is 

performed using 50% of the available data (Gregg et al., 2009). The present implementation of EOF DA used about 13 k 

observational averages over coarse grid of about 5 nautical miles. The reconstruction procedure by Eqs. (1)–(2) has no direct 

connection to the ongoing modelling (although it includes statistical results from longer model runs) and the fields of 𝜓𝑜 in 505 

Eqs. (3)–(4) are the only link where observations enter the DA process. The experiments which took every second available 

observation “box” into account (this resulted in mean sampling interval along ship tracks about 20 km instead of 10 km) 

revealed that performing DA during the study period with reduced data set (6.5 k averaged observation data instead of 13 k) 

changed RMSD of SST by only 1% and of SSS by 2%, whereas the RMSD values were 0.05 °C for SST and  0.027 g kg-1 for 

SSS. It was evaluated over the full time span and domain using 182 k coarse grid cells; correlation between the data sets was 510 

higher than 0.999. We have also checked reconstruction results with FerryBox data only, excluding the data from shipborne 

monitoring stations. Compared with the full data set, largest (but still minor) differences with RMSD of SSS up to 0.03 g kg-1 

were found in the Gulf of Riga and the eastern Gulf of Finland, where FB data were missing. Consequently, for our large-scale 

approach DA results are robust to the reasonable variation of data amount and we used FB data for reference in the performance 

evaluations. 515 
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Evaluated forecast performance metrics are presented in Table 2. Only those fine grid points were used for metrics calculation, 

which had respective value of FerryBox observations on the same day. Wet-points of the model without corresponding 

observation value were left out from the procedure.  

 520 

The statistical properties presented in Table 2 reflect that DA improves the model performance significantly: RMSD of SST 

was reduced by 22% and SSS by 34%, compared to the control run. From DA01 to DA02, slight improvement of DA 

performance was observed, therefore we adopted DA02 as the major result. Spatial pattern of RMSD change between the DA 

and FR (Fig. 9) reveals that larger reduction rates (up to 50%), both for SST and SSS, were found in the observation-covered 

areas in the Gulf of Finland. Too cold waters produced by FR near the northern coast of the Gulf of Finland were effectively 525 

corrected by DA (see also Fig. 5), therefore highest improvement percentage scores were detected in this region. Near the 

western open boundary, non-assimilated SST and SSS values of the larger model were advected into the area, therefore RMSD 

reduction was small, or even negative for SSS.  

 

The applied EOF DA method does not assimilate mesoscale variability. Applying the weekly average statistics like Zujev and 530 

Elken (2018), further reduced RMSD by 13% for SST and 9% for SSS, compared to the daily data in Table 2. Weekly statistics 

suppresses the mesoscale variability and reveals better match between the DA and the observations. DA decreased the bias, 

especially for SSS. At the same time, correlation of SSS between DA and observations increased considerably. We may 

conclude that DA made major improvement in forecasting of SSS. Still, the forecast RMSD in reference to the observations is 

62% of the observed standard deviations which suggests that there may be further room for improvement. Modelling of SST 535 

is more accurate than SSS already without DA: RMSD of control run (FR) makes 18% of the standard deviation of observations 

for SST and 94% for SSS.  

4 Discussion 

Baltic Sea is considered as one of the most studied marine areas in the world (e.g. Andersen et al., 2017). However, the large 

observational data sets are distributed unevenly. If we divide our study area into 744 eddy-averaging grid cells of 5  10 arc 540 

minutes by N and E, then during the study period 330 k FerryBox observations covered only 18% of the sea region. Shipborne 

monitoring added more 8% coverage of the area, but with much smaller frequency of sampling. Having in mind that the ocean 

models tend to deviate in the NE Baltic from the observations not only by constant bias but also for large-scale and longer-

term response, introduction of non-local, region wide data assimilation is of high importance. 

 545 

It is interesting to consider how our statistical evaluations of model and DA performance, given in Table 2, compare with other 

Baltic Sea studies. For remote sensing versus in situ reference, Kozlov et al. (2014) have found RMSD 1.31 °C in the Curonian 



18 

 

Lagoon. Uiboupin and Laanemets (2015) have estimated RMSD of various satellite products to FerryBox in the Gulf of Finland 

from 0.29 to 0.98 °C. Our control run gave RMSD 0.72 °C. Golbeck et al. (2015) compared SST from 13 models with satellite 

data and found in the Baltic Sea yearly RMSD for SST 0.65–0.87 °C. They found larger relative spread of SSS ensemble 550 

members than of SST: deviations in the Gulf of Finland between the models were nearly up to 1 g kg-1, while the average SSS 

is only about 4 g kg-1. Unfortunately, there were not enough validating observations for SSS available. Fu et al. (2011) found 

for the control run RMSD for SST even larger, 1.0 °C, based on satellite observations. They also used DA with ensemble 

optimal interpolation and found that DA reduced RMSD between the forecasts and observations by 25% for SST and 34% for 

SSS. With our simpler and less computationally demanding EOF DA technique, similar RMSD reductions have been obtained 555 

(Sect. 3.2.4) compared to earlier studies. 

  

We have developed and tested an EOF-based relaxation technique where the large-scale observed fields to be assimilated are 

pre-calculated independently from the ongoing model. From sparse observations, it is possible to estimate the amplitudes of 

only the gravest, large-scale EOF modes. The EOF DA method handles large-scale features over the sea basin(s), like change 560 

of mean SST, SSS and their gradients, including differential heating in coastal and offshore areas, major patterns from 

upwelling, and spreading of river discharge. The method can work well with irregular data, but cannot resolve mesoscale 

features in the areas of dense observations, because the EOF amplitudes of higher modes get noisy, according to our 

experiments. Optimal interpolation, successive corrections and similar methods assume usually localized covariance and/or 

radius of influence (e.g. Axell and Liu, 2016); they work well in resolving mesoscale in dense sampling areas, but regions of 565 

rare observations remain unaffected by DA. For mesoscale range, in our study area there are only satellite observations of 

surface variables available. They were omitted from our study, since salinity as a variable of primary interest can be presently 

determined in the Baltic only in situ. It is possible to implement on top of EOF DA more traditional localized DA methods to 

assimilate mesoscale data when and where such data are available. Studies on using EOF DA for handling large-scale data are 

also ongoing in the UK Met Office by Daniel Lea (Haines, 2018). 570 

 

We have tested the EOF-based DA in centred time window of 30 days, based mainly on available FerryBox data during the 

study period. As shown by reconstruction experiments by Elken et al. (2019), the time-dependent method can also work with 

backward observations as if it occurs during operational forecasts. When more observations become available, for example 

from new automated buoy stations, Argo floats and gliders, the time window can be shortened. Full covariance matrix 575 

estimated from the model results is the backbone of the EOF DA method. Prior and/or complementary to implementation of 

the method into operational practice, detailed covariance studies using results from multiple models could be useful, as well 

as additional reconstruction and DA studies using more data sources over longer periods. 

   

The EOF DA method has some practical advantages. Firstly, for assimilation of basin-scale patterns, it can be implemented 580 

on a coarse grid and therefore it has small computational effort compared to the localized methods like optimal interpolation 
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etc that should be usually implemented on the model resolution, i.e. on the fine grid. Secondly, intermediate results are in the 

form of maps that are easily understandable and can be checked visually or taught to be analyzed by artificial intelligence. For 

optimizing the observational data needs, the concept of OSE (Observing System Experiments) that checks various data 

configurations for DA performance, are highly on the agenda. Since the quality of DA and forecast are primarily determined 585 

by the quality of EOF reconstruction (when extensive mesoscale observations are not available), then it would be possible to 

save a significant amount of computing power and perform most of the experiments using EOF basis vectors.  

  

There are obvious possible extensions of the EOF DA method to other variables and layers: improvement of stratification 

modelling, extension to biogeochemical models and DA of oxygen, nitrogen and phosphorus. Applicability depends on how 590 

well the model reproduces the studied fields and their covariance, and much variance is explained by the major EOF modes. 

There are a number of questions that may be addressed, like: What is the minimal amount of observations needed to produce 

decent results? What areas are reconstructed with higher accuracy with given observation design, nearshore, offshore, open 

basins? What areas are most problematic to reconstruct, complicated coastline, straits and channels, semi-enclosed basins, 

regions of river influence? Are there some specific locations that can be used as a proxy for larger regions? Is it possible to 595 

measure SST/SSS just at these points in order to give enough input for successful reconstruction?   

5 Conclusions 

The present study was aimed to implement EOF-based statistical reconstruction technique into the data assimilation of the 

forecast model, and to study the feasibility of such assimilation method. Gridded EOF modes were determined from the 5-year 

long model results. “Observational” EOF amplitudes were found each day to minimize the RMSD between the reconstructed 600 

and observed values at the observation points, using time-dependent technique where both the amplitudes and their time rate 

of change were searched for the best fit. In this procedure, a time window of 30 days was selected that ensured acceptable SST 

and SSS reconstruction patterns by three gravest EOF modes throughout the whole study period from 1 May to 31 December 

2015. The study used about 330 k (thousand) FerryBox observations along four ship tracks from 1 May to 31 December 2015, 

and 370 observations from research vessels. Statistically gridded observations were daily assimilated into the model by the 605 

relaxation techniques, using restoring times of 5 and 10 days. 

 

The tested EOF-based data assimilation (DA) method decreased RMSD of surface temperature (SST) and salinity (SSS) in the 

NE Baltic Sea by 22% and 34%, respectively, compared to the control run without DA. Using the observation-estimated 

amplitudes of the pre-calculated gravest model-based EOF modes, the method is able to follow on the regular grid the pointwise 610 

observed temporal changes of the mean state and of the major basin-scale gradients. DA with EOF reconstruction technique 

was found feasible for further implementation studies, since: 1) the method that works on the large-scale patterns (mesoscale 
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features are neglected by taking only the gravest EOF modes) improves the high-resolution model performance by comparable 

or even better degree than in the other published studies, 2) the method is computationally effective. 

Code and data availability 615 

The model code has been developed by the Baltic MFC partners. Presently it is frozen and not anymore developed. The DA 

scripts and demonstrated model results can be requested by contacting the corresponding author. All the used observational 

data are freely available as described in Sect. 2.2. 
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Table 1: FerryBox data from 1 May to 31 December 2015 in the NE Baltic used in the present study. 

Ship Main route Operating institute Number of initial 

observations 

Baltic Queen Tallinn – Helsinki Marine Systems Institute, Tallinn 

University of Technology 

63 368 

FinnMaid Helsinki (Vuosaari) – Travemünde Finnish Environment Institute 142 235 

Silja Serenade Helsinki – Mariehamn – Stockholm Finnish Environment Institute 60 228 

Victoria Tallinn – Mariehamn – Stockholm Estonian Marine Institute, University of 

Tartu 

65 037 
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Table 2: Statistics of daily data in grid cells of 0.5  1 arc minutes by N and E with FerryBox (FB) observations: free model run 

without data assimilation (FR), data assimilation DA01 (observation weight 0.1), DA02 (weight 0.2) and FB. Bias, RMSD and 

correlation are taken with reference to FB. 

 FR DA01 DA02 FB 

SST (C)     

Mean 12.03 12.15 12.25 12.48 

Standard deviation 3.98 3.92 3.93 3.97 

Bias -0.45 -0.33 -0.23 0 

RMSD 0.72 0.59 0.56 0 

Correlation 0.98 0.99 0.99 1.00 

SSS (g kg-1)     

Mean 5.61 5.79 5.85 5.93 

Standard deviation 0.35 0.29 0.31 0.37 

Bias -0.31 -0.14 -0.08 0 

RMSD 0.35 0.24 0.23 0 

Correlation 0.52 0.76 0.78 1.00 
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Figure 1: Map of the study area in the NE Baltic with depth contours. Shown are the sea areas of Gulf of Finland, Gulf of Riga and 780 
part of the NE Baltic Proper.  Insert presents the map of surface salinity of the Baltic and North seas by Rohde (1998). Location of 

our study area is given on the insert by a red box. 
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 785 

 

Figure 2: Distribution of observations. (a) Map of FerryBox observation points along ship tracks (blue) and shipborne monitoring 

observations (red) over the study period. Shown are also the locations for time-latitude graphs and time series (black contours with 

yellow background). (b) Observation frequency over longitude and time. FerryBox data are shown by colour image; each image cell 

presents the number of initial observations over intervals of 10 days and 18 arc minutes of longitude (ca 16.7 km). Shipborne 790 
observations are shown by black dots. 
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Figure 3: Spatial covariance of SSS with the values in the grid cell near the HELCOM monitoring station BMP F3 (59.8383 N, 795 
24.8383 E), extracted from the full covariance matrix calculated from the model data over 5 years. Covariance is decomposed by 

EOF modes: covariance of unfiltered data with all the modes included (a) is a sum of covariance of first three modes (b) and of the 

remaining higher modes, starting from the forth mode (c). 
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Figure 4: Salinity time series at locations (a) 59.8383 N, 24.8383 E (HELCOM station F3) and (b) 59.794 N, 24.822 E, during the 

study period. Shown by dots are the observations from FerryBox and from ships (a, monitoring). Reconstructed time series, made 

by the time-dependent method, are given by solid lines: REC – basic option with 30 days interval, all observations in window were 805 
kept as they are; R1 – the same as previous but with time interval 10 days.  
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Figure 5: Maps (longitude E, latitude N) of SST in the study area on 3 August 2015: (a) free model run without DA, (b) in situ 

observations reconstructed using EOF method, (c) DA with relaxation time 5 days (weight of observations 0.2), (d) CMEMS product 

based on satellite observations. 
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Figure 6: Maps (longitude E, latitude N) of SSS in the study area on 3 August 2015: (a) free model run without DA, (b) observations 

reconstructed using EOF method, (c) DA with relaxation time 5 days (weight of observations 0.2). 820 
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 825 

Figure 7: Time series of SST (a, c) and SSS (b, d) near Tallinn (a, b, 59.4833 N, 24.7667 E) and Helsinki (c, d, 59.9500 N, 24.8833 

E), locations shown in Fig. 2a. FerryBox data (FB) are shown by dots, black lines represent control run (FR) without DA, red lines 

correspond to DA with relaxation time 5 days (weight of observations 0.2, DA02), blue lines for 10 days (weight 0.1, DA01). 
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Figure 8: Time (months of 2015) versus latitude (N) contour graph of DA anomalies of SST (a, c) and SSS (b, d) in reference to the 

control run (FR) without data assimilation; at longitudes 23.7166° E (a, b, Gulf of Finland) and 23.5333° E (c, d, Gulf of Riga), 835 
locations shown in Fig. 2a. DA data are given for relaxation time 5 days (weight of observations 0.2). 
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 840 

Figure 9: Improvement of RMSD of DA compared to that of FR, both taken in reference to 110 k FerryBox observations. 

Comparison is made for 20 x 20 grid cells (about 10 nautical miles) for SST (a) and SSS (b) over the whole study period. Legend 

codes: few points - less than 100 observations in a box, small values - absolute percentage change less than 10%, negative - DA RMSD 

growth more than 10%, positive - DA improvement (RMSD reduction) from 10% to 30%, large positive - improvement more than 

30%. 845 

 


