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Abstract. This paper clarifies the theoretical basis for constructing spiciness variables optimal for characterising ocean water

masses. Three essential ingredients are identified: 1) a material density variable γ that is as neutral as feasible; 2) a material

state function ξ independent of γ, but otherwise arbitrary; 3) an empirically determined function ξr(γ) of γ quantifying the

isopycnal mean behaviour of ξ. The key results are: It is the anomaly ξ′ = ξ−ξr(γ), rather than ξ, that is the variable optimally

suited for characterising ocean water masses; Ingredient 1) is required, because contrary to what is usually assumed, it is not5

the property of ξ that determine its dynamical inertness, but the degree of neutrality of γ; Oceanic sections of ξ′ are rather

insensitive to the particular choice of ξ; Contrary to what has been usually assumed, it is orthogonality in physical space rather

than in thermohaline space that is the relevant property for optimally characterising ocean water masses.

The results are important because: They unify the various ways in which spiciness has been defined and used in the literature;

They provide for the first time a rigorous first-principles physical justification for the concept of neutral density.10

1 Introduction

As is well known, three independent variables are needed to fully characterise the thermodynamic state of a fluid parcel in

the standard approximation of seawater as a binary fluid. The standard description usually relies on the use of a temperature

variable (such as potential temperature θ, in-situ temperature T or Conservative Temperature Θ), a salinity variable (such as15

reference composition salinity S or Absolute Salinity SA), and pressure p. In contrast, theoretical descriptions of oceanic mo-

tions typically involve only two ‘active’ variables, namely in-situ density ρ and pressure. The implication is that S and θ can

be regarded as being made of an ‘active’ part contributing to density, and a passive part associated with density-compensated

variations in θ and S — usually termed ‘spiciness’ anomalies, which behaves as a passive tracer. Physically, such an idea is em-

pirically supported by numerical simulation results showing that the turbulence spectra of density-compensated thermohaline20

variance is generally significantly different from that contributing to the density (Smith and Ferrari, 2009).

Although behaving predominantly as passive tracers, density-compensated anomalies may however occasionally ‘activate’

and couple with density and ocean dynamics. This may happen, for instance, when isopycnal mixing of θ and S leads to
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cabelling and densification, which may create available potential energy (Butler et al., 2013); when density-compensated

temperature anomalies propagate over long distances to de-compensate upon reaching the ocean surface, thus modulating air-25

sea interactions (Lazar et al., 2001); when density-compensated salinity anomalies propagate from the equatorial regions to

the regions of deep water formation, thus possibly modulating the strength of the thermohaline circulation (Laurian et al.,

2006, 2009); when sopycnal stirring of density-compensated θ/S anomalies releases available potential energy associated with

thermobaric instability (Tailleux, 2016a). For these reasons, the mechanisms responsible for the formation, propagation, and

decay of spiciness anomalies have received much attention, with a key research aim being to understand their impacts on the30

climate system, e.g., Schneider (2000); Yeager and Large (2004); Luo et al. (2005); Tailleux et al. (2005).

Although in-situ density ρ is the most dynamically relevant variable, its strong dependence on pressure p makes it difficult

to work with for unambiguously defining meaningful isopycnal surfaces and density-compensated θ/S anomalies. For this

reason, it has become customary to define isopycnal surfaces in terms of some suitably defined material function γ(S,θ),

generally defined in terms of some potential density appropriate to the range of pressures considered, in order for γ to most35

accurately capture the dependence of in-situ ρ on S and θ. Once a suitable γ has been selected, a second material function

ξ(S,θ) is needed to fully characterise the (S,θ) properties of fluid parcels. The presumption so far has been that it might be

advantageous to construct ξ so that it is ‘orthogonal’ to γ in thermohaline (S,θ) space. Indeed, this was originally thought to

be required for ensuring that ξ be passive or dynamically inert, e.g., Veronis (1972). However, the notion was challenged by

Jackett and McDougall (1985), who pointed out that it is the density-compensated part of any variable that is dynamically inert,40

not the variable itself, regardless of what the variable is. Jackett and McDougall (1985) also pointed out that orthogonality is a

property that makes sense only if it is invariant upon any re-scaling of the axes, which is not the case for variables with different

physical units such as S and θ. Nevertheless, rather than abandoning the idea, subsequent studies have sought to circumvent

the above difficulty by defining orthogonality in a re-scaled system of coordinates X(S) and Y (θ) expressing S and θ in a

common system of density units. As showed in this paper, it is possible to classify existing constructions of ξ into two main45

categories:

1. those assuming X(S) and Y (θ) to be linear functions of S and θ, as is the case of Veronis (1972); Huang (2011); Huang

et al. (2018). In the following, we will generically refer to the corresponding state functions as spicity or potential spicity,

denoted by π, following Huang et al. (2018);

2. those assuming X(S) and Y (θ) to be nonlinear functions of S and θ, as it the case of Jackett and McDougall (1985);50

Flament (2002); McDougall and Krzysik (2015), although it is important to note that this is not how such variables

were originally presented. In the following, we will generically refer to the corresponding state functions as spiciness

or potential spiciness, generally denoted by τjmd. In this paper, illustrations will in general be based on the most recent

paper by McDougall and Krzysik (2015).

Since orthogonality is at best ambiguously defined in (S,θ) space as well as unrelated to dynamical inertness, it is legitimate55

to ask whether it has any physical basis or any demonstrable benefits attached to it? So far, the presumption has been that

orthogonality is somehow useful for optimally representing water masses and intrusions, e.g., Jackett and McDougall (1985);
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Figure 1. Atlantic section along 30◦W of: (a) McDougall and Krzysik (2015) potential spiciness referenced to 1000dbar; (b) Huang et al.

(2018) potential spicity referenced to 1000dbar; (c) Absolute Salinity. White contours indicate selected constant σ1 isopycnal surfaces.
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Flament (2002); Huang et al. (2018), but this may be wishful thinking. Indeed, the proposition seems to be easily refuted

by plotting Absolute Salinity versus τjmd and π referenced to 1000dbar for a selected Atlantic section, here chosen along

30◦W , as showed in Fig. 1. In the salinity plot, the Antarctic Intermediate Water (AAIW) is one of the most prominently60

visible signal and is seen to extend to about 20◦N . In the spiciness and spicity plots, however, the AAIW signal has a different

shape and structure; it is much weaker and seen to only reach the equator, with the spiciness AAIW signal being somewhat

stronger the spicity one. If orthogonality in (S,θ) space has any benefits or advantages, they are certainly not obvious, at least,

as far as characterising ocean water masses is concerned. In their paper, Huang et al. (2018) suggested that without imposing

orthogonality on ξ, it is otherwise hard to define a distance in (S,θ) space. As stated, however, this argument appears to be65

mathematically groundless, because it is not true that the concept of distance requires orthogonality. As can be checked in

any good mathematics textbook, all is required is the introduction of positive definite metric d(x,y) such that: 1) d(x,y)≥ 0

for all x and y; 2) d(x,y) = 0 is equivalent to x= y; 3) d(x,y) = d(y,x); 4) d(x,y)≤ d(x,z) + d(z,y), the so-called triangle

inequality. As a result, d(1,2) =
√
β2

0(S1−S2)2 +α2
0(θ1− θ2)2, where α0 and β0 are some constant reference values of α

and β, define a valid distance in (θ,S) space. Obviously, there is an infinite number of ways to define distances in (θ,S) space.70

Any two material functions γ(S,θ) and ξ(S,θ) can also be used, i.e., d(1,2) =
√

(γ1− γ2)2 +K2
0 (ξ1− ξ2)2, where K0 is a

constant to express γ and ξ in the same system of units if needed, where fi = f(Si,θi), for f = (γ,ξ).

Perhaps the most problematic aspect of regarding spiciness as a state function orthogonal to density, however, is that it

appears to be fundamentally inconsistent with the way spiciness is defined in most of the literature seeking to understand the

role of spiciness on climate. Indeed, as Jackett and McDougall (1985) originally remarked, it is the density-compensated part of75

any thermodynamic variable that is supposed to be dynamically inert, regardless of what the variable is. Mathematically, such

an idea implies that it is the isopycnal anomaly ξ′ = ξ− ξr(γ) that is dynamically inert, regardless of how ξ is defined, where

ξr(γ) is a measure of the mean behaviour of ξ on the isopycnal surface γ(S,θ) = constant. In practice, the simplest and most

natural choices of ξ are either S or θ, with the corresponding definitions of spiciness being θ′ = θ−θr(γ) or S′ = S−Sr(γ). If

the isopycnal mean Sr(γ) and θr(γ) are defined so that γ(Sr(γ0),θr(γ0)) = γ0 for all γ0, then at leading order γSS′+γθθ′ ≈ 0,80

thus establishing that S′ and θ′ are density-compensated, as is expected physically. An immediate benefit of defining spiciness

as an isopycnal anomaly is that it naturally ensures its vanishing in any spiceless ocean (one in which all iso-surfaces of S, θ and

γ coincide), a property that is impossible to satisfy if spiciness is defined as a state function. Finally, it is important to remark

that functions of state are usually reserved for describing intrinsic properties of a substance; spice, however, is fundamentally a

relative property that can only be meaningfully defined after having determined the range of possible variations in θ/S values85

for samples of a given density. Physically, the concept of spice is therefore more naturally understood as an anomaly rather

than as an absolute concept.

The main aim of this paper is to explore the above ideas further and to clarify their inter-linkages. Section 2 discusses what

determines the dynamical inertness of spiciness, and shows that it is determined not by any of the properties of ξ, but by the

properties of the quasi-linear material density variable γ that it is used in conjunction with. Section 3 examines the physical90

basis for using density units as the relevant joint system of units for making it possible to meaningfully define the concept of

orthogonality in thermohaline space. Section 4 examines the link between orthogonality in thermohaline space and physical

4
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Figure 2. Histogram of the decimal logorithm of the (absolute value of the) sine of the angle between ∇σ1 and ∇ξ estimated for data

restricted to the Atlantic section of Fig. 11 for: ξ = SA (Blue), ξ = τjmd (Potential spiciness referenced to 1000dbar, brown) and ξ = π

(potential spicity referenced to 1000dbar, orange). This shows that SA (resp. π) is the variable the most (resp. less) orthogonal to σ1 in

physical space.

space. This idea is motivated by the results depicted in Fig. 2, which shows that the ability of a variable to characterise water

masses is proportional to the degree of orthogonality between∇ξ and∇γ, suggesting that the relevant concept is orthognality

in physical space, rather than in thermohaline space. Section 5 summarises the results and discusses the implications and further95

work needed.

2 On what determines the dynamical inertness of spiciness

Near the freezing point, it is occasionally possible for the thermal expansion of seawater to vanish. In that case, Stipa (2002)

pointed out that because potential temperature locally stops affecting density, it essentially becomes passive and therefore the

most natural definition of spiciness. To extend the argument to the general case, one therefore needs to regard in-situ density as100

a function of the new (γ,ξ,p) coordinates, viz. ρ= ρ(S,θ,p) = ρ̂(γ,ξ,p), and link the dynamical inertness of ξ to the smallness

of the partial derivative ∂ρ̂/∂ξ. As showed by Tailleux (2016a), the partial derivatives of ρ̂ with respect to γ and ξ are:

∂ρ̂

∂γ
=
∂(ρ̂, ξ)
∂(γ,ξ)

=
1
J

∂(ξ,ρ)
∂(S,θ)

=
Jγ
J
,

∂ρ̂

∂ξ
=
∂(γ, ρ̂)
∂(γ,ξ)

=
1
J

∂(ρ,γ)
∂(S,θ)

=
Jξ
J
, (1)

5
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where Jγ = ∂(ξ,ρ)/∂(S,θ), Jξ = ∂(ρ,γ)/∂(S,θ) and J = ∂(ξ,γ)/∂(S,θ). Of particular interest is the expression for the

neutral vector N in the density/spiciness coordinates:105

N =−g
ρ̂

(∇ρ̂− ρ̂p∇p) =−g
ρ̂

(ρ̂γ∇γ+ ρ̂ξ∇ξ) . (2)

It is important to note that the Jacobian J is invariant upon transformation ξ→ ξ− ξr(γ). In terms of ξ′ = ξ− ξr(γ), the

expression for the neutral vector thus becomes:

N =−g
ρ

[(
ρ̂γ + ρ̂ξ

dξr
dγ

)
∇γ+ ρ̂ξ∇ξ′

]
. (3)

According to (2) or (3), the condition for ξ or ξ′ to be dynamically inert (ρ̂ξ = 0) is that γ be exactly neutral. As showed by110

Eq. (1), the condition for ρ̂ξ to vanish is ∂(ρ,γ)/∂(S,θ) = 0, which is not possible because of thermobaricity, i.e., the pressure

dependence of the thermal expansion coefficient (McDougall 1987; Tailleux (2016a)). As a result, the degree of dynamical

inertness of ξ is related to the degree of non-neutrality of γ. This is an important result for two reasons. First, because it shows

that it is not the properties (such as orthogonality) of ξ that determine its degree of dynamical inertness, but those of γ. Second,

because it provides for the first time a rigorous and first-principles theoretical justification for seeking the construction of a115

globally-defined material density variable γ(S,θ) maximising neutrality (although this probably won’t be a surprise to most

oceanographers).

3 Spiciness and orthogonality to density

Physically, the pursuit of orthogonality as a constraint on ξ can only be justified if a physically-based way to re-scale S and

θ in a join system of physical units can be identified. So far, studies that have pursued orthogonality in one form or the other120

have taken it for granted that such a joint system of units should be based on density units, but without really proving it. The

use of density units can nevertheless be justified by remarking that the isopycnal variations of any arbitrary material function

ξ(S,θ) on any given density surface γ(S,θ) = constant satisfy:

diξ =
J

γSγθ
γSdiS =− J

γSγθ
γθdiθ, (4)

by using the result that γθdiS+ γSdiS = 0, where J = ∂(ξ,γ)/∂(S,θ) is the Jacobian of ξ and γ. Eq. (4) establishes that the125

isopycnal variations of any material ξ are all proportional to the quantity γSdiS =−γθdiθ, the proportionality factor being

J/(γSγθ). The two quantities γSdiS and γθdiθ have the same physical units: they can thus be regarded as the basic building

blocks for the construction of any spiciness variable and motivate the introduction of re-scaled salinity and temperature scales

X(S) and Y (θ) such that X ′(S)≈ γS and Y ′(θ)≈−γθ. The following pursues such an idea by providing a concrete way to

construct X(S) and Y (θ) explicitly.130
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Figure 3. The functions X(SA) and Y (Θ) re-scaling SA and Θ in a common system of density-like units. Red dashed line indicates linear

regression. X(SA) = 0.74SA− 26 and Y (Θ) = 0.26Θ− 4.5

3.1 A quasi-linear approximation to density

For reasons made clear in the following, a useful and instructive explicit construction of X(S) and Y (θ), parameterically

dependent on pressure p, is as follows:

X =X(S,p) = ρ00 ln
ρ(S,θ0,p)
ρ(S0,θ0,p)

, Y = Y (θ,p) =−ρ00 ln
ρ(S0,θ,p)
ρ(S0,θ0,p)

, (5)

where S0, θ0 and ρ00 are constant reference values for S, θ, and ρ respectively. In principle, S0 and θ0 could also be made135

to depend on pressure p, but this complication is avoided here to keep the approach as simple as possible. Fig. 3 illustrates

a particular construction based on the use of the most recent thermodynamic equation of state (IOC et al., 2010; Pawlowicz

et al., 2012), in terms of absolute salinity SA and Conservative Temperature Θ, using the values S0 = 35g/kg, Θ0 = 20◦C,

and ρ00 = 1000kg.m−3, for p= 0dbar. This figure shows thatX(SA) varies approximately linearly with SA. However, Y (Θ)

is clearly a nonlinear function of Θ, for which a linear approximation can nevertheless be constructed using linear regression140

(depicted as the red dashed line).

The re-scaled salinity/temperature coordinates given by Eq. (5) make it possible to construct a quasi-linear approximation

ρ‡ = ρ‡(S,θ,p;S0,θ0) of in-situ density as follows:

ρ‡ =
ρ0(p)
ρ00

(X −Y + 1) = ρ0(p)
[
ln
{
ρ(S,θ0,p)ρ(S0,θ,p)

ρ2
0(p)

}
+ 1
]

(6)

where ρ0(p) = ρ(S0,θ0,p), so that by construction, ρ‡ = ρ at the reference point (S0,θ0) for all pressures. In-situ density and145

its quasi-linear approximation are compared in Fig. 4 for p= 0, as a function of SA and Θ (top panel) as well as of X and Y
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at which the two functions are imposed to be equal.
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(bottom panel), with the red cross indicating the reference value (SA = 35g/kg,Θ = 20◦C) used in the definition of ρ‡. As

expected, the accuracy of ρ‡ decreases away from the reference point, but appears to be reasonable in the restricted salinity

range [30g/kg,40g/kg] that pertains to the bulk of ocean water masses. Interestingly, the bottom panel of Fig. 4 reveals that

a significant fraction of the nonlinear character of the equation of state is captured by X and Y , so that ρ appears to be150

approximately linear in such coordinates.

The accuracy of the quasi-linear approximation ρ‡ can also be evaluated by examining how its thermal expansion, haline

contraction and compressibility compare with that of in-situ density. These are given by:

α‡ =− 1
ρ‡

∂ρ‡
∂θ

=
ρ0(p)α(S0,θ,p)

ρ‡
, (7)

155

β‡ =
1
ρ‡

∂ρ‡
∂S

=
ρ0(p)β(S,θ0,p)

ρ‡
, (8)

κ‡ =
1
ρ‡

∂ρ‡
∂p

= κ(S0,θ0,p) +
ρ0(p)
ρ‡

[κ(S,θ0,p) +κ(S0,θ,p)− 2κ(S0,θ0,p)] . (9)

These relations show that the first partial derivatives of ρ‡ with respect to its three variables also coincide with their exact

values at the reference point (S0,θ0), with the accuracy of the approximations decaying away from it, as expected.160

3.2 A mathematically explicit quasi-linear spiciness variable

Because ρ‡ is a simple linear function of X and Y , it is trivial to construct a variable τ‡ orthogonal to it in (X,Y ) space, and

hence approximately orthogonal to in-situ density. In this paper, we consider the following construction:

τ‡ =X +Y + τ0 = ρ00 ln
{
ρ(S,θ0,p)
ρ(S0,θ,p)

}
+ τ0, (10)

where ρ00 = 1000kg.m−3 for simplicity, while τ0 = τ(S0,θ0,p) specifies the reference value of τ‡ at the reference point165

(S0,θ0). At fixed pressure, the total differential of τ‡ is

dτ‡ = ρ00(β(S,θ0,p)dS+α(S0,θ,p)dθ), (11)

and is clearly an approximate solution to the differential problem dτ ≈ ρ(αdθ+βdS) set out by Jackett and McDougall (1985)

to define their own spiciness variable (see McDougall and Krzysik (2015)), which is also the problem considered by Flament

(2002). Defining τ0 as170

τ0(p) =−ρ00 ln
{
ρ(Sref ,θ0,p)
ρ(S0,θref ,p)

}
, (12)

allows one to choose (Sref ,θref ) as the point in (S,θ) space at which τ‡ vanishes. In terms of the TEOS10 variables (SA,Θ),

we use Sref = 35.16504g/kg and Θref = 0◦C to fix the zero of τ‡ as in McDougall and Krzysik (2015). As a result, the

pressure dependence of τ‡ becomes:

∂τ‡
∂p

= ρ00 (κ(S,θ0,p)−κ(S0,θ,p)−κ(Sref ,θ0,p) +κ(S0,θref ,p)) . (13)175
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Eq. (13) shows that ∂pτ‡ vanishes at the two reference points (S0,θ0) and (Sref ,θref ); it follows that by design, τ‡ is only

weakly dependent on pressure, and hence naturally quasi-material.

Our new quasi-linear spiciness variable τ‡ is compared with that of McDougall and Krzysik (2015) in Figs. 5 and 6, as

a function of (SA,Θ) and (X,Y ) respectively. These figures show that the two spiciness variables behave in essentially the

same way, except for cold temperature and low salinity values where the contours of McDougall and Krzysik (2015) spiciness180

variable become parallel to that of density, resulting in the Jacobian of the transformation to vanish, a problem not affecting

our variable.

Jackett and McDougall (1985) sought to construct a spiciness variable satisfying the constraint ∇iτ ≈ 2ρ0β∇iS. From the

viewpoint of Eq. (4), this is mathematically equivalent to impose the condition J/(γSγθ)≈ 1 on the proportionality factor,

which can also be viewed as the constraint J ≈ γSγθ on the Jacobian of the transformation. Because γθ may change sign185

at a point of maximum density, the implication is that Jackett and McDougall (1985)’s approach yields a density/spiciness

coordinate system that is not invertible everywhere. In contrast, the Jacobian associated to τ‡ does not vanish anywhere in

(S,θ) space. As a result, the isopycnal variations of τ‡, which are given by:

∇iτ = ρ00 (β(S,θ0,p)∇iS+α(S0,θ,p)∇iθ) = ρ0

{
β(S,θ0,p)
β(S,θ,p)

+
α(S0,θ,p)
α(S,θ,p)

}
β∇iS (14)

are similar but not identical to that of Jackett and McDougall (1985)’s spiciness variable. Near the reference point (S0,θ0),190

∇iτ ≈ 2ρ0β∇iS = 2ρ0α∇iθ as for Jackett and McDougall (1985) spiciness variable. As showed by Fig. 7, the factor within

brackets is close to the factor 2 for most (S,θ) values, but becomes very large near the point of maximum density, the necessary

trade-off for allowing the transformation to remain invertible.

4 Orthogonality in thermohaline space versus in physical space

4.1 Theoretical considerations195

Although we saw in the previous section that the construction of a spiciness variable orthogonal to density in thermohaline

space can be justified theoretically, at least to some extent, we also saw in the introduction that the resulting variable does not

appear to do a particularly good job at identifying the standard ocean water masses, which is at odds with widespread claims in

the spiciness literature about its supposed optimality for characterising water masses and intrusions. In this section, we make

the case that the main reason for the failure of published definitions of spiciness is because the property that is actually the200

most useful for characterising ocean water masses is not orthogonality in thermohaline space, as erroneously assumed, but

orthogonality in physical space.

To see this, let us first note that for any density/spiciness (γ,ξ) set of variables, the gradient of any thermodynamic function

f(S,θ,p) = f̂ corrected for pressure is:

∇̃f =∇f − ∂f̂

∂p
∇p=

∂f̂

∂γ
∇γ+

∂f̂

∂ξ
∇ξ. (15)205
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Figure 5. Comparison between McDougall and Krzysik (2015) spiciness variable versus the mathematically explicit quasi-linear spiciness

variable discussed in this paper (solid lines). The crosses indicate the reference point (SA,Θ) = (35,20) at which X = Y = 0 and the

reference point (SA,Θ) = (35.16504,0.) at which both spiciness variable are imposed to vanish. The dashed contours represent the isolines

of the potential density referenced to p= 0dbar.

11

https://doi.org/10.5194/os-2020-39
Preprint. Discussion started: 20 May 2020
c© Author(s) 2020. CC BY 4.0 License.



McDougall & Krzysik spiciness ( p
r
 = 0 )

-22

-20

-18

-16
-14

-12
-10 -8

-8

-6

-6

-4

-4

-2

-2

0

0

2

2

4

4

6

6

8

10

12

14

-25 -20 -15 -10 -5 0 5

X( S
A

 )

-2

0

2

4

6

8

Y
( 

 )

Quasi-linear spiciness ( p
r
 = 0 )

-22
-20

-18
-16

-14

-14

-12

-12

-10

-10

-8

-8

-6

-6

-4

-4

-2

-2

0

0

2

2

4

4

6

6

8

10

12

14

-25 -20 -15 -10 -5 0 5

X( S
A

 )

-2

0

2

4

6

8

Y
( 

 )

Figure 6. Same as in Fig. 5 but as a function of the re-scaled salinity and temperature X and Y .
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controlling the isopycnal variations of spiciness. Reference pressure pr = 0dbar. Only a

restricted range of (SA,Θ) is showed. The factor becomes very large when α becomes very small near the region of maximum density.

As is well known, the most efficient way to represent a vector is achieved by decomposing it in an orthogonal basis. It follows

therefore the most efficient representation of the pseudo gradient ∇̃f would be one in which ∇γ and ∇ξ are orthogonal to

each other. Now, it is important that whereas the orthogonality of ξ and γ in thermohaline space is fundamentally ill-defined,

the orthogonality of∇γ and∇ξ is always mathematically well defined. Importantly, orthogonality in thermohaline space does

not imply orthogonality in physical space. As a result, even if ξ is constructed to be orthgonal to density in thermohaline space,210

this will not in general be the case in physical space. As an illustration of this, the isolines of ξ and γ in an oceanic section may

look like that schematically depicted in the left panel of Fig. 8. In that case, ∇ξ and ∇γ are non-orthogonal, and each vector

has a significant projection onto the other.

The right panel of Fig. 8 illustrates how to make spiciness locally orthogonal to density in physical space by introduc-

ing the spiciness anomaly ξ′ = ξ− ξr(γ), where ξr(γ) is a suitably constructed function of density only. In terms of ξ′, the215

representation of ∇̃f becomes:

∇̃f =∇f − ∂f̂

∂p
∇p=

(
∂f̂

∂γ
+
∂f̂

∂ξ

dξr
dγ

)
∇γ+

∂f̂

∂ξ
∇ξ′. (16)

Two important remarks need to be made. First, adding or subtracting a function of γ from ξ does not affect the Jacobian of

the transformation, so that ∂(ξ,γ)/∂(S,θ) = ∂(ξ′,γ)/∂(S,θ). Moreover, this also does not affect the isopycnal variations of

ξ so that ∇iξ =∇iξ′, both in physical space and thermohaline space. As a result, the factor J/(γSγθ) is identical for ξ and220
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Figure 8. Schematics of the effect of subtracting a suitably defined function of density from an initial definition of spiciness state function.

Left panel shows the isolines of idealised γ and ξ given by γ = az+b and ξ = cz+dy. The right panel shows isolines of ξ′ = ξ−ξr(γ) = dy,

with ξr(γ) = c[γ− b]/a, which removes the z-dependent part of ξ, resulting in ξ′ and γ to be orthogonal in physical space.

ξ′. Second, if ξ is originally constructed to be orthogonal to γ in thermohaline space, removing a function ξr(γ) from it will

destroy such orthogonality.

4.2 Illustrations

To illustrate the above ideas, we consider 4 possible spiciness state functions: McDougall and Krzysik (2015)’s potential spici-

ness τjmd referenced to 1000dbar, Huang et al. (2018)’s potential spicity π referenced to 1000dbar, Conservative Temperature225

Θ and Absolute Salinity SA. Fig. 9 shows a scatter plot of each variable against σ1, restricted to the values pertaining to the

Atlantic section along 30◦W depicted in the introduction. As can be seen on the figure, each variable exhibit a different degree

of scatter. The red line in each panel represents a best fit second order polynomial in σ1 obtained by nonlinear regression of

each variable against σ1. Each of these variables is showed in (SA,Θ) space in Fig. 10, where the black thick lines emphasise

the values of σ1 contours retained in the nonlinear regression.230

Fig. 11 shows oceanic sections of the isopycnal anomaly ξ′ = ξ− ξr(σ1) for each variable. Interestingly, although τjmd, π

and SA look quite different from each other in (SA,Θ) space, their isopycnal anomalies exhibit strong similarities on an oceanic

section, although Θ′ looks somewhat different, so that visually, all variables appear to perform similarly in characterising ocean

water masses. In particular, in all plots, the AAIW is seen to have the same shape and extent; in particular, it extends to about

20◦N , similarly as in the salinity plot of Fig. 1.235
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Figure 9. Nonlinear regression between σ1 and various forms of spiciness state functions estimated for data restricted to the Atlantic section

along 30◦W depicted in Fig. 11: (a) τ‡ defined in this paper, which is similar to McDougall and Krzysik (2015) spiciness variable; (b) Huang

et al. (2018) spicity; (c) Conservative Temperature; (d) Absolute Salinity. Both spiciness and spicity potential are referenced to 1000dbar.

The nonlinear regression curve is indicated in red.

Fig. 12 illustrates the consequences of subtracting the polynomial function of σ1 in (SA,Θ) space. In the restricted range

of σ1, all isopycnal anomalies are seen to behave similarly. Unlike McDougall and Krzysik (2015) and Huang et al. (2018)

variables, which increase with both Θ and SA, all the spiciness anomalies increase with salinity but decrease with temperature,

but very weakly. Removing the function ξr(γ) from ξ therefore erases many of the differences that may exist between different

choices of ξ, an important result that suggests that the particular choice of ξ is not necessarily as important as previously240

envisioned.
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Figure 10. Isocontours of γ and ξ in (SA,Θ) space for various ξ state functions: (a) McDougall and Krzysik (2015) potential spiciness

referenced to 1000dbar; (b) Huang et al. (2018) potential spicity referenced to 1000dbar; (c) Conservative Temperature; (d) Absolute

Salinity. The black solid lines represent the σ1 isocontours for 27., 29., 31. and 33 kg.m−3 respectively, corresponding to the restricted range

of σ1 values over which the nonlinear regressions depicted in Fig. 9 were performed. Dashed contour lines correspond to σ1 isocontours not

involved in the nonlinear regression. Thin solid lines represent contours of ξ.
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Figure 11. Oceanic sections along 30◦W of the spiciness anomaly function ξ′ = ξ− ξr(σ1), with ξr(σ1) corresponding to the nonlin-

ear regression function depicted in Fig. 9, for different choices of ξ: (a) McDougall and Krzysik (2015) potential spiciness referenced to

1000dbar; (b) Huang et al. (2018) potential spicity referenced to 1000dbar; (c) Conservative Temperature; (d) Absolute Salinity. White

solid lines represent selected isopycnal contours for σ1.
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Figure 12. Same as Fig. 10 but showing isocontours of ξ′ = ξ− ξr(σ1) instead of ξ.

5 Conclusions

In this paper, we have revisited the theory of spiciness and clarified the inter-linkages between different approaches. Our main

conclusion is that the theory of spiciness must contain the following ingredients: 1) a quasi-material density like variable

γ(S,θ) constructed to be as neutral as feasible; 2) a quasi-material spiciness-as-a-state-function ξ(S,θ) independent of γ, so245

that (ξ,γ) can be inverted to recover the (S,θ) properties of any fluid parcel; 3) an empirically defined function ξr(γ) of γ

constructed so that the quasi-material spiciness-as-a-property ξ′ = ξ− ξr(γ), would vanish in an hypothetical spiceless ocean

in which all surfaces of constant S, θ and γ would coincide.

Ingredient 1) is required because contrary to what is often assumed, it is not the properties of ξ that determines its degree

of dynamical inertness, but the degree of neutrality of γ, regardless of what ξ is. This result is important because it establishes250

that the theory of spiciness is not independent of the theory of isopycnal analysis; it also establishes for the first time a rigorous

physical basis for pursuing the construction of a quasi-material density variable maximising neutrality, as originally pursued

by Jackett and McDougall (1997) and subsequently revisited by Eden and Willebrand (1999), and more recently by Tailleux
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(2016a, b). Because spiciness is not a substance but a property measuring the various possible variations in thermohaline

properties of a fluid parcel of given density, it is important to realise that spiciness-as-a-property is really measured by ξ′ =255

ξ− ξr(γ) rather than by ξ itself. As is easily realised, one of the key problem with any state function ξ is that there is a priori

no reason for it to vanish in a spiceless ocean. One of the most remarkable results of this paper is the fact that visually, plots

of ξ′ on oceanic sections appear to be rather insensitive to the particular choice of ξ. In particular, we showed that even though

τjmd, π and SA all look very different from each other in (SA,Θ) space, τ ′jmd, π′, and S′A all very similar to each other both in

thermohaline and physical spaces, at least over the restricted range of densities for which they are defined. Since it is ξ′, rather260

than ξ, which provides the most useful quantify for characterising water masses, the need for a dedicated variable such as the

one used in this study is unclear, especially since removing ξr(γ) from ξ completely destroys orthogonality in (S,θ) space.

Nevertheless, as the spiciness as-a-state-function variable orthogonal to density in the nonlinear X(S),Y (θ) coordinates have

been extensively used, we provided an analytical expression that mimic the behaviour of McDougall and Krzysik (2015)’s

spiciness variable that fully depends on pressure, making it possible to construct a potential spiciness variable referenced to265

a reference pressure pr(S,θ) that is not necessarily constant, as in Tailleux (2016b)’s construction of thermodynamic neutral

density.

To make further progress towards a complete theory of water masses, several outstanding issues remain to be resolved. First,

how to construct a globally defined material density variable maximising neutrality, which is key to maximise the dynamical

inertness of ξ, is still not fully understood. As showed by Tailleux (2016b), the density variable that currently maximises270

neutrality while also being the only one accounting for thermobaricity is one that is based on Lorenz reference density entering

the theory of available potential energy (Tailleux, 2013; Saenz et al., 2015; Tailleux, 2018). This is far from being the last

word on the issue, however. Indeed, Tailleux (2016a) recently outlined some new theoretical ideas suggesting that it should be

possible, at least in principle, to construct material density-like variables with even better neutrality, as we hope to demonstrate

in future work. Second, since ξ′ appears to be provide a characterisation of water masses that does not appear to be very275

sensitive to the particular choice of ξ and ξr(γ), the question is whether a physical basis or physical arguments can nevertheless

be identified in favour of any particular choice? For instance, one could ask the question of whether it is possible to construct ξ

and ξr(γ) so that ξ′ is as conservative as possible? Another important question is whether constraining ξ to be orthogonal to γ

in thermohaline space, as pursued by McDougall and Krzysik (2015) or Huang et al. (2018), yields any special benefit for ξ′?

Hopefully, the present work will help stimulate further research on these issues.280
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