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Abstract10

We re-visit Ekman’s (1905) classic problem of wind-stress induced ocean currents to11

help interpret observed deviations from Ekman’s theory, in particular from the predicted12

surface current deflection of 45◦. While previous studies have shown that such deviations13

can be explained by a vertical eddy viscosity varying with depth, as opposed to the14

constant profile taken by Ekman, analytical progress has been impeded by the difficulty15

in solving Ekman’s equation. Herein, we present a solution for piecewise-constant eddy16

viscosity which enables a comprehensive understanding of how the surface deflection angle17

depends on the vertical profile of eddy viscosity. For two layers, the dimensionless problem18

depends only on the depth of the upper layer and the ratio of layer viscosities. A single19

diagram then allows one to understand the dependence of the deflection angle on these20

two parameters.21

1 Introduction22

The motion of the near-surface ocean layer is a superposition of waves, wind-driven currents23

and geostrophic flows. The basic theory of wind-driven surface currents in the ocean, away24

from the Equator, is due to Ekman (1905) and constitutes a cornerstone of oceanography25

(see Vallis, 2017). Ekman dynamics is due to the balance between Coriolis and the frictional26

forces generated by the wind stress. Its main features, consistent with observations of steady27

wind-driven ocean currents, are:28

(i) the surface current is deflected to the right/left of the prevailing wind direction (in the29

Northern/Southern Hemisphere);30

(ii) with increasing depth in the boundary layer, the current speed is reduced, and the direc-31

tion rotates farther away from the wind direction following a spiral;32

(iii) the net transport is at right angles to the wind direction, to the right/left of the wind33

direction in the Northern/Southern Hemisphere.34

While near the Equator wind-drift currents move in the same direction as the wind (see the35

discussion in Boyd, 2018), away from the Equator a deflection of steady wind-driven currents36
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with respect to the prevailing wind direction occurs in a surface boundary layer, whose typ-37

ical depth is tens of metres. Ekman’s pioneering solution (see Ekman, 1905), derived for a38

constant vertical eddy viscosity, captures the general qualitative behaviour, but differences of39

detail between observations and Ekman theory were recorded in the last decades. While the40

characteristics (ii)-(iii) hold for any depth-dependent vertical eddy viscosity (see Constantin,41

2020), there is a need to explain the occurrence of surface currents at an angle in the range42

10-75◦ to the wind (rather than the 45◦ predicted by Ekman), with large variations depending43

on the regional and seasonal climate (see the data in Röhrs and Christensen, 2015; Yoshikawa44

and Masuda, 2009).45

This discrepancy is typically ascribed to the effect of a vertical eddy viscosity that varies with46

depth. The explicit solution found by Madsen (1977), for a vertical eddy viscosity that varies47

linearly with depth, leads to a plausible, although somewhat low, surface current deflection48

angle of about 10◦. The avenue of seeking explicit solutions is not very promising, since only a49

few are available and the intricacy of the details makes it difficult to extract broad conclusions50

(we refer to Constantin and Johnson, 2019; Grisogno, 1995, for a survey of known Ekman-type51

solutions). The challenging nature of the task is highlighted by the recent analysis pursued52

in Bressan and Constantin (2019); Constantin (2020) where asymptotic approaches, applicable53

for eddy viscosities that are small perturbations of a constant, revealed the convoluted way in54

which the eddy viscosity influences the deflection angle: while a slow and gradual variation of55

the eddy viscosity with depth results in a deflection angle larger than 45◦, the typical outcome56

of an eddy viscosity concentrated in the middle of the boundary layer is a deflection angle57

below 45◦. A better understanding of the deflection angle is important theoretically but also58

for operational oceanography, e.g. in the context of search-and-rescue operations or in remedial59

action for oil spills.60

The important issue of a quantitative relation between the vertical eddy viscosity and the61

magnitude of the deflection angle remains open. The aim of this paper is to discuss this issue62

in cases when the eddy viscosity is piecewise uniform. The in-depth analysis that can be63

pursued in this relatively simple setting permits us to gain insight into the way the turbulent64

parametrization (e.g. of general circulation models) controls the deflection angle. This paper is65

organised as follows: in Section 2 we present the Ekman equations for wind-driven ocean for66

depth-dependent eddy viscosities and we perform a suitable scaling that reduces the number67

of parameters. In Section 3, an explicit solution is constructed and illustrated for an infinitely-68

deep ocean with two constant values of eddy viscosity. This solution covers the full range of69

possibilities, and exhibits deflection angles covering the full range between 0 and 90◦. Various70

special or limiting cases are highlighted. Finally, Section 4 offers our conclusions.71

2 Equations of motion and scaling72

For a deep, vertically homogeneous ocean, of infinite lateral extent, the horizontal momentum73

equation for steady flow takes the following (complex) form under the f -plane approximation:74

if U =
1

ρ

∂τ

∂Z
− 1

ρ
∇P + higher-order terms , (1)

where U(Z) = U + iV is the complex horizontal velocity in the (X, Y )-plane, Z is the depth75

below the mean surface Z = 0, f is the Coriolis parameter, ρ is the (constant) density, ∇P =76

∂P/∂X + i ∂P/∂Y is the horizontal pressure gradient, τ (Z) = τx + iτy is the shear stress due77

to molecular and turbulent processes, and the higher-order terms, representing interactions78

between the variables, are presumed to be small. Decomposing the horizontal velocity into79

pressure-driven (geostrophic) and wind-driven (Ekman) components U = Ug+Ue, we see from80
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(1) that the leading-order geostrophic and wind-driven flows separate, with the linear equation81

if Ue =
1

ρ

∂τ

∂Z
(2)

governing the dynamics of the wind-driven flow. By relating the stress vector within the fluid,82

τ , to the shear profile through a turbulent eddy viscosity coefficient ν(Z),83

τ = ρν
∂Ue

∂Z
, (3)

from (2) we obtain Ekman’s equations for wind-driven ocean currents84

if Ue =
∂

∂Z

(
ν
∂Ue

∂Z

)
. (4)

Let us now discuss the appropriate boundary conditions. At the surface, the shear stress85

balances the wind stress, τ0:86

τ0 = ρν
∂Ue

∂Z
on Z = 0 . (5)

The “bottom” boundary condition expresses the vanishing of the wind-driven current with87

depth (necessary to keep the total kinetic energy finite), where the flow is essentially geostrophic:88

Ue → 0 as Z → −∞ . (6)

Letting τ0 denote the magnitude of the surface wind stress, we non-dimensionalise the89

problem by scaling Ue by
√

2τ0/ρ and Z by
√

2τ0/ρ/f , since τ0/ρ has units of L2/T 2. The90

factor of 2 is introduced for convenience below. Upon defining a dimensionless eddy viscosity91

K = fρν/τ0, velocity u = Ue/
√

2τ0/ρ and depth z = Zf/
√

2τ0/ρ, the equations transform to92

(Kψ′)′ − 2iψ = 0 for z < 0 , (7)

ψ′(0) = 1 on z = 0 , (8)

ψ → 0 as z → −∞ , (9)

where ψ = uK(0) and a prime means a derivative with respect to z (cf. equations (14)–(16)93

in Gill, 1982). The scaling performed does not change the surface deflection angle θ0, equal to94

the argument of the complex vector ψ(0), even if the scaling results in an orientation of the95

horizontal axes such that the surface wind stress points in the positive x-direction. Finally,96

we note that this formulation is appropriate for the Northern Hemisphere where f > 0. The97

formulation for the Southern Hemisphere is obtained by taking the complex conjugate in (7),98

noticing that K is real-valued.99

3 Exact solution for piecewise-constant eddy viscosity100

For piecewise-constant K, without loss of generality we can further scale z so that K = 1 in101

z ∈ [−h, 0] while K = `2 in z ∈ (−∞,−h), where h is the dimensionless depth of the upper102

layer. Note, ` is the ratio of the lower-layer to upper-layer viscous lengths. The analysis below103

can be readily extended to any number of regions of constant K, but the simplest to understand104

is two regions, since then the solution depends on only two dimensionless parameters, ` and h.105
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3.1 Constructing the solution106

In each region, the complex velocity ψ satisfies a simple constant-coefficient equation107

ψ′′ − 2iψ = 0 for − h < z < 0 , (10)

`2ψ′′ − 2iψ = 0 for −∞ < z < −h , (11)

having exponential solutions108

ψ(z) = Ae(1+i)z +B e−(1+i)z for − h < z < 0 , (12)

ψ(z) = C e(1+i)z/` for −∞ < z < −h , (13)

where A, B and C are (generally complex) constants. The boundary condition ψ → 0 as109

z → −∞ has been used to eliminate the growing solution in (13).110

At the discontinuity in K, at z = −h, we require continuity of ψ, i.e. ψ(−h+) = ψ(−h−).111

Moreover, by integrating the equation above across an infinitesimal region centred on z = −h,112

we obtain113

ψ′(−h+) = `2ψ′(−h−) . (14)

The upper surface boundary condition ψ′(0) = 1 implies114

(1 + i)(A−B) = 1 (15)

while continuity of ψ at z = −h implies115

Ae−(1+i)h +B e(1+i)h = C e−(1+i)h/` (16)

and finally the jump condition (14) on ψ′ at z = −h implies116

Ae−(1+i)h −B e(1+i)h = C` e−(1+i)h/` . (17)

It follows that117

A = 1
2
C e−(1+i)h/`(1 + `) e(1+i)h and B = 1

2
C e−(1+i)h/`(1− `) e−(1+i)h . (18)

Applying the surface boundary condition (15) determines C as118

C =
(1− i) e(1+i)h/`

(1 + `) e(1+i)h − (1− `) e−(1+i)h
. (19)

The surface current deflection angle, θ0, measured clockwise, is determined from119

tan θ0 = −=(ψ(0))

<(ψ(0))
= −=(A+B)

<(A+B)
. (20)

But given C above in (19), we have120

A+B = 1
2
(1− i)

(1 + `) e(1+i)h + (1− `) e−(1+i)h

(1 + `) e(1+i)h − (1− `) e−(1+i)h
.

Introducing the real values α = (1 + `) eh and β = (1− `) e−h enables us to write121

A+B = 1
2
(1− i)

α eih + β e−ih

α eih − β e−ih

which, after multiplying top and bottom by the complex conjugate of the denominator, simpli-122

fies to123

A+B = 1
2
(1− i)

α2 − β2 − 2iαβ sin(2h)

α2 + β2 − 2αβ cos(2h)
.

Hence, taking the (negative of the) ratio of the imaginary to real parts of this, we obtain124

tan θ0 =
α2 − β2 + 2αβ sin(2h)

α2 − β2 − 2αβ sin(2h)
. (21)
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3.2 Results125

First, we examine certain special cases.126

When ` = 1, there is no discontinuity in eddy viscosity. Since in this case β = 0, we have127

tan θ0 = 1, i.e. θ0 = 45◦ in agreement with the classical Ekman spiral solution.128

As ` → 0, the eddy viscosity vanishes in the lower layer, and the flow field ψ must also129

vanish. In this case, tan θ0 reduces to130

tan θ0 =
sinh(2h) + sin(2h)

sinh(2h)− sin(2h)
, (22)

which has a non-trivial dependence on h. The maximum value is attained as h → 0; then131

tan θ0 →∞ or θ0 → 90◦.132

As `→∞, corresponding to an extremely viscous lower layer, tan θ0 reduces to the inverse133

of the previous expression, i.e.134

tan θ0 =
sinh(2h)− sin(2h)

sinh(2h) + sin(2h)
. (23)

The minimum occurs for h→ 0 and there tan θ0 → 0 or θ0 → 0.135

For general `, there are also values of h for which tan θ0 = 1. These occur when the136

numerator and the denominator of the general expression above for tan θ0 are equal. But this137

means αβ sin(2h) = 0 or (1 − `2) sin(2h) = 0. One solution is the classical Ekman spiral with138

` = 1 noted above. But we also have h = nπ/2 for non-negative integers n. When n = 0,139

the upper layer vanishes and the eddy viscosity is uniform throughout the entire depth. The140

classical Ekman spiral is expected in this case. The other special depths imply θ0 exhibits a141

non-monotonic dependence on h for fixed `. In fact, θ0 exhibits a decaying oscillation about a142

value of unity.143

A summary of the results in the `–h plane is provided in figure 1. Along any line ` = constant144

(excluding ` = 1), θ0 reaches a minimum or maximum in h when the following relation holds:145

1− `
1 + `

= ±e2h
√

cos(2h)− sin(2h)

cos(2h) + sin(2h)
(24)

obtained by setting the partial derivative of tan θ0 w.r.t. h equal to zero. The first extremum146

with increasing h occurs for h < π/8 (when h = π/8 the above equation yields ` = 1). Note147

that as h → 0, (1 − `)/(1 + `) → ±1, implying either ` → 0 or ` → ∞ as noted previously.148

Extrema also occur for larger h since the function in the square root above is periodic, but149

these involve much weaker variations in θ0 about 45◦, diminishing like e−nπ for positive integers150

n. When n = 1, the maximum excursion in tan θ0 is approximately 0.05735.151

4 Conclusions152

We have re-visited the famous problem originally posed by Nansen (see the discussion in Hunt-153

ford (2002)) and solved by Ekman (1905) to understand wind-driven currents in the ocean. By154

balancing viscous and Coriolis forces, and assuming a constant vertical eddy viscosity, Ekman155

(1905) predicted that the surface current is deflected by 45◦ to the right/left of the prevailing156

wind direction (in the Northern/Southern Hemisphere). Moreover, Ekman (1905) found that157

the net fluid transport is 90◦ to the right/left of the wind direction.158

Since then, a number of studies have sought to explain observed discrepancies with Ekman’s159

theory (Röhrs and Christensen, 2015; Yoshikawa and Masuda, 2009), in particular deflection160

angles significantly different from the 45◦ prediction (Madsen, 1977; Grisogno, 1995; Bressan161

and Constantin, 2019; Constantin and Johnson, 2019; Constantin, 2020). The main conclusion162
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Figure 1: Surface deflection angle θ0 (in degrees) as a function of the lower-layer non-dimensional
viscous length ` and the non-dimensional depth of the upper layer h.

is that these discrepancies can be explained by vertically-varying eddy viscosities. However,163

due to the mathematical difficulty in constructing exact or asymptotic solutions, no general164

scenario has yet emerged relating the deflection angle to the profile of eddy viscosity.165

This study makes a first step in this direction by considering the case of piecewise-constant166

eddy viscosities for which analytical solutions may be readily constructed and analysed. We167

have presented results for the simplest situation of two regions having different uniform vis-168

cosities in an infinitely deep ocean. (In fact the results also apply when the two regions have169

different densities, such as a mixed layer of density ρ1 overlying a denser deep layer of density170

ρ2. In that case the lower-layer dimensionless viscosity `2 includes the density ratio ρ1/ρ2.) By171

an appropriate scaling of the governing equations, the solutions can be shown to depend on172

only two parameters: the ratio of the lower-to-upper viscous lengths ` and the dimensionless173

depth of the upper layer h. This permits one to see at a glance how both ` and h determine174

the surface deflection angle θ0.175

In appropriate limits, we recover Ekman’s classical solution, but additionally the 45◦ de-176

flection angle may also occur for arbitrary `, when h assumes special values. In general, for h177

sufficiently small and ` < 1 (a less viscous lower layer), the deflection angle exceeds 45◦ (and178

can reach nearly 90◦ for ` � 1). When ` > 1 (a more viscous lower layer), the deflection179

angle is less than 45◦, and tends to zero as ` → ∞ for h � 1. For ` ∼ 1 our conclusions are180

in agreement with the results obtained recently in Bressan and Constantin (2019); Constantin181

(2020). Indeed, writing K(z) = `2 + εK1(z) for z ≤ 0, with ε = |1− `2| and182

K1(z) =

{
(1− `2)/ε , z ∈ [−h, 0] ,

0 , z < −h ,

the perturbative approach developed in Bressan and Constantin (2019); Constantin (2020)183
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shows that a positive/negative value of the integral184

1− `2

ε

∫ 0

−h
e2s sin

(
2s+

π

4

)
ds ,

corresponds to a deflection angle larger/smaller than 45◦. The relation185 ∫ 0

−h
e2s sin

(
2s+

π

4

)
ds =

1

2
√

2
e−2h sin(2h)

shows that this is consistent with our conclusions.186

The results obtained may help better formulate appropriate parametrisations of eddy vis-187

cosities in global circulation models of the ocean. For example, it is typical for the upper188

100m of the ocean that solar heating quenches turbulence during the day (see the discussion189

in Woods, 2002). Our model captures these changes: during the day we set ` > 1, with ` < 1190

during the night, thus explaining the observation that often the deflection angle exceeds 45◦191

during the day, and is below 45◦ during the night (see Krauss, 1993). The same reasoning192

applies to the large seasonal variations of the deflection angle observed at some locations (see193

the data in Yoshikawa and Masuda, 2009) and explains why one observes angles below 45◦ in194

arctic regions, where the ice cover quells the turbulence near the ocean surface. On the other195

hand, the regularity of strong winds in the Drake Passage makes the assumption of a uniform196

eddy viscosity reasonable (that is, ` = 1), so that in this region the deflection angle is typically197

close to 45◦ (see the data in Polton et a., 2013; Roach et a., 2015). We are not aware of detailed198

observational studies relating the deflection angle to the vertical profile of eddy viscosity, but199

we hope that our work will serve as a guide.200
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