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with respect to the prevailing wind direction occurs in a surface boundary layer, whose typ-37

ical depth is tens of metres. Ekman’s pioneering solution (see Ekman, 1905), derived for a38

constant vertical eddy viscosity, captures the general qualitative behaviour, but differences of39

detail between observations and Ekman theory were recorded in the last decades. While the40

characteristics (ii)-(iii) hold for any depth-dependent vertical eddy viscosity (see Constantin,41

2020), there is a need to explain the occurrence of surface currents at an angle in the range42

10-75◦ to the wind (rather than the 45◦ predicted by Ekman), with large variations depending43

on the regional and seasonal climate (see the data in Röhrs and Christensen, 2015; Yoshikawa44

and Masuda, 2009).45

This discrepancy is typically ascribed to the effect of a vertical eddy viscosity that varies with46

depth. The explicit solution found by Madsen (1977), for a vertical eddy viscosity that varies47

linearly with depth, leads to a plausible, although somewhat low, surface current deflection48

angle of about 10◦. The avenue of seeking explicit solutions is not very promising, since only a49

few are available and the intricacy of the details makes it difficult to extract broad conclusions50

(we refer to Constantin and Johnson, 2019; Grisogno, 1995, for a survey of known Ekman-type51

solutions). The challenging nature of the task is highlighted by the recent analysis pursued52

in Bressan and Constantin (2019); Constantin (2020) where asymptotic approaches, applicable53

for eddy viscosities that are small perturbations of a constant, revealed the convoluted way in54

which the eddy viscosity influences the deflection angle: while a slow and gradual variation of55

the eddy viscosity with depth results in a deflection angle larger than 45◦, the typical outcome56

of an eddy viscosity concentrated in the middle of the boundary layer is a deflection angle57

below 45◦. A better understanding of the deflection angle is important theoretically but also58

for operational oceanography, e.g. in the context of search-and-rescue operations or in remedial59

action for oil spills.60

The important issue of a quantitative relation between the vertical eddy viscosity and the61

magnitude of the deflection angle remains open. The aim of this paper is to discuss this issue62

in cases when the eddy viscosity is piecewise uniform. The in-depth analysis that can be63

pursued in this relatively simple setting permits us to gain insight into the way the turbulent64

parametrization (e.g. of general circulation models) controls the deflection angle. This paper is65

organised as follows: in Section 2 we present the Ekman equations for wind-driven ocean for66

depth-dependent eddy viscosities and we perform a suitable scaling that reduces the number67

of parameters. In Section 3, an explicit solution is constructed and illustrated for an infinitely-68

deep ocean with two constant values of eddy viscosity. This solution covers the full range of69

possibilities, and exhibits deflection angles covering the full range between 0 and 90◦. Various70

special or limiting cases are highlighted. Finally, Section 4 offers our conclusions.71

2 Equations of motion and scaling72

For a deep, vertically homogeneous ocean, of infinite lateral extent, the horizontal momentum73

equation for steady flow takes the following (complex) form under the f -plane approximation:74

if U =
1

ρ

∂τ

∂Z
−

1

ρ
∇P + higher-order terms , (1)

where U (Z) = U + iV is the complex horizontal velocity in the (X, Y )-plane, Z is the depth75

below the mean surface Z = 0, f is the Coriolis parameter, ρ is the (constant) density, ∇P =76

∂P/∂X + i ∂P/∂Y is the horizontal pressure gradient, τ (Z) = τx + iτy is the shear stress due77

to molecular and turbulent processes, and the higher-order terms, representing interactions78

between the variables, are presumed to be small. Decomposing the horizontal velocity into79

pressure-driven (geostrophic) and wind-driven (Ekman) components U = Ug+Ue, we see from80
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3.2 Results125

First, we examine certain special cases.126

When ℓ = 1, there is no discontinuity in eddy viscosity. Since in this case β = 0, we have127

tan θ0 = 1, i.e. θ0 = 45◦ in agreement with the classical Ekman spiral solution.128

As ℓ → 0, the eddy viscosity vanishes in the lower layer, and the flow field ψ must also129

vanish. In this case, tan θ0 reduces to130

tan θ0 =
sinh(2h) + sin(2h)

sinh(2h)− sin(2h)
, (22)

which has a non-trivial dependence on h. The maximum value is attained as h → 0; then131

tan θ0 → ∞ or θ0 → 90◦.132

As ℓ→ ∞, corresponding to an extremely viscous lower layer, tan θ0 reduces to the inverse133

of the previous expression, i.e.134

tan θ0 =
sinh(2h)− sin(2h)

sinh(2h) + sin(2h)
. (23)

The minimum occurs for h→ 0 and there tan θ0 → 0 or θ0 → 0.135

For general ℓ, there are also values of h for which tan θ0 = 1. These occur when the136

numerator and the denominator of the general expression above for tan θ0 are equal. But this137

means αβ sin(2h) = 0 or (1 − ℓ2) sin(2h) = 0. One solution is the classical Ekman spiral with138

ℓ = 1 noted above. But we also have h = nπ/2 for non-negative integers n. When n = 0,139

the upper layer vanishes and the eddy viscosity is uniform throughout the entire depth. The140

classical Ekman spiral is expected in this case. The other special depths imply θ0 exhibits a141

non-monotonic dependence on h for fixed ℓ. In fact, θ0 exhibits a decaying oscillation about a142

value of unity.143

A summary of the results in the ℓ–h plane is provided in figure 1. Along any line ℓ = constant144

(excluding ℓ = 1), θ0 reaches a minimum or maximum in h when the following relation holds:145

1− ℓ

1 + ℓ
= ±e2h

√

cos(2h)− sin(2h)

cos(2h) + sin(2h)
(24)

obtained by setting the partial derivative of tan θ0 w.r.t. h equal to zero. The first extremum146

with increasing h occurs for h < π/8 (when h = π/8 the above equation yields ℓ = 1). Note147

that as h → 0, (1 − ℓ)/(1 + ℓ) → ±1, implying either ℓ → 0 or ℓ → ∞ as noted previously.148

Extrema also occur for larger h since the function in the square root above is periodic, but149

these involve much weaker variations in θ0 about 45
◦, diminishing like e−nπ for positive integers150

n. When n = 1, the maximum excursion in tan θ0 is approximately 0.05735.151

4 Conclusions152

We have re-visited the famous problem originally posed by Nansen (see the discussion in Hunt-153

ford (2002)) and solved by Ekman (1905) to understand wind-driven currents in the ocean. By154

balancing viscous and Coriolis forces, and assuming a constant vertical eddy viscosity, Ekman155

(1905) predicted that the surface current is deflected by 45◦ to the right/left of the prevailing156

wind direction (in the Northern/Southern Hemisphere). Moreover, Ekman (1905) found that157

the net fluid transport is 90◦ to the right/left of the wind direction.158

Since then, a number of studies have sought to explain observed discrepancies with Ekman’s159

theory (Röhrs and Christensen, 2015; Yoshikawa and Masuda, 2009), in particular deflection160

angles significantly different from the 45◦ prediction (Madsen, 1977; Grisogno, 1995; Bressan161

and Constantin, 2019; Constantin and Johnson, 2019; Constantin, 2020). The main conclusion162
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