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Abstract.

Vertical land motion (VLM) at the coast is a substantial contributor to relative sea level change. In this work, we present

a refined method for its determination, which is based on the combination of absolute satellite altimetry (SAT) sea level

measurements and relative sea level changes recorded by tide gauges (TG). These measurements complement VLM estimates

from GNSS (Global Navigation Satellite System) by increasing their spatial coverage. Trend estimates from SAT and TG5

combination are particularly sensitive to the quality and resolution of applied altimetry data as well as to the coupling procedure

of altimetry and TGs. Hence, a multi-mission, dedicated coastal along-track altimetry dataset is coupled with high-frequency

TG measurements at 58 stations. To improve the coupling-procedure, a so-called ’Zone of Influence’ (ZOI) is defined, which

confines coherent zones of sea level variability on the basis of relative levels of comparability between TG and altimetry

observations. Selecting 20% of the most representative absolute sea level observations in a 300 km radius around the TGs10

results in the best VLM-estimates in terms of accuracy and uncertainty. At this threshold, VLMSAT-TG estimates have median

formal uncertainties of 0.58 mm/year. Validation against GNSS VLM estimates yields a root-mean-square (RMS∆VLM) of

VLMSAT-TG and VLMGNSS differences of 1.28 mm/year, demonstrating the level of accuracy of our approach. Compared to a

reference 250 km radius selection, the 300 km Zone of Influence improves trend accuracies by 15% and uncertainties by 35%.

With increasing record lengths, the spatial scales of the coherency in coastal sea level trends increase. Therefore the relevance15

of the ZOI for improving VLMSAT-TG accuracy decreases. Further individual Zone of Influence adaptations offer the prospect

of bringing the accuracy of the estimates below 1 mm/year.

1 Introduction

Coastal vertical land motion (VLM) significantly contributes to relative sea level change (SLC). VLM is in many places of the

same order of magnitude (1-10 mm/year) as the sea level rise signal itself and displays significant spatial variations (Santamaría-20

Gómez et al., 2012). Consequently, VLM affects coastal impacts of climate-sensitive processes and can regionally account for

large fractions of the observed and projected coastal SLC signal (Wöppelmann and Marcos, 2016; Slangen et al., 2014). Thus,

the accurate estimation of VLM is vital, not only to disentangle climatic and geodynamic SLC signatures, but also to obtain

more robust estimates of past and future relative SLC and its associated uncertainty (Church et al., 2013; Santamaría-Gómez
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et al., 2017). In this work, we present a novel approach of VLM estimation using coastal satellite altimetry, tide gauges and the25

Global Navigation Satellite System (GNSS).

VLM is caused by the superimposition of natural processes and anthropogenic influences in the Earth System and operate

on manifold spatial and temporal scales (Pugh and Woodworth, 2014). Mechanisms such as the Glacial Isostatic Adjustment

(GIA), the postglacial rebound of the Earth to changing ice and water load, cause distinct large-scale VLM, which can be

assumed to be uniform on centennial timescales (Peltier, 2004). Recent acceleration of land ice mass loss was shown to30

additionally enhance deformation rates, posing new challenges for sea-level studies due to its time-varying signal (Riva et al.,

2017). Surface mass changes are also caused by terrestrial freshwater storage changes and can have small-scale effects on VLM.

Groundwater pumping for instance, contributes not only to local small-scale VLM and gravity changes, but also modifies sea

level rise in distant areas (e.g., Wada et al., 2012; Veit and Conrad, 2016). Other small-scale VLM effects such as erosion or

tectonic movements can be locally confined to several kilometers with more subtle, not necessarily linear temporal behaviour35

(Brooks et al., 2007; Kolker et al., 2011; Poitevin et al., 2019). These and other non-linear processes at very short time scales are

particularly challenging in the estimation of a linear rate of long-term VLM from TGs, since they would appear as instabilities

in the record (similarly to a change in datum).

In response to the substantial impact on relative sea level and the large spectrum of VLM sources, several strategies have

been developed to estimate VLM. The ability to capture the diversity of VLM processes, however, strongly depends on the40

method and geodetic technique used in the VLM estimation. Furthermore, the coverage and associated accuracy of VLM

estimates differ across the methods. Given that the global absolute sea level trend during the altimeter era is in the order of 3

mm/year (3.1 ±0.1 mm/year from 1995 to 2018 as reported in Cazenave et al., 2018), one prerequisite for VLM estimation

is that the associated trend uncertainty should be at least one order of magnitude lower than this subtle signal (Wöppelmann

and Marcos, 2016). Hence, dense and accurate VLM estimates are required to complement modelled or measured rates of45

absolute sea level rates, which is ultimately crucial for coastal planning. Improving the reliability of VLM estimates and their

associated uncertainties is thus one major concern of this study. In the following, we briefly contrast the three major approaches

of deriving coastal VLM globally.

1.1 Estimating Coastal Vertical Land Motions

The majority of global sea-level-studies utilized geodynamic GIA-models to correct, for example, tide gauge records for secular50

land motion trends or to extrapolate future relative SLC based on climate-projections (e.g., Church and White, 2011; Hay et al.,

1990; Carson et al., 2016). GIA still represents the only long-term geological process for which VLM can be modeled on a

global scale. However, one caveat is that GIA-VLM models were shown to be still biased by imperfect assumptions of ice

history and the Earth’s structure (King et al., 2012) and are thus model-dependent (Jevrejeva et al., 2014). Another foreseeable

disadvantage is that the sole application of GIA-models neglects other sources of VLM (e.g. tectonics, erosion or anthropogenic55

impacts, Wöppelmann and Marcos (2016)). This led, for instance, to discrepancies in estimated rates of historical global mean

sea level (GMSL) change, when comparing model-based solutions against those using measurements from GNSS (Hamlington

et al., 2016).
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For more than a decade, these direct geodetic estimates (GNSS, such as GPS, GLONASS or GALILEO) have been exploited

to determine vertical velocities (Wöppelmann et al., 2007; Snay et al., 2007; Mazzotti et al., 2008). GNSS measurements denote60

the most precise source of VLM detection and are well established in local to global scale studies (e.g., Bouin and Wöppel-

mann, 2010; Fenoglio et al., 2012; Santamaría-Gómez et al., 2017). Wöppelmann and Marcos (2016) identified comparably

low formal errors of GNSS-VLM rates (0.21 mm/year) when auto-correlation was taken into account. Santamaría-Gómez et al.

(2012) estimated an accuracy of 0.6 mm/year of GNSS-based VLM (from at least three years of continuous data), by com-

paring 36 globally distributed co-located GNSS velocity estimates. Thus, because of its considerable accuracy, vertical GNSS65

velocities frequently served as benchmark estimates for many sea-level applications, e.g. for GIA-model evaluation or local

VLM-corrections of TG records (Sánchez L., 2009; Sanli and Blewitt, 2001).

For the latter use a necessary working hypothesis is that GNSS-VLM represents the same movements as experienced at the

tide gauge (Wöppelmann and Marcos, 2016). Because VLM is shown to potentially possess high spatial variability even on

small scales (tens of kilometers), GNSS-stations should be ideally very close to the tide gauge. This requirement, however,70

reduces the number of available co-located stations (130 GNSS stations within a 1 km range of GLOSS (Global Sea Level

Observing System) tide gauges, Wöppelmann et al. (2019)) and thus confine the global coastal coverage to mostly Europe,

Japan and North America.

To extend the number of VLM estimates, several studies advanced the application of combining satellite altimetry (SAT) and

tide gauge (TG) observations (Cazenave et al., 1999; Nerem and Mitchum, 2003; Kuo et al., 2004; Pfeffer and Allemand, 2016;75

Wöppelmann and Marcos, 2016; Kleinherenbrink et al., 2018). The principle of this approach is to subtract the absolute SLC

gathered by the altimeter from relative SLC observations at the TG. Ideally, the differenced time series (SAT minus TG) yields

the vertical displacement of the TG with respect to the reference of the altimeter. The accuracy of this technique is, among

numerous other factors, strongly dependent on the stability of the altimeter measurement system. Major systematic errors

stem from limitations in the realization of the reference frame, as well as from limitations in the long-term stability of altimeter80

instruments and corrections (e.g., Couhert et al., 2015; Wöppelmann and Marcos, 2016; Watson et al., 2015). Altimetry records

can be affected by globally and regionally varying drifts, which were found to be most pronounced on TOPEX altimeter side-A.

The calibration of altimetry with TGs is influenced by the applied VLM correction (Watson et al., 2015). Conversely, SAT-TG

VLM estimates are affected by the altimeter drift or by errors originating from the intermission drift biases (or drifts w.r.t

the reference mission). Due to the availability of global and continuous absolute sea level measurements, this method not85

only provides a complementary source to GNSS measurements, but also improves the geographical distribution of the data, as

virtually every valid TG is usable.

While all of these three sources of information, GIA-models, GNSS and ’satellite altimetry minus tide gauge’ (SAT-TG)

techniques have individual merits, their combined use is valuable to further substantiate VLM estimates. GNSS-observations

are necessary to validate both GIA-models and the SAT-TG approach (Santamaría-Gómez et al., 2012; Wöppelmann and90

Marcos, 2016; Kleinherenbrink et al., 2018). Recent studies combined all three approaches to reconstruct GMSL (Dangendorf

et al., 2017), or to densify the estimation of contemporary rates of vertical land motions (Pfeffer et al., 2017) or relative sea
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level change (Hawkins et al., 2019). Any advancement in these individual approaches, therefore, supports developments of the

others and improves the global assessment of coastal VLM estimates.

In this study, we focus on enhancing the application of SAT-TG difference for VLM detection. Our investigations not95

only further develop the latest progress of the method, but also gain a new perspective on sea level trend and uncertainty

characterization and quantification in coastal zones. The next section recapitulates the latest state of VLMSAT-TG estimation on

which we base our innovations.

1.2 Progress in VLM estimation by satellite altimetry and tide gauge difference

The combination of SAT and TG observations for VLM determination was steadily improved over the last two decades and100

is elaborated in the latest review by Wöppelmann and Marcos (2016), hereinafter WM16. WM16 investigated performances

of different gridded and along-track altimetry products (e.g. AVISO (Archiving, Validation, and Interpretation of Satellite

Oceanographic data) and GSFC (Goddard Space Flight Center). They combined sea-level anomalies (SLAs) as 1◦-radius aver-

ages with monthly-mean TG records from PSMSL (Permanent Service for Mean Sea Level). Among all datasets, the gridded

AVISO product revealed the best correlations and residuals between altimetry and TG records. Using this dataset, WM16 also105

obtained the most precise VLM estimates were achieved, with median formal uncertainties of 0.8 mm/year. Validation against

GNSS-based trends from ULR5 (Université de La Rochelle, Institut Géographique National analysis) at 113 colocated stations

resulted in an RMS∆VLM of 1.47 mm/year of VLMSAT-TG and VLMGNSS trend differences, providing the highest accuracies

among the datasets.

Notwithstanding the weaker performance of the along-track product (from GSFC) achieved in WM16, Kleinherenbrink et al.110

(2018) made great progress in using along-track altimetry (Topex, Jason1 and 2, from the Radar Altimeter Database, RADS

(Scharroo et al., 2012)) to estimate VLM. Their approach aimed to overcome the spatial downsampling and associated loss of

information in gridded products such as AVISO. They also advanced the procedure of combining altimetry and TG data. Instead

of taking 1◦-averages around the TGs, they selected altimetry data according to different absolute correlation thresholds and

implemented correlation-weighting of time series. Generally, the thresholding strategy functioned as a filter to remove stations115

of low comparability: With varying correlations between 0.0 and 0.7, they obtained RMS∆VLM errors from 2.1 to 1.20 mm/year

(at 155 stations), which significantly improved WM16’s results. For a consistent set of stations, they found a slight sensitivity

of the RMS∆VLM to variations of the prescribed minimum correlation, however, they reported insignificant improvements of a

few percent. Because they derived GNSS vertical velocities from the Nevada Geodetic Laboratory (NGL) database by taking

the median of available estimates within a 50 km range to the TG, they increased the number at which VLMSAT-TG-trends could120

be validated to 155.

Based on Kleinherenbrink et al. (2018) and WM16, we identify two essential factors which are vital for the quality of

trend estimation by SAT-TG difference. Advancements with respect to both factors not only potentially led to improved VLM

estimates in Kleinherenbrink et al. (2018), but also motivate for further innovations:
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1 Data quality: In coastal regions accuracy of altimetry measurements is affected by the local departure of the radar signal125

from the known ocean response (due to inhomogeneities of the illuminated area) and by the inaccuracy of the standard

routinely applied corrections and tidal models. Developments for the solution of both issues led to rapid improvements

in the recent years by e.g. application of coastal-retracking and advanced geophysical corrections (e.g., Cipollini et al.,

2017; Passaro et al., 2014; Fernandes et al., 2015). Dedicated coastal altimetry datasets (e.g. COASTALT, ALES, PIS-

TACH) might thus outperform previously applied products (e.g. AVISO), which do not yet benefit from these implemen-130

tations.

2 Data selection: Next to issues concerning data quality, the second factor defining trend uncertainty is the sensitivity of

VLMSAT-TG estimates to the spatial selection of altimeter data in the vicinity of the TG. WM16 showed, that averaging

SLA in a radius of 1◦ around the TG resulted in higher correlations than using the best correlated or the closest grid

point to the TG. Kleinherenbrink et al. (2018) found a small influence of variations of absolute correlation thresholds135

on the trend estimates. Therefore, considering the diversity of processes which drive coastal sea level variability, such

as waves, winds or coastal and bathymetric properties, an advanced adaptation of the choice of altimetry SLA might

improve representation of the signal captured by the TG.

These reasons motivate for further improvements of both components, quality of the data and practise of combining altimetry

and TG data. We aim to understand how dedicated along-track coastal altimetry can outperform standard-gridded products.140

We also seek to generalize an optimal selection of SLA’s, underpinned by the local dynamical features of measured sea level

variability.

In this work, we present a new approach of combining SAT and TG observations to improve VLM estimates. In contrast

to previous attempts, we exploit TG and SAT data at the highest available temporal and spatial scale for globally distributed

stations. We couple advanced coastal altimetry data with high frequency TG records from the Global Extreme Sea Level Anal-145

ysis (GESLA). Implementation of these high frequency TG records constitutes a further innovation for VLM estimation. So far

such data has only been applied in local studies (Idžanović et al., 2019) and monthly TG data were commonly exploited in this

regard. We show that precision and accuracy of the trend estimates can be optimized, when using refined spatial selection crite-

ria of altimetry sea level anomalies. With this approach we identify coherent zones of sea level variability, which best represent

the coastal in situ measurements. Our method is generally transferable to analysis of coastal sea level trend determination.150

Sections 2 and 3 describe the individual datasets, applied processing steps and the optimization of combining altimetry and

TG data. Section 4 presents performance of trend estimates, i.e. estimated uncertainties and validation against GNSS data (in

this study all GNSS data are based on the Global Positioning System (GPS)). Finally, we contrast our results and methods with

previous work and discuss the impact of the interconnection of time and space-scales on the evolution of coherency of sea level

in coastal regions (section 5).155
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2 Data

We use different altimetry products, in order to assess the impact of special coastal products on associated VLMSAT-TG trend

estimates. We compare the coast-dedicated retracker ALES (Adaptive Leading Edge Subwaveform retracker, Passaro et al.

(2014)) along-track product against the interpolated AVISO dataset (sections 2.1 and 2.2). Altimetry data are combined with

TG observations from the monthly mean PSMSL and the high frequency GESLA data base, which are described in sections160

2.3 and 2.4. We develop a new coupling strategy of high-rate altimetry and TG records in section 3.2.

2.1 Coastal along-track altimetry - ALES

The coastal altimetry product is constructed from 1-Hz multi-mission altimetry measurements processed by DGFI-TUM

(OpenADB, https://openadb.dgfi.tum.de). We combine data from the missions ERS-2, Envisat, Saral, Jason1-Jason3 and their

extended missions, which provide continuous altimetry time series of 23 years (1995-2018). For all missions, satellite orbits165

in ITRF2008 are used, mostly processed by CNES (GDR-E). For ERS-2, GFZ VER11 orbits are applied. The SGDR data

are re-processed with the ALES retracker (Passaro et al., 2014) and an improved sea state bias correction scheme (Passaro

et al., 2018). The geophysical corrections are summarized in Table 1. They are consistent with those incorporated in the latest

development of the empirical ocean tide model (EOT19p) by Piccioni et al. (2019). If available, the Dynamic Atmopsheric

Correction consists of the ECMWF ERA-Interim reanalysis (DAC-ERA, Carrère et al. (2016)). This product especially re-170

duces along-track sea level errors in the earlier missions (in this study ERS-2). Because this product is unavailable for the very

recent missions, we implement the DAC (Carrère and Lyard, 2003) based on ECMWF for the last cycles of Jason-2 (and its

extended mission) and the full Jason-3 and Saral missions. To reduce radial errors in the different missions, the tailored coastal

altimetry product is cross-calibrated using the global multi-mission crossover analysis (MMXO) (Bosch and Savcenko, 2007;

Bosch et al., 2014). The MMXO minimizes a large set of globally distributed single- and dual sea surface height crossover175

differences by least-squares adjustment. The estimated radial errors are used to correct each individual sea surface height mea-

surement. In this way, we not only reduce orbit inconsistencies, but also those originating from the range and from applied

corrections. Since we estimate a radial correction for each observation, we minimize intermission drift differences as well as

regionally correlated errors. Note that this approach is a relative calibration and provides range bias corrections with respect to

NASA/CNES reference missions. Any remaining absolute drift of these reference missions (with respect to TGs) still influence180

the drift of the whole altimeter solution.

We map all altimetry records on 1-Hz nominal tracks consistent with the CTOH nominal paths (Center for Topographic

studies of the Ocean and Hydrosphere, www.ctoh.legos.obs-mip.fr) of the individual missions, using nearest-neighbour inter-

polation. Then, we scan the data for outliers along the tracks, to hinder spurious extreme values to propagate in time series.

This scheme features:185

– Absolute thresholds: Any absolute SLA exceeding 2 m is excluded.
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Table 1. Applied models and geophysical corrections for estimating sea level anomalies.

Parameter Model reference

Range and Sea State Bias ALES (Passaro et al., 2014)

Inverse barometer DAC-ERA (Carrère et al., 2016)

Wet troposphere GPD+ (Fernandes et al., 2015)

Dry troposphere VMF3 (Landskron and Böhm, 2018)

Ionosphere NIC09 (Scharroo and Smith, 2010)

Ocean and Load tide FES2014 (Carrère et al., 2015)

Solid Earth and Pole tide IERS 2010 (Petit and Luzum, 2010)

Mean Sea surface DTU18MSS (Andersen et al., 2018)

– Running median test: If the absolute difference of the data and its running median (centered, over 20 points) is greater

than 12 cm, data are excluded.

– Consecutive difference test: Outliers are detected when the difference of consecutive points exceeds 8 cm. The test

identifies the outliers according to the differences of the other neighbouring values190

The absolute thresholds (12 cm, 8 cm) correspond to 2-σ of the median running variability and 2-σ of absolute consecutive

differences based on the analysis of different tracks of Jason-2 and ERS-2.

SLAs along the same track and cycle are then averaged over predefined areas as described in sections 2.5 and 2.6. We built

a time series by considering all averaged SLAs from the along-track multi-mission dataset for the study period. To check for

outliers in each SLA time series, we exclude values exceeding absolute values of 3-σ of the data. This cleaned 1 Hz coastal195

altimeter dataset is hereinafter called ALES and used for the combination with the TG-datasets described in section 3.1.

2.2 Gridded altimetry data - AVISO

The gridded Ssalto/Duacs altimeter product was produced and distributed by the Copernicus Marine Environment Monitoring

Service (CMEMS, http://marine.copernicus.eu) and is hereinafter called AVISO as it was previously distributed by CNES

AVISO+. We use monthly sea level anomalies, which are resolved on a 0.25◦ Cartesian grid and cover the period from 1992-200

2019. The product already includes the DAC (Carrère and Lyard, 2003) comprising the dynamical barotropic ocean response

to atmospheric forcing (modelled with MOG2D-G), as well as the inverse barometer (IB) response. Consistent with the along-

track dataset ALES, FES2014 (Carrère et al., 2015) is implemented to correct for tidal signals. Other corrections and pre-

processing steps are documented by CMEMS.

2.3 Monthly tide gauge data - PSMSL205

We use monthly mean TG data from the datum controlled PSMSL (Holgate et al., 2013) database. The PSMSL constitutes the

primary source of TG data for most sea-level research, or for the assessment of long-term trends of VLM based on SAT and
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TGs. The service undertakes quality control of the data including checks for consistency of the annual cycle, outlier detection

or intercomparisons with neighbouring stations, which enhances the reliability of the data. Among all available stations, we

select those which contain at least 180 months (15 years) of valid measurements during the altimetric era (1993 - present),210

resulting in a total number of 627 stations. We apply the same monthly-averaged DAC-correction as used for the AVISO data

(Carrère and Lyard, 2003). To match the DAC-correction with the TG records, we select among the 9-closest grid-points of the

solution, the one which results in the highest variance reduction.

2.4 High frequency tide gauge data - GESLA

In addition to monthly-mean PSMSL TG-data, we exploit the GESLA dataset (Woodworth et al., 2016), which contains a large215

global collection of high-frequency TG records with sampling rates ranging from hours down to 6 minutes. The latest version

GESLA 2 contains in total 1355 station records and was assembled from a variety of international and national databanks (e.g.

UHSLC (University of Hawaii Sea Level Center) and GLOSS) or independent sources. It thus also shares many stations with

the monthly PSMSL database, the preferred dataset for VLMSAT-TG computation. Unfortunately, at this time, GESLA holds

only data until 2015. Therefore, we also restrict the considered period for all dataset combinations (see section 3.1) to before220

2015. As for the PSMSL data, we select stations with at least 180 months of valid data.

In contrast to PSMSL data used in WM16, GESLA TGs feature no rigorous outlier rejection by default in except that of the

primary data providers (Woodworth et al., 2016). Extreme values from strong signals like tsunamis or station shifts and other

irregularities are still present in the data. Some of those issues are adressed on the GESLA-webpage, however, for the sake

of long-term trend evaluation, we perform a further global outlier analysis. Therefore, we check all TG time series manually225

for irregularities: Station shifts from seasonal to interannual timescales are either handled by dismissing certain sections of the

time series or completely excluding the TG from the analysis. Single extreme events from hourly to monthly timescales are

only excluded, when they deviate from the measurements by several meters, because we want to maintain as much data as

possible. If such events are present, we flag any values beyond the upper/lower 0.999 quantiles of a fitted normal distribution

of the data. Occasionally we apply this quantile-outlier exclusion recursively.230

To obtain a uniform temporal resolution, we resample this outlier-free TG set to hourly records by cubic interpolation. The

records are then corrected for the tidal signal as well as for the ocean response to atmospheric wind and pressure forcing.

The tidal variability is suppressed by using a 40-h loess (locally estimated scatterplot smoothing) filter (Cleveland and Devlin,

1988) as in Saraceno et al. (2008). This filtering approach most effectively reduces tidal variance at periods lower than 2

days (e.g. reduction by more than two orders of magnitudes at daily periods). However, tidal variability at periods larger than235

2 days is not significantly attenuated by the filter. Therefore, one caveat of this approach is that there remains residual tidal

variance at longer periods between TGs and altimetry, given that the latter features a model-based adjustment for longer tides.

We do, however, not apply the same tidal model to the TGs, due to known issues related to decreased model performance

in shallow water (Piccioni et al., 2018). In accordance with PSMSL-TG data, we implement the same Dynamic Atmospheric

Correction (Carrère and Lyard, 2003). This solution features a 6h sampling frequency, which is therefore down-sampled to240

hourly anomalies by cubic interpolation. For the global dataset, we obtain a mean variance reduction of 37.8% and a mean
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correlation of 0.6. As in WM16 and Ponte (2006), we find a distinct latitude dependence of correlations and variance reduction,

with decreasing performance nearer to the equator. We note, that the total variance reduction, which we apply on the high-rate

TG data is naturally less than in WM16, who corrected monthly mean, detrended and deseasoned data.

3 Methods245

3.1 Dataset combinations

To understand the sensitivity of the VLM estimations on (1) quality and resolution of the data and (2) the selection procedure,

we analyse the performances of four different dataset combinations: ALES-PSMSL-250km, ALES-GESLA-250km, AVISO-

PSMSL-250km and ALES-GESLA-ZOI.

The first three combinations are constructed to compare the performances of the along-track (ALES) against the gridded250

altimetry product (AVISO) combined with monthly TG observations. With ALES-GESLA-250km we also investigate the

possible advantage of using the GESLA high rate TG product. For all these experimental sets, SLA time series are merged or

averaged within a 250 km radius around the TGs, which is thus a selection procedure independent of the actual comparability

of SLAs.

To produce the ALES-GESLA-250km dataset, we derive differences of the merged, non-uniformly sampled SLAs and the255

hourly-sampled GESLA TG records, by cubic interpolation of the latter and a maximum allowed time-lag of 3 hours between

the measurements. We down-sample these high-rate differenced time series to monthly means. For ALES-PSMSL-250km on

the other hand, we first compute monthly-means from SLAs and subsequently subtract these monthly SLAs from the monthly-

sampled relative SLAs from PSMSL. Finally, we directly compute the differenced SAT-TG time series from the averaged

monthly AVISO and the PSMSL data, which yields the AVISO-PSMSL-250km dataset.260

Using these combinations, we investigate the mere changes from differences formed using along-track data at high or at

low frequency (ALES-GESLA-250km and ALES-PSMSL-250km), or using monthly gridded data (AVISO-PSMSL-250km).

Here, ’high-frequency’ refers to daily time scales of variability and ’low-frequency’ to monthly time scales. The dataset ALES-

GESLA-ZOI incorporates further SLA-selection-schemes, which are explained in the following section.

3.2 The Zone of Influence265

We aim to develop a new SLA-selection scheme, which accounts for the observed coherency of sea level variability. However,

due to the diversity of the underlying physical mechanisms and their complex interplay with the coast, the spatial coherency

of sea level dynamics is highly variable in coastal regions (Woodworth et al., 2019). Coastally trapped waves, for instance,

were argued to establish long-range correlations along the continental slopes (Hughes and Meredith, 2006) and to mediate

the influence of the open ocean (Hughes et al., 2019) on the coast. While some signals, such as interannual modes of climate270

variability, generate high spatial coherence, other local features, such as the presence of a coastal current, can significantly

modify the sea level variability within few kms of the coast, as shown in the case of the seasonal signal of the Norwegian
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Coastal Current in Passaro et al. (2015). Accordingly, the capability of compare TG-based sea level variability with altimetry

utterly depends on which time and length scales are resolved by the data.

The key concept of our approach is to capture the extent to which coastal altimetry measurements are similar to the in situ TG275

observations. To do so, we extend the methodology proposed by Santamaría-Gómez et al. (2014), who looked for the altimetry

grid point mostly correlated with the TG, and Kleinherenbrink et al. (2018), who considered a larger set of points based on

absolute thresholds of correlation. In contrast to these previous studies, we assess the influence of using relative thresholds of

comparability on both the accuracy and the uncertainty of the trends.

We exploit combinations of along-track ALES data and high frequency GESLA records, to identify regions of sea level280

variability that show maximum coherency with TG observations, which we hereinafter call the Zone of Influence (ZOI). With

this approach, our objective is to decrease noise of the differenced, high frequency VLMSAT-TG time series using the ZOI to

hone trends and uncertainty estimates.

To define the ZOI, we investigate different statistical criteria S, which provide a measure of similarity of sea level variability

between TG and SAT observations. Here, we use the Pearson correlation coefficient, the RMSSAT-TG as well as the amplitude285

of the residual annual cycle between both TG and SAT records. We compute each of those measures for every point of the 1

Hz along-track data (ALES) in combination with the TG records from GESLA. As for ALES-GESLA-250km, TG data are

interpolated onto the time step of the altimetry records. Correlations and RMSSAT-TG are computed from the detrended TG and

SAT time series. The amplitude of the residual annual cycle is obtained from the remaining seasonal signal of the difference

of the time series (SAT-TG). We acquire a dataset, holding information of the performance of multi-mission along-track data290

in the vicinity of every GESLA TG. The statistics are based on de-trended data. Thus, all the metrics may be influenced by

the similarity of the annual cycle. However, by repeating this analysis using de-trended and de-seasoned data (not shown), no

significant differences are identified.

To confine the ZOI, we select sub-sets of the data containing the best-performing statistics (i.e. highest correlation, lowest

RMSSAT-TG or residual annual cycle) above theXth-percentile according to the distribution of the statistic S in a 300 km radius295

around the TGs. Every sub-set (X,S) represents an individual ZOI, in which we average SLAs in accordance with the steps

involved in the aforementioned 250 km-radius-selection (ALES-GESLA-250km, section 3.1). The high-rate SLA time series

(ALES) are then again subtracted from GESLA, providing the ALES-GESLA-ZOI dataset for VLM estimation (section 3.3).

Note that in contrast to the 250 km selection, we extend the range in which SLAs are taken into account to 300 km to define

the ZOI. The previous 250 km selection is, as in Kleinherenbrink et al. (2018), based on the space auto-correlation scales of300

SLAs, which reflect characteristic eddy length scales (Stammer and Böning, 1992; Ducet et al., 2000). These scales decrease

towards higher latitudes (i.e. towards the poles) with changing internal Rossby radius. However, several studies found much

larger correlation length scales of SLAs, in particular along shorelines (Calafat et al., 2018; Hughes and Meredith, 2006).

Other mechanisms than mesoscale eddy activity were investigated to account for these coherent changes. One example is given

by Calafat et al. (2018), who analysed the driving factors of sea-level variability at the south-eastern coast of the US. Using305

altimetry and three different ocean-models, they found coherent changes of the annual amplitude of SLAs over length scales of

thousands of kilometers along the coast from the Yucatan Penisula to Cape Hatteras. While the annual cycle signal itself was
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dominated by steric changes, with likewise large-scale correlations at the continental slope, changes of the annual amplitude

were argued to be dominated by boundary waves exerted by incident Rossby waves. Because we similarly find correlations

beyond the 250 km length-scale, in particular along elongated coastal regions (Figure 1 a and b), we justify the larger 300 km310

radius.

We identify coherent zones of sea-level variability represented by different selection-criteria in Figure 1. The statistics S

are computed based on individual along-track SLA time series (ALES) and GESLA TGs. We show different maps of these

along-track statistics for (a) the Australian Coast, (b) Californian Coast and (c) Chichijima island (Japan). The contour in the

first column exemplifies the extend of a ZOIs, which represents a sub-set of 20% of the best correlated data.315

The obtained coherent structures reveal notable dependencies on the local bathymetric and coastal properties. Figure 1 (a),

for instance, shows far-reaching alongshore correlations, which is supported by all of the analysed selection criteria. In this

example, the separation of the region of the coastal shelf-sea dynamics from region of offshore variability is in good agreement

with the underlying bathymetric gradients. Kurapov et al. (2016) found similarly pronounced SLA coherency along for the

Californian coast, as shown in Figure 1b). Based on model data and TG observations, they explained the large-scale along-320

shore correlation pattern in part with the propagation of coastal trapped waves. In other locations such as in Chichijima island

(see Figure 1c), coastal and bathymetric control of SL is reduced and different structures of coherency evolve. Consequently,

the ZOI can strongly vary in shape depending on the local coastal features and drivers of coastal variability.
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Figure 1. Zone of Influence: Different coherent zones of sea level variability are identified by different statistical criteria S. The columns

show correlations, RMSSAT-TG and the residual annual cycle from left to right. The metrics are computed on every point of the 1 Hz along-

track product, comparing the performance of altimetry measurements with the TGs, highlighted in green (center). (a) shows the South-Coast

of Western Australia, (b) the western coast of North America (TG in San Diego) and (c) Chichijima island (Japan). The ’color’ contour in

the first column indicates a Zone of Influence built from 20% of the best-correlated SLAs within a 300 km radius. The underlying contours

denote the underlying bathymetry.
12



Comparing these three examples, we also observe that absolute values of the statistics differ from site to site. Correlations

of along-track data near the Australian coastline, for instance, outperform the ones in example Figure 1b. The same holds325

for RMSSAT-TG values. These differences not only indicate different degrees of coherency, but can also stem from regional

deviations in the quality of data, i.e. quality of TG records or error sources in the altimetric product, such as tidal adjustments

or coastal corrections. Differences can also be caused by coastal properties, e.g. when the TGs are located in sheltered areas,

which separates the in situ variability from the one measured at distant altimeter tracks. We analyse therefore the use of relative

thresholds, to select the SLAs, since setting absolute thresholds as in Kleinherenbrink et al. (2018) might not be applicable330

in all cases. Figure 1c) also shows that different statistics can determine different extents of the ZOI, considering that rather

poorly correlated areas are partially characterised by low residual annual cycle amplitudes.

A correct choice of the ZOI based on a sub-set of high performance SLAs can significantly reduce the SAT-TG residuals

as are exemplified in Figure 2. Here, we show three time series of SAT-TG differences for the Australian site (see Figure 1a).

The first series (Figure 2a) indicates much lower residual noise, when the time series is constructed from the 20% best SLAs335

(according to the RMSSAT-TG). Here, the ALES-GESLA-ZOI residuals outperform those of the other combinations ALES-

PSMSL-250km and AVISO-PSMSL-250km, which are still affected by a pronounced annual cycle not related to VLM.

While using relative thresholds can reduce the noise of VLMSAT-TG time series for individual stations, we seek to identify a

globally optimal ZOI definition and associated criteria and thresholds, which lead to largest improvements of uncertainty and

accuracy of VLMSAT-TG. Therefore, we vary the relative thresholds X between 0.0 and 0.975 (with a stepsize of 0.025), which340

refers to using 100% and 2.5% of the best performing SLAs according to each criteria. For each threshold and criterion we

derive an individual global VLMSAT-TG trend and uncertainty dataset. We validate the performance of the trend estimates for a

specific ZOI definition in accordance with section 3.4. Optimal parameter X,S are then suggested for the global application

(section 4.2).
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Figure 2. Shown are ’SAT minus TG’ time series for different datasets and configurations for the TG in Figure 1a). (a) Monthly mean

(mm) time series for ALES-GESLA, when all SLAs are averaged in a 300 km radius (blue) and when SLAs are comprised of the 20% most

representative anomalies based on the RMSSAT-TG between altimetry and TG (red). The grey line denotes the underlying high-frequency time

series. (b) Monthly mean differenced time series for ALES-PSMSL and AVISO-PSMSL, which are based on a 250km-radius selection of

SLAs. (c) Same as (b) but with the annual and semi-annual signals removed.
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3.3 Statistical analysis: Trend and uncertainty estimation345

We fit the differenced time series to a combination of a deterministic model and stochastic noise models with the Maximum

Likelihood Estimation (MLE) method. Parameters of the deterministic model are comprised of a constant offset A and a linear

trendB. The annual and semi-annual signals are expressed by harmonic functions with the annual and semi-annual frequencies

ω1,2 and amplitudes C1,2 and D1,2.

y(t) =A+Bt+

2∑
i=1

Cicos2πtωi +Disin2πtωi (1)350

When combining altimetry and TGs for VLM estimation, several sources can contaminate the differenced time series and

inflate the actual ’red’-noise (low-frequency) content in the residuals, which generates auto-correlated signals in the data.

The SLA computation is affected by the instrumental errors of the range estimation and of each of the geophysical corrections

(Ablain et al., 2009). Such errors, as well as the measurement error of the TG itself, show up as residuals in the differenced time

series. Moreover, sea level dynamics that do not reflect the variability observed at the TG locations are not common between355

the TG and altimeter observation locations will also contribute to the SAT-TG differences. Therefore, to avoid underestimation

of the uncertainty of the parameters, we take into account auto-correlation in the residuals of the detrended and deseasoned

time series. We describe the power spectral density of the noise with a combination of a power-law and a white noise model

(using the Hector software (Bos and Fernandes, 2019)). The power-law process assumes that time-correlated noise power

is proportional to fκ, which for negative spectral indices κ describes increasing power at lower frequencies f and a white-360

noise process when κ= 0 (Agnew, 1992). Santamaría-Gómez et al. (2011) showed that this combination (of power-law and

white noise model) represents the best approximation of the noise content for 275 GNSS station position time series. This

combination was also implemented in studies concerned with VLMSAT-TG estimation (WM16, Kleinherenbrink et al. (2018);

Ballu et al. (2019)). In particular, the spectral index κ can contribute to detect the intrusion of low-frequency signals in the

differenced time series. Next to the spectral index κ we estimate the individual fractions of the power-law and white noise365

models, as well as the total variance σ2 which scales the amplitude of the noise. We emphasize that for individual regions other

noise models could be more appropriate than the implemented PL+WN model and would thus yield more realistic uncertainty

estimates. An advanced regional spectral analysis to identify the most suitable models is however beyond the scope of this

study.

3.4 Validation of VLMSAT-TG with VLMGNSS trends370

To validate SAT-TG-based trend estimates, we use the ULR6a GPS solution provided by the GNSS data assembly centre

SONEL (Systeme d’Observation du Niveau des Eaux Littorales, http://www.sonel.org). The reanalysis covers 19 years of

GNSS data from 1995 to 2014, which are processed within the ITRF2008, consistent with the reference frame of altimetry

orbits. The primary coordinates provided by GNSS are geocentric Cartesian coordinates (X, Y, Z, Vx, Vy, Vz). For the com-

parison with vertical trends inferred from other techniques, they are converted to ellipsoidal coordinates (latitude φ, longitude375
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λ and ellipsoidal height h, and Vφ. Vλ, Vh). Thus, we compare GNSS ellipsoidal height trends (Vh) with SAT-TG trends.

It should be mentioned that, while the altimetry trends refer to the so-called TOPEX/Poseidon ellipsoid, the GNSS vertical

trends refer to the GRS80 (Geodetic Reference System, 1980; Moritz (2000)) ellipsoid. Although there is difference of 70 cm

between the semi-major axes of both ellipsoids, the GNSS and SAT vertical trends can be compared without degradation of

precision, as both ellipsoids are geocentric and have the same orientation with respect to the Earth’s body (e.g., the ellipsoid380

minor axes coincide with the mean Earth’s rotation axis, and the major axes are on the Earth’s equatorial plane). We take into

account GNSS stations which are closer than 1 km to a TG. With this constraint we aim to avoid potential differential vertical

motions between the TG and the GNSS-antenna (WM16).

Figure 3. a) Global Distribution of 52 common GESLA, PSMSL and ULR6-GNSS stations, which meet the described requirements. b)

Number of all TG stations sorted by the amount of months which contain valid data (here shown in valid years) in the period 1993-2015.

The TG locations and record lengths differ among the presented experimental datasets (section 3.1). Therefore, we define

several requirements for the validation of those experimental-datasets, to obtain a consistent set of TG and GNSS validation385

pairs. In contrast to PSMSL records GESLA-TG observations only last until 2015. Even when PSMSL TG records are limited

to before 2015, they still contain more months of valid data than GESLA (see Figure 3b). Hence, we align the time period

covered by the PSMSL-TGs to the corresponding GESLA-TGs for all following experimental datasets. Generally, we only

take into account SAT-TG time series, when they cover at least 120 months of valid data. Note, that the outlier analysis (section

2.4) or coupling of high frequency TG data in the ZOI can reduce the length of the SAT-TG time series for GESLA TGs.390

Taking into account all these requirements, we obtain 52 common GESLA and PSMSL TGs, which provide a neighbouring

GNSS station within 1 km distance. These pairs are validated for ALES-PSMSL-250km, ALES-GESLA-250km and AVISO-

PSMSL-250km. The ALES-GESLA-ZOI combination includes six more stations. The resulting validation pairs are shown in

Figure 3a), where a higher coverage in northerly and midlatitude regions is evident.
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We compute the RMS∆VLM and the median of the differences (∆VLM) of VLMSAT-TG and VLMGNSS for a given dataset395

combination. To take into account the derived formal errors (U ) of the estimate we compute the weighted RMSw as follows:

RMSw =

√√√√ n∑
i=1

(wi(V LMGNSSi
−V LMSATTGi

)2) (2)

with weights

wi =

√
(U2

GNSSi
+U2

SATTGi
)
−1

∑n
i=1(

√
(U2

GNSSi
+U2

SATTGi
)
−1

)

(3)

We analyse also the median of the absolute value of differences (|∆VLM|). This metric is less prone to extreme devia-400

tions and can thus consolidate the evaluation of the dataset performances. We generally assume that GNSS provides a more

accurate estimation of the linear component of the VLM with a smaller error than VLMSAT-TG, despite shorter time span of

measurements. Hence, for the purposes of this paper and as done in all studies concerning VLMSAT-TG estimation, we define as

measures of accuracy the RMS∆VLM and additionally the median of |∆VLM|. We include the spectral index κ (see section 3.3)

as it helps to understand the level of auto-correlation of the time series. All statistics other than the RMS∆VLM denote median405

values (of all VLMSAT-TG estimates) for a specific dataset configuration.

4 Results

4.1 Comparison of different datasets configurations based on a 250 km average selection

We compare performances of the three datasets which are constructed from 250 km radius SLA averages in Table 2. Validation

against GNSS vertical velocities reveals that the gridded combination AVISO-PSMSL-250km slightly outperforms ALES-410

PSMSL-250km in terms of accuracy. Both the RMS∆VLM and the median of absolute trend differences are 9% lower for

AVISO-PSMSL-250km. This confirms that, if all the available altimetry data within a wide region are compared against

monthly values of TGs, the use of a gridded product outperforms the along-track performances (WM16). Kleinherenbrink

et al. (2018) similarly compared an along-track combination of 250 km-SLA averages (from RADS) and PSMSL TG data

with the AVISO-PSMSL combination from WM16. They found a small RMS∆VLM reduction of 0.1 mm/year when using the415

along-track product without any correlation thresholds applied. WM16’s trends were however based on 1◦ radius-averages of

SLAs (in contrast to the 250 km selection), and record lengths were not equalized as in this study.

For both combinations the median of the VLM differences (ALES-PSMSL-250km: -0.87 mm/year; AVISO-PSMSL-250km:

0.56 mm/year) deviates from values shown in previous studies [WM16: -0.25 mm/year and, Kleinherenbrink et al. (2018): -

0.06 mm/year]. In contrast to these previous estimates, we use different spatial selection scales of SLAs, smaller numbers of420

TG-GNSS pairs and deviating record lengths, which impedes a direct comparison. Moreover, the altimetry datasets might be
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affected by instrumental drifts. In this respect, differences among the datasets may be caused not only by different techniques

applied to reduce intermission biases (e.g., the MMXO approach for ALES), but also by different missions incorporated in the

records. Note that in contrast to ALES, AVISO contains TOPEX, which has also been shown to be affected by a strong drift

(Watson et al., 2015). Still, the observed RMS∆VLM of AVISO-PSMSL-250km (1.50 mm/year) is comparable to WM16 result425

(1.47 mm/year). In contrast to trend accuracies, the uncertainties are 5% lower for ALES-PSMSL-250km than for AVISO-

PSMSL-250km. As in WM16, the spectral index κ of the interpolated gridded product is lower than for the along-track data.

Both κ indices (-0.56 and -0.39) also match well those found by WM16 for AVISO (-0.5) and the along-track product (-0.4,

GSFC). The larger spectral index (-0.39) is associated with reduced power of the noise at low frequencies and thus indicates

reduced contamination of the SLA signal by sea-level variations that do not represent those measured at the TG. This enhanced430

comparability is also reflected in the lower trend uncertainties of ALES-PSMSL-250km (0.69 mm/year) compared to AVISO-

PSMSL-250km (0.73 mm/year). The differences between the characteristics of the residuals of the datasets can partially be

explained by the resolution of the data: Due to the spatial filtering of the data, the gridded solution AVISO incorporates

information of SLAs beyond the 250 km radius and thus contains time-correlated SL-signals with stronger deviations from the

TG records.435

Table 2. Statistics of different SAT-TG combinations. ∆VLM refers to the differences of VLMSAT-TG and VLMGNSS trends. X denotes the

relative level of comparability above which data is included.

X RMS∆VLM weighted RMS∆VLM med. |∆VLM| med. ∆VLM med. uncertainty spectral index κ

mm/year mm/year mm/year mm/year

ALES-PSMSL-250km (52 stations)

1.68 1.57 1.28 -0.87 0.69 -0.39

AVISO-PSMSL-250km (52 stations)

1.50 1.48 1.12 0.56 0.73 -0.56

ALES-GESLA-250km (52 stations)

1.51 1.47 1.14 -0.39 0.79 -0.39

ALES-GESLA-ZOI (best RMSSAT-TG, 58 stations)

0 1.54 1.45 0.98 -0.46 0.86 -0.45

0.1 1.39 1.36 0.9 -0.27 0.86 -0.44

0.2 1.34 1.33 0.88 -0.36 0.83 -0.47

0.3 1.32 1.36 0.83 -0.44 0.78 -0.46

0.4 1.3 1.38 0.87 -0.37 0.76 -0.45

0.5 1.29 1.4 0.86 -0.26 0.73 -0.47

0.6 1.3 1.43 0.87 -0.31 0.71 -0.47

0.7 1.28 1.39 0.82 -0.41 0.66 -0.48

0.8 1.28 1.37 0.86 -0.41 0.58 -0.43

0.9 1.53 1.58 0.97 -0.43 0.61 -0.46
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In comparison with the low-frequency datasets (ALES-PSMSL-250km and AVISO-PSMSL-250km), the high-rate set-up

ALES-GESLA-250km improves the RMS∆VLM. The absolute bias of trend differences decreases more substantially to 0.39

mm/year (compared to -0.87 mm/year). Compared to ALES-PSMSL-250km, we find increased trend uncertainties for ALES-

GESLA-250km, which can be partially explained by higher power-law variance of this GESLA-based configuration. Although

trend uncertainties are higher for the ALES-GESLA-250km configuration, we choose this set-up to investigate the impact of440

the ZOI. This dataset provides better results concerning trend accuracy (weighted or unweighted RMS) and has a lower median

bias. Moreover, using the high-frequency data, we are able to couple SAT and TG observations at much higher temporal reso-

lution than it would be the case when using monthly PSMSL data. Therefore the ALES-GESLA coupling is further developed

based on a better definition of the ZOI in the next section.

4.2 The Zone of influence improves VLM estimates445

We investigate how the ZOI selection of SLAs fosters quality of SAT-TG VLM estimates. As addressed in section 3.2, we build

the ZOI upon different criteria of comparability: RMSSAT-TG, correlation and the residual annual cycle. First, we focus on the

results of using the RMSSAT-TG of the detrended differenced time series (Table 2 and Figure 4, ALES-GESLA-ZOI). We observe

that the RMS∆VLM, the median of absolute and total differences, as well as trend uncertainties decrease towards higher relative

thresholds. The statistics converge to a minimum when the ZOI is restricted to the 30-20% best data. To compare ALES-450

GESLA-ZOI with the other dataset combinations, we compute the statistics for the same 52 TGs used in these configurations

(because the shown statistic in Table 2 refer to a larger set of 58 stations). At the 20% thresholds, we obtain similar performances

with a RMS∆VLM of 1.29 mm/year, median uncertainty of 0.51 mm/year and a median of absolute differences (|∆VLM|) of

0.86 mm/year. Thus, the improvements of RMS∆VLM compared to the plain 250 km-radius selection (ALES-GESLA-250km)

is 15% and 35% for uncertainties. Hence, we find more substantial, nearly linear reductions of trend uncertainty with increasing455

relative thresholds compared to trend accuracy (RMS∆VLM, Table 2, ALES-GESLA-ZOI). As demonstrated for different time

series in Figure 2, selecting e.g. highly correlated SLAs efficiently reduces the noise of the residuals. Correspondingly, at higher

levels of comparability, the variance, which scales the amplitudes of the considered noise models, decreases (not shown).

Because the spectral index (for ALES-GESLA-ZOI) is slightly lower (-0.43 at 20% level) than for ALES-GESLA-250km

(-0.39) it cannot account for the uncertainty improvements. Here, the lower κ index reveals an relative increase of power460

at low frequency (i.e. time scales longer than months). Thus the bulk of improvements we see in uncertainty (comparing

ALES-GESLA-ZOI and ALES-GESLA-250km) stems from the reduction of the power law and white noise amplitudes in the

residuals. This is in turn caused by improvements of the comparability of TG and altimetry measurements at high-frequency

(i.e. days). We argue that extending the maximal radius selection from 250 km to 300 km to construct the ZOI (as done

for ALES-GESLA-ZOI) increases the low-frequency noise (indicated by κ). However, with this selection we capture more465

altimetry tracks with similar highly correlated high-frequency signals (see Figure 1), which again contribute to sampling

density and reduced white noise. This further substantiates our choice to select SLA within a larger 300 km radius, which is

also supported by observed larger-scale coherency of coastal sea level trends (see section 3.2).
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RMS∆VLM and trend uncertainty level off at very high thresholds and ultimately increase when only 5% of the data is used

(Figure 5a and 5c). We argue that this is mainly related to a decrease in sampling-density of the time series included in the470

selection: At the 95th percentile, the median sample size (i.e. number of monthly averages in a time series) is 20% smaller that

the sample size at the 80th percentile. Robust trend estimates require a minimum of samples, hence, using a reduced number of

along-track data time series, even when they show a maximum degree of comparability, yields on a global average decreased

trend accuracy (RMS∆VLM). We thus argue that the optimum threshold identified at about the 80th percentile (of the data sorted

by RMS) represents a compromise between data-comparability, as well as sampling-density of altimetry data. We emphasize475

that there are numerous factors, other than the time period covered, which may contribute to a lack of comparability of SAT-TG

and GNSS trends. We further elaborate those in the subsequent discussion section 5.

When setting this optimal threshold to 20%, the ALES-GESLA-ZOI set-up outperforms the other investigated configura-

tions. Figure 4 compares the scatter of estimated VLMSAT-TG against GNSS trends of all datasets. For ALES-GESLA-ZOI, we

find lower VLMSAT-TG trend uncertainties and reduced spread of the estimates with respect to the 1:1 line (Figure 4). These480

results underpin that a refined selection procedure (ZOI) represents the dominant advancement, as this approach outstrips

the improvements (in terms of trend accuracy and uncertainty) which are obtained from using different altimeter or TG data

combinations.
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Figure 4. Scatter and boxplots compare estimated SAT-TG trends and GNSS trends, as in WM16 Figure 14. a) ALES-PSMSL-250km b)

AVISO-PSMSL-250km c) ALES-GESLA-250km d) ALES-GESLA-ZOI (at 20% threshold based on RMS-criterion). Error bars denote the

1 sigma trend uncertainties of the individual estimates.
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Figures 5a and 5c illustrate the influence of applying different criteria on the performance of estimated trends. Generally, in-

creasing relative RMSSAT-TG or correlation thresholds yields similar optimal ranges (∼ 20%) for both RMS∆VLM or uncertainty485

of VLMSAT-TG trends and can thus be interchangeably used. At lower relative threshold levels (20-60%), however, application

of the RMS-criterion yields slightly reduced RMS∆VLM values compared to correlations. Hence, for this set of TGs a SLA-

selection based on the minimum RMSSAT-TG generally provides more accurate trend estimates (in terms of RMS∆VLM). The

residual annual cycle criterion only weakly reproduces the improvements provided by the other criteria and is less suited to

confine the ZOI. This observation emphasizes the need of matching the data according to the high-frequency comparability490

(RMS, correlation), because selecting the data based on the residual annual cycle (i.e. low frequency comparability), limits the

performance of the estimates (Figure 5c). Considering improvements in the bias of trend differences, we find no significant dif-

ferences in using different thresholds. In contrast to the improvements in accuracy (as shown in Figure 5), the median ∆VLM

does not converge to a global optimum. Therefore, we discuss the contribution of other factors affecting the comparability of

SAT and GNSS in section 5.2.495
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Figure 5. Performance of VLMSAT-TG trend estimates for ALES-GESLA-ZOI. a) RMS∆VLM for different relative thresholds (step size 2.5%)

and different selection criteria: RMSSAT-TG (blue), correlation (red) and residual annual cycle (AC, green); c) same as (a) but for median un-

certainty. b) Distribution of best performing relative thresholds for individual stations. The local optimal threshold is defined at the minimum

of the absolute difference of VLMSAT-TG and GNSS trends. d) Boxplot shows the distribution of the mean distances to coast for the individual

optimum ZOI’s as denoted in b). The distances refer to the distributions within the 0-25%, 25-50%, etc. levels, respectively.
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5 Discussion

The integration of the ZOI primarily reduces the uncertainty of VLMSAT-TG trend estimates. Over a considerable range of

thresholds (80 - 20% of best performing data) trend accuracies do not improve as strongly as the uncertainties decrease. This

is in line with Kleinherenbrink et al. (2018), who showed that for a highly correlated sub-set of TGs, increasing absolute

correlation thresholds would not significantly reduce the RMS∆VLM. We thus strive to understand better why trend estimates500

do not always improve when selecting highly comparable (w.r.t. TG) or closely located absolute SLA measurements. This

question ultimately leads to the discussion of the importance of identifying the small-scale dynamical components of local

sea-level variability, given that long-term absolute sea level trends are large-scale signals.

5.1 Space and time dependencies of coastal sea level trends

The results presented in Figure 5 and Table 2 denote metrics and performances derived from the global TG-GNSS dataset for505

ALES-GESLA-ZOI and support an optimal threshold at 20%. It remains to be investigated, whether the described optimum

global threshold also reflects the best choice at every coastal site considered. Therefore, we investigate at which relative levels

individual VLMSAT-TG and VLMGNSS trends estimates yield the smallest absolute deviations. Postulating that the actual VLM

at the TG location is linear and perfectly detected by the GNSS station, these thresholds denote the ’local’ optimal levels.

With this analysis, we aim to better understand the spread of individual optimal ZOIs and what would be the best theoretically510

achievable RMS∆VLM. This analysis also provides a basis to motivate future investigations, in particular to identify systematic

factors, which may lead to locally different extents of the ZOI and to improve the accuracy of trend estimates.

Figure 5b displays the distribution of local optimal thresholds for TG-GNSS stations for the ALES-GESLA-ZOI dataset.

Note that these estimates are not independent as they are based on prior knowledge of the ground truth VLM from GNSS.

Overall, the optimal levels X are broadly distributed from 0 to 0.975. We find highest concentrations between 0.8-0.975,515

which slightly exceeds the range of the global optimum. At the global optimum itself (0.8, based on correlations), the median

distance to coast (of all SLA measurements in a ZOI) is 39.4 km. 25 % of the altimeter observations are within a range of 20

km to the coast, i.e. the region with the most pronounced coastal advancements of the along-track dataset (Passaro et al., 2015).

In contrast to these examples, we find very low local optima for some stations (Figure 5b). Here, local VLMSAT-TG and GNSS

trend differences do not converge to a minimum when increasing the comparability of SAT and TG observations. Accordingly,520

in these cases, vertical land motion estimates do not necessarily benefit from high coastal resolution of the data, because a low

relative threshold is simultaneously linked to a larger-scale selection of SLAs (Figure 5d). At the lower level ranges, for instance

at 0-0.2, SLAs have an average distance of 95 km to the coast. Supposing that the sources of these larger scales of coherency

of coastal SL trends would be known, a more advanced adaption to these additional factors would further increase accuracy of

VLM estimates. An associated ideal selection of trends, based on optimal individual levels shown in Figure 5d would largely525

reduce to RMS∆VLM to 0.89 mm/year. We emphasize that this constitutes the best RMS, which could theoretically be achieved

with our dataset combination, if all of the local optimal levels could be systematically explained. This demonstrates that, albeit

there might be room for minor improvements, there is still a strong limitation remaining in bringing the RMS below 1 mm/year.
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Figure 6. VLMSAT-TG trends (first row) and uncertainties (second row) mapped onto relative correlation levels. The mapping and interpolation

method is further elucidated in the Appendix A. We show the same stations (a,b,c) as in Figure 1.

To further shed light on the relationships between dynamical-sea-level-based SLA selection and spacial coherence of trends

and uncertainties, we show trend and uncertainty maps (Figure 6) in accordance with those in Figure 1 (displaying maps530

of statistical criteria). Here, we map linear trends and uncertainties onto observed levels of comparability defined by the

correlation-criterion. We thus compute these VLMSAT-TG trends over different coastal regions (see further details in the Ap-

pendix A). As a result, we observe sharp trend gradients consistent with the degree of comparability: Figure 6a for instance,

shows high small-scale variability of trends, because trends off the slope-current-region are detached from the trends in the

along-shore continental shelf region. Trends in Figure 6a and 6b project onto the far-reaching along-shore correlations as ob-535

served in Figure 1 showing consistent signals over several hundreds of kilometers along the coast. Uncertainty maps further

pronounce the importance of the application of highly resolved coastal altimetry data (Figure 6 lower row). These examples

show, that at individual locations the use of less comparable SLAs can increase the uncertainty by a factor of three to four.

Therefore, for the majority of cases, these results promote using high relative levels of comparability to define the ZOI for trend

estimation. However, we also observe that the coherency of trends (highlighted by the strength of absolute trend gradients) can540

be differently expressed at different coastal regions.
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Bathymetric and coastal properties can cause large discrepancies in responses of coastal sea level variability as they modify

the character of the impact of large-scale atmospheric forcing or remote variability from the deeper ocean (Woodworth et al.,

2019). Hence, an advanced analysis of SL coherency and the role of bathymetry might facilitate further enhancements of trend

accuracy based on SAT and TG. We note that physical origins might, however, not necessarily cause the spread of individual545

optimal thresholds (Figure 5b). If our assumption, that GNSS-trend estimates perfectly represent the linear trend over the time

span of the altimetry/TG records was not met, the shown individual thresholds would erroneously reflect local optima. Ruling

out these sources of error is thus a prerequisite to further study physical explanations for different extents of the ZOI.

Next to site-dependent physical factors, the spatial-scales of trend coherency might also depend on the time span of the

observations themselves. Global maps of sea level trends, for example, even when derived from two decades of observations,550

still show distinct pattern of natural/forced variability and thus shade signals of ocean mass or steric contributions (e.g. Stammer

et al., 2013). Similarly, coastal sea level trends that are computed in the ZOI are affected by local interannual sea level variability

on top of the secular trend. Therefore, the importance to adopt the concept of the ZOI for improving trend accuracy might also

be influenced by the actual time span covered by the record.

To investigate this time-scale-dependency, we truncate the VLMSAT-TG time series such that we obtain different experimental555

ALES-GESLA-ZOI sets with maximum record lengths from 10 to 18 years. We repeat the same validation analysis against

GNSS trends as in section 4. Figure 7a) encompasses anomalies of the RMS∆VLM with respect to the mean RMS∆VLM for a

dataset of a specific time scale which is given in Figure 7b (red). The same evolution is shown for trend uncertainties in Figure

7c).

Mean RMS∆VLM as well as mean uncertainties (which are averaged over all relative thresholds for a specific maximum560

record length) substantially decrease with increasing record length (Figures 7a and 7c). Both statistics approximately follow

the theoretical proportionality of uncertainty and sample size n of 1/
√
n (assuming no serial correlation). The evolution of the

RMS∆VLM anomaly shows that selecting SLAs in a ZOI at high relative thresholds more substantially reduces the RMS∆VLM

on shorter time scales (e.g. 10 years) than on longer time scales (Figure 7a, e.g. at 18 years). At long time scales, the RMS∆VLM

anomalies do not significantly improve between the 80% and 20% thresholds, which we also observe in the previous analysis565

in Figure 5a. We argue that the transition time scale where the improvements of RMS∆VLM flatten (14-16 years), marks when

the high frequency coastal sea level dynamical variability is superseded by dynamics producing large-scale sea level trends.

In other words, this is the time scale in which coastal sea level trends start to merge with the offshore trends. The tendency of

increasing spatial scales with time is also reflected by the increasing distances to coast of the measurements for an optimal ZOI

at a specific time scale (Figure 7b). The time-scale-dependency could explain the mismatch of trend accuracy and uncertainty570

improvements when using higher levels of comparability. This is also supported by Kleinherenbrink et al. (2018), who showed

little sensitivity for SAT-TG combinations which had minimum lengths of 15 years.

The same evaluation for the dependency of uncertainty on time and level of comparability X demonstrates that using the

ZOI nearly constantly improves trend uncertainties at any time scale. Hence, even though spatial scales of trend coherency

might increase with time, an ideal match of altimetry and TGs should be based on a ZOI.575
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Figure 7. Time and space dependencies of trend uncertainty and accuracys: a) Evolution of the RMS∆VLM anomaly (SAT-TG vs. GNSS

trend) for subsets of ALES-GESLA-ZOI, depending on a relative threshold X (x-axis) and a maximum record length (y-axis). RMS∆VLM

anomaly is defined as the departure from the mean RMS∆VLM (shown in b) averaged over all thresholds X for a specific maximum record

length. In b) we also show in blue the mean distance to coast of the measurements, associated with the average of the best 5% ZOI-levels per

time scale, shown in a). c,d) Same as a,b) but for uncertainties.

5.2 Systematic errors

VLM estimates from different datasets (e.g. AVISO-PSMSL-250km and ALES-GESLA-ZOI) are biased compared to trends

inferred from GNSS observations. Based on Monte-Carlo simulations (see appendix Figure B1) we argue that these biases are

significant for most of the dataset combinations (ALES-PSMSL-250km and AVISO-PSMSL-250km, ALES-GESLA-ZOI). In

the following, potential sources for these biases will be discussed.580

27



Next to the record-length (see section 5.1), systematic errors critically affect the accuracy of the SAT-TG technique and

can have strong systematic effects on the trend differences. Limiting factors for VLM determination from both SAT-TG and

GNSS observations are the accuracy and uncertainty of origin and scale of the reference frame (see WM16, Collilieux and

Woppelmann (2009); Santamaría-Gómez et al. (2012)), which cannot be realized yet at the required accuracy level (Bloßfeld

et al., 2019; Seitz et al., submitted).585

Moreover, as mentioned before, the intermission calibration applied for ALES (MMXO) multi-mission calibration applied

(MMXO) reduces intermission biases as well as regionally coherent systematic errors, but does not feature a calibration against

TG. The median bias identified for ALES-GESLA-ZOI could be affected by a drift of the mission used as reference. In contrast,

the AVISO dataset does not include time-dependent intermission biases and might therefore be additionally influenced by

systematic effects of e.g. Envisat or Sentinel-3a (Dettmering and Schwatke, 2019).590

Next to to altimeter bias drift, nonlinear VLM from contemporary mass redistribution (CMR) changes were shown to cause

differences between VLMSAT-TG and VLMGPS, due to the different time periods covered (e.g. Kleinherenbrink et al., 2018).

Using GRACE (Gravity Recovery and Climate Experiment) observations Frederikse et al. (2019) demonstrated that associated

deformations can cause VLM trend on the order of 1 mm/year. Therefore, they introduced a new method to reduce VLMGPS by

GIA and CMR signals to minimize their associated induced extrapolation biases. Kleinherenbrink et al. (2018) incorporated595

nonlinear VLM from CMR to assess the corresponding trend differences between VLMSAT-TG and VLMGPS. They expose that

VLMSAT-TG estimates are lower than VLMGPS in many parts of North America and Europe and higher in subtropical/tropical

regions as well as Australia and New Zealand (refer to Figure 9 in Kleinherenbrink et al. (2018)). Because northerly regions

like North America, are affected by dynamic changes in CMR,for instance, are affected by stronger recent uplift, GNSS

observations which cover shorter and more recent time spans than satellite altimetry detect stronger uplift signals more posi-600

tive trends. For a set of 155 TG-GNSS pairs, integration of these signals slightly reduced the median bias from -0.14 mm/year

to -0.07 mm/year, but had no significant effect on RMS. Given that most of the TG-GNSS stations used in this study are

located in Europe, North America and Australia, CMR might as well alleviate the negative trend bias of ALES-GESLA-ZOI.

Therefore, extending the validation platform, not only by using other homogeneous GNSS observations, but also GRACE and

GIA estimates would strongly support identification and mitigation of such systematic errors.605

5.3 Comparison with previous results

Based on optimal relative thresholds, we estimated an RMS∆VLM between SAT-TG and GNSS trends of 1.28 mm/year and

a median uncertainty of 0.58 mm/year at 58 sites. Our approach of combining along-track altimetry, high frequency TG data

and a refined SLA selection-scheme improves the performance of VLM estimation compared to using gridded altimetry prod-

ucts and constant spatial SLA averages (WM16: RMS∆VLM: 1.47 mm/year; uncertainty 0.80 mm/year). Other studies further610

emphasized the importance of spatial resolution in coastal zones, considering the decreasing temporal and spatial scales of

sea level variability in such areas. With the focus on coastal sea level trends, Cipollini et al. (2017) demonstrated that the

along-track X-TRACK product contained much more valid data close to the coast than AVISO, not only due to the spatial

down-sampling in AVISO, but also to less adapted coastal processing. Here, we tackle both issues by implementing an ad-
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vanced coastal along-track altimetry product. Because we find that much of the observed high-performing altimetry data has615

a close vicinity to the coast, our results underpin that along-track data is the best choice for coastal sea level trend estimation,

and substantiate the results of Kleinherenbrink et al. (2018).

Accuracies of estimated VLMSAT-TG expressed by RMS∆VLM are in the order of Kleinherenbrink et al. (2018)’s result of

1.20 mm/year. These results can, however, not unequivocally compared due to different validation settings. We extend their

analysis by investigating a variety of other criteria of comparability and find that the RMSSAT-TG of the differenced VLMSAT-TG620

time series provides the most robust estimates compared to correlations or residual annual cycle. Our results also propose that

increasing the radius of selection denotes another improvement for VLM estimates. Practically, the approach of using absolute

thresholds, which was put forward by Kleinherenbrink et al. (2018) almost halved the number of considered stations from 294

to 155, when setting an absolute correlation threshold to 0.7. Applying relative thresholds, facilitates the estimation of trends at

lower correlated stations, which would be rejected otherwise. This is crucial, because it was frequently shown, that correlations625

between altimetry and TGs are highly variable across the globe (WM16). Hence, we maintain the main advantage of using

TGs for VLM estimation: The large global distribution compared to continuous GNSS-measurements.

We highlight that the SAT-TG estimates are not only limited by the broad spectrum of error sources, ranging from systematic

to correction errors, such as the residual long period tides remaining in the TG time series, which all contribute to the error

budget of the estimates. Another factor is the possible nonlinearity of the VLM itself, which strongly hampers the comparability630

with measurements from other geodetic techniques, when sampled over different time spans. Thus, addressing this issue in

SAT-TG time series could represent a further crucial improvement of the application.

6 Conclusions

We investigate potential improvements of combining altimetry and TGs for coastal vertical land motion estimation. The inno-

vations of our approach are twofold: (1) For the first time, we exploit a global network of high frequency TG data (GESLA)635

and dedicated coastal altimetry (ALES) to determine VLM at a variety of co-located GNSS stations. Secondly (2) we define a

Zone of influence, to identify coherent zones of coastal SL variability which optimizes the combination of altimetry and TGs.

We rate improvements of both innovations against various SAT-TG datasets, which are comprised of along-track and gridded

altimetry, as well as high (daily) and low-frequency (monthly) TG combinations.

Combining high frequency TG with coastal altimetry data (ALES-GESLA-250km) yields modest improvements of trend640

accuracies, compared to a monthly gridded or monthly along-track combination, when averaging SLAs in a radius of 250

km. The high spatio-temporal resolution of the data, however, provides the foundation to identify coherent zones of sea level

variability. We confine a Zone of Influence by using relative thresholds of comparability based on RMSSAT-TG, correlation

and residual annual cycle of the altimetry and TG timeseries. We identify a global optimal threshold, when selecting 20% of

the data with the lowest RMSSAT-TG. At this threshold, validation against GNSS velocity estimates (at 58 stations) yields a645

RMS∆VLM of VLMSAT-TG and VLMGNSS differences of 1.28 mm/year with a median formal uncertainty of VLMSAT-TG trends

of 0.58 mm/year. This refined selection method improves trend accuracy by 15% and uncertainty by 35% compared to the
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250 km-average selection. The smaller degree of improvements of trend accuracy compared to uncertainty is explained by the

increasing space-scales of sea-level trend components with progressing time scales. We show that in many cases, capturing

small scale features of coastal sea level variability within few tens of kilometers from the coast is vital for VLMSAT-TG estimation650

and constantly reduces trend uncertainty of the estimates. We thus promote using relative levels of comparability and dedicated

coastal altimetry matched with high-frequency TGs to confine ZOIs and increase the number of VLM estimations along the

global coastline with improved uncertainty.

Data availability. ULR6a GNSS trend estimates are obtained from the data assembly centre SONEL (Systeme d’Observation du Niveau

des Eaux Littorales, https://www.sonel.org/-Vertical-land-movement-estimate-.html?lang=en, Santamaría-Gómez et al. (2016)). GESLA tide655

gauge data are available at http://www.gesla.org (Woodworth et al., 2016) and PSMSL data at https://www.psmsl.org/data/obtaining/ (Holgate

et al., 2013). ALES along-track data are processed at DGFI-TUM (https://www.dgfi.tum.de/en/) with OpenADB (https://openadb.dgfi.tum.de).

Averaged DT-MSLA AVISO gridded altimetry data are obtained from https://www.aviso.altimetry.fr.

Appendix A: Methods

In Figure 6 we map linear VLMSAT-TG trends and uncertainties onto observed levels of comparability set by the correlation-660

criterion. First, we group observed SLA time series in 0-20th, 20-40th, 40-60th etc. percentile-ranges, sorted by their cor-

relations with the TG time series. Then, we merge the altimetry time series for each group and calculate their associated

VLMSAT-TG trends. The resulting VLMSAT-TG trends are hereinafter defined on the altimetry tracks, categorized by the afore-

mentioned groups of comparability. To better illustrate the different zones of coherency the trends are interpolated onto a

regular grid (100x100 nodes i.e. 6 km resolution) and thus smoothed as seen in Figure 6. We use linear radial basis functions665

to interpolate the data.

Appendix B: Significance of median biases

To gain a better understanding of when the VLMSAT-TG and VLMGNSS difference distributions are significantly biased we create

a Monte-Carlo experiment to check the H0 hypothesis: ‘the median of the distribution is not significantly different from zero’

(with alpha=0.025). Therefore, we generated a bootstrapped distribution of random medians, which are derived from 20000670

individual sub-sets of size 52 (the number of TG of our dataset), which are randomly drawn from normally distributed values

with a standard deviation of 1.5 mm/year (according to the RMS of AVISO-PSMSL-250km) and zero mean.

Figure B1 shows that the biases of the datasets ALES-PSMSL-250km and AVISO-PSMSL-250km exceed the 2.5 and 97.5

percentiles of the sampled distribution (average of absolute bounds: 0.512 mm/year). This means that in less than 5 out of

100 cases, we would obtain such biases by chance, which supports the significance of these biases. We highlight that this is a675

purely statistical analysis, which cannot account for any of the errors from corrections, adjustments, drifts etc. introduced in

the altimeter and GNSS.
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Figure B1. Histogram of median values of randomly sampled sub-sets. The sub-sets consists of 52 samples (according to the number of

TGs in AVISO-PSMSL-250km) and are randomly drawn from normally distributed values with zero mean and a standard-deviation of 1.5

mm/year (according to the RMS of AVISO-PSMSL-250km). Dashed lines mark the 2.5 and 97.5 percentiles of the distribution.
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