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Abstract 

Observed  Oxygen  Minimum  Zones  (OMZs)  in  the  tropical  Pacific  ocean  are  located  above

intermediate depth waters (IDW) defined here as the 500 – 1500 m water depth. Typical climate

models do not represent IDW properties and are characterized by a too deep reaching OMZ. We

test analyze here the role of the IDW on the misrepresentation of oxygen levels in a heterogeneous

subset of ocean models characterized by a horizontal resolution ranging from 0.1° to 2.8°. First, we

show that forcing the extra tropical boundaries (30°S/N) to observed oxygen values results in a

significant  increase  of  oxygen  levels  in  the  intermediate  eastern  tropical  region.  Second,  the

equatorial intermediate current system (EICS) is a key feature connecting the western and eastern

part  of  the basin.  Typical  climate models lack in representing crucial  aspects of this supply at

intermediate depth, as the EICS is basically absent in models characterized by a resolution lower

than  0.25°.  These  two  aspects  add  up  to  a   “cascade  of  biases”,  that  hampers  the  correct

representation of oxygen levels at intermediate depth in the eastern tropical Pacific Ocean and

potentially future OMZs projections.

1. Introduction

Oxygen  levels  in  the  ocean  are  characterized  by  high  values  in  the  high  latitudes  and  the

subtropical  gyres, while  concentrations decrease to close to zero in the tropical  oceans in the

Oxygen Minimum Zones (OMZs). While OMZs are natural features, climate change is potentially

responsible for their expansion (Breitburg et al., 2018), leading to a reshaping of the ecosystems

and a potential loss of biodiversity.

Modelling oxygen levels is particularly challenging because of the complexity of  the interactions

between biological processes respiration and physical transport (e.g Deutsch et al., 2014, Ito et al.,

2013; Duteil et al., 2014a,b, 2018, Oschlies et al., 2017). Climate models tend to overestimate the

volume of  the OMZs (Cabre et al.,  2015) and do not agree on the intensity and even sign of

oxygen future evolution (Oschlies et al., 2017). In order to perform robust projections there is a

need to better understand the processes at play that are responsible for the supply of oxygen to

the OMZ. We focus here on the Pacific ocean, where large OMZs are located in a depth range

from 100 to 900 m (Karstensen et al., 2008; Paulmier and Ruiz-Pino. 2009).  Previous modelling

studies have shown that the tropical OMZ extension is at least partly controlled by connections with
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the subtropical  ocean (Duteil  et  al.,  2014).  In  addition,  the role of  the equatorial  undercurrent

(Shigemitsu et al.,  2017;  Duteil  et  al.,  2018; Busecke et al.,  2019), of  the  secondary Southern

Subsurface Countercurrent (Montes et al, 2014), of the interior eddy activity (Frenger et al., 2018),

have been previously highlighted. These studies focus on the mechanisms at play in the upper

oxygen levels (upper 500 m meter) 500 m of the water column. The oxygen content below the core

of the OMZ however plays a significant role in setting the upper oxygen levels by diffusive (Duteil

and Oschlies, 2009) or vertical advective (Duteil, 2019) processes. Here, we focus specifically on

the mechanisms supplying oxygen toward the eastern tropical pacific ocean at intermediate depth

(500 – 1500 m), below the OMZ core.

The water masses occupying this intermediate depth layer (500 – 1500 m) (Emery, 2003) subduct

at high latitudes. (Karstensen et al., 2008). Oxygen solubility increases with lower temperatures,

thus waters formed in the Southern Ocean  and in the North Pacific  are characterized by high

oxygen values. In particular, the Antarctic Intermediate Water (AAIW) (Molinelli, 1981) ventilates

large areas of  the lower  thermocline  of  the Pacific  Ocean (Sloyan and Rintoul.,  2001)  and is

characterized by oxygen values larger than 300 mmol.m-3 at subduction time (Russel and Dickson,

2003). The oxygenated core of the AAIW in the tropical Pacific is located at about 500-1200 m

depth at 40°S (Russell and Dickson, 2003) and with this at a depth directly below the depth of the

OMZs in the eastern Pacific; the Pacific AAIW mixes down to 2000 m depth with the oxygen poor

Pacific Deep Water (PDW) as determined by the OMP (Optimum Multiparameter) analysis (Pardo

et al., 2012; Carrasco et al., 2017). The oxygen rich (> 200 mmol.m -3 at 40°S) AAIW spreads from

its formation side in the Southern Ocean to the subtropical regions. The northern part of the Pacific

basin is characterized by the North Pacific Intermediate Water (NPIW) (Talley, 1993) confined to

the northern Pacific conversely to the AAIW, which spreads far northward as its signature reaches

15°N (Qu and Lindstrom., 2004). AAIW, NPIW and the upper part of the PDW are oxygenated

water masses occupying the lower thermocline between 500 and 1500 m depth.In this study we do

not  specifically  focus  on  the  individual  water  masses,  but  rather  on  the  water  occupying  the

intermediate water depth (500 – 1500 m) (Emery, 2003) of the subtropical and tropical ocean. We

will refer to the waters in this depth range as intermediate depth waters (IDW).

In the subtropics, the IDW  (particularly the AAIW) circulates into the intermediate flow of the South

Equatorial Current and the New Guinea Coastal Undercurrent (Qu and Lindstrom, 2004) where it

retroflects in the zonal equatorial flows of the Southern Intermediate Countercurrent (SICC) and

Northern Equatorial  Intermediate Current  (NEIC) within  about  ±2° off  the equator (Zenk et  al.,

2005; Kawabe et al., 2010) (Fig 1). These currents are part of the Equatorial Intermediate Current

System (EICS) constituted by a complex system of narrow jets extending below 500 m in the lower

thermocline  (Firing,  1987;  Ascani  et  al.,  2010;  Marin  et  al.  2010;  Cravatte et  al.,  2012,  2017;
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Menesguen et al., 2019). While the existence of this complex jet system has been shown to exist in

particular using argo floats displacements (Cravatte et al., 2017) the spatial structure and variability

of  the  jets  are  still  largely  unknown.  In  addition,  there  is  little  knowledge  about  their  role  in

transporting properties such as oxygen.

The simulation of the supply of oxygen to the eastern tropical Pacific below the OMZ core is a

difficult  task as it  depends on the realistic  simulation  of  the IDW   properties (in  particular  the

oxygen content) and the IDW pathway (through the EICS). It is known that current climate models,

in particular CMIP5 (Coupled Model Intercomparison Project phase 5) models, have deficiencies in

correctly representing the IDWThey generally display , and in particular the AAIW.  In particular,

the  AAIW  is  too  shallow  and  thin  IDW,  with  a  limited  equatorward  extension  compared  to

observations (Sloyan and Kamenkovich, 2007; Sallee et al.,  2013; Meijers, 2014; Cabre et al.,

2015; Zhu et al., 2018 for the south Atlantic ocean). Discrepancies in the simulated properties of

IDW compared to observations are due to a combination of a range of errors in the climate models,

including in the simulation of wind and buoyancy forcing, an inadequate representation of subgrid-

scale  mixing  processes  in  the  Southern  Ocean,  and  midlatitude  diapycnal  mixing

parameterizations (Sloyan and Kamakovich, 2007; Zhu et al., 2018). In addition, the EICS is mostly

lacking in coarse resolution models (Dietze and Loeptien, 2013; Getzlaff and Dietze, 2013). Higher

resolution (0.25°, 1/12°) configurations partly resolve the EICS but with smaller current speeds

than observed (Eden and Dengler, 2008; Ascani et al., 2015). The mechanisms forcing the EICS

are complex and still under debate (see the review by Menesguen et al., 2019).

In this study we focus on the role impact of the subtropical and westenr tropical IDW (and of the

deficiencies in the representation of its their properties and transport) on the oxygen content in the

eastern tropical Pacific in a set of model simulations. Section 2 gives an overview of all models that

we  used  as  well  as  of  the  sensitivity  simulations.  Next,  we  assess  to  which  extent  the  IDW

modulate (or drive) the oxygen levels in the eastern tropical (20°S – 20°N; 160°W-coast) Pacific

ocean in this set of models, and determine. The role of the IDW depends i) and determine the role

of i) on the oxygen content of the IDW in the lower thermocline of the subtropical regions (section

3) and ii) on the zonal recirculation of the oxygen by the EICS toward the eastern part of the basin

(section 4). We conclude in section 5.  

2. Analyzed models Description of models and experiments

2.1 Description of models 

 Mean state12.
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We analyze the mean state of the oxygen fields, OMZ, EICS of the following model experiments

(see Table 1), which previously have been used in recent studies focusing on the understanding of

the tropical oxygen levels mean state or variability :

(NEMO2  configuration).  The  circulation  model  is  coupled  to  a  simple  NPZD  (Nutrient

Phytoplankton Zooplankton Detritus) biogeochemical model that comprises 6 compartments (e.g

used in Duteil et al., 2018; Duteil, 2019).The simulation has been forced by climatological forcings

based on the Coordinated Reference Experiments (CORE) v2 reanalysis  (Normal Year Forcing)

(Large and Yeager,  2009)  and integrated for  1000 years.  -  the NEMO (Nucleus for  European

Modelling of the Ocean) model  (Madec et al., 2017) with a resolution of 2°, refined meridionally to

0.5° in the equatorial region 

- The NEMO (Nucleus for European Modelling of the Ocean) model (Madec et al., 2017) has been

used throughout this study in different configurations. We first use a coarse resolution version (see

2.2). This configuration is known in the literature as ORCA2 (Madec et al., 2017) but we call it

NEMO2 in this study for clarity reasons. The resolution is 2°, refined meridionally to 0.5° in the

equatorial region. It possesses 31 vertical levels on the vertical (10 levels in the upper 100 m),

ranging  from  10  m  to  500  m  at  depth.  Advection  is  performed  using  a  third-order  scheme.

Isopycnal  diffusion  is  represented  by  a  biharmonic  scheme  along  isopycnal  surfaces.  The

parameterisation of Gent and McWilliams (1990) (hereafter GM) has been used to mimic the effect

of  unresolved mesoscale eddies.  The circulation model is coupled to a simple biogeochemical

model that comprises 6 compartments (phosphate, phytoplankton,  zooplankton,  particulate and

dissolved organic matter, oxygen). The same configuration has been used in Duteil et al., 2018;

Duteil, 2019. The simulation has been forced by climatological forcings based on the Coordinated

Reference Experiments (CORE) v2 reanalysis (Normal Year Forcing) (Large and Yeager, 2009)

and integrated for 1000 years. Initial fields (temperature, salinity, phosphate, oxygen) are provided

by the World Ocean Atlas 2018 (WOA) (Garcia et al, 2019; Locarnini et al., 2019)

Two other versions of NEMO have been used (see 2.2). The configuration ORCA05 (that we call

here NEMO05) is  characterized by a spatial  resolution  of  0.5°.  It  possesses 46 levels  on the

vertical, ranging from 6 to 250 m at depth (15 levels in the upper 100 m). Advection is performed

using a third-order  scheme.  Isopycnal  diffusion is  represented by a  biharmonic  scheme along

isopycnal surfaces. Effects of unresolved mesoscale eddies are parameterized following GM. In

the configuration TROPAC01 (that we call NEMO01 in the rest of this study), a 0.1° resolution two-

way AGRIF (Adaptive Grid Refinement In Fortran) has been embedded between in the Pacific

Ocean into the global NEMO05 grid (similar to the configuration used in Czeschel et al., 2011).

Since the model is eddying in the nested region GM is not used. Both configurations are forced by

the same interannually varying atmospheric data given by the Coordinated Ocean–Ice Reference

Experiments  (CORE)  v2  reanalysis  products  over  the  period  1948–2007  (Large  and  Yeager,
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2009), starting from the same initial conditions. The initial fields for the physical variables are given

by the final state of a 60 year integration of NEMO01 (using 1948–2007 interannual forcing and

following  an  initial  80  year  climatological  spin-up  at  coarse  resolution).  The  interpretation  of

differences in the ventilation in the IDW is aided by the use of a passive tracer (see 2.2.2) 

- the UVIC (University of Victoria) model (e.g used in Getzlaff et al., 2016; Oschlies et al., 2017), an

earth System Model (ESM) that has a horizontal resolution of 1.8° latitude x 3.6° longitude. The

experiment  has  been  integrated  for  10000  years.  The  biogeochemical  model  is  a  NPZD-type

model of intermediate complexity that describes the full carbon cycle (see Keller et al., 2012 for a

detailed  description).  This  model  is  forced by monthly  climatological  NCAR/NCEP wind  stress

fields.

- the GFDL (Geophysical Fluid Dynamics Laboratory) CM2-0 suite (Delworth et al., 2012; Griffies

et al., 2015, Dufour et al, 2015): the suite is based on the GFDL global climate model and includes

a  fully  coupled  atmosphere  with  a  resolution  of  approximately  50  km.  It  consists  of  three

configurations that differ in their ocean horizontal resolutions: GFDL1 (original name : CM2-1deg)

with a nominal 1° resolution, GFDL025 (original name : CM2.5) with a nominal 0.25° and GFDL01

with a nominal 0.1° resolution (original name : CM2.6)(e.g These configurations have been used in

Frenger et al., 2018 and Busecke et al., 2019 for studies on ocean oxygen). At simulation year 48,

the  simplified  ocean  biogeochemistry  model  miniBLING  is  coupled  to  the  models,  with  three

prognostic tracers, phosphate, dissolved inorganic carbon and oxygen (Galbraith et al., 2015). Due

to the high resolution of GFDL01, the integration time is limited. We here analyze simulation years

186 to 190.

All  the models  (NEMO2,  UVIC,  GFDL suite)  are  forced using preindustrial  atmospheric  pCO2

concentrations.

Differences in model resolution but also in atmosphere forcings or spinup duration strongly impact

oxygen  distribution  (see  Annex  A).  However,  the  heterogeneity  of  the  configurations  that  we

analyze permits to determine whether the simulated oxygen distributions display systematic biases

/ similar patterns.

The mean states of the oxygen distributions are discussed below in section 3.1 “IDW  Oxygen

levels in models”. 

2.2 Sensitivity experiments

In order to disentangle the different processes at play, we perform two different sets of sensitivity

simulations, using the NEMO model engine. NEMO allows to test effects of increasing the ocean

resolution and to integrate the model over a relatively long time span. 
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  Sensitivity simulations

In order to disentangle the different processes at play we perform two different sets of sensitivity

simulations using the NEMO model engine. NEMO allows to test effects of increasing the ocean

resolution and to integrate the model over a relatively long time span. All sensitivity experiments

are integrated for 60  years (1948 to 2007) using the CORE (Coordinated Ocean-Ice Reference

Experiments)  v2  interannual  (Large  and  Yeager,  2009)  forcings.  This  time  scale  permits  the

recirculation from the interior subtropical regions to the tropical area (as suggested in the model

study by SenGupta and England, 2007).22.

2.2.1   Forcing of oxygen   to observ  ed values   in the subtropical regions  

In the first set of experiments the focus is on the role of the lower thermocline oxygen content for

the ventilation of the eastern equatorial Pacific. We use NEMO2, the oceanic component of the

IPSL-CM5A (Mignot  et  al.,  2013),  that  is  part  of  CMIP5.  NEMO2 shows mid-latitudes oxygen

biases consistent with CMIP5 models. We compare three experiments :

-  NEMO2-REF:  the experiment is integrated from 1948 to 2007 starting from the spinup state

described in 2.1. 

- NEMO2-30S30N: the oxygen boundaries are forced to observed oxygen concentrations (WOA) at

the boundaries 30°N and 30°S  in the whole water column: the mid-latitude oxygen  levels in the

IDW are therefore correctly represented.

- NEMO2-30S30N1500M: same as NEMOO2-30S30N; in addition oxygen is  forced to observed

concentrations at the depth interface of below  1500m, mimicking a correct oxygen state of the

deeper water masses (lower part of the AAIW, upper part of the PDW)

With the above three experiments we focus on the transport of IDW oxygen levels to the tropical

ocean and the OMZs.  The respiration  rate  (oxygen consumption)  is  identical  in  NEMO2-REF,

NEMO2-30S30N  and  NEMO2-30S30N1500M  in  order  to  avoid  compensating  effects  between

supply and respiration that depend on biogeochemical parameterizations (e.g Duteil et al., 2012).

We aim to avoid such compensating effects to ease interpretation and be able to focus on the role

of the physical transport. The  sensitivity of tropical IDW oxygen to subtropical and deep oxygen

levels is discussed in section 3.2

2.2.2 Conservative Tracer Release in oxygenated waters

In thea second set of experiments, we assessed the effect of a resolution increase on the transport

of  a  conservative  tracer.  To do this,  we used a 0.5°  (NEMO05)  and a higher  resolution  0.1°

(NEMO01)  configuration  of  the  NEMO  model  engine  (Table  1)  to  examine  the  transport  of

oxygenated  IDW from  the  subtropical  regions  into  the  oxygen  deficient  tropics.NEMO01  is  a

configuration based on NEMO05 and where a 0.1° two-ways nest  has been embedded in the
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whole  Pacific  Ocean,  from  49°S  to  31°N  (Czeschel  et  al,  2011).   In  these  experiments,  we

initialized the regions with climatological (WOA) oxygen levels greater than 150 mmol.m-3 with a

value of 1 (and 0 when oxygen was lower than 150 mmol.m-3). In the model simulations, the tracer

is  subject  to  the  same physical  processes  as  other  physical  and  biogeochemical  tracers,  i.e.

advection and diffusion but it does not have any sources and sinks. The experiments have been

integrated for 60 years (1948 – 2007) using realistic atmospheric forcing (COREv2). NEMO05 and

NEMO01 display  a  similar  upper  ocean  circulation  (Fig  5)  but  NEMO05 does  not  simulate  a

developed EICS in contrast to NEMO01.

In  order  to  complement  the  tracer  experiment  we  performed  Lagrangian  particle  releases.

Lagrangian particles allow to trace the pathways of water parcels due to the resolved currents, and

to track the origin and fate of water parcels. They are not affected by subgrid scale diffusive and

advective processes.  The particles are advected offline with 5 days mean of the NEMO05 and

NEMO01 currents. The NEMO01 circulation fields have been interpolated to the NEMO05 grid in

order  to   allow  a  comparison  of  the  large  scale  advective  patterns  between  NEMO01  and

NEMO05. We do not take into account subgrid processes in NEMO05. We used the ARIANE tool

(Blanke and Raynaud, 1997). A  first  particle release has been performed in the eastern tropical

OMZ at  100°W in  the  tropical  region  between  105°S  – 105°N.,  a  second  release  has  been

performed in the western part of the basin at 160°E. The particles have been released in the IDW

lower thermocline at (51000 - 1500 m) and integrated backward in time from 2007 to 1948 in order

to determine their pathways and their location of origin. We released 120 particles every 5 days

during the last year of the experiment, for a total of 8760 particles. The transport by the EICS is

discussed in section 4.2 (tracers levels and Lagrangian pathways).

3. Intermediate water properties and oxygen content

3.1.   IDW   Oxygen levels in models  

The water masses IDW subducted in mid/high latitudes are highly oxygenated waters. As part of

the deficient representation of IDW, tThe subducted “oxygen tongue” (oxygen values up to 240

mmol.m-3) located at IDW level is not reproduced in most of the models part of CMIP5 (Fig 8 from

Cabre et al., 2015, Fig 4 from Takano et al., 2018) and in the models analyzed here (Fig 2a), with

an  underestimation of  about  20-60 mmol.m-3 (NEMO2,  GFDL1,  GFDL025,  GFDL01).  UVIC,  a

coarse resolution model, shows oxygenated waters in the lower thermocline at mid latitudes (30°S-

50°S); the oxygenation however likely arises due to a too large vertical diffusion from the mixed

layer rather than by an accurate representation of the water masses.  
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GFDL01, even though still biased low, presents larger oxygen values than the coarser resolution

models GFDL1, GFDL025 and NEMO2. A possible explanation is a better representation of the

water masses and in particular the AAIW in eddy-resolving models (Lackhar et al., 2009). 

The IDW oxygen maximum is apparent at 30°S throughout the lower thermocline (600 – 1000 m) in

observations (Fig 2b), consistent with the circulation of IDW with the gyre from the mid/high latitude

formation regions towards the northwest in subtropical latitudes (Sloyand and Rintoul. 2001), and

followed by a deflection of the waters in the tropics towards the eastern basin (Qu et al., 2004;

Zenk et al., 2005).  This oxygen peak is missing in all the models analyzed here.

Consistent with the low oxygen bias of models at subtropical latitudes (Fig 2b), models also feature

a bias in the tropical ocean (20°S-20°N) by 20 – 50 mmol.m-3 (Fig 2a, Fig 2c) at intermediate

depths in the eastern part of the basin (similarly to CMIP5 models, as shown by Cabre et al.,

2015). The basin zonal average of the mean oxygen level in the lower thermocline layer (500 -

1500m) at 30°S and in the eastern part of the basin (average 20°S – 20°N, 160°W-coast; 500-1500

m) are positively correlated (Pearson correlation coefficient R=0.73) (Fig 2d, Annex A), suggesting

that the oxygen levels in the tropical pacific ocean are partly controlled by extra-tropical oxygen

concentrations at intermediate depths and the associated water masses.

The models presenting the poorest oxygenated water at 30°S display the largest volume of OMZs

(GFDL025 and GFDL1), though the negative correlation (Pearson correlation coefficient R=-0.52)

is less pronounced between the volume of the OMZs and the mean oxygen levels in the layer 500 -

1500 m at 30°S (Fig 2e).  A correlation, even weak, suggests a major role of the IDW in regulating

the OMZ volume.  Reasons  for this  weaker  correlation are due to the OMZs being a result  of

several processes next to oxygen supply by IDW, e.g, vertical mixing with other water masses

(Duteil et al., 2011), isopycnal mixing in the upper thermocline (Gnanadesikan et al., 2013; Bahl et

al.,  2019), supply by the upper thermocline circulation (Shigemitsu et al.,  2017; Busecke et al.,

2019). A correlation, even weak, suggests a major role of the IDW in regulating the OMZ volume.

In order to better understand the role of IDW entering the subtropical domain from higher latitudes

for the oxygen levels in the eastern tropical Pacific Ocean, we perform sensitivity experiments (see

2.2.1)  in the following.

3.2 Sensitivity of tropical   IDW   oxygen to subtropical and deep oxygen levels  

3.2.1 Oxygen levels in the lower thermocline
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The difference of the experiments NEMO2-30S30N – NEMO2-REF (average 1997-2007) (Fig 3c,d)

allows to quantify the effect of model biases of IDW at mid latitudes (30°N/30°S) on tropical oxygen

levels. 

We first assess the oxygen concentration and density levels at 30°S and 30°N in both the World

Ocean Atlas (WOA) and the NEMO2-REF experiment. The deficiency in oxygen in NEMO2-REF is

clearly highlighted at 30°S, between 400 and 1500m. The density levels are well reproduced in

NEMO2-REF compared to WOA (Annex B). 

As we force restore oxygen to observed levels at 30°S/°N (see 2.2.1), the difference between both

experiments  shows a large anomaly in oxygen levels at 30°S (more than 50 mmol.m-3) at lower

thermocline level (500 – 1500 m) corresponding to the missing deep oxygen maximum, located in

the IDW. The northern negative anomaly results from a deficient representation of the north Pacific

OMZ, i.e., modeled oxygen is too high for NPIW. The northern low and southern high anomalies

spread  towards  the  tropics  at  intermediate  depth.  A  fraction  of  the  positive  oxygen  anomaly

recirculates at upper thermocline level due to a combination of upwelling and zonal advection by

the tropical current system (for instance the EUC at thermocline level is a major supplier of oxygen

as shown in observations by Stramma et al., 2010 and in ocean models by Duteil et al., 2014,

Busecke et al., 2019). 

The  difference  NEMO2-30S30N1500M  –  NEMO2-30S30N  (Fig  3e,f)  shows  a  deep  positive

anomaly in oxygen, as oxygen levels are lower than in observations by 30-40 mmol.m-3 in the

eastern tropical regions. This anomaly is partially transported into the IDW (500 - 1500 m). It shows

that  a proper representation of  the deep oxygen levels  (> 1500 m) is  important  for  a realistic

representation of the lower thermocline and OMZs. Causes of the oxygen bias of the deeper water

masses are beyond the scope of this study but may be associated with regional (tropical) issues,

such as an improper parameterization of respiration (e.g a too deep remineralisation) (Kriest et al.,

2010), or a misrepresentation of deeper water masses.

3.2.2 Oxygen budget and processes

To assess the processes that drive the oxygen content of the (sub)tropical lower thermocline, we

analyzed the oxygen budget  in NEMO2-REF and NEMO2-30S30N,  NEMO30S30N1500M. The

budget is computed  as an average between 500 and 1500m and shown in Fig 3g and Fig.4. 

The oxygen budget is : 
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δO2
δ dt

=Adv x+Adv y+Adv z+Diff Dia+Diff Iso+SMS

where Advx,Advy,Advz, are respectively the zonal, meridional and vertical advection terms, Diffdia

and  Diffiso  are  the  diapycnal  and  isopycnal  diffusion  terms.  SMS  (Source  Minus  Sink)  is  the

biogeochemical component (i.e below the euphotic zone this is only respiration)

In NEMO2-REF, the physical oxygen supply is balanced by the respiration. The oxygen supply in

the model is divided into advection, i.e., oxygen transport associated with volume transport, and

isopycnal diffusion, i.e., subgrid scale mixing processes that homogenize oxygen gradients (Fig

4a). Diapycnal diffusion is comparatively small and can be neglected. 

The supply of oxygen from the high latitudes toward the tropical interior ocean is constituted by

several processes acting concomitantly : isopycnal diffusion transfers oxygen from the oxygen-rich

gyres to the poor oxygenated regions (see Fig 1).  The lower branches of   Below the subtropical

gyre,  s transport the  the  oxygen is transported from the  western to the eastern  eastern to the

western part of the basin. Downwelling from the oxygen-rich mixed layer supplies the interior of the

subtropical gyres. At the equator, the EICS transport westward oxygen-poor water originating in

the eastern side of the basin (Fig 4a). The meridional advection term transports oxygen originating

from the subtropics in the tropical regions, which is upwelled.

Forcing  oxygen  levels  in  NEMO2-30S30N  at  30°S  and  30°N  creates  an  imbalance  between

respiration (which remains identical in NEMO2-REF and NEMO2-30S30N) and supply. The oxygen

anomaly generated at 30°S propagates equatorward. The positive anomaly originated from the

southern boundary recirculates in the equatorial region. Isopycnal diffusion is a major process that

transport the oxygen anomaly toward the equator (Fig 3g, Fig 4b), in particular from 30°S to the

5°S and 30°N to 10°N. Total advective transport plays an important role in the transport of the

oxygen anomaly as well, especially in the equator region and in the western boundary currents.

Meridional advection plays a large role close to the 30° boundaries as the oxygen is transported by

the deeper part of the gyres. As the vertical gradient of oxygen decreases (the intermediate ocean

being  more  oxygenated),  the  vertical  supply  from  the  upper  ocean  decreases  in  the  south

(increases in the north)  subtropical gyre.  Comparatively the impact on zonal  term advection is

small as the zonal oxygen gradient stays nearly identical in both experiments (the oxygen anomaly

is almost longitude independent). The model does not display much increase in zonal recirculation

at the equator as well, except in the western part of the basin due to the advection of the oxygen

provided by the retroflection of the deep limb of the subtropical gyre. The increase of meridional

transport  is  caused by the change in oxygen meridional  gradient,  mainly  caused by isopycnal

diffusion processes away from the western boundary.
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s the vertical gradient of oxygen decreases (the intermediate ocean being more oxygenated), the

vertical supply from the upper ocean decreases in the south (increases in the north) subtropical

gyre and decreases at the equator (Fig 4b). The meridional oxygen gradient between the southern

subtropical  gyre  and  the  equator  strengthens,  and  so does  the  meridional  transport  from the

subtropics to the equator, partly by the western boundary currents. The changes in zonal transport

are comparatively small.a Changes in the advective terms are found along the equator: increase

(south) or decrease (north) of isopycnal diffusion (Fig 3g, Fig 4b.by an Forcing oxygen levels in

NEMO2-30S30N at  30°S and 30°N creates an imbalance  between respiration  (which remains

identical in NEMO2-REF and NEMO2-30S30N) and supply. This imbalance is most apparent in the

tropics 

In  the  experiment  NEMO2-30S30N1500,  in  complement  to  the  isopycnal  propagation  of  the

subtropical anomaly, the deep (> 1500 m) oxygen anomaly is upwelled in the eastern equatorial

(500 – 1500 m) part  of  the basin (see Fig 3g).  The transport due to  advective terms strongly

increases, mostly due to an increase in vertical advection. This is  consistent with the analysis by

Duteil (2019) who showed that vertical advection is the dominant process to supply oxygen from

the lower to the upper thermocline in the equatorial eastern Pacific Ocean in a similar NEMO2

configuration.

This  simple  set  of  experiments  already  shows  that  in  climate  models  oxygen  in  the  lower

thermocline (500 – 1500 m) tropical ocean are partially controlled by properties of IDW that enter

the tropics from higher latitudes. This presumably also applies to other (biogeochemical) tracers.

IDW oxygen propagates equatorward mostly by small scale isopycnal processes and the western

boundary currents. Further, upwelling in the tropics from deeper ocean layers (Pacific Deep Water,

partially mixed with the lower IDW) play an important role. We will examine more closely in the

following the representation and the role of  the EICS in supplying oxygen toward the eastern

Pacific Ocean.

4.  Equatorial intermediate current system and oxygen transport

4.1 Structure of the currents in the upper 2000 m in observations and models

The current structure of the models analyzed in this study (see section 2.1, Table 1) is shown in

Fig 5. In the  mixed layer, the broad westward drifting South and North Equatorial Currents (SEC,

NEC) characterize the equatorial side of subtropical gyres. In the thermocline, the eastward flowing

equatorial undercurrent (EUC), flanked by the westward flowing south and north counter currents

are present in all models. This upper current structure is well reproduced (i.e the spatial structure

and  intensity  are  consistent  with  observations)  across  the  different  models  (see  2.1  “Model

analyzed”) compared to observations. Previous studies already discussed the upper thermocline
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current structure in the GFDL models suite (Busecke et al.,  2019), NEMO2 and NEMO05 (e.g

Izumo, 2005, Lübbecke et al., 2008), UVIC (Loeptien and Dietze, 2013); the upper thermocline will

not be further discussed in this study.

At intermediate depth, in the observations, a relatively strong (about 0.1 ms-1) westward flowing

Equatorial Intermediate Current (EIC) is present below the EUC at about 400-600 m depth (Marin

et al., 2010). A complex structure of narrow and vertically alternating jets every 200 m, so-called

Equatorial Deep Jets (EDJ), extends below the EIC till 2000 m (Firing, 1987; Cravatte et al., 2012).

Laterally  to  the  EIC,  in  the  upper  thermocline,  the  Low  Latitude  Subsurface  Countercurrents

(LLSC) are observed. They include the North and South Subsurface Counter Currents (NSCC and

SSCC), located around 5°N/5°S, and a series of jets between 5°N/S and 15°N/S (in particular the

Tsuchiya jets in the southern hemisphere, described by Rowe et al., 2000). Below the LLSCs, the

Low Latitude Intermediate Currents (LLICs) include a series of westward and eastward zonal jets

(500–1500-m  depth  range)  alternating  meridionally  from  3°S  to  3°N;  the  North  and  South

Intermediate Countercurrents (NICC and SICC) flow eastward at 1.5°–2° on both flanks of the

lower EIC. The North and South Equatorial Intermediate Currents (NEIC and SEIC) flow westward

at  about  3°  (Firing,  1987).  A detailed  schematic view of  the tropical  intermediate circulation is

shown in a recent review by Menesguen et al. (2019) and in Fig 1.

In coarse resolution models, the intermediate current system is not developed and sluggish (even

missing in UVIC and GFDL1). NEMO2 and NEMO05 display a “primitive” an incomplete EICS as

the LLSCs are not represented. High resolution models (GFDL025, GFDL01, NEMO01) display a

more realistic picture, even if the mean velocity is still weaker than in observations (smaller than 5

cm.s-1), where it reaches more than 10 cm-1 at 1000 m (Ascani et al., 2010; Cravatte et al., 2017).

An interesting feature is that the jets are broader and faster in NEMO01 than in GFDL01.  Possible

causes  include  a  different  wind  forcing,  mixing  strength  or  topographic  features  as  all  these

processes play a role in forcing the intermediate jets (see the review by Menesguen et al., 2019).

The intermediate currents are less coherent vertically in NEMO01 than in GFDL01, due to their

large temporal variability in NEMO01. A strong seasonal and interannual variability of the EICS has

been observed that displays varying amplitudes and somewhat positions of the main currents/jets

(Firing, 1998; Gouriou et al., 2006: Cravatte et al., 2017). A clear observational picture of the EICS

variability is however not yet available. Outside the tropics (in particular south of 15°S), the interior

velocity pattern is similar in coarse and high resolution models, suggesting a similar equatorward

current transport at intermediate depth in the subtropics, in for instance NEMO05 and NEMO01. 

4.2 Transport by the EICS     

4.2.1 Tracer spreading towards the eastern tropical Pacific
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We released a conservative tracer in the subtropical domain in well oxygenated waters (waters

where  observed  oxygen  concentration  is  greater  than  150  mmol.m-3    -  see  2.2.2)  in  a  coarse

(NEMO05) and a high resolution configuration (NEMO01). The tracer does not have sources or

sinks and is advected and mixed as any other model tracer and allows to assess the transport

pathway  of  tracer (such as oxygen)  from oxygenated waters into the oxygen deficient  eastern

tropical Pacific.

The importance of the ventilation by the oxygen rich waters, and in particular the IDW, is illustrated

by  the  tropical  tracer  concentration  after  50  years  (Fig  6a)  of  integration  (mean  2002-2007).

Concentrations decrease from the release location to the northern part of the basin, where the

lowest  values  (below  0.1)  are  located  in  NEMO05 and  NEMO01.  The  0.1  isoline  is  however

located close to the equator in NEMO05 while it is found around 7°N in NEMO01. This feature is

associated with a pronounced tongue of high tracer concentration (> 0.2) between 5°N and 5°S in

NEMO1. Such a tongue is absent in NEMO05. The enhanced tracer concentration in the equatorial

region suggests a stronger  zonal  equatorial  ventilation  in  NEMO01, consistent  with a stronger

.EICS (Figure 5) 

 

The preferential pathways of transport are highlighted by the determination of the transit time it

takes for the tracer to spread from the oxygen rich regions to the tropical regions. We define a

threshold  called  t10% when the tracer  reaches a concentration  of  0.1 (Fig  6b)  (similar  to  the

approach of SenGupta and England, 2007). t10% highlights a faster ventilation of the equatorial

regions in NEMO01 compared to NEMO05, as t10% displays a maximum value of 10 (western

part) to 30 years (eastern part) between 5°N/5°S in NEMO01 compared to 30 years to more than

50 years in NEMO05. The southern “shadow zone” is well individualized in NEMO01 compared to

NEMO05 as the oxygen levels are high in the equator in NEMO01, suggesting a strong transport

by the EICS. The value of t10% increases linearly at intermediate depth at 100°W in NEMO05 from

20°S to the equator,  suggesting a slow isopycnal propagation (consistent with the experiments

performed using NEMO2 in part 3.2). Conversely, the tracer accumulation is faster in the equatorial

regions than in the mid-latitudes in NEMO01, suggesting a largeer role of advective transport,

which is faster than the transport by isopycnal diffusive processes.

4.2.2  Equatorial   IDW circulation   origin thermocline water masslower   

100°W, 5°N-5°S,  1000 m depth) is located in the larger intermediate eastern tropical pacific (IETP)

ocean region (160°W – coast / 10°N-10°S / 200 – 2000 m ). The particles originate close to the

region of release (IETP) in 60 % of the cases in NEMO05 and 50 % of the cases in NEMO01, at a

time scale of 50 years (Fig 7a and 8b). In NEMO05, after 50 years, the particles originating outside

the IETP come either from the upper (0 – 200 m) ocean (5 %), deep ( > 2000 m) ocean (1%),
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higher ( > 10°) latitudes (23 %), western (west of 160°W) part of the basin (21 %) (Fig 8d). The

largest  difference  between  NEMO05  and  NEMO01  is  the  much  larger  amount  of  particles

originating from the deep ocean in NEMO01 (8 % in NEMO01), suggesting the presence of vertical

recirculation cells at intermediate depths. Despite the stronger EICS in NEMO01, the amount of

particles originating from the western part of the basin is nearly identical in NEMO01 and NEMO05

after 50 years of integration. The advection processes are however faster in NEMO01, in particular

the zonal advection. The relative difference between NEMO05 and NEMO1 is particularly strong

15 years after the release (approximately corresponding to the t10% at 1000 m at the equator in

NEMO01), as already 10 % of the particles originate outside the IETP, in regions where the oxygen

levels are high, in NEMO01 while this fraction is close to 0 in NEMO05.

The second release R2 (160°E, 5°N-5°S, 1000 m depth) is located in the intermediate western

tropical pacific (IWTP) ocean region (160°W – coast / 10°N-10°S / 200 – 2000 m) (Fig 7b). After 50

years, all the particles originate outside of the IWTP  in NEMO01 (Fig 8c) (50 % originate in the

eastern basin, 23 % in the deep ocean, 24 % outside the equatorial band, 3 % in the upper 200 m)

(Fig 8e) while only 70 % of the particles originate outside the IWTP in NEMO05 (39 % in the

eastern basin, 27 % outside the equatorial band, 2 % in the deep ocean and 2 % in the upper

ocean).

The  Lagrangian  experiments  show  a  generally  stronger  ventilation  at  intermediate  depth  in

NEMO01 due to the EICS, which reinforces the connections between western / eastern part of the

basin and the thermocline / deep ocean.i Two releases R1 and R2 have been performed in the

eastern and western part of the basin in order to assess the equatorial circulation in NEMO05 and

NEMO01. A depth horizon of  1000 m has been chosen as it  is  a depth where the equatorial

intermediate current system is relatively well developed in high resolution models and basically

absent in coarse models (see Fig 5). Our results are not sensitive to the choice of another depth

horizon in the range of 500 - 1500 m

The release R1  They also allow us to disentangle the transport of the resolved currents of the

EICS (advection) from subgrid scale mixing processes, i.e. to assess the processes responsible for

the  equatorial  ventilation.in  the  lower  thermocline.Lagrangian  particles  (see  2.2.3)  allow  us  to

understand the origin of the waters 

4.2.2  Equatorial IDW circulation 

The analysis of the dispersion of Lagrangian particles (see 2.2.3) permits us to understand the

origin of  the waters circulating in the eastern part  of  the basin at  IDW level.  A total  of  26515

particles  have  been  released  in  the  area  located  at  100°W,  10°N-10 S,  500-1500  m.  These⁰
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particles  have  been  integrated  backward  in  time  in  order  to  determine  their  origin  and  the

ventilation of the eastern tropical Pacific ocean (Fig 7). 

After 5 years of backward integration we find that the particles originate from a well defined region,

which extends from 110°W and 80°W to NEMO05 (Fig 7a).  This  region extends westward till

150°W,  as  a  result  of  the  stronger  currents  in  NEMO01 (Fig  7b).  This  larger  dispersion  and

westward origin of the particles is clearly visible after 10, 20 and 50 years of integration. In order to

quantify the dispersion of the particles, we define the Intermediate Eastern Pacific Ocean (IETP) as

the region 10°N-10°S, 500 – 1500 m, 160°W – coast. The particles originating outside of the IETP

in close to 5 % / 50 % of the cases in NEMO05 and 10 % / 60 % of the cases of NEMO01, after a

time scale  of  respectively  10  and  50  years.  The  Fig  7c  shows  a  lag  between  NEMO01 and

NEMO05 : while 10 % of the particles originate outside the IETP after 10 years in NEMO01 the

same quantity  is  reached only  after  20 years  in  NEMO05,  suggesting  a  stronger  transport  in

NEMO01. However, after the time period of 20 years, the number of particles originating outside

the IETP does not  grow faster  any more in  NEMO01 compared to NEMO05.  A hypothesis  is

enhanced  recirculation  in  NEMO01:  the  same  particles  may  recirculate  several  times  in  the

equatorial region due to alternating zonal jets in NEMO01. 

The transport has been quantified based on this Lagrangian particles release (Fig 8). The volume

transport is higher in NEMO01 (up to 0.2 Sv) (Fig 8a) compared to NEMO05 (less than 0.1 Sv at

the equator) (Fig 8b). It also shows recirculating structures and alternating eastern and western

transport in NEMO01 (Fig 8c). These recirculating structures are absent in NEMO05 and foster the

dispersion  of  particles  as  shown  above.  The  mean  transport  (zonal,  meridional  and  vertical

integration)  in  the  region  10°N-10°S,  12E0°E-100°W  is  [value1]  in  NEMO01  and  [value2]  in

NEMO05. 

4.3 Model resolution and oxygen levels

The experiments discussed in 4.2 were not coupled with biogeochemical cycles for computational

cost reasons. In order to assess the robustness of our findings (EICS plays a large role in setting

tropical oxygen levels), we next analyze equatorial oxygen in a set of climate models similar to
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CMIP models. To this end we use the GFDL model suite, characterized by a resolution increase

(GFDL1, GFDL025 and GFDL01 - see Table 1).

The striking difference between GFDL01 and GFDL025 / GFDL1 are the high oxygen levels in the

eastern part of the ocean below 1000 m in GFDL01 compared to GFDL025/GFDL1 (Fig 2). The

oxygen levels show weaker zonal gradient in GFDL01, consistent with the tracer experiment that

we performed in 4.2. and a more ventilated intermediate equatorial ocean. High values of mean

kinetic  energy are  associated  with  higher  oxygen  values  (Fig  9).  This  is  particularly  clear  in

GFDL01 at around 1500 m depth, where strong values of MKE are present and form the “bottom”

of the low oxygen volume (oxygen lower than 50 mmol.m-3). Conversely GFDL025 and GFDL1 do

not present high MKE values below 1000 m in the eastern part of the basin; the low oxygen volume

extends till depths greater than 2000 m. It suggests that intermediate currents participate in the

ventilation of the eastern tropical ocean and thus in limiting the vertical extension of the OMZ.

Oxygen  levels  do  not  increase  linearly  with  the  currents  strength,  i.e  while  currents  strength

increase in GFDL1, GFDL025 and GFDL01, oxygen levels are relatively similar in GFDL1 and

GFDL025  (see  Fig  5  and  Fig  9).  The  relatively  small  net  balance  between  large  fluxes  of

respiration and oxygen supply (Duteil  et al.,  2014) may be responsible for this behavior.  If  the

supply is slightly higher compared to the consumption by respiration, it will lead to an increase of

oxygen concentration. If it is slightly lower, the oxygen levels will decrease. A small difference in

supply (e.g slightly weaker currents) may therefore lead to a large difference in oxygen levels when

integrated over decades. For this reason, the impact of the EICS is more visible below 1000 m as

the respiration decreases following a power-law with depth (Martin et al., 1987) and is therefore

easier to offset even by a moderate oxygen supply.

Resolving  explicitly the EICS results in a similar oxygen distribution  to what Getzlaff and Dietze

(2013)  (GD13)  achieved with a simple EICS parameterization (Fig 9a):  to  compensate for  the

“missing”  EICS in  UVIC,  a  coarse  resolution  model,  they  enhanced  anisotropically  the  lateral

diffusivity in the equatorial region. The oxygen levels from UVIC GD13 are shown in blue contours

on top of  the UVIC oxygen distribution  (black)  in  Fig  9.  Implementing this  approach tends to

homogenize oxygen levels zonally, with an increase of the mean levels by 30-50 mmol.m-3 in the

eastern basin and a decrease of oxygen concentrations in the western basin. While this approach

may be useful to better represent the oxygen mean state, it however does not take in account the

potential variability and future evolution of the EICS. 

5. Summary and conclusions
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IDW are constituted by Intermediate waters masses areDepth Waters (IDW)  which are  subducted

in the Southern Ocean and  transported equatorward to the tropics by isopycnal processes (Sloyan

and Kamenkovich, 2007; Sallee et al., 2013; Meijers, 2014) and the western boundary currents. At

lower latitudes they recirculate into the lower thermocline of the tropical regions at 500 - 1500 m

and into the EICS (Zenk et al., 2005; Marin et al., 2010; Cravatte et al., 2012; 2017; Ascani et al.,

2015;  Menesguen et al., 2019) (see schema Fig 1). We show here that the representation of this

ventilation pathway is important to take into account when assessing tropical oxygen levels and the

extent  of  the  OMZ  in  coupled  biogeochemical  circulation  or  climate  models.  Particularly,  we

highlight  two critical,  yet  typical,  biases  that  hamper  the correct  representation  of  the  tropical

oxygen levels.

5.1   Subducted   Subtropical   IDW properties and tropical oxygen   

First, the current generation of climate models, such as the CMIP5 models, show large deficiencies

in simulating IDW. Along with an unrealistic representation of IDW volume and properties when the

waters  enter  the  subtropics,  the  models  also  lack  the  observed  prominent  oxygen  maximum

associated with IDW. Restoring oxygen levels to observed concentrations at 30°S/30°N and at

1500 m depth in a coarse resolution model,  comparable to CMIP5 climate models in terms of

resolution and oxygen bias, shows a significant impact on the lower thermocline (500 – 1500 m)

oxygen  levels:  a  positive  anomaly  of  60  mmol.m-3 at  midlatitudes  translates  into  an  oxygen

increase by 10 mmol-m-3 in tropical regions after 50 years of integration. 

The equatorward transport of the anomaly in the subtropics is mostly due to isopycnal subgrid

scale mixing processes as shown by the NEMO2 budget  analysis.  It  suggests that mesoscale

activity  plays a major role in transporting IDW equatorward.  In addition  subsurface eddies may

transport oxygen westward from the eastern Pacific ocean toward the mid-Pacific ocean region

(Frenger et al., 2018, see their Fig 2).

5.2   IMW transport and   Transport at IDW level and   Equatorial Intermediate Current System  

Second,  the   Equatorial  Intermediate  Current  System  (EICS)   is  not  represented  in  coarse

resolution models and only poorly represented in high resolution  ocean circulation models (0.25°

and 0.1°), as its strength remains too weak by a factor of two (consistent with previous studies, e.g

Ascani et al., 2015). The EICS transports the IDW that occupies the lower thermocline (500 – 1500

m depth) and the recirculation of the IDW in the tropical ocean, as suggested by the observational

study of Zenk et al. (2005), and shown in our study.

We investigated the impact of the EICS on the oxygen supply with tracer release experiments: the

concentration of a conservative tracer that originates from the subtropical ocean, is, after 50 years,
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30 % higher in the eastern equatorial  (5°N-5S) Pacific in an ocean model with 0.1° resolution,

compared to an ocean model with 0.5 ° resolution. As the oxygen gradient along the equator is

similar to the gradient of the conservative tracer, we assume a similar enhancement of oxygen

supply by 30 % in the eastern equatorial Pacific at the same time scale. This means, if we account

for oxygen consumption due to respiration (about 1 mmol.m-3.yr-1 between 5°N-5°S, see section

3.2),  that  the  better  resolved  EICS  in  the  higher  resolution  ocean  leads  roughly  to  higher

intermediate oxygen levels of 15 - 30 mmol-m-3 compared to the lower resolution ocean experiment

in  a  timescale  of  50  years.  Consistently,  the  0.1°-ocean  GFDL01  model  displays  oxygen

concentrations larger by about 30 mmol.m-3 in the eastern equatorial lower thermocline (500-1500

m) compared to the 1°-ocean GFDL1 configuration (with higher subtropical oxygen concentrations

of IWM of 15 mmol.m-3 in GFDL01 at 30°S) 

We would like to highlight two potential implications of our finding of the important role of the EICS

for the Pacific eastern tropical oxygen supply: i) First, we have shown that the intermediate current

system EICS is important for the connection between the western and eastern Pacific Ocean at a

decadal / multidecadal time scale. This suggests that the EICS modulates the mean state and the

variability  of  the  tropical  oxygen  in  the  lower  thermocline,  and  subsequently  the  whole  water

column  by  upwelling  of  deep  waters.  ii)  Second,  we  have  found  an  enhancement  of  the

connections  between the equatorial  deep  ocean (> 2000 m)  and  the  lower  thermocline  if  the

resolution of a model is enhanced. This result is consistent with the studies of Brandt et al. (2011,

2012), who suggested, based on observational data and on an idealized model, that Equatorial

Deep Jets as part of the EICS (see Fig 1b) propagate their energy upward and impact the upper

ocean  properties  of  the  ocean,  including  their  oxygen  content.  Taken  this  into  account,  we

hypothesize that the Pacific Deep Water has a larger role than previously thought in modulating the

intermediate and upper ocean properties.

A pragmatic approach to account for the missing EICS is to increase diffusion anisotropically, with

increased zonal mixing in the tropics (Getzlaff and Dietze, 2013). This parameterization mimics a

more vigorous EICS and improves the simulated shape of the OMZ in climate models. However,

the prominent bias of IDW in climate models, and therefore of the water masses entering the EICS

is not accounted for with this parameterization. Furthermore such a parameterization improves the

mean state but does not reproduce the variability of the EICS.

5.3 Implication for biogeochemical cycles 

The IDW are an important important supplier of oxygen to the tropical oceans, but also of nutrients

(Palter  et  al.,  2010)  as  well  as  anthropogenic  carbon  (e.g  Kathiwala  et  al.,  2012),  which

accumulates  in  mode  and  intermediate  waters  of  the  Southern  Ocean  (Sabine  et  al.,  2004;
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Resplandy et al.,  2013). The mechanisms that we discussed here may therefore play a role in

ocean carbon climate feedbacks on time scales of decades to a century.

This study shows that there is a need to look with greater care into IDW properties to understand

the  tropical  oxygen  distribution  in  models,  in  particular  in  CMIP  class  models.  As  shown  by

Kwiatkowski et al. (2020), CMIP6 models (typical horizontal resolution of 1°) do not agree on the

future change in tropical oxygen levels (mean 100 – 600m, their Fig 2). This may partly originate in

a misrepresentation of  the properties  of the IDW in the different models and the strength of the

connection between western and eastern Pacific Ocean. Simple analyses,  similar  to our Fig 2

(oxygen levels at 30°S and oxygen levels in the eastern tropical Pacific) and Fig 9 (Mean Kinetic

Energy at intermediate depth) may give some insight  into the mechanisms at play. In addition,

analyses of experiments performed in the context of the High Resolution Model Intercomparison

Project  (resolution greater than 0.25°) (Haarsma et al.,  2016), part  of  CMIP6, will  give a more

complete  insight  on whether  a significant  Equatorial  Intermediate  Current  System develops at

higher resolution. While HighResMIP are not coupled with a biogeochemical module, velocity fields

are available at a monthly resolution, which allows to perform “offline” tracer or Lagrangian particle

experiments.

Finally, this study suggests that changes of the properties of the IDW may contribute to the still

partly unexplained deoxygenation of 5 mmol.m-3 / decade occurring in the lower thermocline of the

equatorial eastern Pacific Ocean (Schmidtko et al., 2017; Oschlies et al., 2018). In addition to an

oxygen decrease in tropical regions, Schmidtko et al. (2017) showed a decrease of oxygen levels

by 2-5 mmol.m-3 in the regions of formations of AAIW. Based on repeated cruise observations,

Panassa et al. (2018) highlighted an increase of the apparent oxygen utilization in the core of the

AAIW, together with a 5 % increase in nutrient concentrations from 1990 to 2014. The transport of

this modified AAIW, poorer in oxygen and richer in nutrients, toward the low latitudes both by small

scale processes (section 3) and at the equator by the EICS (section 4), may explain a significant

part of the occurring deoxygenation in the equatorial ocean. In  addition to changes in the AAIW

properties, little is known about the variability and long term trend of the strength of the EICS, an

oceanic “bridge” between the western and the eastern part of the basin. After our first steps toward

assessing  the role  of  extratropical  oxygen characteristics and the zonal  transport  of  waters at

intermediate depths for tropical oxygen concentration, a possible way forward to further assess this

cascade  of  biases  could  be  to  perform  idealized  model  experiments  in  high  resolution

configurations, aiming to assess both the effect of the observed change in the AAIW properties and

of a potential change of EICS strength on oxygen levels. 
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Data and code availability 

The  code  for  the  Nucleus  for  European  Modeling  of  the  Ocean  (NEMO)  is  available  at:

https://www.nemo-ocean.eu/.  The code for  the University  of  Victoria  (UVIC)  model  is  available

at  :http://terra.seos.uvic.ca/model/.  The  Lagrangian  particles  ARIANE  code  is  available  at

http://stockage.univ-brest.fr/~grima/Ariane/.  The  Coordinated  Ocean-ice  Reference  Experiments

(COREv2)  dataset  is  available  at:  https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html.

The experiments data is available on request. 
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Figures and Table 

[Figure above is replaced by Fig below] 

Figure  1  :  a-  schema summarizing  the  intermediate  water  masses  (IWM)   pathway  from the

subtropics into the equatorial regions. EICS : Equatorial Intermediate Current System. SEC : South

Equatorial Current (Kawabe et al., 2008). Dashed line : isopycnal diffusive processes. Observed

(World Ocean Atlas) oxygen levels (mmol.m-3) in the lower thermocline (mean 500-1500m) are

represented in color. b - schema (adapted from Menesguen et al., 2019) illustrating the complexity

of the EICS, extending below the thermocline till more than 2000 m depth (see section 4.1 for a

detailed description). Observed (World Ocean Atlas) oxygen levels at 160°W are represented in

color.  SEC :  South Equatorial  Current.  N/SEC :  North/South Equatorial  Current.  NECC:  North

Equatorial Counter Current. EUC : Equatorial Undercurrent. EIC : Equatorial Intermediate Current.

N/SSCC : North / South Subsurface Counter Current. LLSC : Low Latitude Subsurface Currents.
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LLIC  :  Low  Latitudes  Intermediate  Currents.  N/SEIC  :  North  /  South  Equatorial  Intermediate

Current. N/SICC : North / South Intermediate Current. EDJ : Equatorial Deep Jets.    

Figure 2 : a- oxygen levels (mmol.m-3)  in observations (World Ocean Atlas - WOA) (mean 500 –

1500 m) and models (UVIC, NEMO2, GFDL1, GFDL025, GFDL01). Contours correspond to WOA

values. b: average “30°S” (120°E-65°W, 30°S) c : average “tropics” (160°W-coast, 20°N-20°S). d:

average “30°S” vs “tropics”. e: average “30°S” vs volume of tropical suboxic ocean (oxygen lower

than 20 mmol.m-3) regions (1e15m3). b-e : UVIC : black, NEMO2 : cyan, GFDL1 : red, GFDL025,

green; GFDL01 : blue, WOA: bold line (b,c) and star (d,e).
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Figure 3 : a,b: Oxygen (mmol.m-3) in the experiments NEMO2_REF (color) and World Ocean Atlas 

(contour) (a- average 500-1500 m, b- 100°W). c,d: Oxygen (mmol.m-3) difference (c- average 500 –

1500m, d- 100°W) between the experiments NEMO2_30S30N minus NEMO2_REF. e,f :  Oxygen

(mmol.m-3)  difference  (e-  average  500-1500m,  f-  100°W)  between  the  experiments

NEMO2_30S30N1500M minus NEMO2_REF. g- basin zonal average (average 500 - 1500 m) of

the oxygen total supply (bold) (mmol.m-3.year-1), advective processes (blue) and isopycnal diffusion

(red) in NEMO2_REF, NEMO2_30S30N, NEMO2_30S30N1500M. The dashed line is the oxygen

total supply in NEMO2_REF. 
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Figure  4  :  a-d  a-  Oxygen  supply  processes  (mmol.m-3.year-1 –  average  500  -  1500m)  in

NEMO2_REF :  a -zonal advection,  b -meridional advection,  c-  vertical  advection,  d-  isopycnal

diffusion.  The mean meridional  and zonal  currents are displayed as vectors (meridional,  zonal

advection). The mean vertical current (0 isoline) is represented as bold contour (vertical advection).

Oxygen  levels  (mmol-m.-3)  are  displayed  in  black  contour.  e-h: Difference  in  oxygen  supply

processes (mmol.m-3.year-1 – average 500-1500m) between NEMO2_30S30N and NEMO2_REF :

e-  zonal  advection,  f-  meridional  advection,  g-  vertical  advection,  h-  isopycnal  diffusion.  The

NEMO2_30S30N – NEMO2_REF oxygen anomaly (mmol.m-3) is displayed in contour.
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Figure 5 : mean currents velocity (ms-1) at a- 1000 m depth  b- 100°W in UVIC, NEMO2,  NEMO05,

GFDL025,  GFDL01,  NEMO01.  The mean oxygen levels  (mmol.m-3)  (when coupled circulation-

biogeochemical experiments have been performed – see Table 1) are displayed in contour.
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[Fig above is replaced by Fig below] 
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Figure 6:  a : mean 500 – 1500 m tracer concentration (arbitrary unit) after 60 years integration in

a-  NEMO05 and  b -  NEMO01: average 500-1500m, section 100°W, equatorial section.  b:  Time

(years) at which the released tracer reaches the concentration 0.1 (t10%) in  c-  NEMO05 and d-

NEMO01: average 500-1500m, section 100°W, equatorial section. In all the subpanels, Tthe WOA

oxygen levels  (mean 500 – 1500 m)  are displayed in contour. The red contour is the WOA 150

mmol.m-3 oxygen isoline, used to initialize the tracer level. 
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Figure 7 : Density (number of particles in a 1°x1°x100m depth box) distribution of the location of

released Lagrangian particles (15 years backward integration starting from the final experiment

state) in NEMO05 and NEMO01. The release location is identified in bold and is located a- at

100°W/5°N-5S/1000 m depth (R1). b- at 160°E/5°N-5°S/1000 m depth (R2). The particles have

been integrated vertically, zonally and meridionally. The observed mean oxygen levels (WOA) are

displayed in contour. 

[FIGURE DELETED] 
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Figure 8 :  a- schema summarizing the releases (R1: 100°W / 5°N-5°S / 1000 m , R2: 160°E /

5N°5S / 1000 m) location, the IETP (Intermediate Eastern Tropical Pacific), IWTP (Intermediate

Western Tropical Pacific) regional extension. b. percentage of particles (release R1) originating

from outside  the  IETP ocean  region.  b-  percentage  of  particles  (release  R2)  originating  from

outside the IWTP ocean region. d- percentage of particles (release R1) originating from the upper

ocean  (shallower  than  200  m),  the  deeper  ocean  (deeper  than  2000  m),  subtropical  regions

(poleward 10°), the IWTP. e- percentage of particles (release R2) originating from the upper ocean

(shallower than 200 m), the deeper ocean (deeper than 2000 m), subtropical regions (poleward

10°), the IETP. 

[FIGURE DELETED]

Figure 7 and 8 have been replaced by 2 new figures (below) 
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Figure 7 : Density (number of particles in a 1°x1°x100m depth box) distribution of the location of

released Lagrangian particles (backward integration in years) in a - NEMO05 and b- NEMO01. The

release location is identified in bold and is located at 100°W/10°N-10S/500-1500 m depth (black

line). The number of particles have been integrated vertically. The observed mean (500 – 1500 m)

oxygen  levels  (WOA)  are  displayed  in  contour.  The  blue  contour  represents  the  Intermediate

Eastern  Tropical  Pacific  basin  (IETP).  c  –  percentage  of  particles  originating  outside  the

Intermediate Eastern Tropical Pacific (IETP) basin (160°W, 10°N-10°S, 500-1500 m) in NEMO05

(red) and NEMO01 (black) over time (years)
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Figure 8 : mean transport (Sv) in a- NEMO05 and -b NEMO01 derived from the release of particles

at  100°W,  10°N-10°S,  500-1500m  (backward  integration).  The  mean  zonal  velocity  (ms-1  )  is

represented in contour. c- zonally integrated transport (Sv) derived from the release of particles at

100°W, 10°N-10°S, 500-1500m in NEMO05 (red) and NEMO01 (black)

Figure 9 : a -  Mean Kinetic Energy (m2.s-2 x 1000) (average 10°N-10°S) in GFDL01, GFDL025,

GFDL01, UVIC, b - similar to a. but average 160°W- coast. Oxygen levels (mmol.m -3) are displayed
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in  black  contour.  The  blue  contour  corresponds  to  UVIC  GD13  (Getzlaff  and  Dietze,  2013,

including an anisotropical increase of lateral diffusion at the equator)

Table 1 : 

Model Resol
ution 

Atmosphere Integrat
ion
(years)

BGC Model
Reference
(circulation) 

Model
Reference
(BGC)

Mean state comparison 
UVIC 2.8° Coupled

(temperature,
humidity)
Forced  (NCEP/
NCAR  wind
stress)

10000 UVIC-
BGC

Weaver   et
al., 2001

Keller  et  al.,
2012

NEMO2 2° 
(0.5
eq)

Forced
COREv2
“normal year”

1000 NPZD-
O2

Madec et al.,
2015

Kriest  et  al,
2010
Duteil  et  al.,
2014

GFDL1 1° Coupled 190 BLING Delworth  et

al,  2012,

Griffies et al,

2015

Galbraith  et

al., 2015GFDL025 0.25 ° Coupled 190 BLING
GFDL01 0.1° Coupled 190 BLING

Process oriented experiments
Model Resol

ution
Atmosphere Integrat

ion
(years) 

BGC Characteristics

NEMO2 
-REF
-30N30S
-30N30S1500M
(section 2.2.1)

2° 
(0.5
eq) 

Forced
COREv2  1948-
2007

60 NPZD-
O2 - control experiment

-  O2  restoring  to  WOA  at
30°N/30°S
-  O2  restoring  to  WOA  at
30°N/30°S/1500m 

NEMO05
(section 2.2.2)

0.5° Forced
COREv2
1948 - 2007

60 Tracer
release

- Tracer initialized to 1 (O2 
WOA > 150 mmol.m-3) or 0 
(O2 WOA < 150 mmol-m-3) 

NEMO01
(section 2.2.2) 

0.1° Forced
COREv2
1948 – 2007 

60 Tracer
release 
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Annex A 

The differences in oxygen levels between the “models groups” (GFDL suite, UVIC, NEMO2) are

partly related to differences in the atmospheric fields employed and the integration time (see 2). 

1. Wind forcing

Zonal  wind  mean  stress  typically  varies by  5  to  20  %  between  the  different  wind  products

(Chauduri et al., 2013). To test this impact, we performed an experiment using the UVIC model

using 2 different wind products (NCEP and COREv2 – Large and Yeager, 2009) (Figure A1). While

the shape of the OMZ shows slight differences, the volume of the OMZ and the mean oxygen

levels in the tropical regions and in the mid latitudes are similar. Consistent with the Figure 2,

higher oxygen levels at 30°S lead to higher oxygen levels in the tropical ocean and to a smaller

OMZ volume (Figure A2)

Figure A1 : Oxygen levels in UVIC (10000 years integration) a- mean 500-1500 m forcing NCEP.

b- section 120°W forcing NCEP. c- mean 500-1500 m forcing COREv2, d- section 120°W forcing

COREv2.

Figure A2 : a - Oxygen levels in UVIC (10000 years integration) at 30°S (zonal mean in the Pacific

Ocean from surface to 2000 m depth) and in the tropical regions (20°S-20°N, averaged over the
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whole Pacific Ocean). b - Oxygen levels in UVIC (10000 years integration) at 30°S (zonal mean in

the Pacific Ocean, from surface to 2000 m depth) and volume of the OMZ in the Pacific Ocean.

The configuration forced by COREv2 is shown in black, the configuration forced by NCEP is shown

in red. 

2. Spinup state

In complement, the spinup state of the model also impacts the oxygen levels as the deep ocean

needs thousands of years to be in equilibrium. It may explain why UVIC (integrated for 10000

years) is characterized by much larger oxygen levels than the GFDL model suite (integrated for

190 years). As an example, the Figure A3 shows the evolution of oxygen levels during spinup in

NEMO2. Larger oxygen levels at 30°S (e.g after 1000 years of integration) are characterized by a

smaller OMZ volume (which is consistent with Fig 2) (Figure A4) 

Figure A3 : oxygen levels at a - intermediate depth (average 500 – 2000 m) and b - 120°W in

NEMO2 after 50, 100,500 and 1000 years integration 
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Figure A4 : a - Oxygen levels in NEMO2 at 30°S (zonal mean in the Pacific Ocean from surface to

2000 m depth) and in the tropical regions (20°S-20°N, averaged over the whole Pacific Ocean from

surface to 2000 m depth). b - Oxygen levels in NEMO2 at 30°S (zonal mean in the Pacific Ocean

from surface to 2000 m depth) and volume of the OMZ in the Pacific Ocean. The color of the cross

depends of the integration duration (black : 50 years, red : 100 years, green : 500 years, blue 1000

years).
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Figure A5 :  a - oxygen levels (mmol.m-3) in observations and models at 30°S. The WOA oxygen

levels  are  displayed  in  contour.  b-  salinity  in  observations  and  models  at  30°S.  The  density

anomaly (26.5, 27, 27.5) is displayed in contour. 
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Annex B 

The deficiency in oxygen in NEMO2-REF is clearly highlighted at 30°S, between 400 and 1500m. 

In comparison, the density field is well represented in NEMO2-REF. At 500m, density is about 26.6

in both WOA and NEMO2-REF. At 1500 m , the density is 27.6 in WOA and only 27.4 in NEMO2-

REF, highlighting some potential water mass formation issue in NEMO2, as in most of models. A

section at 100°W shows that isopycnal are almost horizontal at intermediate depth (500 – 1500 m)

in WOA and NEMO2 in the subtropical and tropical ocean.

Fig B1 :  oxygen levels (mmol.m-3  ) (color) and density levels (contour) at 30°S, 30N and 100°W in

the WOA dataset (a,b,c) and NEMO2-REF experiment (d,e,f) 

Annex C 
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The experiments discussed in 4.2 were not coupled with biogeochemical cycles for computational

cost reasons. In order to assess the robustness of our findings (EICS plays a large role in setting

tropical oxygen levels), we next analyze equatorial oxygen in a set of climate models similar to

CMIP models. To this end we use the GFDL model suite, characterized by a resolution increase

(GFDL1, GFDL025 and GFDL01 - see Table 1).

The striking difference between GFDL01 and GFDL025 / GFDL1 are the high oxygen levels in the

eastern part of the ocean below 1000 m in GFDL01 compared to GFDL025/GFDL1 (Fig 2). The

oxygen levels show weaker zonal gradient in GFDL01, consistent with the tracer experiment that

we performed in 4.2. and a more ventilated intermediate equatorial ocean. High values of mean

kinetic  energy are  associated with higher  oxygen values (Fig C1).  This  is  particularly  clear  in

GFDL01 at around 1500 m depth, where strong values of MKE are present and form the “bottom”

of the low oxygen volume (oxygen lower than 50 mmol.m-3). Conversely GFDL025 and GFDL1 do

not present high MKE values below 1000 m in the eastern part of the basin; the low oxygen volume

extends till depths greater than 2000 m. It suggests that intermediate currents participate in the

ventilation of the eastern tropical ocean and thus in limiting the vertical extension of the OMZ.

Oxygen  levels  do  not  increase  linearly  with  the  currents  strength,  i.e  while  currents  strength

increase in GFDL1, GFDL025 and GFDL01, oxygen levels are relatively similar in GFDL1 and

GFDL025  (see  Fig  5  and  Fig  C1).  The  relatively  small  net  balance  between  large  fluxes  of

respiration and oxygen supply (Duteil  et al.,  2014) may be responsible for this behavior.  If  the

supply is slightly higher compared to the consumption by respiration, it will lead to an increase of

oxygen concentration. If it is slightly lower, the oxygen levels will decrease. A small difference in

supply (e.g slightly weaker currents) may therefore lead to a large difference in oxygen levels when

integrated over decades. For this reason, the impact of the EICS is more visible below 1000 m as

the respiration decreases following a power-law with depth (Martin et al., 1987) and is therefore

easier to offset even by a moderate oxygen supply.

Resolving explicitly the EICS results in a similar oxygen distribution to what Getzlaff and Dietze

(2013) (GD13) achieved with a simple EICS parameterization (Fig C1a): to compensate for the

“missing”  EICS in  UVIC,  a  coarse resolution  model,  they  enhanced  anisotropically  the  lateral

diffusivity in the equatorial region. The oxygen levels from UVIC GD13 are shown in blue contours

on top of the UVIC oxygen distribution (black) in Fig C1. Implementing this approach tends to

homogenize oxygen levels zonally, with an increase of the mean levels by 30-50 mmol.m-3 in the

eastern basin and a decrease of oxygen concentrations in the western basin. While this approach

may be useful to better represent the oxygen mean state, it however does not take into account the

potential variability and future evolution of the EICS. 
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Figure C1 : a -  Mean Kinetic Energy (m2.s-2 x 1000) (average 10°N-10°S) in GFDL01, GFDL025,

GFDL01,  UVIC,  b  -  similar  to  a.  but  average  160°W-  coast.  Oxygen  levels  (mmol.m-3)  are

displayed in black contour.  The blue contour corresponds to UVIC GD13 (Getzlaff  and Dietze,

2013, including an anisotropical increase of lateral diffusion at the equator)
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