

1 The riddle of eastern tropical Pacific ocean oxygen levels : the role of the supply by
2 intermediate depth waters.

3

4 Olaf Duteil (oduteil@geomar.de)(1), Ivy Frenger(1), Julia Getzlaff(1)

5 (1) GEOMAR, Kiel, Germany

6

7 **Abstract**

8 Observed Oxygen Minimum Zones (OMZs) in the tropical Pacific ocean are located above
9 intermediate depth waters (IDW) [defined here as the 500 – 1500 m water depth](#). Typical climate
10 models do not represent IDW properties and are characterized by a too deep reaching OMZ. We
11 [test analyze](#) here the role of the IDW on the misrepresentation of oxygen levels in a heterogeneous
12 subset of ocean models characterized by a horizontal resolution ranging from 0.1° to 2.8°. First, we
13 show that forcing the extra tropical boundaries (30°S/N) to observed oxygen values results in a
14 significant increase of oxygen levels in the intermediate eastern tropical region. Second, the
15 equatorial intermediate current system (EICS) is a key feature connecting the western and eastern
16 part of the basin. Typical climate models lack in representing crucial aspects of this supply at
17 intermediate depth, as the EICS is basically absent in models characterized by a resolution lower
18 than 0.25°. These two aspects add up to a “cascade of biases”, that hampers the correct
19 representation of oxygen levels at intermediate depth in the eastern tropical Pacific Ocean and
20 potentially future OMZs projections.

21

22 **1. Introduction**

23 Oxygen levels in the ocean are characterized by high values in the high latitudes and the
24 subtropical gyres, while concentrations decrease to close to zero in the tropical oceans in the
25 Oxygen Minimum Zones (OMZs). While OMZs are natural features, climate change is potentially
26 responsible for their expansion (Breitburg et al., 2018), leading to a reshaping of the ecosystems
27 and a potential loss of biodiversity.

28

29 Modelling oxygen levels is particularly challenging because of the complexity of the interactions
30 between biological [processes respiration](#) and physical transport (e.g Deutsch et al., 2014, Ito et al.,
31 2013; Duteil et al., 2014a,b, 2018, Oschlies et al., 2017). Climate models tend to overestimate the
32 volume of the OMZs (Cabré et al., 2015) and do not agree on the intensity and even sign of
33 oxygen future evolution (Oschlies et al., 2017). In order to perform robust projections there is a
34 need to better understand the processes at play that are responsible for the supply of oxygen to
35 the OMZ. We focus here on the Pacific ocean, where large OMZs are located in a depth range
36 from 100 to 900 m (Karstensen et al., 2008; Paulmier and Ruiz-Pino. 2009). Previous modelling
37 studies have shown that the tropical OMZ extension is at least partly controlled by connections with

38 the subtropical ocean (Duteil et al., 2014). In addition, the role of the equatorial undercurrent
39 (Shigemitsu et al., 2017; Duteil et al., 2018; Busecke et al., 2019), of the secondary Southern
40 Subsurface Countercurrent (Montes et al., 2014), of the interior eddy activity (Frenger et al., 2018),
41 have been previously highlighted. These studies focus on the mechanisms at play in the upper
42 ~~oxygen levels (upper 500 m meter) 500 m of the water column~~. The oxygen content below the core
43 of the OMZ however plays a significant role in setting the upper oxygen levels by diffusive (Duteil
44 and Oschlies, 2009) or vertical advective (Duteil, 2019) processes. Here, we focus specifically on
45 the mechanisms supplying oxygen toward the eastern tropical pacific ocean at intermediate depth
46 (500 – 1500 m), below the OMZ core.

47

48 The water masses occupying this intermediate depth layer (500 – 1500 m) (Emery, 2003) subduct
49 at high latitudes. (Karstensen et al., 2008). Oxygen solubility increases with lower temperatures,
50 thus waters formed in the Southern Ocean ~~and in the North Pacific~~ are characterized by high
51 oxygen values. In particular, the Antarctic Intermediate Water (AAIW) (Molinelli, 1981) ventilates
52 large areas of the lower thermocline of the Pacific Ocean (Sloyan and Rintoul., 2001) and is
53 characterized by oxygen values larger than 300 mmol.m⁻³ at subduction time (Russel and Dickson,
54 2003). The oxygenated core of the AAIW in the tropical Pacific is located at about 500-1200 m
55 depth at 40°S (Russell and Dickson, 2003) and with this at a depth directly below the depth of the
56 OMZs in the eastern Pacific; the Pacific AAIW mixes down to 2000 m depth with the oxygen poor
57 Pacific Deep Water (PDW) as determined by the OMP (Optimum Multiparameter) analysis (Pardo
58 et al., 2012; Carrasco et al., 2017). The oxygen rich (> 200 mmol.m⁻³ at 40°S) AAIW spreads from
59 its formation side in the Southern Ocean to the subtropical regions. The northern part of the Pacific
60 basin is characterized by the North Pacific Intermediate Water (NPIW) (Talley, 1993) confined to
61 the northern Pacific conversely to the AAIW, which spreads far northward as its signature reaches
62 15°N (Qu and Lindstrom., 2004). AAIW, NPIW and the upper part of the PDW are oxygenated
63 water masses occupying the lower thermocline between 500 and 1500 m depth. In this study we do
64 not specifically focus on the individual water masses, but rather on the water occupying the
65 intermediate water depth (500 – 1500 m) (Emery, 2003) of the subtropical and tropical ocean. We
66 will refer to the waters in this depth range as intermediate depth waters (IDW).

67

68 In the subtropics, the IDW (particularly the AAIW) circulates into the intermediate flow of the South
69 Equatorial Current and the New Guinea Coastal Undercurrent (Qu and Lindstrom, 2004) where it
70 retroflects in the zonal equatorial flows of the Southern Intermediate Countercurrent (SICC) and
71 Northern Equatorial Intermediate Current (NEIC) within about $\pm 2^\circ$ off the equator (Zenk et al.,
72 2005; Kawabe et al., 2010) (Fig 1). These currents are part of the Equatorial Intermediate Current
73 System (EICS) constituted by a complex system of narrow jets extending below 500 m in the lower
74 thermocline (Firing, 1987; Ascani et al., 2010; Marin et al. 2010; Cravatte et al., 2012, 2017;

75 Menesguen et al., 2019). While the existence of this complex jet system has been shown to exist in
76 particular using argo floats displacements (Cravatte et al., 2017) the spatial structure and variability
77 of the jets are still largely unknown. In addition, there is little knowledge about their role in
78 transporting properties such as oxygen.

79

80 The simulation of the supply of oxygen to the eastern tropical Pacific below the OMZ core is a
81 difficult task as it depends on the realistic simulation of the IDW ~~—~~properties (in particular the
82 oxygen content) and the IDW pathway (through the EICS). It is known that current climate models,
83 in particular CMIP5 (Coupled Model Intercomparison Project phase 5) models, have deficiencies in
84 correctly representing the IDW~~They generally display, and in particular the AAIW. In particular,~~
85 ~~the AAIW is~~ too shallow and thin ~~IDW~~, with a limited equatorward extension compared to
86 observations (Sloyan and Kamenkovich, 2007; Sallee et al., 2013; Meijers, 2014; Cabre et al.,
87 2015; Zhu et al., 2018 for the south Atlantic ocean). Discrepancies in the simulated properties of
88 IDW compared to observations are due to a combination of a range of errors in the climate models,
89 including in the simulation of wind and buoyancy forcing, an inadequate representation of subgrid-
90 scale mixing processes in the Southern Ocean, and midlatitude diapycnal mixing
91 parameterizations (Sloyan and Kamakovich, 2007; Zhu et al., 2018). In addition, the EICS is mostly
92 lacking in coarse resolution models (Dietze and Loeptien, 2013; Getzlaff and Dietze, 2013). Higher
93 resolution (0.25° , $1/12^\circ$) configurations partly resolve the EICS but with smaller current speeds
94 than observed (Eden and Dengler, 2008; Ascani et al., 2015). The mechanisms forcing the EICS
95 are complex and still under debate (see the review by Menesguen et al., 2019).

96

97 In this study we focus on the role impact of the subtropical and western tropical IDW (and of the
98 deficiencies in the representation of its their properties and transport) on the oxygen content in the
99 eastern tropical Pacific in a set of model simulations. Section 2 gives an overview of all models that
100 we used as well as of the sensitivity simulations. Next, we assess to which extent the IDW
101 modulate (or drive) the oxygen levels in the eastern tropical (20°S – 20°N ; 160°W -coast) Pacific
102 ocean ~~in this set of models, and determine. The role of the IDW depends i) and determine the role~~
103 ~~of i) on~~ the oxygen content of the IDW in ~~the lower thermocline of~~ the subtropical regions (section
104 3) and ii)~~on~~ the zonal recirculation of the oxygen by the EICS toward the eastern part of the basin
105 (section 4). We conclude in section 5.

106

107

108 | **2. Analyzed models Description of models and experiments**

109 | **2.1 Description of models**

110 | Mean state12.

111 |

112 We analyze the mean state of the oxygen fields, OMZ, EICS of the following model experiments
113 (see Table 1), which previously have been used in recent studies focusing on the understanding of
114 the tropical oxygen levels mean state or variability :

115 ~~(NEMO2 configuration). The circulation model is coupled to a simple NPZD (Nutrient~~
116 ~~Phytoplankton-Zooplankton-Detritus) biogeochemical model that comprises 6 compartments (e.g~~
117 ~~used in Duteil et al., 2018; Duteil, 2019). The simulation has been forced by climatological forcings~~
118 ~~based on the Coordinated Reference Experiments (CORE) v2 reanalysis (Normal Year Forcing)~~
119 ~~(Large and Yeager, 2009) and integrated for 1000 years. the NEMO (Nucleus for European~~
120 ~~Modelling of the Ocean) model (Madec et al., 2017) with a resolution of 2°, refined meridionally to~~
121 ~~0.5° in the equatorial region~~

122 - The NEMO (Nucleus for European Modelling of the Ocean) model (Madec et al., 2017) has been
123 used throughout this study in different configurations. We first use a coarse resolution version (see
124 2.2). This configuration is known in the literature as ORCA2 (Madec et al., 2017) but we call it
125 NEMO2 in this study for clarity reasons. The resolution is 2°, refined meridionally to 0.5° in the
126 equatorial region. It possesses 31 vertical levels on the vertical (10 levels in the upper 100 m),
127 ranging from 10 m to 500 m at depth. Advection is performed using a third-order scheme.
128 Isopycnal diffusion is represented by a biharmonic scheme along isopycnal surfaces. The
129 parameterisation of Gent and McWilliams (1990) (hereafter GM) has been used to mimic the effect
130 of unresolved mesoscale eddies. The circulation model is coupled to a simple biogeochemical
131 model that comprises 6 compartments (phosphate, phytoplankton, zooplankton, particulate and
132 dissolved organic matter, oxygen). The same configuration has been used in Duteil et al., 2018;
133 Duteil, 2019. The simulation has been forced by climatological forcings based on the Coordinated
134 Reference Experiments (CORE) v2 reanalysis (Normal Year Forcing) (Large and Yeager, 2009)
135 and integrated for 1000 years. Initial fields (temperature, salinity, phosphate, oxygen) are provided
136 by the World Ocean Atlas 2018 (WOA) (Garcia et al. 2019; Locarnini et al., 2019)

137
138 Two other versions of NEMO have been used (see 2.2). The configuration ORCA05 (that we call
139 here NEMO05) is characterized by a spatial resolution of 0.5°. It possesses 46 levels on the
140 vertical, ranging from 6 to 250 m at depth (15 levels in the upper 100 m). Advection is performed
141 using a third-order scheme. Isopycnal diffusion is represented by a biharmonic scheme along
142 isopycnal surfaces. Effects of unresolved mesoscale eddies are parameterized following GM. In
143 the configuration TROPAC01 (that we call NEMO01 in the rest of this study), a 0.1° resolution two-
144 way AGRIF (Adaptive Grid Refinement In Fortran) has been embedded between in the Pacific
145 Ocean into the global NEMO05 grid (similar to the configuration used in Czeschel et al., 2011).
146 Since the model is eddying in the nested region GM is not used. Both configurations are forced by
147 the same interannually varying atmospheric data given by the Coordinated Ocean–Ice Reference
148 Experiments (CORE) v2 reanalysis products over the period 1948–2007 (Large and Yeager,

149 2009), starting from the same initial conditions. The initial fields for the physical variables are given
150 by the final state of a 60 year integration of NEMO01 (using 1948–2007 interannual forcing and
151 following an initial 80 year climatological spin-up at coarse resolution). The interpretation of
152 differences in the ventilation in the IDW is aided by the use of a passive tracer (see 2.2.2)

153

154 - the UVIC (University of Victoria) model (e.g used in Getzlaff et al., 2016; Oschlies et al., 2017), an
155 earth System Model (ESM) that has a horizontal resolution of 1.8° latitude x 3.6° longitude. The
156 experiment has been integrated for 10000 years. The biogeochemical model is a NPZD-type
157 model of intermediate complexity that describes the full carbon cycle (see Keller et al., 2012 for a
158 detailed description). This model is forced by monthly climatological NCAR/NCEP wind stress
159 fields.

160 - the GFDL (Geophysical Fluid Dynamics Laboratory) CM2-0 suite (Delworth et al., 2012; Griffies
161 et al., 2015, Dufour et al, 2015): the suite is based on the GFDL global climate model and includes
162 a fully coupled atmosphere with a resolution of approximately 50 km. It consists of three
163 configurations that differ in their ocean horizontal resolutions: GFDL1 (original name : CM2-1deg)
164 with a nominal 1° resolution, GFDL025 (original name : CM2.5) with a nominal 0.25° and GFDL01
165 with a nominal 0.1° resolution (original name : CM2.6)(e.g These configurations have been used in
166 Frenger et al., 2018 and Busecke et al., 2019 for studies on ocean oxygen). At simulation year 48,
167 the simplified ocean biogeochemistry model miniBLING is coupled to the models, with three
168 prognostic tracers, phosphate, dissolved inorganic carbon and oxygen (Galbraith et al., 2015). Due
169 to the high resolution of GFDL01, the integration time is limited. We here analyze simulation years
170 186 to 190.

171 All the models (NEMO2, UVIC, GFDL suite) are forced using preindustrial atmospheric pCO₂
172 concentrations.

173 Differences in model resolution but also in atmosphere forcings or spinup duration strongly impact
174 oxygen distribution (see Annex A). However, the heterogeneity of the configurations that we
175 analyze permits to determine whether the simulated oxygen distributions display systematic biases
176 / similar patterns.

177 The mean states of the oxygen distributions are discussed below in section 3.1 “IDW Oxygen
178 levels in models”.

179

180 2.2 Sensitivity experiments

181 In order to disentangle the different processes at play, we perform two different sets of sensitivity
182 simulations, using the NEMO model engine. NEMO allows to test effects of increasing the ocean
183 resolution and to integrate the model over a relatively long time span.

184 | Sensitivity simulations
185 | In order to disentangle the different processes at play we perform two different sets of sensitivity
186 | simulations using the NEMO model engine. NEMO allows to test effects of increasing the ocean
187 | resolution and to integrate the model over a relatively long time span. All sensitivity experiments
188 | are integrated for 60 years (1948 to 2007) using the CORE (Coordinated Ocean-Ice Reference
189 | Experiments) v2 interannual (Large and Yeager, 2009) forcings. This time scale permits the
190 | recirculation from the interior subtropical regions to the tropical area (as suggested in the model
191 | study by SenGupta and England, 2007).²²

192

193 | 2.2.1 Forcing of oxygen to observed values in the subtropical regions

194 | In the first set of experiments the focus is on the role of the lower thermocline oxygen content for
195 | the ventilation of the eastern equatorial Pacific. We use NEMO2, the oceanic component of the
196 | IPSL-CM5A (Mignot et al., 2013), that is part of CMIP5. NEMO2 shows mid-latitudes oxygen
197 | biases consistent with CMIP5 models. We compare three experiments :

198 | - NEMO2-REF: the experiment is integrated from 1948 to 2007 starting from the spinup state
199 | described in 2.1.

200 | - NEMO2-30S30N: the oxygen boundaries are forced to observed oxygen concentrations (WOA) at
201 | the boundaries 30°N and 30°S in the whole water column: the mid-latitude oxygen levels in the
202 | IDW are therefore correctly represented.

203 | - NEMO2-30S30N1500M: same as NEMO2-30S30N; in addition oxygen is forced to observed
204 | concentrations at the depth interface of below 1500m, mimicking a correct oxygen state of the
205 | deeper water masses (lower part of the AAIW, upper part of the PDW)

206

207 | With the above three experiments we focus on the transport of IDW oxygen levels to the tropical
208 | ocean and the OMZs. The respiration rate (oxygen consumption) is identical in NEMO2-REF,
209 | NEMO2-30S30N and NEMO2-30S30N1500M in order to avoid compensating effects between
210 | supply and respiration that depend on biogeochemical parameterizations (e.g Duteil et al., 2012).
211 | We aim to avoid such compensating effects to ease interpretation and be able to focus on the role
212 | of the physical transport. The sensitivity of tropical IDW oxygen to subtropical and deep oxygen
213 | levels is discussed in section 3.2

214

215 | 2.2.2 Conservative Tracer Release in oxygenated waters

216 | In the second set of experiments, we assessed the effect of a resolution increase on the transport
217 | of a conservative tracer. To do this, we used a 0.5° (NEMO05) and a higher resolution 0.1°
218 | (NEMO01) configuration of the NEMO model engine (Table 1) to examine the transport of
219 | oxygenated IDW from the subtropical regions into the oxygen deficient tropics. NEMO01 is a
220 | configuration based on NEMO05 and where a 0.1° two-ways nest has been embedded in the

221 | whole Pacific Ocean, from 49°S to 31°N (Czeschel et al., 2011). In these experiments, we
222 initialized the regions with climatological (WOA) oxygen levels greater than 150 mmol.m⁻³ with a
223 value of 1 (and 0 when oxygen was lower than 150 mmol.m⁻³). In the model simulations, the tracer
224 is subject to the same physical processes as other physical and biogeochemical tracers, i.e.
225 advection and diffusion but it does not have any sources and sinks. The experiments have been
226 integrated for 60 years (1948 – 2007) using realistic atmospheric forcing (COREv2). ~~NEMO05 and~~
227 ~~NEMO01 display a similar upper ocean circulation (Fig 5) but NEMO05 does not simulate a~~
228 ~~developed EICS in contrast to NEMO01.~~

229

230 In order to complement the tracer experiment we performed Lagrangian particle releases.
231 Lagrangian particles allow to trace the pathways of water parcels due to the resolved currents, and
232 to track the origin and fate of water parcels. ~~They are not affected by subgrid scale diffusive and~~
233 ~~adveective processes.~~ The particles are advected offline with 5 days mean of the NEMO05 and
234 NEMO01 currents. The NEMO01 circulation fields have been interpolated to the NEMO05 grid in
235 order to ~~allow a comparison of the large scale advective patterns between NEMO01 and~~
236 ~~NEMO05. We do not take into account subgrid processes in NEMO05.~~ We used the ARIANE tool
237 (Blanke and Raynaud, 1997). A ~~first~~ particle release has been performed in the eastern tropical
238 OMZ at 100°W in the tropical region between ~~105°S – 105°N, a second release has been~~
239 ~~performed in the western part of the basin at 160°E.~~ The particles have been released in the ~~IDW~~
240 ~~lower thermocline at (5100 - 1500-m)~~ and integrated backward in time from 2007 to 1948 in order
241 to determine their pathways and their location of origin. ~~We released 120 particles every 5 days~~
242 ~~during the last year of the experiment, for a total of 8760 particles.~~ The transport by the EICS is
243 discussed in section 4.2 (tracers levels and Lagrangian pathways).

244

245 3. Intermediate water properties and oxygen content

246 3.1. IDW Oxygen levels in models

247 The ~~water masses~~ ~~IDW~~ subducted in mid/high latitudes are highly oxygenated waters. ~~As part of~~
248 ~~the deficient representation of IDW, the~~ ~~The~~ subducted “oxygen tongue” (oxygen values up to 240
249 mmol.m⁻³) ~~located at IDW level~~ is not reproduced in most of the models part of CMIP5 (Fig 8 from
250 Cabre et al., 2015, Fig 4 from Takano et al., 2018) and in the models analyzed here (Fig 2a), with
251 an underestimation of about 20-60 mmol.m⁻³ (NEMO2, GFDL1, GFDL025, GFDL01). UVIC, a
252 coarse resolution model, shows oxygenated waters in the lower thermocline at mid latitudes (30°S-
253 50°S); ~~the oxygenation however likely arises due to a too large vertical diffusion from the mixed~~
254 ~~layer rather than by an accurate representation of the water masses.~~

255

256 GFDL01, even though still biased low, presents larger oxygen values than the coarser resolution
257 models GFDL1, GFDL025 and NEMO2. A possible explanation is a better representation of the
258 water masses and in particular the AAIW in eddy-resolving models (Lackhar et al., 2009).

259
260 The IDW oxygen maximum is apparent at 30°S throughout the lower thermocline (600 – 1000 m) in
261 observations (Fig 2b), consistent with the circulation of IDW with the gyre from the mid/high latitude
262 formation regions towards the northwest in subtropical latitudes ([Sloyand and Rintoul. 2001](#)), and
263 followed by a deflection of the waters in the tropics towards the eastern basin ([Qu et al., 2004](#);
264 [Zenk et al., 2005](#)). -This oxygen peak is missing in all the models analyzed here.

265
266 Consistent with the low oxygen bias of models at subtropical latitudes (Fig 2b), models also feature
267 a bias in the tropical ocean (20°S-20°N) by 20 – 50 mmol.m⁻³ (Fig 2a, Fig 2c) at intermediate
268 depths in the eastern part of the basin (similarly to CMIP5 models, as shown by Cabre et al.,
269 2015). The basin zonal average of the mean oxygen level in the lower thermocline layer (500 -
270 1500m) at 30°S and in the eastern part of the basin (average 20°S – 20°N, 160°W-coast; 500-1500
271 m) are positively correlated (Pearson correlation coefficient R=0.73) (Fig 2d, Annex A), suggesting
272 that the oxygen levels in the tropical pacific ocean are partly controlled by extra-tropical oxygen
273 concentrations at intermediate depths and the associated water masses.

274
275 The models presenting the poorest oxygenated water at 30°S display the largest volume of OMZs
276 (GFDL025 and GFDL1), though the negative correlation (Pearson correlation coefficient R=-0.52)
277 is less pronounced between the volume of the OMZs and the mean oxygen levels in the layer 500 -
278 1500 m at 30°S (Fig 2e). [A correlation, even weak, suggests a major role of the IDW in regulating](#)
279 [the OMZ volume.](#) Reasons for this weaker correlation are due to the OMZs being a result of
280 several processes next to oxygen supply by IDW, e.g, vertical mixing with other water masses
281 (Duteil et al., 2011), isopycnal mixing in the upper thermocline (Gnanadesikan et al., 2013; Bahl et
282 al., 2019), supply by the upper thermocline circulation (Shigemitsu et al., 2017; Busecke et al.,
283 2019). [A correlation, even weak, suggests a major role of the IDW in regulating the OMZ volume.](#)

284
285 In order to better understand the role of IDW entering the subtropical domain from higher latitudes
286 for the oxygen levels in the eastern tropical Pacific Ocean, we perform sensitivity experiments (see
287 2.2.1) in the following.

288
289 [3.2 Sensitivity of tropical IDW oxygen to subtropical and deep oxygen levels](#)
290 [3.2.1 Oxygen levels in the lower thermocline](#)

291 The difference of the experiments NEMO2-30S30N – NEMO2-REF (average 1997-2007) (Fig 3c,d)
292 allows to quantify the effect of model biases of IDW at mid latitudes (30°N/30°S) on tropical oxygen
293 levels.

294

295 We first assess the oxygen concentration and density levels at 30°S and 30°N in both the World
296 Ocean Atlas (WOA) and the NEMO2-REF experiment. The deficiency in oxygen in NEMO2-REF is
297 clearly highlighted at 30°S, between 400 and 1500m. The density levels are well reproduced in
298 NEMO2-REF compared to WOA (Annex B).

299

300

301

302 As we force restore oxygen to observed levels at 30°S/°N (see 2.2.1), the difference between both
303 experiments shows a large anomaly in oxygen levels at 30°S (more than 50 mmol.m⁻³) at lower
304 thermocline level (500 – 1500 m) corresponding to the missing deep oxygen maximum, located in
305 the IDW. The northern negative anomaly results from a deficient representation of the north Pacific
306 OMZ, i.e., modeled oxygen is too high for NPIW. The northern low and southern high anomalies
307 spread towards the tropics at intermediate depth. A fraction of the positive oxygen anomaly
308 recirculates at upper thermocline level due to a combination of upwelling and zonal advection by
309 the tropical current system (for instance the EUC at thermocline level is a major supplier of oxygen
310 as shown in observations by Stramma et al., 2010 and in ocean models by Dutel et al., 2014,
311 Busecke et al., 2019).

312

313 The difference NEMO2-30S30N1500M – NEMO2-30S30N (Fig 3e,f) shows a deep positive
314 anomaly in oxygen, as oxygen levels are lower than in observations by 30-40 mmol.m⁻³ in the
315 eastern tropical regions. This anomaly is partially transported into the IDW (500 - 1500 m). It shows
316 that a proper representation of the deep oxygen levels (> 1500 m) is important for a realistic
317 representation of the lower thermocline and OMZs. Causes of the oxygen bias of the deeper water
318 masses are beyond the scope of this study but may be associated with regional (tropical) issues,
319 such as an improper parameterization of respiration (e.g a too deep remineralisation) (Kriest et al.,
320 2010), or a misrepresentation of deeper water masses.

321

322 3.2.2 Oxygen budget and processes

323 To assess the processes that drive the oxygen content of the (sub)tropical lower thermocline, we
324 analyzed the oxygen budget in NEMO2-REF and NEMO2-30S30N, NEMO30S30N1500M. The
325 budget is computed as an average between 500 and 1500m and shown in Fig 3g and Fig.4.

326

327 The oxygen budget is :

328
$$\frac{\delta O_2}{\delta t} = Adv_x + Adv_y + Adv_z + Diff_{Dia} + Diff_{Iso} + SMS$$

329 where Adv_x, Adv_y, Adv_z , are respectively the zonal, meridional and vertical advection terms, $Diff_{dia}$
 330 and $Diff_{iso}$ are the diapycnal and isopycnal diffusion terms. SMS (Source Minus Sink) is the
 331 biogeochemical component (i.e below the euphotic zone this is only respiration)

332

333 In NEMO2-REF, the physical oxygen supply is balanced by the respiration. The oxygen supply in
 334 the model is divided into advection, i.e., oxygen transport associated with volume transport, and
 335 isopycnal diffusion, i.e., subgrid scale mixing processes that homogenize oxygen gradients (Fig
 336 4a). Diapycnal diffusion is comparatively small and can be neglected.

337

338 The supply of oxygen from the high latitudes toward the tropical interior ocean is constituted by
 339 several processes acting concomitantly : isopycnal diffusion transfers oxygen from the oxygen-rich
 340 gyres to the poor oxygenated regions (see Fig 1). ~~The lower branches of~~ ~~Below~~ the subtropical
 341 gyre, ~~s transport the the~~ oxygen ~~is transported~~ from the ~~western to the eastern~~ ~~eastern to the~~
 342 ~~western~~ part of the basin. Downwelling from the oxygen-rich mixed layer supplies the interior of the
 343 subtropical gyres. At the equator, the EICS transport westward oxygen-poor water originating in
 344 the eastern side of the basin (Fig 4a). The meridional advection term transports oxygen originating
 345 from the subtropics in the tropical regions, which is upwelled.

346

347 Forcing oxygen levels in NEMO2-30S30N at 30°S and 30°N creates an imbalance between
 348 respiration (which remains identical in NEMO2-REF and NEMO2-30S30N) and supply. The oxygen
 349 anomaly generated at 30°S propagates equatorward. The positive anomaly originated from the
 350 southern boundary recirculates in the equatorial region. Isopycnal diffusion is a major process that
 351 transport the oxygen anomaly toward the equator (Fig 3g, Fig 4b), in particular from 30°S to the
 352 5°S and 30°N to 10°N. Total advective transport plays an important role in the transport of the
 353 oxygen anomaly as well, especially in the equator region and in the western boundary currents.
 354 Meridional advection plays a large role close to the 30° boundaries as the oxygen is transported by
 355 the deeper part of the gyres. As the vertical gradient of oxygen decreases (the intermediate ocean
 356 being more oxygenated), the vertical supply from the upper ocean decreases in the south
 357 (increases in the north) subtropical gyre. Comparatively the impact on zonal term advection is
 358 small as the zonal oxygen gradient stays nearly identical in both experiments (the oxygen anomaly
 359 is almost longitude independent). The model does not display much increase in zonal recirculation
 360 at the equator as well, except in the western part of the basin due to the advection of the oxygen
 361 provided by the retroflection of the deep limb of the subtropical gyre. The increase of meridional
 362 transport is caused by the change in oxygen meridional gradient, mainly caused by isopycnal
 363 diffusion processes away from the western boundary.

364 ~~s the vertical gradient of oxygen decreases (the intermediate ocean being more oxygenated), the~~
365 ~~vertical supply from the upper ocean decreases in the south (increases in the north) subtropical~~
366 ~~gyre and decreases at the equator (Fig 4b). The meridional oxygen gradient between the southern~~
367 ~~subtropical gyre and the equator strengthens, and so does the meridional transport from the~~
368 ~~subtropics to the equator, partly by the western boundary currents. The changes in zonal transport~~
369 ~~are comparatively small. a Changes in the advective terms are found along the equator: increase~~
370 ~~(south) or decrease (north) of isopycnal diffusion (Fig 3g, Fig 4b). b Forcing oxygen levels in~~
371 ~~NEMO2-30S30N at 30°S and 30°N creates an imbalance between respiration (which remains~~
372 ~~identical in NEMO2-REF and NEMO2-30S30N) and supply. This imbalance is most apparent in the~~
373 ~~tropics~~

374

375 In the experiment NEMO2-30S30N1500, in complement to the isopycnal propagation of the
376 subtropical anomaly, the deep (> 1500 m) oxygen anomaly is upwelled in the eastern equatorial
377 (500 – 1500 m) part of the basin (see Fig 3g). The transport due to advective terms strongly
378 increases, mostly due to an increase in vertical advection. This is ~~–~~consistent with the analysis by
379 Duteil (2019) who showed that vertical advection is the dominant process to supply oxygen from
380 the lower to the upper thermocline in the equatorial eastern Pacific Ocean in a similar NEMO2
381 configuration.

382

383 This simple set of experiments already shows that in climate models oxygen in the lower
384 thermocline (500 – 1500 m) tropical ocean are partially controlled by properties of IDW that enter
385 the tropics from higher latitudes. This presumably also applies to other (biogeochemical) tracers.
386 IDW oxygen propagates equatorward mostly by small scale isopycnal processes and the western
387 boundary currents. Further, upwelling in the tropics from deeper ocean layers (Pacific Deep Water,
388 partially mixed with the lower IDW) play an important role. We will examine more closely in the
389 following the representation and the role of the EICS in supplying oxygen toward the eastern
390 Pacific Ocean.

391

392 **4. Equatorial intermediate current system and oxygen transport**

393 4.1 Structure of the currents in the upper 2000 m in observations and models

394 The current structure of the models analyzed in this study (see section 2.1, Table 1) is shown in
395 Fig 5. In the ~~–~~mixed layer, the broad westward drifting South and North Equatorial Currents (SEC,
396 NEC) characterize the equatorial side of subtropical gyres. In the thermocline, the eastward flowing
397 equatorial undercurrent (EUC), flanked by the westward flowing south and north counter currents
398 are present in all models. This upper current structure is well reproduced (i.e the spatial structure
399 and intensity are consistent with observations) across the different models (see 2.1 “Model
400 analyzed”) compared to observations. Previous studies already discussed the upper thermocline

401 current structure in the GFDL models suite (Busecke et al., 2019), NEMO2 and NEMO05 (e.g.
402 Izumo, 2005, Lübecke et al., 2008), UVIC (Loetzen and Dietze, 2013); the upper thermocline will
403 not be further discussed in this study.

404

405 At intermediate depth, in the observations, a relatively strong (about 0.1 ms^{-1}) westward flowing
406 Equatorial Intermediate Current (EIC) is present below the EUC at about 400-600 m depth (Marin
407 et al., 2010). A complex structure of narrow and vertically alternating jets every 200 m, so-called
408 Equatorial Deep Jets (EDJ), extends below the EIC till 2000 m (Firing, 1987; Cravatte et al., 2012).
409 Laterally to the EIC, in the upper thermocline, the Low Latitude Subsurface Countercurrents
410 (LLSC) are observed. They include the North and South Subsurface Counter Currents (NSCC and
411 SSCC), located around $5^\circ\text{N}/5^\circ\text{S}$, and a series of jets between 5°N/S and 15°N/S (in particular the
412 Tsuchiya jets in the southern hemisphere, described by Rowe et al., 2000). Below the LLSCs, the
413 Low Latitude Intermediate Currents (LLICs) include a series of westward and eastward zonal jets
414 (500–1500-m depth range) alternating meridionally from 3°S to 3°N ; the North and South
415 Intermediate Countercurrents (NICC and SICC) flow eastward at $1.5^\circ\text{--}2^\circ$ on both flanks of the
416 lower EIC. The North and South Equatorial Intermediate Currents (NEIC and SEIC) flow westward
417 at about 3° (Firing, 1987). A detailed schematic view of the tropical intermediate circulation is
418 shown in a recent review by Menesguen et al. (2019) and in Fig 1.

419

420 In coarse resolution models, the intermediate current system is not developed and sluggish (even
421 missing in UVIC and GFDL1). NEMO2 and NEMO05 display a “primitive” an incomplete EICS as
422 the LLSCs are not represented. High resolution models (GFDL025, GFDL01, NEMO01) display a
423 more realistic picture, even if the mean velocity is still weaker than in observations (smaller than 5 cm.s^{-1}), where it reaches more than 10 cm^{-1} at 1000 m (Ascani et al., 2010; Cravatte et al., 2017).
424 An interesting feature is that the jets are broader and faster in NEMO01 than in GFDL01. Possible
425 causes include a different wind forcing, mixing strength or topographic features as all these
426 processes play a role in forcing the intermediate jets (see the review by Menesguen et al., 2019).
427 The intermediate currents are less coherent vertically in NEMO01 than in GFDL01, due to their
428 large temporal variability in NEMO01. A strong seasonal and interannual variability of the EICS has
429 been observed that displays varying amplitudes and somewhat positions of the main currents/jets
430 (Firing, 1998; Gouriou et al., 2006; Cravatte et al., 2017). A clear observational picture of the EICS
431 variability is however not yet available. Outside the tropics (in particular south of 15°S), the interior
432 velocity pattern is similar in coarse and high resolution models, suggesting a similar equatorward
433 current transport at intermediate depth in the subtropics, in for instance NEMO05 and NEMO01.

435

436 | 4.2 Transport by the EICS-

437 | 4.2.1 Tracer spreading towards the eastern tropical Pacific

438 We released a conservative tracer in the subtropical domain in well oxygenated waters ([waters](#)
439 [where observed oxygen concentration is greater than 150 mmol.m⁻³](#) - see 2.2.2) in a coarse
440 (NEMO05) and a high resolution configuration (NEMO01). The tracer does not have sources or
441 sinks and is advected and mixed as any other model tracer and allows to assess the transport
442 pathway of tracer (such as oxygen) from oxygenated waters into the oxygen deficient eastern
443 tropical Pacific.

444

445 The importance of the ventilation by the oxygen rich waters, and in particular the IDW, is illustrated
446 by the tropical tracer concentration after 50 years (Fig 6a) of integration (mean 2002-2007).
447 Concentrations decrease from the release location to the northern part of the basin, where the
448 lowest values (below 0.1) are located in NEMO05 and NEMO01. The 0.1 isoline is however
449 located close to the equator in NEMO05 while it is found around 7°N in NEMO01. This feature is
450 associated with a pronounced tongue of high tracer concentration (> 0.2) between 5°N and 5°S in
451 NEMO01. Such a tongue is absent in NEMO05. The enhanced tracer concentration in the equatorial
452 region suggests a stronger zonal equatorial ventilation in NEMO01, [consistent with a stronger](#)
453 [-EICS \(Figure 5\)](#).

454

455 The preferential pathways of transport are highlighted by the determination of the transit time it
456 takes for the tracer to spread from the oxygen rich regions to the tropical regions. We define a
457 threshold called t10% when the tracer reaches a concentration of 0.1 (Fig 6b) (similar to the
458 approach of SenGupta and England, 2007). t10% highlights a faster ventilation of the equatorial
459 regions in NEMO01 compared to NEMO05, as t10% displays a maximum value of 10 (western
460 part) to 30 years (eastern part) between 5°N/5°S in NEMO01 compared to 30 years to more than
461 50 years in NEMO05. The southern "shadow zone" is well individualized in NEMO01 compared to
462 NEMO05 as the oxygen levels are high in the equator in NEMO01, suggesting a strong transport
463 by the EICS. The value of t10% increases linearly at intermediate depth at 100°W in NEMO05 from
464 20°S to the equator, suggesting a slow isopycnal propagation (consistent with the experiments
465 performed using NEMO2 in part 3.2). Conversely, the tracer accumulation is faster in the equatorial
466 regions than in the mid-latitudes in NEMO01, suggesting a [large](#)[er](#) role of advective transport,
467 which is faster than the transport by [isopycnal](#) diffusive processes.

468

469 [4.2.2 Equatorial IDW circulation origin thermocline water masslower](#)

470 ~~100°W, 5°N-5°S, 1000 m depth~~ is located in the larger intermediate eastern tropical pacific (IETP)
471 ~~ocean region (160°W—coast / 10°N-10°S / 200—2000 m). The particles originate close to the~~
472 ~~region of release (IETP) in 60 % of the cases in NEMO05 and 50 % of the cases in NEMO01, at a~~
473 ~~time scale of 50 years (Fig 7a and 8b). In NEMO05, after 50 years, the particles originating outside~~
474 ~~the IETP come either from the upper (0—200 m) ocean (5 %), deep (> 2000 m) ocean (1%),~~

475 higher ($> 10^\circ$) latitudes (23 %), western (west of 160°W) part of the basin (21 %) (Fig 8d). The
476 largest difference between NEMO05 and NEMO01 is the much larger amount of particles
477 originating from the deep ocean in NEMO01 (8 % in NEMO01), suggesting the presence of vertical
478 recirculation cells at intermediate depths. Despite the stronger EICS in NEMO01, the amount of
479 particles originating from the western part of the basin is nearly identical in NEMO01 and NEMO05
480 after 50 years of integration. The advection processes are however faster in NEMO01, in particular
481 the zonal advection. The relative difference between NEMO05 and NEMO01 is particularly strong
482 15 years after the release (approximately corresponding to the t10% at 1000 m at the equator in
483 NEMO01), as already 10 % of the particles originate outside the IETP, in regions where the oxygen
484 levels are high, in NEMO01 while this fraction is close to 0 in NEMO05.

485

486 The second release R2 (160°E , 5°N – 5°S , 1000 m depth) is located in the intermediate western
487 tropical pacific (IWTP) ocean region (160°W –coast / 10°N – 10°S / 200–2000 m) (Fig 7b). After 50
488 years, all the particles originate outside of the IWTP in NEMO01 (Fig 8c) (50 % originate in the
489 eastern basin, 23 % in the deep ocean, 24 % outside the equatorial band, 3 % in the upper 200 m)
490 (Fig 8e) while only 70 % of the particles originate outside the IWTP in NEMO05 (39 % in the
491 eastern basin, 27 % outside the equatorial band, 2 % in the deep ocean and 2 % in the upper
492 ocean).

493

494 The Lagrangian experiments show a generally stronger ventilation at intermediate depth in
495 NEMO01 due to the EICS, which reinforces the connections between western / eastern part of the
496 basin and the thermocline / deep ocean.i Two releases R1 and R2 have been performed in the
497 eastern and western part of the basin in order to assess the equatorial circulation in NEMO05 and
498 NEMO01. A depth horizon of 1000 m has been chosen as it is a depth where the equatorial
499 intermediate current system is relatively well developed in high resolution models and basically
500 absent in coarse models (see Fig 5). Our results are not sensitive to the choice of another depth
501 horizon in the range of 500–1500 m

502

503 The release R1 They also allow us to disentangle the transport of the resolved currents of the
504 EICS (advection) from subgrid scale mixing processes, i.e. to assess the processes responsible for
505 the equatorial ventilation in the lower thermocline.Lagrangian particles (see 2.2.3) allow us to
506 understand the origin of the waters

507 4.2.2 Equatorial IDW circulation

508 The analysis of the dispersion of Lagrangian particles (see 2.2.3) permits us to understand the
509 origin of the waters circulating in the eastern part of the basin at IDW level. A total of 26515
510 particles have been released in the area located at 100°W , 10°N – 10°S , 500–1500 m. These

511 | particles have been integrated backward in time in order to determine their origin and the
512 | ventilation of the eastern tropical Pacific ocean (Fig 7).
513 |

514 | After 5 years of backward integration we find that the particles originate from a well defined region,
515 | which extends from 110°W and 80°W to NEMO05 (Fig 7a). This region extends westward till
516 | 150°W, as a result of the stronger currents in NEMO01 (Fig 7b). This larger dispersion and
517 | westward origin of the particles is clearly visible after 10, 20 and 50 years of integration. In order to
518 | quantify the dispersion of the particles, we define the Intermediate Eastern Pacific Ocean (IETP) as
519 | the region 10°N-10°S, 500 – 1500 m, 160°W – coast. The particles originating outside of the IETP
520 | in close to 5 % / 50 % of the cases in NEMO05 and 10 % / 60 % of the cases of NEMO01, after a
521 | time scale of respectively 10 and 50 years. The Fig 7c shows a lag between NEMO01 and
522 | NEMO05 : while 10 % of the particles originate outside the IETP after 10 years in NEMO01 the
523 | same quantity is reached only after 20 years in NEMO05, suggesting a stronger transport in
524 | NEMO01. However, after the time period of 20 years, the number of particles originating outside
525 | the IETP does not grow faster any more in NEMO01 compared to NEMO05. A hypothesis is
526 | enhanced recirculation in NEMO01: the same particles may recirculate several times in the
527 | equatorial region due to alternating zonal jets in NEMO01.
528 |

529 | The transport has been quantified based on this Lagrangian particles release (Fig 8). The volume
530 | transport is higher in NEMO01 (up to 0.2 Sv) (Fig 8a) compared to NEMO05 (less than 0.1 Sv at
531 | the equator) (Fig 8b). It also shows recirculating structures and alternating eastern and western
532 | transport in NEMO01 (Fig 8c). These recirculating structures are absent in NEMO05 and foster the
533 | dispersion of particles as shown above. The mean transport (zonal, meridional and vertical
534 | integration) in the region 10°N-10°S, 12E0°E-100°W is [value1] in NEMO01 and [value2] in
535 | NEMO05.
536 |
537 |
538 |
539 |
540 |
541 |

542 | 4.3 Model resolution and oxygen levels

543 |
544 | The experiments discussed in 4.2 were not coupled with biogeochemical cycles for computational
545 | cost reasons. In order to assess the robustness of our findings (EICS plays a large role in setting
546 | tropical oxygen levels), we next analyze equatorial oxygen in a set of climate models similar to

547 CMIP models. To this end we use the GFDL model suite, characterized by a resolution increase
548 (GFDL1, GFDL025 and GFDL01 – see Table 1).

549

550 The striking difference between GFDL01 and GFDL025 / GFDL1 are the high oxygen levels in the
551 eastern part of the ocean below 1000 m in GFDL01 compared to GFDL025/GFDL1 (Fig 2). The
552 oxygen levels show weaker zonal gradient in GFDL01, consistent with the tracer experiment that
553 we performed in 4.2. and a more ventilated intermediate equatorial ocean. High values of mean
554 kinetic energy are associated with higher oxygen values (Fig 9). This is particularly clear in
555 GFDL01 at around 1500 m depth, where strong values of MKE are present and form the “bottom”
556 of the low oxygen volume (oxygen lower than 50 mmol.m⁻³). Conversely GFDL025 and GFDL1 do
557 not present high MKE values below 1000 m in the eastern part of the basin; the low oxygen volume
558 extends till depths greater than 2000 m. It suggests that intermediate currents participate in the
559 ventilation of the eastern tropical ocean and thus in limiting the vertical extension of the OMZ.

560

561 Oxygen levels do not increase linearly with the currents strength, i.e while currents strength
562 increase in GFDL1, GFDL025 and GFDL01, oxygen levels are relatively similar in GFDL1 and
563 GFDL025 (see Fig 5 and Fig 9). The relatively small net balance between large fluxes of
564 respiration and oxygen supply (Duteil et al., 2014) may be responsible for this behavior. If the
565 supply is slightly higher compared to the consumption by respiration, it will lead to an increase of
566 oxygen concentration. If it is slightly lower, the oxygen levels will decrease. A small difference in
567 supply (e.g slightly weaker currents) may therefore lead to a large difference in oxygen levels when
568 integrated over decades. For this reason, the impact of the EICS is more visible below 1000 m as
569 the respiration decreases following a power law with depth (Martin et al., 1987) and is therefore
570 easier to offset even by a moderate oxygen supply.

571

572 Resolving explicitly the EICS results in a similar oxygen distribution to what Getzlaff and Dietze
573 (2013) (GD13) achieved with a simple EICS parameterization (Fig 9a): to compensate for the
574 “missing” EICS in UVIC, a coarse resolution model, they enhanced anisotropically the lateral
575 diffusivity in the equatorial region. The oxygen levels from UVIC GD13 are shown in blue contours
576 on top of the UVIC oxygen distribution (black) in Fig 9. Implementing this approach tends to
577 homogenize oxygen levels zonally, with an increase of the mean levels by 30-50 mmol.m⁻³ in the
578 eastern basin and a decrease of oxygen concentrations in the western basin. While this approach
579 may be useful to better represent the oxygen mean state, it however does not take in account the
580 potential variability and future evolution of the EICS.

581

582 5. Summary and conclusions

583 | IDW are constituted by intermediate waters masses are Depth Waters (IDW) which are subducted
584 | in the Southern Ocean and ~~transported~~ equatorward to the tropics by isopycnal processes (Sloyan
585 | and Kamenkovich, 2007; Sallee et al., 2013; Meijers, 2014) and the western boundary currents. At
586 | lower latitudes they recirculate into the lower thermocline of the tropical regions at 500 - 1500 m
587 | and into the EICS (Zenk et al., 2005; Marin et al., 2010; Cravatte et al., 2012; 2017; Ascari et al.,
588 | 2015; Menesguen et al., 2019) (see schema Fig 1). We show here that the representation of this
589 | ventilation pathway is important to take into account when assessing tropical oxygen levels and the
590 | extent of the OMZ in coupled biogeochemical circulation or climate models. Particularly, we
591 | highlight two critical, yet typical, biases that hamper the correct representation of the tropical
592 | oxygen levels.

593

594 | 5.1 Subducted Subtropical IDW properties and tropical oxygen

595 | First, the current generation of climate models, such as the CMIP5 models, show large deficiencies
596 | in simulating IDW. Along with an unrealistic representation of IDW ~~volume and~~ properties when the
597 | waters enter the subtropics, the models also lack the observed prominent oxygen maximum
598 | associated with IDW. Restoring oxygen levels to observed concentrations at 30°S/30°N and at
599 | 1500 m depth in a coarse resolution model, comparable to CMIP5 climate models in terms of
600 | resolution and oxygen bias, shows a significant impact on the lower thermocline (500 – 1500 m)
601 | oxygen levels: a positive anomaly of 60 mmol.m⁻³ at midlatitudes translates into an oxygen
602 | increase by 10 mmol.m⁻³ in tropical regions after 50 years of integration.

603

604 | The equatorward transport of the anomaly in the subtropics is mostly due to isopycnal subgrid
605 | scale mixing processes as shown by the NEMO2 budget analysis. It suggests that mesoscale
606 | activity plays a major role in transporting IDW equatorward. In addition subsurface eddies may
607 | transport oxygen westward from the eastern Pacific ocean toward the mid-Pacific ocean region
608 | (Frenger et al., 2018, see their Fig 2).

609

610 | 5.2 HMW transport and Transport at IDW level and Equatorial Intermediate Current System

611 | Second, the Equatorial Intermediate Current System (EICS) is not represented in coarse
612 | resolution models and only poorly represented in high resolution ocean circulation models (0.25°
613 | and 0.1°), as its strength remains too weak by a factor of two (consistent with previous studies, e.g
614 | Ascari et al., 2015). The EICS transports the IDW that occupies the lower thermocline (500 – 1500
615 | m depth) and the recirculation of the IDW ~~in~~ the tropical ocean, as suggested by the observational
616 | study of Zenk et al. (2005), and shown in our study.

617

618 | We investigated the impact of the EICS on the oxygen supply with tracer release experiments: the
619 | concentration of a conservative tracer that originates from the subtropical ocean, is, after 50 years,

620 30 % higher in the eastern equatorial (5°N-5S) Pacific in an ocean model with 0.1° resolution,
621 compared to an ocean model with 0.5 ° resolution. As the oxygen gradient along the equator is
622 similar to the gradient of the conservative tracer, we assume a similar enhancement of oxygen
623 supply by 30 % in the eastern equatorial Pacific at the same time scale. This means, if we account
624 for oxygen consumption due to respiration (about 1 mmol.m⁻³.yr⁻¹ between 5°N-5°S, see section
625 3.2), that the better resolved EICS in the higher resolution ocean leads roughly to higher
626 intermediate oxygen levels of 15 - 30 mmol-m⁻³ compared to the lower resolution ocean experiment
627 in a timescale of 50 years. Consistently, the 0.1°-ocean GFDL01 model displays oxygen
628 concentrations larger by about 30 mmol.m⁻³ in the eastern equatorial lower thermocline (500-1500
629 m) compared to the 1°-ocean GFDL1 configuration (with higher subtropical oxygen concentrations
630 of IWM of 15 mmol.m⁻³ in GFDL01 at 30°S)

631

632 We would like to highlight two potential implications of our finding of the important role of the EICS
633 for the Pacific eastern tropical oxygen supply: i) First, we have shown that the intermediate current
634 system EICS is important for the connection between the western and eastern Pacific Ocean at a
635 decadal / multidecadal time scale. This suggests that the EICS modulates the mean state and the
636 variability of the tropical oxygen in the lower thermocline, and subsequently the whole water
637 column by upwelling of deep waters. ii) Second, we have found an enhancement of the
638 connections between the equatorial deep ocean (> 2000 m) and the lower thermocline if the
639 resolution of a model is enhanced. This result is consistent with the studies of Brandt et al. (2011,
640 2012), who suggested, based on observational data and on an idealized model, that Equatorial
641 Deep Jets as part of the EICS (see Fig 1b) propagate their energy upward and impact the upper
642 ocean properties of the ocean, including their oxygen content. Taken this into account, we
643 hypothesize that the Pacific Deep Water has a larger role than previously thought in modulating the
644 intermediate and upper ocean properties.

645

646 A pragmatic approach to account for the missing EICS is to increase diffusion anisotropically, with
647 increased zonal mixing in the tropics (Getzlaff and Dietze, 2013). This parameterization mimics a
648 more vigorous EICS and improves the simulated shape of the OMZ in climate models. However,
649 the prominent bias of IDW in climate models, and therefore of the water masses entering the EICS
650 is not accounted for with this parameterization. Furthermore such a parameterization improves the
651 mean state but does not reproduce the variability of the EICS.

652

653 5.3 Implication for biogeochemical cycles

654 The IDW are an important important supplier of oxygen to the tropical oceans, but also of nutrients
655 (Palter et al., 2010) as well as anthropogenic carbon (e.g Kathiwala et al., 2012), which
656 accumulates in mode and intermediate waters of the Southern Ocean (Sabine et al., 2004;

657 Resplandy et al., 2013). The mechanisms that we discussed here may therefore play a role in
658 ocean carbon climate feedbacks on time scales of decades to a century.

659

660 This study shows that there is a need to look with greater care into IDW properties to understand
661 the tropical oxygen distribution in models, in particular in CMIP class models. As shown by
662 Kwiatkowski et al. (2020), CMIP6 models (typical horizontal resolution of 1°) do not agree on the
663 future change in tropical oxygen levels (mean 100 – 600m, their Fig 2). This may partly originate in
664 a misrepresentation of the properties of the IDW in the different models and the strength of the
665 connection between western and eastern Pacific Ocean. Simple analyses, similar to our Fig 2
666 (oxygen levels at 30°S and oxygen levels in the eastern tropical Pacific) and Fig 9 (Mean Kinetic
667 Energy at intermediate depth) may give some insight into the mechanisms at play. In addition,
668 analyses of experiments performed in the context of the High Resolution Model Intercomparison
669 Project (resolution greater than 0.25°) (Haarsma et al., 2016), part of CMIP6, will give a more
670 complete insight on whether a significant Equatorial Intermediate Current System develops at
671 higher resolution. While HighResMIP are not coupled with a biogeochemical module, velocity fields
672 are available at a monthly resolution, which allows to perform “offline” tracer or Lagrangian particle
673 experiments.

674

675 Finally, this study suggests that changes of the properties of the IDW may contribute to the still
676 partly unexplained deoxygenation of 5 mmol.m⁻³ / decade occurring in the lower thermocline of the
677 equatorial eastern Pacific Ocean (Schmidtko et al., 2017; Oschlies et al., 2018). In addition to an
678 oxygen decrease in tropical regions, Schmidtko et al. (2017) showed a decrease of oxygen levels
679 by 2-5 mmol.m⁻³ in the regions of formations of AAIW. Based on repeated cruise observations,
680 Panassa et al. (2018) highlighted an increase of the apparent oxygen utilization in the core of the
681 AAIW, together with a 5 % increase in nutrient concentrations from 1990 to 2014. The transport of
682 this modified AAIW, poorer in oxygen and richer in nutrients, toward the low latitudes both by small
683 scale processes (section 3) and at the equator by the EICS (section 4), may explain a significant
684 part of the occurring deoxygenation in the equatorial ocean. In addition to changes in the AAIW
685 properties, little is known about the variability and long term trend of the strength of the EICS, an
686 oceanic “bridge” between the western and the eastern part of the basin. After our first steps toward
687 assessing the role of extratropical oxygen characteristics and the zonal transport of waters at
688 intermediate depths for tropical oxygen concentration, a possible way forward to further assess this
689 cascade of biases could be to perform idealized model experiments in high resolution
690 configurations, aiming to assess both the effect of the observed change in the AAIW properties and
691 of a potential change of EICS strength on oxygen levels.

692

693

694 **Data and code availability**

695 The code for the Nucleus for European Modeling of the Ocean (NEMO) is available at:
696 <https://www.nemo-ocean.eu/>. The code for the University of Victoria (UVIC) model is available
697 at <http://terra.seos.uvic.ca/model/>. The Lagrangian particles ARIANE code is available at
698 <http://stockage.univ-brest.fr/~grima/Ariane/>. The Coordinated Ocean-ice Reference Experiments
699 (COREv2) dataset is available at: <https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html>.
700 The experiments data is available on request.

701

702 **Authors contributions**

703 OD conceived the study, performed the NEMO model and ARIANE experiments and analyzed the
704 data. IF preprocessed and helped to analyze the GFDL data. JG preprocessed and helped to
705 analyze the UVIC data. All authors discussed the results and wrote the manuscript.

706

707 **Competing interest**

708 The authors declare that they have no conflict of interest.

709

710 **Acknowledgments**

711 This work is a contribution of the SFB754 "Climate-Biogeochemistry Interactions in the Tropical
712 Ocean", supported by the Deutsche Forschungsgemeinschaft (DFG). The NEMO simulations were
713 performed at the North German Supercomputing Alliance (HLRN). We would like to thank Markus
714 Scheinert (research unit "Ocean Dynamics", GEOMAR) for his technical support in compiling the
715 NEMO code and for providing the high resolution NEMO input files. We would like to thank GFDL
716 for producing the CM2-0 suite that involved a substantial commitment of computational resources
717 and data storage. J.G acknowledges support by the project "Reduced Complexity Models"
718 (supported by the Helmholtz Association of German Research Centres (HGF) – grant no. ZT-I-
719 0010). I.F. acknowledges the German Federal Ministry of Education and Research (BMBF) project
720 CUSCO (grant no. 03F0813A). O.D acknowledges the German Research Foundation (DFG) (grant
721 no. 434479332)

722

723 **References**

724 Ascani, F., Firing, E., Dutrieux, P., McCreary, J. P., & Ishida, A. (2010). Deep Equatorial Ocean
725 Circulation Induced by a Forced–Dissipated Yanai Beam. *Journal of Physical Oceanography*,
726 40(5), 1118–1142. doi:10.1175/2010jpo4356.1
727 Ascani, F., Firing, E., McCreary, J. P., Brandt, P., & Greatbatch, R. J. (2015). The Deep Equatorial
728 Ocean Circulation in Wind-Forced Numerical Solutions. *Journal of Physical Oceanography*, 45(6),
729 1709–1734. doi:10.1175/jpo-d-14-0171.1

730 Bahl, A., Gnanadesikan, A., & Pradal, M. A. (2019). Variations in Ocean Deoxygenation Across
731 Earth System Models: Isolating the Role of Parameterized Lateral Mixing. *Global Biogeochemical*
732 *Cycles*, 33(6), 703–724. doi:10.1029/2018gb006121

733 Blanke, B., & Raynaud, S. (1997). Kinematics of the Pacific Equatorial Undercurrent: An Eulerian
734 and Lagrangian Approach from GCM Results. *Journal of Physical Oceanography*, 27(6), 1038–
735 1053. doi:10.1175/1520-0485(1997)027<1038:kotpeu>2.0.co;2

736 Brandt, P., Funk, A., Hormann, V., Dengler, M., Greatbatch, R. J., & Toole, J. M. (2011).
737 Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean. *Nature*,
738 473(7348), 497–500. doi:10.1038/nature10013

739 Brandt, P., Greatbatch, R. J., Claus, M., Didwischus, S.-H., Hormann, V., Funk, A., ... Körtzinger,
740 A. (2012). Ventilation of the equatorial Atlantic by the equatorial deep jets. *Journal of Geophysical*
741 *Research: Oceans*, 117(C12), n/a–n/a. doi:10.1029/2012jc008118

742 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., ... Zhang, J.
743 (2018). Declining oxygen in the global ocean and coastal waters. *Science*, 359(6371), eaam7240.
744 doi:10.1126/science.aam7240

745 Busecke, J. J. M., Resplandy, L., & Dunne, J. P. (2019). The Equatorial Undercurrent and the
746 Oxygen Minimum Zone in the Pacific. *Geophysical Research Letters*, 46(12), 6716–6725.
747 doi:10.1029/2019gl082692

748 Cabré, A., Marinov, I., Bernardello, R., & Bianchi, D. (2015). Oxygen minimum zones in the tropical
749 Pacific across CMIP5 models: mean state differences and climate change trends. *Biogeosciences*,
750 12(18), 5429–5454. doi:10.5194/bg-12-5429-2015

751 Carrasco, C., Karstensen, J., & Farias, L. (2017). On the Nitrous Oxide Accumulation in
752 Intermediate Waters of the Eastern South Pacific Ocean. *Frontiers in Marine Science*, 4.
753 doi:10.3389/fmars.2017.00024

754 Cravatte, S., Kessler, W. S., & Marin, F. (2012). Intermediate Zonal Jets in the Tropical Pacific
755 Ocean Observed by Argo Floats. *Journal of Physical Oceanography*, 42(9), 1475–1485.
756 doi:10.1175/jpo-d-11-0206.1

757 Cravatte, S., Kestenare, E., Marin, F., Dutrieux, P., & Firing, E. (2017). Subthermocline and
758 Intermediate Zonal Currents in the Tropical Pacific Ocean: Paths and Vertical Structure. *Journal of*
759 *Physical Oceanography*, 47(9), 2305–2324. doi:10.1175/jpo-d-17-0043.1

760 Czeschel, R., Stramma, L., Schwarzkopf, F. U., Giese, B. S., Funk, A., and Karstensen, J. (2011),
761 Middepth circulation of the eastern tropical South Pacific and its link to the oxygen minimum zone,
762 *J. Geophys. Res.*, 116, C01015, doi:10.1029/2010JC006565

763 Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson, R., ... Zhang, R.
764 (2012). Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled
765 Climate Model. *Journal of Climate*, 25(8), 2755–2781. doi:10.1175/jcli-d-11-00316.1

766 Dietze, H., & Loeptien, U. (2013). Revisiting “nutrient trapping” in global coupled biogeochemical
767 ocean circulation models. *Global Biogeochemical Cycles*, 27(2), 265–284. doi:10.1002/gbc.20029

768 Dufour, C. O., Griffies, S. M., de Souza, G. F., Frenger, I., Morrison, A. K., Palter, J. B., ... Slater,
769 R. D. (2015). Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical
770 Tracers in the Southern Ocean. *Journal of Physical Oceanography*, 45(12), 3057–3081.
771 doi:10.1175/jpo-d-14-0240.1

772 Duteil, O., & Oschlies, A. (2011). Sensitivity of simulated extent and future evolution of marine
773 suboxia to mixing intensity. *Geophysical Research Letters*, 38(6), n/a–n/a.
774 doi:10.1029/2011gl046877

775 Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L., ... Segschneider, J. (2012).
776 Preformed and regenerated phosphate in ocean general circulation models: can right total
777 concentrations be wrong? *Biogeosciences*, 9(5), 1797–1807. doi:10.5194/bg-9-1797-2012

778 Duteil, O., Böning, C. W., & Oschlies, A. (2014). Variability in subtropical-tropical cells drives
779 oxygen levels in the tropical Pacific Ocean. *Geophysical Research Letters*, 41(24), 8926–8934.
780 doi:10.1002/2014gl061774

781 Duteil, O., Oschlies, A., & Böning, C. W. (2018). Pacific Decadal Oscillation and recent oxygen
782 decline in the eastern tropical Pacific Ocean. *Biogeosciences*, 15(23), 7111–7126. doi:10.5194/bg-
783 15-7111-2018

784 Duteil, O. (2019). Wind Synoptic Activity Increases Oxygen Levels in the Tropical Pacific Ocean.
785 *Geophysical Research Letters*, 46(5), 2715–2725. doi:10.1029/2018gl081041

786 Eden, C., & Dengler, M. (2008). Stacked jets in the deep equatorial Atlantic Ocean. *Journal of*
787 *Geophysical Research*, 113(C4). doi:10.1029/2007jc004298

788 Emery, W. J. 2003. Water types and water masses. In: *Encyclopedia of Atmospheric Sciences*.
789 2nd ed. (eds. J.R. Holton, J.A. Curry and J.A. Pyle). Elsevier, Atlanta, GA, pp. 1556–1567

790 Firing, E., Wijffels, S. E., & Hacker, P. (1998). Equatorial subthermocline currents across the
791 Pacific. *Journal of Geophysical Research: Oceans*, 103(C10), 21413–21423.
792 doi:10.1029/98jc01944

793 Firing, E. (1987). Deep zonal currents in the central equatorial Pacific. *Journal of Marine Research*,
794 45(4), 791–812. doi:10.1357/002224087788327163

795 Frenger, I., Bianchi, D., Stührenberg, C., Oschlies, A., Dunne, J., Deutsch, C., ... Schütte, F.
796 (2018). Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs,
797 Hypoxic Storms, and Microbial Stewpots? *Global Biogeochemical Cycles*, 32(2), 226–249.
798 doi:10.1002/2017gb005743

799 Galbraith, E. D., Dunne, J. P., Gnanadesikan, A., Slater, R. D., Sarmiento, J. L., Dufour, C. O., ...
800 Marvasti, S. S. (2015). Complex functionality with minimal computation: Promise and pitfalls of
801 reduced-tracer ocean biogeochemistry models. *Journal of Advances in Modeling Earth Systems*,
802 7(4), 2012–2028. doi:10.1002/2015ms000463

803 [Garcia, H. E., K. Weathers, C. R. Paver, I. Smolyar, T. P. Boyer, R. A. Locarnini, M. M. Zweng, A.](#)
804 [V. Mishonov, O. K. Baranova, D. Seidov, and J. R. Reagan, 2018. *World Ocean Atlas 2018*,](#)
805 [Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. A. Mishonov](#)
806 [Technical Ed.: NOAA Atlas NESDIS 83, 38pp.](#)

807 Getzlaff, J., & Dietze, H. (2013). Effects of increased isopycnal diffusivity mimicking the unresolved
808 equatorial intermediate current system in an earth system climate model. *Geophysical Research*
809 Letters, 40(10), 2166–2170. doi:10.1002/grl.50419

810 Gnanadesikan, A., Bianchi, D., & Pradal, M. (2013). Critical role for mesoscale eddy diffusion in
811 supplying oxygen to hypoxic ocean waters. *Geophysical Research Letters*, 40(19), 5194–5198.
812 doi:10.1002/grl.50998

813 Gouriou, Y., Delcroix, T., & Eldin, G. (2006). Upper and intermediate circulation in the western
814 equatorial Pacific Ocean in October 1999 and April 2000. *Geophysical Research Letters*, 33(10), n/
815 a–n/a. doi:10.1029/2006gl025941

816 Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., ... Zhang,
817 R. (2015). Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate
818 Models. *Journal of Climate*, 28(3), 952–977. doi:10.1175/jcli-d-14-00353.1

819 Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti,
820 S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T.,
821 Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielski, M. S., Mizuta, R., Nobre, P., Satoh, M.,
822 Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S. (2016). High Resolution Model
823 Intercomparison Project (HighResMIPv1.0) for CMIP6, *Geosci. Model Dev.*, 9, 4185–4208,
824 <https://doi.org/10.5194/gmd-9-4185-2016>

825 Ludicone, D., Rodgers, K. B., Schopp, R., & Madec, G. (2007). An Exchange Window for the
826 Injection of Antarctic Intermediate Water into the South Pacific. *Journal of Physical Oceanography*,
827 37(1), 31–49. doi:10.1175/jpo2985.1

828 Izumo, T. (2005). The equatorial undercurrent, meridional overturning circulation, and their roles in
829 mass and heat exchanges during El Niño events in the tropical Pacific ocean. *Ocean Dynamics*,
830 55(2), 110–123. doi:10.1007/s10236-005-0115-1

831 Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., ...
832 Sabine, C. L. (2013). Global ocean storage of anthropogenic carbon. *Biogeosciences*, 10(4),
833 2169–2191. doi:10.5194/bg-10-2169-2013

834 Kawabe, M., Y. Kashino, , and Y. Kuroda, (2008): Variability and linkages of New Guinea coastal
835 undercurrent and lower equatorial intermediate current. *J. Phys. Oceanogr.*, 38, 1780–1793,
836 doi:10.1175/2008JPO3916.1.

837 Kawabe, M., & Fujio, S. (2010). Pacific ocean circulation based on observation. *Journal of*
838 *Oceanography*, 66(3), 389–403. doi:10.1007/s10872-010-0034-8

839 Keller, D. P., Oschlies, A., & Eby, M. (2012). A new marine ecosystem model for the University of
840 Victoria Earth System Climate Model. *Geoscientific Model Development*, 5(5), 1195–1220.
841 doi:10.5194/gmd-5-1195-2012

842 Koshlyakov, M.N. and Tarakanov, R.Y. (2003). Antarctic Bottom Water in the Pacific sector of the
843 Southern Ocean, *Oceanology* 43(1):1-15

844 Kriest, I., Khatiwala, S., & Oschlies, A. (2010). Towards an assessment of simple global marine
845 biogeochemical models of different complexity. *Progress in Oceanography*, 86(3-4), 337–360.
846 doi:10.1016/j.pocean.2010.05.002

847 Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P.,
848 Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J.,
849 Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra,
850 J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first
851 century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary
852 production decline from CMIP6 model projections, *Biogeosciences*, 17, 3439–3470, <https://doi.org/10.5194/bg-17-3439-2020>, 2020.

854 Lachkar, Z., Orr, J. C., & Dutay, J.-C. (2009). Seasonal and mesoscale variability of oceanic
855 transport of anthropogenic CO₂. *Biogeosciences*, 6(11), 2509–2523. doi:10.5194/bg-6-2509-2009

856 Large, W. G., & Yeager, S. G. (2008). The global climatology of an interannually varying air–sea
857 flux data set. *Climate Dynamics*, 33(2-3), 341–364. doi:10.1007/s00382-008-0441-3

858 [Locarnini, R.A., T.P. Boyer, A.V. Mishonov, J.R. Reagan, M.M. Zweng, O.K. Baranova, H.E. Garcia, D. Seidov, K.W. Weathers, C.R. Paver, and I.V. Smolyar \(2019\). World Ocean Atlas 2018, Volume 5: Density. A. Mishonov, Technical Editor. NOAA Atlas NESDIS 85, 41pp.](#)

861 Lübbecke, J. F., Böning, C. W., & Biastoch, A. (2008). Variability in the subtropical-tropical cells
862 and its effect on near-surface temperature of the equatorial Pacific: a model study. *Ocean Science*,
863 4(1), 73–88. doi:10.5194/os-4-73-2008

864 Madec, G., Bourdallé-Badie, R., Pierre-Antoine Bouttier, Bricaud, C., Bruciaferri, D., Calvert, D.,
865 Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J.,
866 Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., ... Vancoppenolle, M. (2017). NEMO ocean
867 engine. <https://doi.org/10.5281/ZENODO.3248739> Marin, F., Kestenare, E., Delcroix, T., Durand,
868 F., Cravatte, S., Eldin, G., & Bourdallé-Badie, R. (2010). Annual Reversal of the Equatorial
869 Intermediate Current in the Pacific: Observations and Model Diagnostics. *Journal of Physical
870 Oceanography*, 40(5), 915–933. doi:10.1175/2009jpo4318.1

871 Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: carbon cycling in
872 the northeast Pacific. *Deep Sea Research Part A. Oceanographic Research Papers*, 34(2), 267–
873 285. doi:10.1016/0198-0149(87)90086-0

874 Meijers, A. J. S. (2014). The Southern Ocean in the Coupled Model Intercomparison Project phase
875 5. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering*
876 *Sciences*, 372(2019), 20130296. doi:10.1098/rsta.2013.0296

877 Ménesguen, C., Delpech, A., Marin, F., Cravatte, S., Schopp, R., & Morel, Y. (2019). Observations
878 and Mechanisms for the Formation of Deep Equatorial and Tropical Circulation. *Earth and Space*
879 *Science*, 6(3), 370–386. doi:10.1029/2018ea000438

880 Molinelli EJ (1981) The Antarctic influence on Antarctic Intermediate Water. *J Mar Res* 39:267–293

881 Oschlies, A., Brandt, P., Stramma, L., & Schmidtko, S. (2018). Drivers and mechanisms of ocean
882 deoxygenation. *Nature Geoscience*, 11(7), 467–473. doi:10.1038/s41561-018-0152-2

883 Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, R. D. (2010). Fueling
884 export production: nutrient return pathways from the deep ocean and their dependence on the
885 Meridional Overturning Circulation, *Biogeosciences*, 7, 3549–3568, doi:10.5194/bg-7-3549-2010

886 Panassa, E., Santana-Casiano, J. M., González-Dávila, M., Hoppema, M., van Heuven, S. M. A. ,
887 Völker, C., ... Hauck, J. (2018). Variability of nutrients and carbon dioxide in the Antarctic
888 Intermediate Water between 1990 and 2014. *Ocean Dynamics*, 68(3), 295–308.
889 doi:10.1007/s10236-018-1131-2

890 Pardo, P. C., Pérez, F. F., Velo, A., & Gilcoto, M. (2012). Water masses distribution in the
891 Southern Ocean: Improvement of an extended OMP (eOMP) analysis. *Progress in Oceanography*,
892 103, 92–105. doi:10.1016/j.pocean.2012.06.002

893 Paulmier, A., Ruiz-Pino (2009), D. Oxygen minimum zones (OMZs) in the modern ocean, *Progress*
894 in *Oceanography*, 80(3), 113-128, doi:10.1016/j.pocean.2008.08.001.

895 Qu, T., & Lindstrom, E. J. (2004). Northward Intrusion of Antarctic Intermediate Water in the
896 Western Pacific*. *Journal of Physical Oceanography*, 34(9), 2104–2118. doi:10.1175/1520-
897 0485(2004)034<2104:nioaiw>2.0.co;2

898 Resplandy, L., Bopp, L., Orr, J. C., & Dunne, J. P. (2013). Role of mode and intermediate waters in
899 future ocean acidification: Analysis of CMIP5 models. *Geophysical Research Letters*, 40(12),
900 3091–3095. doi:10.1002/grl.50414

901 Rowe, G. D., Firing, E., & Johnson, G. C. (2000). Pacific Equatorial Subsurface Countercurrent
902 Velocity, Transport, and Potential Vorticity*. *Journal of Physical Oceanography*, 30(6), 1172–1187.
903 doi:10.1175/1520-0485(2000)030<1172:pescvt>2.0.co;2

904 Russell, J. L., & Dickson, A. G. (2003). Variability in oxygen and nutrients in South Pacific Antarctic
905 Intermediate Water. *Global Biogeochemical Cycles*, 17(2), n/a–n/a. doi:10.1029/2000gb001317

906 Sabine, C. L. (2004). The Oceanic Sink for Anthropogenic CO₂. *Science*, 305(5682), 367–371.
907 doi:10.1126/science.1097403

908 Sallée, J.-B., Shuckburgh, E., Bruneau, N., Meijers, A. J. S., Bracegirdle, T. J., Wang, Z., & Roy, T.
909 (2013). Assessment of Southern Ocean water mass circulation and characteristics in CMIP5

910 models: Historical bias and forcing response. *Journal of Geophysical Research: Oceans*, 118(4),
911 1830–1844. doi:10.1002/jgrc.20135

912 Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during
913 the past five decades. *Nature*, 542(7641), 335–339. doi:10.1038/nature21399

914 Sen Gupta, A., & England, M. H. (2007). Evaluation of Interior Circulation in a High-Resolution
915 Global Ocean Model. Part II: Southern Hemisphere Intermediate, Mode, and Thermocline Waters.
916 *Journal of Physical Oceanography*, 37(11), 2612–2636. doi:10.1175/2007jpo3644.1

917 Shigemitsu, M., Yamamoto, A., Oka, A., & Yamanaka, Y. (2017). One possible uncertainty in
918 CMIP5 projections of low-oxygen water volume in the Eastern Tropical Pacific. *Global*
919 *Biogeochemical Cycles*, 31(5), 804–820. doi:10.1002/2016gb005447

920 Sloyan, B. M., & Kamenkovich, I. V. (2007). Simulation of Subantarctic Mode and Antarctic
921 Intermediate Waters in Climate Models. *Journal of Climate*, 20(20), 5061–5080.
922 doi:10.1175/jcli4295.1

923 Sloyan, B. M., & Rintoul, S. R. (2001). Circulation, Renewal, and Modification of Antarctic Mode
924 and Intermediate Water*. *Journal of Physical Oceanography*, 31(4), 1005–1030. doi:10.1175/1520-
925 0485(2001)031<1005:cramoa>2.0.co;2

926 Takano, Y., Ito, T., & Deutsch, C. (2018). Projected Centennial Oxygen Trends and Their
927 Attribution to Distinct Ocean Climate Forcings. *Global Biogeochemical Cycles*, 32(9), 1329–1349.
928 doi:10.1029/2018gb005939

929 Talley, L. D. (1993). Distribution and Formation of North Pacific Intermediate Water. *Journal of*
930 *Physical Oceanography*, 23(3), 517–537. doi:10.1175/1520-0485(1993)023<0517:dafonp>2.0.co;2

931 Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., ... Yoshimori, M.
932 (2001). The UVic earth system climate model: Model description, climatology, and applications to
933 past, present and future climates. *Atmosphere-Ocean*, 39(4), 361–428.
934 doi:10.1080/07055900.2001.9649686

935 Xu, L., Li, P., Xie, S. et al. (2016). Observing mesoscale eddy effects on mode-water subduction
936 and transport in the North Pacific. *Nature Communications*, 10505 (2016),
937 doi.org/10.1038/ncomms10505

938 Zenk, W., Siedler, G., Ishida, A., Holfort, J., Kashino, Y., Kuroda, Y., ... Müller, T. J. (2005).
939 Pathways and variability of the Antarctic Intermediate Water in the western equatorial Pacific
940 Ocean. *Progress in Oceanography*, 67(1-2), 245–281. doi:10.1016/j.pocean.2005.05.003

941 Zhu, C., Liu, Z., & Gu, S. (2017). Model bias for South Atlantic Antarctic intermediate water in
942 CMIP5. *Climate Dynamics*, 50(9-10), 3613–3624. doi:10.1007/s00382-017-3828-1

943

944

945

946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

984
985
986
987
988 **Figures and Table**
989

1006 LLIC : Low Latitudes Intermediate Currents. N/SEIC : North / South Equatorial Intermediate
 1007 Current. N/SICC : North / South Intermediate Current. EDJ : Equatorial Deep Jets.
 1008
 1009

1010
 1011
 1012
 1013
 1014
 1015
 1016

1017 Figure 2 : a- oxygen levels (mmol.m⁻³) in observations (World Ocean Atlas - WOA) (mean 500 –
 1018 1500 m) and models (UVIC, NEMO2, GFDL1, GFDL025, GFDL01). Contours correspond to WOA
 1019 values. b: average “30°S” (120°E-65°W, 30°S) c : average “tropics” (160°W-coast, 20°N-20°S). d:
 1020 average “30°S” vs “tropics”. e: average “30°S” vs volume of tropical suboxic ocean (oxygen lower
 1021 than 20 mmol.m⁻³) regions (1e15m³). b-e : UVIC : black, NEMO2 : cyan, GFDL1 : red, GFDL025,
 1022 green; GFDL01 : blue, WOA: bold line (b,c) and star (d,e).

1024 Figure 3 : a,b: Oxygen (mmol.m⁻³) in the experiments NEMO2_REF (color) and World Ocean Atlas
1025 (contour) (a- average 500-1500 m, b- 100°W). c,d: Oxygen (mmol.m⁻³) difference (c- average 500 –
1026 1500m, d- 100°W) between the experiments NEMO2_30S30N minus NEMO2_REF. e,f : Oxygen
1027 (mmol.m⁻³) difference (e- average 500-1500m, f- 100°W) between the experiments
1028 NEMO2_30S30N1500M minus NEMO2_REF. g- basin zonal average (average 500 - 1500 m) of
1029 the oxygen total supply (bold) (mmol.m⁻³.year⁻¹), advective processes (blue) and isopycnal diffusion
1030 (red) in NEMO2_REF, NEMO2_30S30N, NEMO2_30S30N1500M. The dashed line is the oxygen
1031 total supply in NEMO2_REF.

1032

1033

1035 | Figure 4 : a-d—Oxygen supply processes ($\text{mmol.m}^{-3}.\text{year}^{-1}$ – average 500 - 1500m) in
 1036 | NEMO2_REF : a-zonal advection, b-meridional advection, c-vertical advection, d-isopycnal
 1037 | diffusion. The mean meridional and zonal currents are displayed as vectors (meridional, zonal
 1038 | advection). The mean vertical current (0 isoline) is represented as bold contour (vertical advection).
 1039 | Oxygen levels (mmol.m^{-3}) are displayed in black contour. e-h: Difference in oxygen supply
 1040 | processes ($\text{mmol.m}^{-3}.\text{year}^{-1}$ – average 500-1500m) between NEMO2_30S30N and NEMO2_REF :
 1041 | e-zonal advection, f-meridional advection, g-vertical advection, h-isopycnal diffusion. The
 1042 | NEMO2_30S30N – NEMO2_REF oxygen anomaly (mmol.m^{-3}) is displayed in contour.
 1043
 1044
 1045
 1046

1047

1048 Figure 5 : mean currents velocity (ms^{-1}) at a- 1000 m depth b- 100°W in UVIC, NEMO2, NEMO5,
1049 GFDL025, GFDL01, NEMO01. The mean oxygen levels (mmol.m^{-3}) (when coupled circulation-
1050 biogeochemical experiments have been performed – see Table 1) are displayed in contour.

1051

1052

1053 [Fig above is replaced by Fig below]

1054

1055

1056

1057 | Figure 6: a : mean 500 – 1500 m tracer concentration (arbitrary unit) after 60 years integration in
1058 | a- NEMO05 and b - NEMO01: average 500-1500m, section 100°W, equatorial section. b: Time
1059 | (years) at which the released tracer reaches the concentration 0.1 (t10%) in c- NEMO05 and d-
1060 | NEMO01: average 500-1500m, section 100°W, equatorial section. In all the subpanels, It the WOA
1061 | oxygen levels (mean 500 – 1500 m) are displayed in contour. The red contour is the WOA 150
1062 | mmol.m⁻³ oxygen isoline, used to initialize the tracer level.

1063

1064

1065

1066

Figure 7 : Density (number of particles in a $1^\circ \times 1^\circ \times 100\text{m}$ depth box) distribution of the location of released Lagrangian particles (15 years backward integration starting from the final experiment state) in NEMO05 and NEMO01. The release location is identified in bold and is located a at $100^\circ\text{W}/5^\circ\text{N}/5\text{S}/1000\text{ m}$ depth (R1). b at $160^\circ\text{E}/5^\circ\text{N}/5^\circ\text{S}/1000\text{ m}$ depth (R2). The particles have been integrated vertically, zonally and meridionally. The observed mean oxygen levels (WOA) are displayed in contour.

1073 [FIGURE DELETED]

1074

Figure 8 : a schema summarizing the releases (R1: 100°W / 5°N-5°S / 1000 m , R2: 160°E / 5N°5S / 1000 m) location, the IETP (Intermediate Eastern Tropical Pacific), IWTP (Intermediate Tropical Pacific) regional extension. b. percentage of particles (release R1) originating from outside the IETP ocean region. b. percentage of particles (release R2) originating from outside the IWTP ocean region. d. percentage of particles (release R1) originating from the upper ocean (shallow than 200 m), the deeper ocean (deeper than 2000 m), subtropical regions (poleward 10°), the IWTP. e. percentage of particles (release R2) originating from the upper ocean (shallow than 200 m), the deeper ocean (deeper than 2000 m), subtropical regions (poleward 10°), the IETP.

1087 [FIGURE DELETED]

1088 Figure 7 and 8 have been replaced by 2 new figures (below)

1089 [Figure 7 : Density \(number of particles in a \$1^\circ \times 1^\circ \times 100\text{m}\$ depth box\) distribution of the location of](#)
1090 [released Lagrangian particles \(backward integration in years\) in a - NEMO05 and b- NEMO01. The](#)
1091 [release location is identified in bold and is located at \$100^\circ\text{W}/10^\circ\text{N}-10^\circ\text{S}/500-1500\text{ m}\$ depth \(black](#)
1092 [line\). The number of particles have been integrated vertically. The observed mean \(500 – 1500 m\)](#)
1093 [oxygen levels \(WOA\) are displayed in contour. The blue contour represents the Intermediate](#)
1094 [Eastern Tropical Pacific basin \(IETP\). c – percentage of particles originating outside the](#)
1095 [Intermediate Eastern Tropical Pacific \(IETP\) basin \(\$160^\circ\text{W}, 10^\circ\text{N}-10^\circ\text{S}, 500-1500\text{ m}\$ \) in NEMO05](#)
1096 [\(red\) and NEMO01 \(black\) over time \(years\)](#)

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

1109
1110
1111
1112
1113
1114
1115
1116

1117 |
1118 |
1119
1120
1121
1122
1123
1124

1125 | Figure 8 : mean transport (Sv) in a- NEMO05 and -b NEMO01 derived from the release of particles
1126 | at 100°W, 10°N-10°S, 500-1500m (backward integration). The mean zonal velocity (ms⁻¹) is
1127 | represented in contour. c- zonally integrated transport (Sv) derived from the release of particles at
1128 | 100°W, 10°N-10°S, 500-1500m in NEMO05 (red) and NEMO01 (black)

1129
1130
1131

1132 | Figure 9 : a- Mean Kinetic Energy (m².s⁻² × 1000) (average 10°N-10°S) in GFDL01, GFDL025,
1133 | GFDL01, UVIC, b- similar to a. but average 160°W coast. Oxygen levels (mmol.m⁻³) are displayed

1134 in black contour. The blue contour corresponds to UVIC-GD13 (Getzlaff and Dietze, 2013,
 1135 including an anisotropic increase of lateral diffusion at the equator)

1136

1137

1138

1139

1140

1141

1142 Table 1 :

Model	Resolution	Atmosphere	Integration (years)	BGC	Model Reference (circulation)	Model Reference (BGC)	
Mean state comparison							
UVIC	2.8°	Coupled (temperature, humidity) Forced (NCEP/NCAR wind stress)	10000	UVIC-BGC	Weaver et al., 2001	Keller et al., 2012	
NEMO2	2° (0.5 eq)	Forced COREv2 “normal year”	1000	NPZD-O2	Madec et al., 2015	Kriest et al, 2010 Duteil et al., 2014	
GFDL1	1°	Coupled	190	BLING	Delworth et al, 2012, Griffies et al, 2015	Galbraith et al., 2015	
GFDL025	0.25 °	Coupled	190	BLING			
GFDL01	0.1°	Coupled	190	BLING			
Process oriented experiments							
Model	Resolution	Atmosphere	Integration (years)	BGC	Characteristics		
NEMO2-REF -30N30S -30N30S1500M (section 2.2.1)	2° (0.5 eq)	Forced COREv2 1948-2007	60	NPZD-O2	<ul style="list-style-type: none"> - control experiment - O₂ restoring to WOA at 30°N/30°S - O₂ restoring to WOA at 30°N/30°S/1500m 		
NEMO05 (section 2.2.2)	0.5°	Forced COREv2 1948 - 2007	60	Tracer release	<ul style="list-style-type: none"> - Tracer initialized to 1 (O₂ WOA > 150 mmol.m⁻³) or 0 (O₂ WOA < 150 mmol.m⁻³) 		
NEMO01 (section 2.2.2)	0.1°	Forced COREv2 1948 – 2007	60	Tracer release			

1143

1144

1145 **Annex A**

1146 The differences in oxygen levels between the “models groups” (GFDL suite, UVIC, NEMO2) are
 1147 partly related to differences in the atmospheric fields employed and the integration time (see 2).

1148

1149 **1. Wind forcing**

1150 Zonal wind mean stress typically varies by 5 to 20 % between the different wind products
 1151 (Chauduri et al., 2013). To test this impact, we performed an experiment using the UVIC model
 1152 using 2 different wind products (NCEP and COREv2 – Large and Yeager, 2009) (Figure A1). While
 1153 the shape of the OMZ shows slight differences, the volume of the OMZ and the mean oxygen
 1154 levels in the tropical regions and in the mid latitudes are similar. Consistent with the Figure 2,
 1155 higher oxygen levels at 30°S lead to higher oxygen levels in the tropical ocean and to a smaller
 1156 OMZ volume (Figure A2)

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170 Figure A1 : Oxygen levels in UVIC (10000 years integration) a- mean 500-1500 m forcing NCEP.
 1171 b- section 120°W forcing NCEP. c- mean 500-1500 m forcing COREv2, d- section 120°W forcing
 1172 COREv2.

1173

1174

1175

1176

1177

1178

1179

1180 | Figure A2 : a - Oxygen levels in UVIC (10000 years integration) at 30°S (zonal mean in the Pacific
 1181 | Ocean from surface to 2000 m depth) and in the tropical regions (20°S-20°N, averaged over the

1182 whole Pacific Ocean). b - Oxygen levels in UVIC (10000 years integration) at 30°S (zonal mean in
1183 the Pacific Ocean, from surface to 2000 m depth) and volume of the OMZ in the Pacific Ocean.
1184 The configuration forced by COREv2 is shown in black, the configuration forced by NCEP is shown
1185 in red.

1186 |

1187 | 2. Spinup state

1188 In complement, the spinup state of the model also impacts the oxygen levels as the deep ocean
1189 needs thousands of years to be in equilibrium. It may explain why UVIC (integrated for 10000
1190 years) is characterized by much larger oxygen levels than the GFDL model suite (integrated for
1191 190 years). As an example, the Figure A3 shows the evolution of oxygen levels during spinup in
1192 NEMO2. Larger oxygen levels at 30°S (e.g after 1000 years of integration) are characterized by a
1193 smaller OMZ volume (which is consistent with Fig 2) (Figure A4)

1194

1195

1196 Figure A3 : oxygen levels at a - intermediate depth (average 500 – 2000 m) and b - 120°W in
1197 NEMO2 after 50, 100, 500 and 1000 years integration

1199 Figure A4 : a - Oxygen levels in NEMO2 at 30°S (zonal mean in the Pacific Ocean from surface to
1200 2000 m depth) and in the tropical regions (20°S-20°N, averaged over the whole Pacific Ocean from
1201 surface to 2000 m depth). b - Oxygen levels in NEMO2 at 30°S (zonal mean in the Pacific Ocean
1202 from surface to 2000 m depth) and volume of the OMZ in the Pacific Ocean. The color of the cross
1203 depends of the integration duration (black : 50 years, red : 100 years, green : 500 years, blue 1000
1204 years).

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

1224

1225 Figure A5 : a - oxygen levels (mmol.m-3) in observations and models at 30°S. The WOA oxygen
 1226 levels are displayed in contour. b- salinity in observations and models at 30°S. The density
 1227 anomaly (26.5, 27, 27.5) is displayed in contour.

1228

1229

1230

1231

1232 References

1233 Chaudhuri, Ayan & Ponte, Rui & Forget, Gael & Heimbach, Patrick. (2013). A Comparison of
1234 Atmospheric Reanalysis Surface Products over the Ocean and Implications for Uncertainties in Air-
1235 Sea Boundary Forcing. *Journal of Climate*. 26. 153-170. 10.1175/JCLI-D-12-00090.1.
1236 Large, W.G., Yeager, S.G. (2009). The global climatology of an interannually varying air-sea flux
1237 data set. *Clim Dyn* 33, 341–364. 10.1007/s00382-008-0441-3

1238

1239

1240 **Annex B**

1241 The deficiency in oxygen in NEMO2-REF is clearly highlighted at 30°S, between 400 and 1500m.
1242 In comparison, the density field is well represented in NEMO2-REF. At 500m, density is about 26.6
1243 in both WOA and NEMO2-REF. At 1500 m , the density is 27.6 in WOA and only 27.4 in NEMO2-
1244 REF, highlighting some potential water mass formation issue in NEMO2, as in most of models. A
1245 section at 100°W shows that isopycnal are almost horizontal at intermediate depth (500 – 1500 m)
1246 in WOA and NEMO2 in the subtropical and tropical ocean.

1247

1248

1249 Fig B1 : oxygen levels (mmol.m⁻³) (color) and density levels (contour) at 30°S, 30N and 100°W in
1250 the WOA dataset (a,b,c) and NEMO2-REF experiment (d,e,f)

1251

1252

1253 | **Annex C**

1254 The experiments discussed in 4.2 were not coupled with biogeochemical cycles for computational
1255 cost reasons. In order to assess the robustness of our findings (EICS plays a large role in setting
1256 tropical oxygen levels), we next analyze equatorial oxygen in a set of climate models similar to
1257 CMIP models. To this end we use the GFDL model suite, characterized by a resolution increase
1258 (GFDL1, GFDL025 and GFDL01 - see Table 1).

1259

1260 The striking difference between GFDL01 and GFDL025 / GFDL1 are the high oxygen levels in the
1261 eastern part of the ocean below 1000 m in GFDL01 compared to GFDL025/GFDL1 (Fig 2). The
1262 oxygen levels show weaker zonal gradient in GFDL01, consistent with the tracer experiment that
1263 we performed in 4.2. and a more ventilated intermediate equatorial ocean. High values of mean
1264 kinetic energy are associated with higher oxygen values (Fig C1). This is particularly clear in
1265 GFDL01 at around 1500 m depth, where strong values of MKE are present and form the "bottom"
1266 of the low oxygen volume (oxygen lower than 50 mmol.m-3). Conversely GFDL025 and GFDL1 do
1267 not present high MKE values below 1000 m in the eastern part of the basin; the low oxygen volume
1268 extends till depths greater than 2000 m. It suggests that intermediate currents participate in the
1269 ventilation of the eastern tropical ocean and thus in limiting the vertical extension of the OMZ.

1270

1271 Oxygen levels do not increase linearly with the currents strength, i.e while currents strength
1272 increase in GFDL1, GFDL025 and GFDL01, oxygen levels are relatively similar in GFDL1 and
1273 GFDL025 (see Fig 5 and Fig C1). The relatively small net balance between large fluxes of
1274 respiration and oxygen supply (Duteil et al., 2014) may be responsible for this behavior. If the
1275 supply is slightly higher compared to the consumption by respiration, it will lead to an increase of
1276 oxygen concentration. If it is slightly lower, the oxygen levels will decrease. A small difference in
1277 supply (e.g slightly weaker currents) may therefore lead to a large difference in oxygen levels when
1278 integrated over decades. For this reason, the impact of the EICS is more visible below 1000 m as
1279 the respiration decreases following a power-law with depth (Martin et al., 1987) and is therefore
1280 easier to offset even by a moderate oxygen supply.

1281

1282 Resolving explicitly the EICS results in a similar oxygen distribution to what Getzlaff and Dietze
1283 (2013) (GD13) achieved with a simple EICS parameterization (Fig C1a): to compensate for the
1284 "missing" EICS in UVIC, a coarse resolution model, they enhanced anisotropically the lateral
1285 diffusivity in the equatorial region. The oxygen levels from UVIC GD13 are shown in blue contours
1286 on top of the UVIC oxygen distribution (black) in Fig C1. Implementing this approach tends to
1287 homogenize oxygen levels zonally, with an increase of the mean levels by 30-50 mmol.m-3 in the
1288 eastern basin and a decrease of oxygen concentrations in the western basin. While this approach
1289 may be useful to better represent the oxygen mean state, it however does not take into account the
1290 potential variability and future evolution of the EICS.

1291

Mean kinetic energy

1292

1293

1294

1295 [Figure C1 : a - Mean Kinetic Energy \(m².s⁻² x 1000\) \(average 10°N-10°S\)](#) in GFDL01, GFDL025,
 1296 [GFDL01, UVIC, b - similar to a. but average 160°W- coast. Oxygen levels \(mmol.m⁻³\) are](#)
 1297 [displayed in black contour. The blue contour corresponds to UVIC GD13 \(Getzlaff and Dietze,](#)
 1298 [2013, including an anisotropical increase of lateral diffusion at the equator\)](#)

1299

1300