
Reviewr 1 

Thank you for your careful review and constructive comments. We have studied all of your comments carefully 

and revised our manuscript. Followings are the response to the Reviewer 1’s comments. “Q” is a comment from 

the reviewer, “A” is a response to the comment and “Changes” the lines and details of the modification.  

 

Q1. Li 6-7. The opening sentence of the abstract is a bit confusing. SO exploits water column reflections to 

interpret the oceanic features (fronts, eddies, water mass boundaries) as well as ocean fine structure (internal 

waves etc.). Futhermore, “compensating for the drawbacks of conventional PO equipment” is a very strong (and 

erroneous) statement. Perhaps “supplements the conventional PO observations”. We should also be very careful 

when interpreting the seismic images to describe PO quantitatively. 

A1. We modified the sentence. 

Changes: Line 6-7. We modified the opening sentence to “Seismic oceanography (SO) acquires water column 

reflections using controlled source seismology and provides high lateral resolution that enables the tracking of the 

thermohaline structure of the oceans.” 

 

Q2. Li 8. The low / high frequency band introduction is not very helpful unless you relate it 

to spatial resolution. 

A2. We added the approximate frequency range with vertical resolution of each equipment. 

Changes: Line 10-11. We added the resolution as “with a vertical resolution of approximately ten meters or more” 

and “with vertical resolution ranging from several centimeters to several meters.” 

 

Q3. Li 10. Reword “To solve the problem”? For example, “To extract reliable signal from the low S/N . . ..” 

A3. We modified the sentence. 

Changes: Line 14. We modified the sentence as “To attenuate the random noise and extract reliable signal from.” 

 

Q4. Li 23: “measurements [from cruises] are performed. . .. . . observation [stations].” 

A4. We modified the sentence. 

Changes: Line 28. The modified sentence is “Conventional physical oceanography measurements from cruises 

are performed by dropping equipment at the observation stations” 

 

Q5. Li 27: mention how the sea water characteristics can be estimated (through the acoustic impedance contrasts 

and expand a bit more to inform the reader) 

A5. We added the explanation how the sea water is imaged 

Changes: Line 32-34. The added sentence is “The differences in temperature and salinity between water column 

generate the difference in acoustic impedance, which reflect the seismic signals, and the reflected signals recorded 

at the receivers are processed to image the thermohaline fine structure of the ocean.” 

 

Q6, Q7. L29-32: Fine, but please do not oversell. Perhaps mention “qualitative images” and then move to 

“quantitative information after careful analysis where temperature/salinity contrasts produce well-defined 



horizons of seismic reflections” or similar. Also SO is not “widely used” 

Li 32: reword “determine the behavior of turbulence and internal waves” to, for example, “quantify the internal 

wave spectral distribution and infer turbulence” 

A6., A7. We modified the sentence. 

Changes: Line 37-41. The modified sentence is “Therefore, SO is used to image the structure of water layers 

(Tsuji et al., 2005; Sheen et al., 2012; Piété et al., 2013; Moon et al., 2017) and provide quantitative information 

such as physical properties (i.e, temperature, salinity) (Papenberg et al., 2010; Blacic et al., 2016; Dagnino et al. 

2016; Jun et al., 2019) or the spectral distribution of the internal wave and turbulence (Sheen et al., 2009; Holbrook 

et al., 2013; Fortin et al. 2016) after careful analysis where temperature or salinity contrasts produce clear seismic 

reflections” 

 

Q8. Li 33: clarify what central frequency is (since the source covers a range of frequencies) 

A8. We added the definition of the central frequency.  

Changes: Line 44. We added “the geometric center of the frequency band (Wang, 2015).” 

 

Q9. Li 43: vertical resolution of 1.5 m is not much superior to the vertical resolution of “several meters” stated in 

line 34. Perhaps specify the latter as 5-10 m? 

A9. We modified specify the resolution. 

Changes: Line 46. We modified “several meters” to “approximately ten meters or more.” 

 

Q10. Li 67-68: If not using MLP and AE (and any other acronym), no need to introduce them. It is difficult to 

read the text. 

A10. We removed the explanation of MLP and AE. 

Changes: Line 81-82. We removed the sentence “Noise attenuation using machine learning has been widely 

studied, such as the multilayer perceptron (MLP) (Burger et al., 2012) and autoencoder (AE) (Xie et al., 2012; 

Wu et al., 2016).” 

 

Q11. Li 64-75: If there’s a possibility to thin out various methods introduced (and refer to a few key references 

and citations therein), it can be easier for the reader to follow. 

A11. We thinned and removed several explanations. 

Changes: Line 77-91. We rewrite this part as “The use of artificial intelligence (AI) has been studied in geophysics 

for decades (McComack, 1991; McCormack et al., 1993; Van der Baan and Jutten, 2000), but recent advances in 

computer resources and algorithms have spurred AI research, and several studies have been conducted to apply 

machine learning in the field of seismic data processing (Araya-Polo et al., 2019; Yang and Ma, 2019; Zhao et al., 

2019). Among them, one of the most actively studied areas is prestack and poststack data noise attenuation. After 

convolutional neural networks (CNNs) were introduced, various noise attenuation methods based on the CNN 

architecture have been proposed (Jian and Seung, 2009; Gordonara, 2016; Lefkimmiatis, 2017), and the denoising 

convolutional neural network (DnCNN) suggested by Zhang et al. (2017) attained good results in random noise 

suppression in natural images. Recently, the DnCNN was applied to attenuate various types of noise in seismic 

data (Li et al., 2018; Si and Yuan, 2018; Liu et al., 2018). The DnCNN uses residual learning (He et al., 2016) and 

has the advantage of minimizing damage to the seismic signal by estimating the noise from seismic data rather 

than directly analyzing the signal. The original shape of the water column reflector in SO data remains unchanged 

during data processing, so the DnCNN, which learns noise characteristics, is a suitable SO data denoising 



algorithm.” 

 

Q12. Li 77: East Sea appears very abruptly here, out of context. 

A12. We removed the sentence of “East Sea”. 

Changes: Line 91-92. We removed the sentence “Therefore, this study applies the DnCNN to attenuate random 

noise in East Sea sparker SO data.” 

 

Q13. Li 135: delete “On the other hand,”? 

A13. We removed “on the other hand” 

Changes: Line 153. The modified sentence is “This study extracts noise from binary files, and a 3×3×1 

convolution filter is adopted.” 

 

Q14. Sec 2.1 and 2.2: can any of these descriptions refer to Fig 1? (I only see a reference in the end, at li 141, and 

it is not very instructive.) 

A14. We relocated the sentence  

Changes: Line 145-148. The sentence “Fig. 1 shows the DnCNN architecture used in this study, where Conv and 

BN indicate convolution and batch normalization, respectively.” is now located at the early part of the paragraph 

and matched explanation of each block to Fig. 1 like “This layer is shown as “Conv+ReLU” in Fig. 1.” 

 

Q15. Li 147: This is actually one line, but two repeats (in different travelling directions). Please mention the date 

of data collection, vessel speed during data collection. Transect duration etc. 

A15. We added date of data collection with transect duration and vessel speed.  

Changes: Line 167-169. The sentence “The survey was performed from October 7th to 11th in 2018 

(approximately 38 hours for one line) and the vessel speed was 5.5 knots.” is added. 

 

Q16. Li 163-164: there’re CTD /XCTD profiles, but the authors shown only 2xtemperature profiles from XBTs. 

It would be nice to increase the oceanographic context in the paper. 

A16. We added 2 XCTD data. 

Changes: Line 185. Temperature and reflection coefficients information from Two XCTDs are added in Fig. 4(a) 

and (b). 

 

Q17. Li 167: please describe what a reflection coefficient is. 

A17. We explained what a reflection coefficient is.  

Changes: Line 187-188. The modified sentence is “Fig. 4 (b) shows the reflection coefficients, defining the ratio 

between the reflected and incident wave, calculated with the XBT and XCTD data.”  

 

Q18. Li 184-185: what do you mean by “thus, the subsurface seismic data have a better S/N ratio than the SO 

data.”? Is subsurface seismic data not SO data? I suspect you mean beneath seabed by subsurface. Please clarify. 



A18. We clarified the meaning. 

Changes: Line 205, Line 212. We modified the “subsurface” to “below the sea floor and beneath seabed.” We 

also modified “sparker subsurface seismic data” to “SEZ seismic data” 

 

Q19. Li 187: It is confusing: “We used the interval from 0.2 to 0.6 s of the original data where the noise level is 

relatively low”. Earlier you mentioned that part was just noise! 

A19. There might be misunderstanding. The interval from 0.2 to 0.6 s of the SEZ data contains seismic data below 

the sea floor because the SEZ data is obtained shallow part of the East Sea where the water depth is approximately 

shallower than 200 m. However, the East Sea SO data which is the target data of this study is obtained from the 

deeper part of the East Sea and the water depth is approximately deeper than 1000 m. Therefore, the East Sea SO 

data contains random noise below 0.28 s (the water column) and SEZ data contains high S/N signal between 0.2 

to 0.6 s (beneath the sea bed). 

 

Q20. Li 190: Reword “the data are field data recorded with the same equipment.” as “the data are collected by the 

same equipment” 

A20. We modified the sentence. 

Changes: Line 213-215. The modified sentence is “This method has the advantage of using data with similar 

characteristics to those of the target data (the East Sea SO data) as the ground truth because the data are collected 

by the same equipment.” 

 

Q21. Li 204: what is g/cc? Please use SI units. 

A21. We changed unit to SI unit.  

Changes: Line 228. We changed “g/cc” to “1 g/cm3” 

 

Q22. Li 249: bottom right (instead of right bottom) 

A22. We modified “right bottom” to “bottom right” 

Changes: Line 275.  

 

Q23. Li 249-250: The sentence is confusing: “. . .using training dataset 1 has one problem. The ground truth of 

test data 5 contains noise in the right bottom part, and training dataset 1 also contains noise in some parts of the 

ground truth”. Dataset 1 has 6 test data. With the last reference to dataset 1 do you mean test data 1 or the entire 

dataset 1? Perhaps cut out the entire last part after the comma. Overall, I would appreciate a more distinct wording 

for test data. For example, subset 1 to 6, or patch (you use it in line 280)? 

A23. We clarified the sentences. 

Changes: Line 264-275. We modified “ground truth of test data 5” to “ground truth of the 5th test data patch”. We 

also modified the “test data” to “test data patch”. 

 

Q24. Li 279-280: 20th and 30th traces from the last patch: which epoch is this? Are the traces from the 50x50 

patch? Can you please mention for the reader: “. . .traces out of the 50x50 size patch 6 of the test data”. 

A24. We modified the sentence. 



Changes: Line 308-310. The modified sentence is “We extracted the 20th (Fig. 10 (a)) and 30th (Fig. 10 (b)) 

vertical traces from the last (6th) patch of the test data, which had a size of 50x50. For the denoised trace, we 

extracted trace from the denoised patch of the 40th epoch.” 

 

Q25. Li 310-311: can be cut out; simply cross reference Fig 13 after 25 epochs. Overall there are repetitions 

throughout the authors could try to simplify. 

A25. We simplified the paragraph by removing some repetitions. 

Changes: Line 342-343. The sentence “Similar to the previous experiment, we also calculated the average PSNR 

and SSIM to quantitatively verify the test results and compared the amplitudes of the extracted traces. Fig. 13 (a) 

shows the average PSNR, and 13(b) shows the average SSIM.” was removed. 

 

Q26. Li 325: perhaps specify, “is the number of test data patch (3072)” 

A26. We modified the sentence. 

Changes: Line 359. The sentence is modified as “ is the number of test data patches (3,072)” 

 

Q27. Li 327-328: too many significant digits at RMS errors? (perhaps enough with 6.37 and 6.34). For which 

epoch are these values? (Also the normalized values in line 331 could be 0.27 and 0.15) 

A27-1. We reduced the significant digits. 

A27-2. They are the RMS error of the test data before applying DnCNN. We modified the sentence to clarify the 

meaning. 

Changes: Line 361-365. To clarify, we modified “RMS errors of test dataset 1 and 2 before noise attenuation…” 

to “initial RMS errors of test dataset 1 and 2 before noise attenuation…” We also changed 6.374, 6.339, 0.268, 

0.151 to 6.37, 6.34, 0.27, 0.15. 

 

Q28. Li 332: delete “than that of the D1 model” 

A28. We removed “than that of the D1 model”. 

Changes: Line 366-367. 

 

Q29. Eq 6, is a division by nmode missing? 

A29. We wanted to calculate the average RMS error of each test data patch (not each node in a patch). Therefore, 

we divided the errors by ntest only. 

 

Q30. Li 364: “The data slope spectrum is the slope spectrum. . .” this is all very confusing. The data slope spectrum 

is first referred to in line 276-277 (again without explanation). Please introduce what the data slope is. For example, 

“the slope spectrum is the horizontal wavenumber, k_x, spectrum of the horizontal gradient of the vertical 

displacement of a digitized horizon. The data slope spectrum is . . .?” (or a similar explanation. Note my 

interpretation of the slope spectrum can be in error.) 

A30. To explain the data slope spectrum and avoid confusion we, we removed “data slope spectrum” in line 276-

277 (in the original manuscript) which is unnecessary. Instead, we added the explanation of data slope spectrum 

at the synthetic data slope spectrum experiment part.  



Changes: Line 305-306 and Line 368-374. We removed “In particular, the amplitude information is a key 

parameter for acquiring the data slope spectrum, which calculates slope spectra directly from the seismic data 

(Holbrook et al., 2013; Fortin et al., 2017).” and added “Water column reflection data can be used to obtain the 

physical oceanographic information by calculating the slope spectrum. The data slope spectrum is a horizontal 

slope spectrum obtained directly from seismic data by calculating the horizontal wavenumber () spectrum of the 

seismic reflection amplitude, and it is useful to identify noise contamination of seismic data and the cutoffs from 

an internal wave to turbulence subrange (Holbrook et al., 2013; Fontin et al., 2017). Holbrook et al. (2013) 

suggested calculating the data slope spectrum before calculating the reflector slope spectrum because the random 

noise that should be removed before analyzing the seismic data becomes evident in the data slope spectrum.” 

 

Q31. Li 367: replace “we calculated the data slope spectrum . . .. and compared the data slope spectra” with “we 

calculated and compared the data slope spectra using the outcome of the D1 and D2 models. . .. 

A31. We modified the sentence. 

Changes: Line 444-445. We modified the sentence to “To validate the noise attenuation results, we also calculated 

and compared the data slope spectra by using the outcome of the D1 and D2 models.” 

 

Q32. Li 376: “slope” is missing before “at wavenumbers” 

A32. We added “slope”. 

Changes: Line 454. 

 

Q33. Li 377-378: I cannot quite follow the subranges and the mentioned slopes in this panel. Perhaps mark on the 

figure? 

A33. We marked guide lines of each subrange in figure.  

Changes: Line 457-458 and Fig. 20. 

 

Q34. Li 390: Here again mention why sparker SO data may be desirable 

A34. We mentioned why sparker SO data is desirable again.  

Changes: Line 474-475. “Despite the low S/N problem, the sparker source has advantage of generating relatively 

high frequency band signal, which can provide information with higher vertical resolution.”  

 

Q35. Fig 1. Please offer some more explanation in the caption. If not possible, defer reader to the main text 

A35. We added explanation of figure in caption of Fig. 1. 

Changes: Fig. 1.  

 

Q36. Fig 2. Elevation is grayed out for >0m, so the colorbar can stop at 0. It would be useful to add a few isobaths. 

I would call Line 1 and Line 2, Repeat 1 and Repeat 2. 

A36. We added isobaths in the Fig. 2.  

Changes: Fig. 2. 

 



Q37. Figs 4 and 5 can be combined into 1 figure. I suggest two panels, T profiles in one panel with different color. 

Reflection coeff in the second panel with different colors and one offset by 0.0001 unit. Does the coefficient have 

a unit? 

A37. We merged and modified figures, and the reflection coefficient does not have a unit.  

Changes: Fig4. 

 

Q38. Fig 6 can be removed. It is already shown in Fig 3 and with the statement time > 0.28 s. You can mark the 

region by a rectangle in Fig 3. 

A38. We modified the Figure and marked the noise part by using red box. 

Changes: Fig. 3. 

 

Q39. Fig 10 (and Fig 13)- this is the average PSNR and SSIM for the 6 subsets of dataset 1? Would it not be better 

to show all 6 lines, or the average with one standard deviation? Actually the number of test data is 3072 (6 is an 

arbitrary pick), why not show the mean and std over all 3072? And also show a histogram? 

A39-1. It is the average PSNR and SSIM of dataset 1 (Fig. 8) and dataset 2 (Fig. 12) 

A39-2. We calculated standard deviation over all 3,072 test data and plotted. 

Changes: Fig. 8 and 12. 

 

Q40. Fig 11 caption: in the end the cross reference should be to Fig 9. 

A40. We modified the cross reference.  

Changes: Fig. 10. 

 

Q41. Fig 14 caption: in the end the cross reference should be to Fig 12. In the text the model is referred to as D2 

(but here D1). 

A41. We modified the cross reference.  

Changes: Fig. 14. 

 

Q42. Fig 16. This figure is not needed either. It is simply the upper 0.28s of Fig 3. However, I appreciate that it is 

zoomed in and compared to the cleaned sections. See suggestion below Fig 17 comment.  

Fig 17. Please consider removing xaxis labels from panels c to d, and placing panel labels in the upper left corner 

of panels (it’s grayed out anyway), so that you can have a more condensed 4-panel, 1 page figure with minimum 

white space vertically between panels. 

I think a reorganized version of Figs 16- 18 will be much better for the reader. I suggest 2 figures, each with 5 

panels (with identical x-axis limits and width, and minimum white space between them). New Fig 16: Line 1 

results. New Fig 17 Line 2 results with corresponding 5 panels for each figure: 

a) data (as in Fig 16a) b) clean after D1 c) clean after D2 d) noise after D1 e) noise after D2. 

 

A42. We re-ordered the figures. We also merged figures by removing unnecessary labels and white spaces.  



Changes: Fig. 18 and 19. 

 

General comment:  

I would strongly encourage the authors to improve the “Ocean Science” part by adding more insight using the 

clean seismic sections. Can you make some oceanographic inferences, interpretations (or better quantification) 

using the cleaned Lines 1 and 2? 

 This paper tries to apply machine learning technology to remove random noise from sparker SO data to 

help interpret SO data, and confirm the possibility of quantitative analysis. Because we want to focus on 

the noise attenuation method itself, the machine learning methodology and application of the proposed 

method are the main part of the paper. Adding the oceanographic analysis of denoised data will help 

authors understand the characteristic of the East Sea, but the manuscript will be vast in content. Therefore, 

after confirming the possibility of oceanographic analysis using denoised sparker SO data in this study, 

the detailed oceanographic analysis of East Sea data will be performed in the future study. 

Finally, it would serve the community much better if the authors made available some code for noise attenuation 

using machine learning. They offer the code through communication with authors, but the impact would be far 

larger if they make the code available as a supplement. 

 We also agree your comment. We think the distribution of the code is necessary for the community. 

However, the program will undergo some modification because the review process is not finished. After 

finishing the review process, we will distribute the program through github. 

 



Reviewr 2 

Thank you for your careful review and constructive comments. We have studied all of your comments carefully 

and revised our manuscript. We edited the English of the entire manuscript including “Abstract” by following 

Reviewer 2’s recommendation.  

This paper deals with the noise attenuation method of sparker SO data using machine learning. The data obtained 

from the sparker source have advantages such as cheap data acquisition costs and high vertical resolution from 

several centimeters to several meters, but it has not been widely used in SO study and has not been quantitatively 

analyzed to date. This is mainly because of the low S/N ratio of the sparker seismic data. Due to strong noise, the 

conventional data processing method is not sufficient to attenuate the noise in the sparker seismic data, thus it is 

difficult to perform quantitative analysis such as calculating slope spectrum. Therefore, we would like to propose 

a method to suppress random noise in the sparker seismic data. This paper tries to apply machine learning 

technology to remove random noise from sparker SO data to help interpret SO data, and confirm the possibility 

of quantitative analysis. Because of this reason, the machine learning methodology and application of the proposed 

method are the main part of the paper. After confirming the possibility of oceanographic analysis using denoised 

sparker SO data in this study, the detailed oceanographic analysis of East Sea data will be performed in the future 

study. Followings are the response to the Reviewer 2’s comments. “Q” is a comment from the reviewer, “A” is a 

response to the comment and “Changes” the lines and details of the modification. 

  

Q1. line 34 - delete "relatively low" as you do not state relative to what. Please edit paper to remove, as much as 

is possible, unqualified comparative statements. 

A1. We removed “relatively low” in line 34 and removed unqualified comparative statements in the manuscript. 

Changes: Line 9, 45, 52, 61, 211, 277 and 473. 

 

Q2. line 46 - This problem is more accentuated in SO because the impedance contrasts between the layers are 

small. 

A2. We modified the sentence. 

Changes: Line 57-58. The modified sentence is “This problem is more accentuated in SO because the impedance 

contrasts between the water layers are smaller than the impedance contrasts between the layers beneath the seabed.” 

 

Q3. line 65 - this reference list ignores the long history of the use of Neural Networks see McCormack’s paper in 

Leading Edge 1991 which shows an early attempt to use these NN to identify noisy traces in seismic data, since 

then NN have been evaluated for many tasks in the processing of seismic reflection data. Suggest authors change 

sense to recognise the history but equally highlight the recent advances in AI. I now note that this history is partly 

addressed in the following paragraph. 

A3. We modified the sentence and added the history of Neural Network in seismic data processing.  

Changes: Line 77-80. The modified sentence is “The use of artificial intelligence (AI) has been studied in 

geophysics for decades (McComack, 1991; McCormack et al., 1993; Van der Baan and Jutten, 2000), but recent 

advances in computer resources and algorithms have spurred AI research, and several studies have been conducted 

to apply machine learning in the field of seismic data processing (Araya-Polo et al., 2019; Yang and Ma, 2019; 

Zhao et al., 2019).” 

 

Q4. line 153 - scaling by the sq-rt of time is not "spherical divergence" correction but a "geometric correction" as 

for true spherical divergence loss the amplitude scales by a 1/z which for a constant sound-speed medium is 

proportional to 1/t. 



A4. We scaled the data by the sq-rt of time because we tried to make balance between noise in the shallow part 

which is affected by the tails of complex source wavelet and in the deep part of the data. We modified the phrase. 

Changes: Line 173-174. We modified “spherical divergence correction” to “amplitude correction.” 

 

Q5. line 158 - an SVD filter can be effective in removing direct wave and maybe worth trying, though extreme 

care is needed to get offsets correct and correctly estimate of surface mixed layer sound-speed 

A5. To remove the direct wave, SVD filter or Tau-P domain filter would be appropriate. However, the source 

signature of the sparker data is more complex than that of the air gun data, thus the filter may not properly eliminate 

the direct wave. Moreover, the noise near the sea surface is severe and the section before 0.03 second is not our 

research target (interesting SO signal does not exist in that part because this part is mixed layer which does not 

have large differences in reflection coefficient), therefore we muted the section before 0.03 second.  

 

Q6. Fig 3 - plot sections in the same orientation and spatially lined up so it is possible to appreciate the 

similarity/differences in the two images but note in caption or by arrow on section the acquisition direction. 

A6. We plotted the sections in the same orientation and added an arrow indicating the ship direction.  

Changes: Fig 3.  

 

Q7. line 183 - the subsurface will contain a range of reflection coefficients some will be tens to hundreds times 

larger but others will be of the order of magnitude as SO. 

A7. We modified the sentence. 

Changes: Line 205-207. The modified sentence is “The reflection coefficients of the major reflectors below the 

sea floor are tens to hundreds of times larger than that of the water column; thus, the seismic data below the sea 

floor have a better S/N ratio than the SO data.” 

 

Q8. lines 220-224 - definition of epochs and iterations is not clear. 

A8. We modified the sentence to clarify the definition of epoch and iteration.  

Changes: Line 247. The modified sentence is “The epoch is a process using all training data, and iteration is a 

process using a mini-batch; thus, an epoch usually consists of several iterations.” 

 

Q9. General question about noise - it is not clear, or I have overlooked the statement in the paper, but was the 

noise section extracted from data before or after divergence correction? If so, have you not imposed a time scaling 

on the noise as environmental noise levels would be expected to remain constant with time? So should this 

denoising be applied to non-divergence corrected data? 

A9-1. We extracted the noise from the processed seismic section which was applied the amplitude correction. 

Even though the background noise level is supposed to be not influenced by the time, the noise level at the early 

time in the East Sea SO data is larger than the deep part of the section (this might be the noise related to the 

complex source wavelet of sparker). Therefore, we empirically selected square root of time as scaling factor to 

make balance of the noise amplitude from shallow to deep part of the section.  

A9-2. Since we extracted the noise from the amplitude corrected seismic section, we applied the trained model to 

the amplitude corrected seismic section to remove the random noise. If we extracted the noise from non-amplitude-

corrected data, then we should apply the trained model to the non-amplitude-corrected data.  



A9-3. Before calculating the data slope spectra, we scaled the seismic section again by multiplying square root of 

time to each time step (consequently multiplying time to each time step of the data) for the spherical divergence 

correction. 

Changes: Line 446-447. The modified sentence is “Before calculating the data slope spectrum, we scaled the 

seismic sections again by multiplying the square root of time to each time step (consequently multiplying the time 

to each time step) for the spherical divergence correction.” 

 

Q10. line 290 - what is the "Static 94 synthetic seismic section? 

A10. We modified the sentence and added the reference.  

Changes: Line 320. The sentence is changed to “part of the 1994 Amoco static test dataset (SEG Wiki)” and 

reference is “SEG Wiki: https://wiki.seg.org/wiki/1994_BP_statics_benchmark_model, last access: 22 June 2020.” 

 

Q11. Figs 16 & 17 see request for Fig 3. 

A11. We modified the Figures.  

Changes: Fig. 18 and 19. 

 

Q12. A useful analysis would be to generate a synthetic with the expected spectral slopes then add noise at different 

levels and try to recover the input, the question I would like to know is is the shift after filtering (shown in Fig 19) 

removing weak signal too. Also discussion on the expected horizontal resolution. You state the peak frequency is 

250 Hz which, after migration, should give a maximum horizontal resolution of ∼1.5 m. However, it will be less 

as this is a 2D profile over a 3D structure so there will be out-of-plane contamination. 

A12-1. We performed experiment using synthetic data.  

Changes: Line 368-386 and Fig16. and 17. We explained the reason of performing the synthetic data experiment 

and showed the result of the experiment.  

A12-2. We also can find the shifting of the spectrum between the noise added synthetic section and noise 

attenuated seismic sections at the wavenumber smaller than 0.001 cpm. However, the difference is also observed 

between the spectrum of noise free section and noise added section. In addition, the shifting is not observed 

between the spectrum of noise free section and noise attenuated section. Therefore, this shifting seems to be caused 

by the characteristic of the noise extracted from the East Sea SO data. 

A12-3. We also mentioned the shift issue in the manuscript.  

Changes: Line 459-464. The explanation of shift issue is “There is a shift in the data slope spectrum after noise 

attenuation at wavenumbers smaller than 0.001 cpm. This shift is also observed in the synthetic data slope 

spectrum experiments. In Fig. 17, there is a difference between the spectrum of the noise-added section and that 

of the noise-attenuated sections at wavenumbers smaller than 0.001 cpm. However, the difference is also observed 

between the spectrum of the noise-free section and that of the noise-added section. Therefore, this shift seems to 

be caused by the characteristic of the noise extracted from the East Sea SO data.” 

A12-4. In the conclusion, we added the limitation of 2D exploration related to the resolution. And we mentioned 

that it is necessary to acquire data by using 3D seismic exploration to improve the resolution 

Changes: Line 489-496. The added sentence is “Even though the random noise is almost completely attenuated 

in the seismic section, the proposed method still needs several improvements. The observed random noise is 

successfully attenuated in the seismic section, but the data slope spectrum still indicates that the section contains 

noise with a slope of 𝑘𝑥
2 at wavenumbers above 0.02 cpm. Therefore, future studies should include a detailed 

analysis of the slope spectra of the East Sea SO data and establish an improved noise attenuation algorithm suitable 

https://wiki.seg.org/wiki/1994_BP_statics_benchmark_model


for higher wavenumbers. Moreover, the data were collected using 2D seismic exploration, which can degrade the 

seismic resolution during the data processing stage because of the limitations of 2D seismic exploration such as 

out-of-plane contamination. Therefore, to improve the resolution of SO data, it is necessary to acquire data by 

using 3D seismic exploration.” 
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Abstract. Seismic oceanography (SO) acquires water column reflections using controlled source seismology and provides 

high lateral resolution that enables the tracking of the thermohaline structure of the oceans. by seismic exploration 

compensating for the drawbacks of conventional physical oceanographic equipment. Most SO studies obtain data using air 

guns, which can produce acoustic energy below 100 Hz bandwidth.have relatively low-frequency bands with a vertical 

resolution of approximately ten meters or more. For higher-frequency bands, with vertical resolution ranging from several 10 

centimeters to several meters, at a low exploration cost, using a smaller, low-cost seismic exploration system may be used, 

such as a sparker source with central frequencies of 250 Hz or higher.a shorter receiver length, would be an alternative. 

However, the sparker source has a relatively low energy compared to air guns and consequently produces data with a lower 

signal-to-noise (S/N) ratio. To solve the problem To attenuate the random noise and extract reliable signal from of the low S/N 

ratio of sparker SO data without distorting the true shape and amplitude of water column reflections, we applied machine 15 

learning. The purpose of this study is to attenuate the random noise in the East Sea sparker SO data without distorting the true 

shape and amplitude of water column reflections. Specifically, we used A a denoising convolutional neural network (DnCNN) 

that successfully suppresses random noise in a natural image. is adopted as the machine learning network architecture. One of 

the most important factors of machine learning is the generation of an appropriate training dataset. We have generated two 

different training datasets using synthetic and field data. Models trained with the different training datasets are were applied 20 

to the test data, and the denoised results are were quantitatively compared. To demonstrate the technique, the The trained 

models are were applied to an SO sparker seismic dataset acquired in the East Sea the target seismic data, i.e., the East Sea 

sparker water column seismic reflection data, and the denoised seismic sections are were evaluated. The results show that 

machine learning can successfully attenuate the random noise of in sparker water column seismic reflection data. 

 25 
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1 Introduction 

Conventional physical oceanography measurements from cruises are performed by dropping equipment at the observation 

pointsstations. In general, due to time and cost limitations, the distance between observation points is large, from hundreds of 

meters to tens of kilometers; thus, the acquired water column information has a low horizontal resolution. Holbrook et al. 30 

(2003) suggested a seismic oceanography (SO) method that obtained water column reflections via seismic exploration and 

analyzed seismic sections to estimate the oceanographic characteristics of sea water, . The differences in temperature and 

salinity between water column generate the difference in acoustic impedance, which reflect the seismic signals, and the 

reflected signals recorded at the receivers are processed to image the thermohaline fine structure of the ocean.and they 

successfully imaged the Atlantic oceanographic structure. Seismic exploration acquires data continuously in the horizontal 35 

direction; thus, it has the advantage of generating data with a high horizontal resolution compared to conventional 

oceanographic methods. Therefore, SO is widely used to identify image the structure of water layers (Tsuji et al., 2005; Sheen 

et al., 2012; Piété et al., 2013; Moon et al., 2017), ) and provide quantitative information such as physical properties (i.e, 

temperature, salinity) (Papenberg et al., 2010; Blacic et al., 2016; Dagnino et al. 2016; Jun et al., 2019) or the spectral 

distribution of the internal wave and turbulence (Sheen et al., 2009; Holbrook et al., 2013; Fortin et al. 2016) after careful 40 

analysis where temperature or salinity contrasts produce clear seismic reflections.estimate physical properties (i.e., temperature, 

salinity) (Papenberg et al., 2010; Blacic et al., 2016; Dagnino et al. 2016; Jun et al., 2019) and determine the behavior of 

turbulence or internal waves (Sheen et al., 2009; Holbrook et al., 2013; Fortin et al. 2016). 

 SO has been conducted mainly using air guns, a high-energy source, and the central frequency, the geometric center of the 

frequency band (Wang, 2015), of air guns is usually below 100 Hz, which is relatively low. Therefore, the vertical resolution 45 

of the acquired seismic data using air guns is approximately ten meters or moreseveral meters, which is lower than that of 

conventional physical oceanography observation equipment. SO also has the disadvantage of higher exploration expenses 

when using air guns and streamers that are several kilometers long. Ruddick (2018) highlighted the limitations of current SO 

studies using multichannel seismic (MCS) exploration and argued that using a small-scale source instead of a large-scale air 

gun and a relatively shorter streamer with a length shorter than 500 m can make SO more widely available. 50 

 Piété et al. (2013) implemented a sparker source with a central frequency of 250 Hz and a short 450-m streamer (72 channels 

at 6.25 m intervals) to examine the oceanographic structure. Since relatively high-frequency band sources were implemented, 

data with a high vertical resolution of 1.5 m were acquired, and the short source signature enabled the thermocline structure to 

be imaged even in very shallow areas between 10 and 40 m. However, the signal-to-noise (S/N) ratio of the seismic section 

was lower than that of the air gun source, and the amplitude of the thermocline feature was small; thus, it was difficult to 55 

interpret. Generally, using a low-energy source and a short streamer in seismic exploration causes the low-S/N ratio problem. 

This problem is more accentuated in SO because the impedance contrasts between the water layers are smaller than the 

impedance contrasts between the layers beneath the seabed.This problem becomes more serious in seismic exploration 

targeting the water layer because the difference in impedance between layers is smaller than that with the subsurface. If a low-
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energy source is used, the water column reflections recorded by the receiver become too weak, and the influence of the 60 

background noise becomes relatively larger than when using a high-energy source. The improvement in vertical resolution is 

evident when using higher-frequency band sources such as a sparker source; therefore, if appropriate methods can effectively 

suppress the random noise in the seismic section, more useful information can be derived compared to SO data using an air 

gun source. 

 There are various types of noise recorded by the receiver in seismic exploration, and several data processing steps are usually 65 

applied to the seismic data to attenuate noise. However, the noise attenuation method not only removes noise but also 

potentially alters important seismic signals (Jun et al., 2014). Especially for SO data, careful processing is essential to recover 

the actual shape of the water column reflections (Fortin et al., 2016), which contain internal wave and turbulence information. 

It is difficult to apply various noise attenuation methods to SO data because analyzing the internal wave and turbulent subranges 

of the water column requires the horizontal wavenumber spectrum (Klymak and Moum, 2007) of the seismic data, which is 70 

liable to be damaged by data processing. Therefore, minimized noise attenuation processes have been applied to SO data, and 

for this reason, studies calculating the wavenumber spectrum by using SO data such as those by Holbrook et al. (2013) and 

Fortin et al. (2016, 2017) have only applied bandpass and notch filters to remove random and harmonic noise. However, when 

the sparker is used as a seismic source, the bandpass filter alone is not sufficient to attenuate random noise, resulting in great 

difficulties in analyzing the wavenumber spectrum. Therefore, it is necessary to apply additional data processing to properly 75 

attenuate noise without damaging the wavenumber characteristics of SO data.  

 The use of artificial intelligence (AI) has been studied in geophysics for decades (McComack, 1991; McCormack et al., 1993; 

Van der Baan and Jutten, 2000), but Recentlyrecent, rapid advances in computer resources and algorithms have spurred 

artificial intelligence (AI) research, and several studies have been conducted to apply machine learning in the field of seismic 

data processing (Araya-Polo et al., 2019; Yang and Ma, 2019; Zhao et al., 2019). Among them, one of the most actively studied 80 

areas is prestack and poststack data noise attenuation. Noise attenuation using machine learning has been widely studied, such 

as the multilayer perceptron (MLP) (Burger et al., 2012) and autoencoder (AE) (Xie et al., 2012; Wu et al., 2016). After 

convolutional neural networks (CNNs) were introduced, various noise attenuation methods based on the CNN architecture 

have been proposed (Jian and Seung, 2009; Gordonara, 2016; Lefkimmiatis, 2017), and the denoising convolutional neural 

network (DnCNN) suggested by Zhang et al. (2017) attained good results in random noise suppression in natural images. 85 

Recently, Tthe DnCNN was applied to attenuate various types of noise from in seismic data such as ground roll (Li et al., 

2018; ) from onshore field prestack seismic data and random noise from synthetic prestack seismic data (Si and Yuan, 2018; ) 

and three-dimensional field seismic cubes (Liu et al., 2018). The DnCNN uses residual learning (He et al., 2016) and has the 

advantage of minimizing damage to the seismic signal by estimating the noise from seismic data rather than directly analyzing 

the signal. The original shape of the water column reflector in SO data remains unchanged during data processing, so the 90 

DnCNN, which learns noise characteristics, is a suitable SO data denoising algorithm. Therefore, this study applies the DnCNN 

to attenuate random noise in East Sea sparker SO data. 
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 As important as the proper neural network architecture when conducting training through machine learning is the use of an 

appropriate training dataset. When using the DnCNN to attenuate noise, the training data require noise-free and noise-only (or 

noise containing) data. In this study, we use both field and synthetic data as training data and compare which training data are 95 

more suitable for the DnCNN in attenuating random noise in SO data.  

 First, we introduce the DnCNN architecture used in this study and explain the construction method for the training and test 

datasets using field and synthetic data, respectively. Then, we perform training using the constructed training datasets and 

verify the trained models using test datasets. Finally, the trained models are applied to the East Sea sparker SO data, and the 

results are compared and evaluated.  100 
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2 Data and Methodology 

2.1 Review of the DnCNN 

The purpose of this study is to attenuate the random noise in sparker SO data, and the machine learning architecture used in 

this study is the DnCNN, which was suggested by Zhang et al. (2017). DnCNN is a neural network architecture based on the 105 

CNN for the purpose of removing the random noise in natural images. DnCNN reads the noisy image in the input layer and 

extracts the noise from the noisy image during in the hidden layer. A Llayer is a module containing several computing processes 

(e.g. convolution, pooling or activation). At the output layer, the extracted noise is subtracted from the noisy image and 

generates the denoised result. The architecture of the DnCNN is shown in Fig. 1 and will be explained in more detail below. 

The DnCNN has three distinctive characteristics: 1) residual learning, 2) batch normalization, and 3) the same input and output 110 

data size for each layer.  

 Residual learning was first suggested by He et al. (2016) and it added the shortcut connection to the neural network to 

overcome the problem of machine learning when networks delve deeper. The DnCNN adopted residual learning and a single 

shortcut to estimate the noise from natural images. The estimated noise was subtracted from the noisy natural image, and the 

noise-attenuated image remained. If the DnCNN is applied to seismic data denoising, the target noise is estimated from the 115 

noisy prestack or poststack seismic data, and the estimated noise is subtracted from the noisy seismic data. The seismic data 

including noise (𝑦) can be expressed by adding noise-free seismic data (𝑥) and noise (𝑛) as follows:  

 𝑦 = 𝑥 + 𝑛. 
(1) 

 

When the deep learning architecture that estimates noise from the noisy seismic data is 𝑫(𝑦; 𝑛), the cost function of the 

DnCNN (C) can be expressed as follows: 120 

 C =
1

2𝑁
∑‖𝑫(𝑦𝑖 ; 𝑛𝑖) − (𝑦𝑖 − 𝑥𝑖)‖2

𝑁

𝑖=1

, 
(2) 

 

where 𝑛 is the estimated noise from the original noisy seismic data (𝑦), N is the number of the training data and ‖ ‖2 is the 

sum of squared errors (SSE). Although the DnCNN uses residual learning, it is different from the conventional residual network. 

The conventional residual network utilizes residual learning to solve the performance degradation problem when the network 

depth increases; thus, it includes many residual units. On the other hand, the DnCNN uses residual learning to predict noise 125 

from noisy images, which is related to trainable nonlinear reaction diffusion (TNRD) (Chen and Pock, 2016) and includes a 

single residual unit. For example, ResNet (He et al., 2016), which is a well-known image recognition network using residual 

learning, has more than tens or hundreds of network depth layers, but the DnCNN has fewer than 20 network depth layers. 

Moreover, the DnCNN applies batch normalization (Ioffe and Szegedy, 2015) after each convolution layer to transform the 

mini-batch data distribution. The distribution of input data varies during training and the neural network has a risk of updating 130 
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the weights to in the wrong direction. Batch normalization is a method to normalize the distribution of each mini-batch by 

making the mean and variance of the mini-batch as equal to 0 and 1, respectively. The normalized mini-batch is transformed 

through scaling and shifting. The. Batch normalization is widely used in many deep learning neural networks because it can 

stabilize learning and increase the learning speed (Ioffe and Szegedy, 2015). The authors of the DnCNN empirically found 

that residual learning and batch normalization create a synergistic effect. In addition, unlike the encoder-decoder type denoising 135 

architecture, the size of the input data of the DnCNN is the same as the size of the output data in each layer. The DnCNN 

directly pads zeros at the boundaries during convolution and does not contain any pooling layer; thus, the data size remains 

unchanged during training. This procedure has the advantage of minimizing the data loss occurring during the encoding and 

decoding process. As mentioned above, Tthe amplitude and shape of the seismic reflections are important for spectrum analysis 

using SO data. To minimize possible deformation of the seismic signals during the denoising procedure, the DnCNN, which 140 

predicts noise using residual learning and avoids information loss due to the absence of an encoding-decoding model, could 

be an appropriate algorithm.  

 

2.2 Network architecture 

The DnCNN uses three different kinds of layers, and we use the same layers as suggested by Zhang et al. (2017). Fig. 1 shows 145 

the DnCNN architecture used in this study, where Conv and BN indicate convolution and batch normalization, respectively. 

The first layer type consists of “convolution + rectified linear units (ReLUs; Krizhevsky et al. (2012))” and is used only at the 

first layer of the network architecture. This layer is shown as “Conv+ReLU” in Fig. 1.. In the convolution process, 2-

dimensional convolution between the a certain size of kernel and data is performed. The outputs of the convolution process 

are passed through the activation function to add the nonlinearity in the network. ReLU is used for the activation function in 150 

this study. The size of the convolution filter is 3 × 3 × 𝑐 and generates 64 feature maps, where 𝑐 is the number of channels of 

the input data. The conventional DnCNN performs denoising from the image file (.jpg, .png, etc.), and thus the size of the 

convolution filter is 3 × 3 × 3 in the color image and 3 × 3 × 1 in the gray image. On the other hand, tThis study extracts 

noise from binary files, and a 3 × 3 × 1 convolution filter is adopted. The second layer type consists of convolution + batch 

normalization + ReLUs and is applied from layers 2 to L-1, where L is the total number of network layers. This layer is shown 155 

as “Conv+BN+ReLU” in Fig. 1. Sixty-four 3 × 3 × 64 convolution filters are used because the number of feature maps of the 

hidden layer is 64, which is the same at for all hidden layers. After convolution, batch normalization and the ReLU activation 

function are applied. The third layer type is convolution and uses only the last layer to generate output noise data, and one 

3 × 3 × 64 convolution filter is used. This layer is shown as “Conv” in Fig. 1. After training is completed, the predicted noise 

is subtracted from the input data to produce denoised data. Fig. 1 shows the DnCNN architecture used in this study, where 160 

Conv and BN indicate convolution and batch normalization, respectively. 
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2.3 East Sea SO data 

The purpose of this study is to attenuate the random noise in the East Sea sparker SO data. The East Sea sparker SO data were 

obtained with a 5,000-J SIG PULSE L5 sparker source to investigate the propagation of the internal tide and characteristics of 165 

turbulent mixing. Two seismic lines were explored: line 1 traveled from southwest to northeast, and line 2 traveled from 

northeast to southwest (Fig. 2). The survey was performed from October 7th to 11th in 2018 (approximately 38 hours for one 

line) and the vessel speed was 5.5 knots. The seismic data include the shallow continental shelf and slope with a water depth 

of ~ 200 m, but we removed the continental shelf and slope area and used 280.4 km of line 1 and 280.9 km of line 2 because 

the data from these sections did not target the layers  below the sea floorsubsurface but the water layer. The shot interval was 170 

approximately 15 m, and 24 receivers were used at intervals of 6.25 m. 

 The acquired seismic data were processed through conventional time processing consisting of instrument delay and spherical 

divergence amplitude corrections, bandpass filtering, common-midpoint (CMP) sorting and stacking. Spherical divergence 

Amplitude correction was performed by empirically multiplying the square root of time at each time step. The corner 

frequencies of the trapezoidal bandpass filter (Dickinson et al. 2017) was were 60-80-250-300 Hz, which was were higher than 175 

that those in air gun seismic data processing. Sparker source data have a lower S/N ratio due to the weak energy source 

compared to air gun source data and generally rely on a shorter streamer length; thus, it is common to generate supergathers 

(Piété et al., 2013) to enhance the S/N ratio. We combined 4 neighboring CMP gathers (Tang et al., 2016) to construct one 

supergather. A constant velocity of 1,500 m/s was adopted for normal move-out. After CMP stacking, data recorded before 

0.03 s were eliminated from the stack section because only direct waves and noise were present, and water layer reflections 180 

were rarely recorded. The processed seismic sections are shown in Fig. 3. The internal wave of the research area propagates 

above a depth of 200 m, which is approximately 0.26 s in the seismic section. In addition, the physical properties of the research 

area were measured with oceanographic equipment, such as conductivity/temperature/depth (CTD), expendable 

conductivity/temperature/depth (XCTD) and expendable bathythermograph (XBT) instruments, during exploration. Fig. 4 (a) 

shows the temperature profiles from two XBTs and two XCTDs casting locations. From the measurement data, the mixed 185 

layer ranged from the sea surface to a depth of 30 m, the depth of the thermocline ranged approximately from 30 to 200 m and 

deep water occurred below approximately 200 m depth. Fig. 5 4 (b) shows the reflection coefficients, defining the ratio between 

the reflected and incident wave, calculated with the XBT and XCTD data and (assuming a constant density 1 g/cm3). The 

reflection coefficients are very small at depths shallower than 30 m, which seems to be the mixed layer, and deeper than 

approximately 200 m, which seems to be the deep water layer. Deep water exhibits a very slight water temperature/salinity 190 

variation with the depth, which makes it difficult to generate reflections, as indicated by the seismic sections and reflection 

coefficients. Therefore, data after 0.28 s are considered random noise, and we used this part as noise data for the DnCNN. 

 



8 

 

2.4 Training data 

The most important noise attenuation aspect of machine learning is generating an appropriate training dataset. Noise-free 195 

seismic sections (the ground truth) and sections with noise are required to generate the training dataset, and the training dataset 

can be constructed by combining these two datasets. As previously explained, the purpose of this study is to effectively 

attenuate noise in the water column seismic section acquired in the East Sea. Thus, the noisy section can be easily obtained by 

extracting the deep water zone of the water column seismic section without reflections. At this point, we assume that the 

random noise of the top and bottom parts of the water column seismic section exhibits similar features. The noise parts of the 200 

East Sea SO data are shown as red boxes in Fig 3. The sections with noise extracted from the East Sea SO data are shown in 

Fig. 6. There are no notable reflections in the sections with noisenoise parts. However, it is almost impossible to obtain noise-

free seismic sections from field data. Therefore, we constructed training datasets using two different methods and compared 

these datasets. 

Training dataset 1 obtains the ground truth based on the field subsurface sparker seismic section below the sea floor. The 205 

reflection coefficients of the major reflectors below the sea floor of the subsurface is are tens to hundreds of times larger than 

that of the water column; thus, the subsurface seismic data below the sea floor have a better S/N ratio than the SO data. In 

addition, after the proper data processing steps, the S/N ratio of the subsurface seismic data beneath the sea bed can be further 

enhanced. We used 14 lines of subsurface field sparker seismic data targeting below the sea floor (SEZ data) acquired with the 

same equipment used to record the East Sea SO data. We used the interval from 0.2 to 0.6 s of the original data where the 210 

noise level is lower than in other parts of the data. where the noise level is relatively low. A bandpass filter, FX-deconvolution, 

a Gaussian filter and noise muting above the sea floor were applied. Fig. 7 5 (a) shows an example of the SEZsparker subsurface 

seismic data used to generate training dataset 1. This method has the advantage of using data with similar characteristics to 

those of the target data (the East Sea SO data) as the ground truth because the data are collected by field data recorded with 

the same equipment. Even if the S/N ratio of the sparker subsurface seismic data beneath the sea bed is relatively higher than 215 

that of the sparker SO dataseismic data of the water column and noise is suppressed during processing, it is difficult to 

completely eliminate noise from seismic data. Therefore, this method has the disadvantage that there is a possibility that the 

remaining noise would have a detrimental effect on training.  

Training dataset 2 uses synthetic data as the ground truth. The method for generating a synthetic seismic section from the 

velocity model is to perform time or depth domain processing using prestack synthetic data or to convolve the reflection 220 

coefficient and source wavelet. The former method has the advantage of generating synthetic seismic sections with features 

more similar to those of the actual field seismic section, but the generation and processing of prestack data are time consuming, 

and artificial noise is often generated during processing. The latter method has the advantage of generating noise-free seismic 

sections with a very simple procedure. However, the generated synthetic seismic section has much different features from the 

target seismic section, which is, in this study, the East Sea water column sparker seismic section. Therefore, when the trained 225 

model is applied to the target seismic section, there is a risk that the trained model will regard the reflection signal as noise. In 
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this study, we used the latter method to generate the ground truth because we needed to avoid the artificial noise. Marmousi-2 

and Sigsbee2a synthetic velocity models with a constant density (1 g/cm31 g/cc) were employed to calculate the reflection 

coefficient, and the first derivative Gaussian wavelet was the synthetic source wavelet. The original Marmousi-2 and Sigsbee 

2A synthetic velocity models are depth domain velocity models, but we assumed that these velocity models were time domain 230 

models to generate time domain seismic sections via 1-dimensional convolutional modeling. Fig. 7 5 (b) and (c) show the 

generated seismic sections of Marmousi-2 and Sigsbee 2A, respectively. 

 Each ground truth was first divided into with 300 × 300 sections. Then, amplitude values higher than the top 1% and lower 

than the bottom 1% were replaced by the top 1% and bottom 1% values, respectively, to prevent outliers from significantly 

affecting training. In addition, the outlier-removed ground truth and noise section were normalized to the maximum value of 235 

each section. This procedure balances the amplitudes of the ground truth and noise before generating the training dataset. 

Finally, training data with field seismic noise were generated by combining the ground truth and noise at a random ratio. Eq. 

3 is the method to construct the training data, and Fig. 8 6 shows an example training data compilation.  

 𝑇 = 𝑟1 × 𝐺 + 𝑟2 × 𝑁, 
(3) 

 

where 𝑇 is the noise-added seismic patch (training data), 𝐺 is the ground truth patch, 𝑁 is the noise patch extracted from the 240 

noisy part of the East Sea seismic section (noisy data), and 𝑟1 and 𝑟2 are random values ranging from 0.32~0.8 (𝑟1 + 𝑟2 = 1). 

The dimensions of 𝑇, 𝐺 and 𝑁 are 50 × 50; 𝐺 and 𝑁 were extracted at a random location of the ground truth and noisy section. 

To increase the number of ground truth data size, data augmentation was applied by zooming in/out and randomly rotating or 

flipping the data. Training data were newly generated at every epoch with the fit_generator function in Keras (Keras 

Documentation, 2020). The fit_generator function generated 28,160 data points patches at every epoch because the mini-batch 245 

size was 128 and the iteration of each epoch was 220. The epoch is a process ofusing all training data, and iteration is a process 

ofusing a mini-batch; thus, an epoch usually consists of several iterations. means the number of processes using entire data 

point and iteration means the number of processes using a mini-batch in a epoch. 

  

https://keras.io/models/sequential/
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3 Training 250 

3.1 Experimental setting 

The experiment was conducted using 28,160 training data points patches per epoch, and the size of each patch was 50 × 50. 

The mini-batch size was 128, the network depth which is the total number or layers in the network architecture was 17, the 

number of feature maps of each layer was 64 and the Adam optimizer (Kingma and Ba, 2015) was implemented by following 

Zhang et al.’s (2017)’s DnCNN experiments. The network architecture used in this study is shown in Fig. 1. We performed 255 

training by using the two different training datasets generated from the field data (training dataset 1) and synthetic data (training 

dataset 2). The DnCNN model was trained for 40 epochs, and the total training time was approximately 1 hour using a single 

NVIDIA Quadro P4000 GPU. 

 

3.2 Experiment using training dataset 1 260 

Training dataset 1 was generated with the SEZ field data and noise obtained from the East Sea seismic section. After training 

the DnCNN model (D1 model) using training dataset 1, we evaluated the trained model against the test data. The test data were 

generated with the same procedure as that for the training data, and we used the other lines of SEZ data which that were not 

used to generate the training data. The number ofEighty-six 300 × 300 size test data was 86 andwere available, and we divided 

the test data into (50 × 50) size patches, which is the same size as the training data patch. Then, we discarded the remaining 265 

data divided by 128 (mini-batch size) for the computational efficiency;, thus, the number of test data points was 3,072. Fig. 9 

7 shows 6 randomly selected test data subset patches, ground truths and denoised results after applying the D1 model at the 

5th , 10th , 20th  and 40th epochs. The depicted test data patches (1 to 6) include noise, but most of the noise has been successfully 

removed after training for 40 epochs. Especially in test dataIn the 3rd and 6th patches of test data subset in particular, the 

reflections are hardly recognized because of the severe noise, but the D1 model successfully attenuated the noise and generated 270 

a denoised section almost identical to the ground truth. In addition, there is a water layer without any signal at the top of the 

4th test data patchtest data 4, and the trained model properly attenuated the noise at the water layer. This means that the trained 

model can determine those parts where no signal occurs.  

However, the trained model using training dataset 1 has one problem. The ground truth of test data the 5th test data patch 

contains noise in the right bottom right part, and training dataset 1 might also contains noise in some parts of the ground truth. 275 

Even though the ground truth of training dataset 1 was generated from a processed subsurface sparker seismic section below 

the sea floor, which had a relatively high S/N ratio, noise still remained because it is almost impossible to perfectly remove 

noise from field data. The ground truth of training dataset 1 (SEZ data in Fig. 7 5 (a)) is obtained using the same equipment as 

was used for the East Sea SO data, which is the target of this study. Therefore, the ground truth signal has similar characteristics 

to the signal of the East Sea SO data, but its noise feature could also be similar to the noise of the East Sea SO data. This means 280 
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that noise with similar characteristics would be trained to be eliminated in some cases and not in other cases during training. 

Training inconsistency can degrade the performance of the trained model. 

 To evaluate the test result quantitatively, we calculated the peak S/N ratio (PSNR) and structural similarity index measure 

(SSIM) by using entire test data. The PSNR reflects the amount of noise contained in the data and can be calculated as follows 

(Hore and Ziou, 2010):  285 

 

 𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10(𝑀𝐴𝑋𝐼) − 10 𝑙𝑜𝑔10(𝑀𝑆𝐸) 
(4) 

 

where 𝑀𝐴𝑋𝐼 is the maximum value of the image and MSE is the mean squared error between the data with and without noise. 

The PSNR is high when noise is successfully removed, while the PSNR is low when noise is not sufficiently removed. Fig. 10 

8 (a) shows the average PSNR and standard deviation of the test results. At the early stage of training, the average PSNR is 290 

low, which indicates that noise has not been sufficiently removed, but it increases as training progresses and converges at 

approximately 36 dB after 25 epochs. Even though the denoising algorithm attenuates noise successfully, the reflection shape, 

which is important information of the SO data, can be altered. Therefore, it is necessary to measure the structural distortion to 

verify the effectiveness of the proposed method. The SSIM is a quality metric that calculates the structural similarity between 

two datasets and can be calculated as follows (Hore and Ziou, 2010): 295 

 𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑢

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

(5) 

 

where 𝜇 is the average, 𝜎2 is the variance, 𝜎𝑥𝑦 is the covariance of x and y, and 𝑐 is a stabilizing parameter. The value of SSIM 

ranges from 0 to 1, and if the structure is distorted during the denoising process, the SSIM will be low. On the other hand, the 

SSIM will be close to 1 if the denoised data are similar to the ground truth. Fig. 10 8 (b) shows the average SSIM of the test 

results. Similar to the PSNR result, the SSIM is also low at the early stage of training but increases as training progresses and 300 

converges at approximately 0.88 after 20 21 epochs. We also plotted the PSNR and SSIM histogram of the test data before 

and after applying the D1 model (40th epoch) in Fig. 9. Both the PSNR and SSIM are clearly improved after applying D1 

model.  

 For seismic data, it is important to determine how well the actual amplitude and shape of the true reflection are recovered 

through the denoising process. In particular, the amplitude information is a key parameter for acquiring the data slope spectrum, 305 

which calculates slope spectra directly from the seismic data (Holbrook et al., 2013; Fortin et al., 2017). Therefore, we extracted 

seismic traces from the denoised section and ground truth and compared the extracted traces, as shown in Fig. 1110, to ensure 

that the trained model recovers the actual amplitude of the signal. We extracted the 20th (Fig. 11 10 (a)) and 30th (Fig. 11 10 

(b)) vertical traces from the last (6th) patch of the test data, which had a size of 50x50.as shown in Fig. 9. For the denoised 

trace, we extracted trace from the denoised patch of the 40th epoch. The amplitude and shape of the trace from the noisy data 310 
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are different from those of the ground truth because the data are severely contaminated with noise. Even though there is much 

noise, the denoised traces have similar amplitudes and shapes to those of the ground truth. These results indicate that the 

DnCNN can recover important information of the true reflections and can be useful for random noise attenuation of sparker 

SO data. 

 315 

3.3 Experiment using training dataset 2 

Training dataset 2 was generated by using the modified Marmousi-2 and Sigsbee2a synthetic seismic sections and noise 

obtained from the East Sea seismic section. After training the DnCNN model (D2 model) with training dataset 2, we evaluated 

the trained model against test data. The test data were generated with the same procedure of used to generateing the training 

data, and we selected the part of the 1994 Amoco static test dataset (SEG Wiki, 2020)Static 94 synthetic seismic section, which 320 

is a different model from than that used for the training data. The size of the test data patch was the same as that of the training 

data patch (50×50), and the number of test data points was 3,072. Fig. 12 11 shows 6 randomly selected test data subset patches, 

ground truths and denoised results after applying the D2 model at the 5th , 10th , 20th and 40th epochs. Even though the test data 

patches contain noise at different levels, the trained model at the 40th epoch attenuated most of the noise successfully and 

generated almost identical seismic sections to the ground truth. The second test data patch contained relatively little noise 325 

compared to other test data patches, and most of the noise was removed after approximately 10 training epochs. Test data 

patches 1 and 3 contained simple reflections with much noise, and the noise was sufficiently removed after approximately 20 

training epochs. The noise in test data patches 4 and 6 was more severe than the noise in the other test datasetsdata patches. 

After 40 training epochs, most of the noise was attenuated but not perfectly removed. The noise was dominant in test data 

patch 5, and only a weak signal existed A weak signal remained  in the bottom part of ground truth 5., and noise dominated 330 

test data patch 5. If we evaluate the denoised result of the 5th test data patchdata, noise had been successfully removed, and 

only a weak signal remained in the bottom part of the section patch after 40 training epochs. This indicates that the trained 

DnCNN model can accurately discriminate between signal and noise. 

 Unlike training dataset 1, training dataset 2 was generated with synthetic data. Therefore, it has the advantage of using noise-

free seismic sections as the ground truth. In addition, generating many different kinds of synthetic seismic sections does not 335 

require much time or effort; thus, it is easy to increase the amount of training data compared to using field data as training data. 

However, the features of synthetic seismic sections can be different from those of the target data requiring noise attenuation 

because the synthetic seismic sections were generated by simply convolving the reflection coefficient with the source wavelet. 

Several studies have applied machine learning to field seismic data interpretation by training the model using synthetic data, 

such as automated fault detection with synthetic training data (Wu et al., 2018), but machine-learning-based noise attenuation 340 

of SO data using synthetic training data has not yet been studied.  

 Similar to the previous experiment, we also calculated the average PSNR and SSIM to quantitatively verify the test results 

and compared the amplitudes of the extracted traces. Fig. 13 (a) shows the average PSNR, and 13(b) shows the average SSIM.  
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Similar to the first experiment, the average PSNR (Fig. 12 (a)) and SSIM (Fig. 12 (b)) converged after approximately 25 

epochs. The histograms of PSNR and SSIM of the test data before and after applying the D2 model (40th epoch) are also plotted 345 

in Fig. 13. As shown, the PSNR and SSIM are improved after DnCNN is applied. However, tThe average PSNR and SSIM in 

the second experiment are higher than those in the first experiment. These results could be caused by the use of a noise-free 

synthetic seismic section as the ground truth of training dataset 2 and might indicate that training dataset 2 is more appropriate 

for random noise attenuation of SO data. Fig. 14 shows the extracted traces before and after applying the D2 model. We 

extracted the 20th (Fig. 14 (a)) and 30th (Fig. 14 (b)) vertical traces from the 1st patch of the test data, as shown in Fig. 12. The 350 

denoised traces successfully recovered the true amplitude and shape, although the input data were severely contaminated by 

random noise.  

In the second experiment, the noise-attenuated traces are closer to the ground truth traces than those in the first experiment. 

However, the comparison of the several extracted traces does not indicate which training data are more suitable for suppressing 

noise of sparker SO data. Therefore, we calculated the root-mean-square (RMS) error between the denoised test data and 355 

ground truth of the test data and evaluated which training data produced a lower RMS error. The RMS error was calculated as 

follows: 

 𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 = √
1

𝑛𝑡𝑒𝑠𝑡
∑ ∑ (𝑔𝑖𝑗 − 𝑑𝑖𝑗)

2
𝑛𝑛𝑜𝑑𝑒

𝑗=1

𝑛𝑡𝑒𝑠𝑡

𝑖=1

 
(6) 

 

where 𝑔 is the ground truth of the test data, 𝑑 is the denoised test data, 𝑛𝑡𝑒𝑠𝑡 is the number of test data patches (3,072) and 

𝑛𝑛𝑜𝑑𝑒 is the size of each data point (50×50). Even though test datasets 1 and 2 were generated using the same noisy data (the 360 

part containing noise of the East Sea SO section), the initial RMS errors of test datasets 1 and 2 before noise attenuation were 

different, 6.374 and 6.3394, respectively, because noise was randomly extracted from the noise data. Therefore, we normalized 

the RMS error by that of the test data before noise attenuation. Fig. 15 illustrates the normalized RMS error of the first and 

second experiments at every epoch, and the normalized RMS errors were properly decreased in both results. The normalized 

errors converged at 0.268 27 in the first experiment and at 0.151 in the second experiment. The normalized RMS error of the 365 

second experiment is lower than that of the first experiment, indicating that the performance of the D2 model is better than 

that of the D1 model. 

Water column reflection data can be used to obtain the physical oceanographic information by calculating the slope spectrum. 

The data slope spectrum is a horizontal slope spectrum obtained directly from seismic data by calculating the horizontal 

wavenumber (𝑘𝑥) spectrum of the seismic reflection amplitude, and it is useful to identify noise contamination of seismic data 370 

and the cutoffs from an internal wave to turbulence subrange (Holbrook et al., 2013; Fontin et al., 2017). Holbrook et al. (2013) 

suggested calculating the data slope spectrum before calculating the reflector slope spectrum because the random noise that 

should be removed before analyzing the seismic data becomes evident in the data slope spectrum. Therefore, we calculated 

and compared the data slope spectrum of noise-free, noise-added and noise-attenuated seismic data by using synthetic seismic 
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section to verify that the proposed denoising method can recover the true data slope spectrum. The synthetic seismic section 375 

was generated by convolving the source wavelet with a randomly generated reflection coefficient section. Then, the noise 

extracted from the East sea SO data was added. Fig. 16 (a) shows the generated synthetic water column reflection section, and 

Fig. 16 (b) shows the noise added section. We applied the trained D1 model and D2 model to attenuate the noise, and the 

results are in Fig. 16 (c) (D1 model) and (d) (D2 model). Most of the noise was successfully attenuated, but the noise was not 

perfectly removed in the D1 model result at a distance from 20 to 25 km and depth from 140 to 180 m. Fig. 17 shows the 380 

calculated data slope spectra. The data slope spectrum of the noise-added section follows a 𝑘𝑥
2 slope, which is the slope of the 

random noise. After the noise attenuation, the data slope spectrum of the D2 model result (red line) follows the data slope 

spectrum of the noise-free section (greed line) almost identically. The data slope spectrum of the D1 model result (blue line) 

does not follow the noise slope, but the data slope spectrum is distorted compared to the noise-free data. The comparison of 

data slope spectra using synthetic data shows that the D2 model can recover the true data slope spectrum better than the D1 385 

model. 
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4 Application to the East Sea SO data 

The DnCNN models trained with training datasets 1 and 2 (the D1 and D2 models, respectively) were applied to the East Sea 390 

SO data. We applied the trained DnCNN models to the seismic sections from 0.03 to 0.28 s (approximately 22.5 to 210 m) 

where the reflections exist, and Fig. 16 shows the processed East Sea water column seismic section (the processed seismic 

section) from 0 to 0.28 s. The seismic section shallower than 0.03 s is dominated by noise from direct waves, which is muted 

at the data processing stage, and the section deeper than 0.28 s mainly contains random noise.  

Fig. 18 shows the results of applying the DnCNN to line 1. Fig 18 (a) is the line 1 seismic section from 0 to 0.28 s before the 395 

noise attenuation. The seismic section shallower than 0.03 s is dominated by noise from direct waves, which is muted at the 

data processing stage, and the section deeper than 0.28 s mainly contains random noise. Fig. 18 (b) and (c) are the denoised 

seismic section after applying the D1 and D2 model, respectively. Fig. 17 (a) and (b) show the seismic sections of lines 1 and 

2, respectively, of the East Sea SO data after applying the D1 model. In both results, Mmost of the random noise was 

successfully removed, and the reflections became clearer. The strong random noise that occurred in the shallow part of the 400 

processed seismic sections was substantially attenuated, and the noise located between 150 and 200 km in the line 1 section 

and that between 220 and 270 km in the line 2 section were also properly removed. Since noise was successfully attenuated, 

reflections that were difficult to distinguish due to a low S/N ratio were clearly imaged. In particular, the weak signals of the 

line 1 section between 0 and 50 km and between approximately 0.1 and 0.18 s became clearer after noise attenuation. In 

addition, the reflections with steep slopes between 25 and 50 km and between 0.12 and 0.2 s were obscured by severe noise, 405 

but the D1 model successfully attenuated the noise and clearly recovered the reflections. Fig. 17 (c) and (d) show t Fig. 18 (d) 

and (e) are the estimated noise using the D1 and D2 model, respectively. he estimated noise of the line 1 and 2 sections with 

the D1 model. As shown, the D1both models successfully discriminated the noise component from the reflections; thus, the 

estimated noise sections are almost identical to the noise component of the processed seismic section. Even though both models 

successfully attenuated the noise in the seismic section of line 1, there are several differences. Reflections are not observed 410 

from 150 to 200 km and at approximately 0.2 s in the line 1 seismic section. The result from the D1 model still contains noise 

in that part, while the result from the D2 model contains lower noise levels compared to that from the D1 model. In addition, 

for the weak reflections between 70 and 150 km and between 0.1 and 0.2 s, the reflections in the result from the D2 model are 

clearer and more continuous than those in the result from the D1 model. 

Fig. 19 shows the results of applying the DnCNN to line 2. Fig .19 (a) shows the line 2 seismic section from 0 to 0.28 s before 415 

the noise attenuation. Fig. 19 (b) and (c) show the denoised seismic section after applying the D1 and D2 model, respectively. 

The seismic section of line 2 was contaminated by severe noise, but the D1 and D2 model properly removed the noise. In 

particular, the strong random noise located between 0 to 50 km was removed; thus, it became possible to recognize the 

reflections that were illegible. In addition, the reflections with steep slopes between 240 and 260 km and between 0.12 and 0.2 

s were obscured by severe noise, but the D1 and D2 models successfully attenuated the noise and clearly recovered the 420 

reflections. However, similar to the line 1 result, the D2 model attenuated the noise better than the D1 model in some parts of 
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the section. From 20 to 50 km and 250 to 280 km, noise can still be observed when the D1 model is applied, but most of the 

noise has been sufficiently suppressed when the D2 model is applied. 

 Fig. 18 shows the result obtained by applying the D2 model. Fig. 18 (a) and (b) show denoised seismic sections, and (c) and 

(d) show the estimated noise of lines 1 and 2, respectively. Similar to the result from model D1 (Fig. 17), model D2 also 425 

successfully attenuated the random noise in the sparker water column seismic section. In addition, the estimated noise from 

the D2 model is almost similar to that from the D1 model.  

If we compare the results generated with the D1 and D2 models, they are similar. However, there are several differences. 

Reflections are not observed from 150 to 200 km and at approximately 0.2 s in the line 1 seismic section. The result with the 

D1 model still contains noise in that part, while the result with the D2 model contains lower noise levels compared to that with 430 

the D1 model. In addition, for the weak reflections between 70 and 150 km and between 0.1 and 0.2 s, the reflections in the 

result from the D2 model are clearer and more continuous than those in the result from the D1 model. For line 2, from 220 to 

260 km, noise can still be observed when the D1 model is applied, but most of the noise has been sufficiently suppressed when 

the D2 model is applied. Despite the successful noise attenuation of the D1 and D2 models, we found some differences. We 

presume Tthat these results differences are caused by the characteristics of the SEZ data which are the ground truth used to 435 

train the D1 model. The SEZ data are field data and contain noise to a certain degree because it is almost impossible to perfectly 

remove the noise from the field data. are probably because the SEZ data, which are the ground truth used to train the D1 model, 

are field data and contain noise to a certain degree. In other words, the D1 model is likely to regard the noise in the line 1 

seismic section with similar characteristics to those contained in the ground truth as a signal rather than noise. On the other 

hand, the D2 model does not suffer from this kind of problem because its ground truth is noise-free synthetic data. 440 

The data slope spectrum is the slope spectrum calculated directly from seismic data and is an important parameter for SO 

data analysis. Holbrook et al. (2013) suggested calculating the data slope spectrum before calculating the reflector slope 

spectrum because the random noise that should be removed before analyzing the seismic data becomes evident in the data 

slope spectrum. Therefore, wTo validate the noise attenuation results, we also calculated and compared the data slope spectrum 

spectra by using the outcome of the D1 and D2 models. a part of the line 1 seismic section and compared the data slope spectra. 445 

Before calculating the data slope spectrum, we scaled the seismic sections again by multiplying the square root of time to each 

time step (consequently multiplying the time to each time step) for the spherical divergence correction. Then, we converted 

the seismic section from the time axis to the depth axis and extracted the part from 150 to 175 km and at a depth from 75 to 

150 m. Fig. 19 20 (a), (b) and (c) show the seismic sections extracted from the section before and after noise attenuation using 

models D1 and D2, respectively. The seismic section before noise attenuation was severely contaminated with random noise, 450 

but most of the noise was removed in the sections after noise attenuation. Fig. 19 20 (d) shows the calculated data slope spectra. 

From the KM07 model (Klymak and Moum, 2007), noise has a 𝑘𝑥
2 (horizontal wavenumber) slope in the slope spectrum, and 

we plotted the 𝑘𝑥
2 slope with the green dashed line in Fig. 19 20 (d) for comparison. The data slope spectrum of the section 

before noise attenuation has a 𝑘𝑥
2  slope at wavenumbers above 0.002 cpm, which indicates that noise dominates these 

wavenumbers. Because of the severe noise, it is impossible to analyze the seismic data before noise attenuation. On the other 455 



17 

 

hand, the data slope spectra after noise attenuation seem to contain internal waves subrange from 0.0015 to 0.006 cpm and 

turbulence subrange from 0.009 to 0.015 cpm that approximately follow the 𝑘𝑥
−1/2

 (yellow dashed line) and 𝑘𝑥
1/3

 (purple 

dashed line) slopes (Klymak and Moum, 2007), respectively. This result indicates that noise was properly attenuated and the 

seismic data could be analyzed, even though noise with a slope of 𝑘𝑥
2 still occurred at wavenumbers above 0.02 cpm. There is 

a shift in the data slope spectrum after noise attenuation at wavenumbers smaller than 0.001 cpm. This shift is also observed 460 

in the synthetic data slope spectrum experiments. In Fig. 17, there is a difference between the spectrum of the noise-added 

section and that of the noise-attenuated sections at wavenumbers smaller than 0.001 cpm. However, the difference is also 

observed between the spectrum of the noise-free section and that of the noise-added section. Therefore, this shift seems to be 

caused by the characteristic of the noise extracted from the East Sea SO data. 

 From the noise attenuation results obtained by applying the trained models to the East Sea sparker SO data, we showed that 465 

the DnCNN architecture used in this study can successfully suppress random noise. The comparison of the D1 and D2 model 

results showed that the training data generated using noise-free synthetic data are more suitable for random noise attenuation 

of sparker SO data than those generated using field data with a relatively high S/N ratio.  
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5 Conclusions 470 

Random noise is one of the major obstacles in analyzing SO data. Conventionally, the noise in SO data has been attenuated 

through simple data processing methods because most of the SO data are obtained with air guns, which generates data with a 

relatively high S/N ratio. However, the simple noise attenuation method is not sufficient for data with a low S/N ratio, such as 

sparker SO data. Despite the low S/N problem, the sparker source has advantage of generating a higher-frequency band signal 

than an air gun source, which can provide information with higher vertical resolution. Therefore, we applied machine learning 475 

to attenuate the random noise in East Sea sparker SO data, which contains much random noise. The DnCNN architecture was 

used to construct the neural network, and training data were generated by combining the ground truth and noise extracted from 

the target seismic data at random amplitude ratios. Two different training datasets were generated, and they used either field 

or synthetic data as the ground truth. The trained DnCNN models were applied to the test datasets that were generated with 

the same procedure of generating the training datasets. The test results were verified based on the PSNR, SSIM, trace extraction 480 

and normalized RMS error. The data slope spectrum test using synthetic seismic section was also performed. The test results 

revealed that both trained DnCNN models were able to successfully attenuate random noise and the training data generated 

using noise-free synthetic data showed better results than the training data generated using high-S/N ratio field data.  revealing 

that both trained DnCNN models were able to successfully attenuate random noise. We applied the trained DnCNN models to 

the East Sea sparker SO data, which is the target of this study, and the models successfully attenuated random noise. The 485 

comparison of the denoised seismic sections after applying the two different trained models also showed that the training 

dataset generated from the noise-free synthetic data was more suitable for sparker SO data noise attenuation than that generated 

from the high-S/N ratio field data.  

Even though the observed random noise is almost completely attenuated in the seismic section, the proposed method still 

needs several improvements. The observed random noise is successfully attenuated in the seismic section, but the data slope 490 

spectrum still indicates that the section contains noise with a slope of 𝑘𝑥
2 at wavenumbers above 0.02 cpm. Therefore, future 

studies should include a detailed analysis of the slope spectra of the East Sea SO data and establish an improved noise 

attenuation algorithm suitable for higher wavenumbers. Moreover, the data were collected using 2D seismic exploration, which 

can degrade the seismic resolution during the data processing stage because of the limitations of 2D seismic exploration such 

as out-of-plane contamination. Therefore, to improve the resolution of SO data, it is necessary to acquire data by using 3D 495 

seismic exploration. the data slope spectrum still indicates that the section contains noise with a slope of 𝑘𝑥
2 at wavenumbers 

above 0.02 cpm. Therefore, future studies should include a detailed analysis of the slope spectra (both data and reflection slope 

spectra) of the East Sea SO data and establish an improved noise attenuation algorithm suitable for higher wavenumbers. 

The network architecture used in this study is straightforward and efficient. In addition, the proposed method of generating 

the training dataset is very simple and easy because it only requires synthetic data, which are readily generated, and noise data, 500 

which can be extracted from the target seismic data. Moreover, only approximately one hour is required to train the DnCNN 
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model with a single GPU. Therefore, the noise attenuation method suggested in this study has the advantage that it can be 

widely and easily applied in noise attenuation of the various kinds of SO data. 
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Figure 1: DnCNN architecture. 64@50x50 indicates 64 feature maps with 50x50 size, Conv is two dimensional 3x3 

convolution kernel, BN is batch normalization, and ReLU is rectified linear unit activation function. 
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Figure 2: Location of seismic exploration. The black solid line is the survey line, and the black dashed lines 

with arrow indicate the exploration directions of lines 1 and 2., and red dots are the locations of XBTs and 

XCTDs. 
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(a) 

 

(b) 

Figure 3: Processed seismic section of the East Sea: (a) line 1 and (b) line 2. The seismic section in the red 

rectangle is the noise part used to generate the training data. SW is south west, NE is north east, and black arrow 

indicates the data acquiring direction.   
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(a) (b) 

Figure 4: (a) Temperature and (b) reflection coefficient profiles obtained using 2 XBTs and 2 XCTDs. (a) is 

XBT_a and (b) is XBT_b in Figure 3.  
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(a) (b) 

Figure 5: Reflection coefficients calculated using XBT data. (a) is XBT_a and (b) is XBT_b in Figure 3.  
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(a) 

 

(b) 

Figure 6: Noise section extracted from the East Sea SO data: (a) line 1 and (b) line 2.  
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(a) 

 

(b) 

 

(c) 

Figure 75: (a) Processed SEZ field seismic section, (b) Marmousi-2 synthetic seismic section and (c) Sigsbee 

2A seismic section used to generate the training data. 
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Figure 68: Example of constructing the training data.  
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Figure 79: Test data, ground truth, and denoised results after applying the DnCNN models trained using training 

dataset 1.  
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(a) 

 

(b) 

Figure 108: Average (a) PSNR and (b) SSIM with standard deviation of the test result of the first experiment. 
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(a) 

 

(b) 

Figure 9: (a) PSNR and (b) SSIM histogram of the test data before and after applying the 40th epoch of the D1 

model. 

 

  



37 

 

 

(a) 

 

(b) 

Figure 110: Comparison of the extracted traces before and after applying the 40th epoch of the D1 

model.DnCNN using training dataset 1. The green solid line is the trace from the noisy data, the red dashed 

line is the trace from the ground truth, and the blue solid line is the trace from the denoised data after applying 

the D1 model. (a) is the 20th and (b) is the 30th vertical  trace of the last test patch in Figure 107.  
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Figure 1211: Test data, ground truth, and denoised results after applying the DnCNN models trained using 

training dataset 2.  
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(a) 

 

(b) 

Figure 1312: Average (a) PSNR and (b) SSIM with standard deviation of the test result of the second 

experiment. 
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(a) 

 

(b) 

Figure 13: (a) PSNR and (b) SSIM histogram of the test data before and after applying the 40th epoch of the D2 

model. 
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(a) 

 

(b) 

Figure 14: Comparison of the extracted traces before and after applying the 40th epoch of the D2 model.DnCNN 

using training dataset 2. The green solid line is the trace from the noisy data, the red dashed line is the trace 

from the ground truth and the blue solid line is the trace from the denoised data after applying the D1 model. 

(a) is the 20th and (b) is the 30th vertical trace of the first test patch in Figure 1311.  
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Figure 15: Normalized RMS error between the ground truth and denoised result of the first (solid) and second 

(dashed) experiments.  
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(a) (b) 

  

(c) (d) 

Figure 16: (a) Noise-free and (b) noise-added synthetic water column reflection section and noise-attenuated results using 

(c) the D1 model and (d) the D2 model. 
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Figure 17: Data slope spectra of noise-free (green) and noise-added (black) synthetic seismic sections and 

noise-attenuated synthetic seismic section using the D1 model (blue) and D2 model (red). 
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(a) 

 

(b) 

Figure 16: (a) Line 1 and (b) line 2 of the East Sea water column seismic section from 0 to 0.28 s.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 17: Noise attenuation results after applying the D1 model to (a) line 1 and (b) line 2 and estimated noise 

of (c) line 1 and (d) line 2. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 18: Noise attenuation results after applying the D2 model to (a) line 1 and (b) line 2 and estimated noise 

of (c) line 1 and (d) line 2. 
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Figure 18: (a) Line 1 seismic section before applying DnCNN, noise-attenuated result using (b) the D1 model 

and (c) the D2 model, and estimated noise using (d) the D1 model and (e) the D2 model.  
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Figure 19: (a) Line 2 seismic section before applying DnCNN, noise-attenuated result using (b) the D1 model 

and (c) the D2 model, and estimated noise using (d) the D1 model and (e) the D2 model.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 19: Extracted seismic sections ((a) is the section before noise attenuation, (b) is the section after applying 

the D1 model and (c) is the section after applying the D2 model) and (d) shows calculated data slope spectra 

of (a), (b) and (c).  
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 20: Extracted seismic sections ((a) is the section before noise attenuation, (b) is the section after applying 

the D1 model and (c) is the section after applying the D2 model). (d) shows the calculated data slope spectra 

of (a), (b) and (c).  

 




