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Abstract 7 

The Met Office currently runs two operational ocean forecasting configurations for the North 8 

West European Shelf, an eddy-permitting model with a resolution of 7 km (AMM7), and an eddy-9 

resolving model at 1.5 km (AMM15).  10 

Whilst qualitative assessments have demonstrated the benefits brought by the increased 11 

resolution of AMM15, particularly in the ability to resolve finer-scale features, it has been difficult 12 

to show this quantitatively, especially in forecast mode. Application of typical assessment metrics 13 

such as the root mean square error have been inconclusive, as the high-resolution model tends 14 

to be penalised more severely, referred to as the double-penalty effect.  15 

An assessment of sea surface temperature (SST) has been made at in-situ observation locations 16 

using a single-observation-neighbourhood-forecast (SO-NF) spatial verification method known as 17 

the High-Resolution Assessment (HiRA) framework. Forecast grid points within neighbourhoods 18 

centred on the observing location are considered as pseudo ensemble members, so that typical 19 

ensemble and probabilistic forecast verification metrics such as the Continuous Ranked 20 

Probability Score (CRPS) can be utilised. It is found that through the application of HiRA it is 21 

possible to identify improvements in the higher resolution model which were not apparent using 22 

typical grid scale assessments.   23 

This work suggests that future comparative assessments of ocean models with different 24 

resolutions would benefit from using HiRA as part of the evaluation process, as it gives a more 25 

equitable and appropriate reflection of model performance at higher resolutions.   26 
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1. Introduction 30 

One of the issues faced when assessing high-resolution models against lower resolution models 31 

over the same domain is that often the coarser model appears to perform at least equivalently 32 

or better when using typical verification metrics such as root-mean-squared-error (RMSE) or 33 

mean error, which is a measure of the bias.  Whereas a higher-resolution model has the ability 34 

and requirement to forecast greater variation, detail and extremes, a coarser model cannot 35 

resolve the detail and will, by its nature, produce smoother features with less variation resulting 36 

in smaller errors. This can lead to the situation that despite the higher-resolution model looking 37 

more realistic it may verify worse (e.g. Mass et al., 2002, Tonani et al., 2019).  38 

This is particularly the case when assessing forecast models categorically. If the location of a 39 

feature in the model is incorrect then two penalties will be accrued, one for not forecasting the 40 

feature where it should have been and one for forecasting the same feature where it did not 41 

occur (the double penalty effect, e.g. Rossa et al., 2008). This effect is more prevalent in higher-42 

resolution models due to their ability to, at least, partially resolve smaller-scale features of 43 

interest. If the lower resolution model could not resolve the feature, and therefore did not 44 

forecast it, that model would only be penalised once. Therefore, despite giving potentially better 45 

guidance the higher resolution model will verify worse. 46 

Yet, the underlying need to quantitatively show the value of high-resolution led to the 47 

development of so-called “spatial” verification methods which aimed to account for the fact the 48 

forecast produced realistic features that were not necessarily at the right place or at quite the 49 

right time (e.g. Ebert, 2008 or Gilleland, 2009).  These methods have been in routine use within 50 

the atmospheric model community for a number of years with some long-term assessments and 51 

model comparisons (e.g. Mittermaier et al. 2013 for precipitation).  52 

Spatial methods allow forecast models to be assessed with respect to several different types of 53 

focus. Initially these methods were classified into four groups. Some methods look at the ability 54 

to forecast specific features (e.g. Davis et al., 2006), some look at how well the model performs 55 

at different scales (scale-separation, e.g. Casati et al., 2004). Others look at field deformation 56 

(how much a field would have to be transformed to match a ‘truth’ field (e.g. Keil and Craig, 57 
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2007). Finally, there is neighbourhood verification, many of which are equivalent to low band-58 

pass filters, whereby values of forecasts in spatio-temporal neighbourhoods are assessed to see 59 

at what spatial or temporal scale certain levels of skill are reached by a model. 60 

Dorninger et al. (2018) provides an updated classification of spatial methods, suggested a fifth 61 

class of methods, known as distance metrics, which sit between field deformation and feature-62 

based methods. These methods evaluate the distances between features, but instead of just 63 

calculating the difference in object centroids (which is typical), the distances between all grid 64 

point pairs are calculated, which makes distance metrics more like field deformation approaches. 65 

Furthermore, there is no prior identification of features. This makes distance metrics a distinct 66 

group that warrants being treated as such in terms of classification.  Not all methods are easy to 67 

classify. An example of this is the Integrated Ice Edge Error (IIEE) developed for assessing the sea 68 

ice extent (Goessling et al., 2016).  69 

This paper exploits the use of one such spatial technique for the verification of sea surface 70 

temperature (SST), in order to determine the levels of forecast accuracy and skill across a range 71 

of model resolutions. The High-Resolution Assessment framework (Mittermaier, 2014, 72 

Mittermaier and Csima, 2017) is applied to the Met Office Atlantic Margin Model running at 7 km  73 

(O’Dea et al., 2012, O’Dea et al., 2017, King et al., 2018) (AMM7), and 1.5 km (Graham et al., 74 

2018, Tonani et al., 2019) (AMM15) resolutions.  The aim is to deliver an improved understanding 75 

beyond the use of basic biases and RMS errors for assessing higher resolution ocean models, 76 

which would then better inform users on the quality of regional forecast products. Atmospheric 77 

science has been using high-resolution convective-scale models for over a decade, and so have 78 

experience in assessing forecast skill on these scales, so it is appropriate to trial these methods 79 

on eddy-resolving ocean model data.  80 

This paper will demonstrate one of these spatial frameworks, HiRA (Mittermaier, 2014), and 81 

apply it to sea surface temperature (SST) daily mean forecasts from the Met Office operational 82 

ocean systems for the European North West Shelf (NWS). 83 

Section 2 describes the model and observations used in this study along with the method applied. 84 

Section 3 presents the results, and section 4 discusses the lessons learnt while using HiRA on 85 
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ocean forecasts and sets the path for future work by detailing the potential and limitations of the 86 

method. 87 

 88 

2. Data and Methods 89 

2.1 Forecasts 90 

The forecast data used in this study are from the two products available in the Copernicus Marine 91 

Environment Monitoring Service (CMEMS) for the North West European Shelf area: 92 

• NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b (AMM7) 93 

• NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013 (AMM15) 94 

The major difference between these two products is the horizontal resolution, ~7 km for AMM7 95 

and 1.5 km for AMM15. Both systems are based on a forecasting ocean assimilation model with 96 

tides. The ocean model is NEMO (Nucleus for European Modelling of the Ocean, Madec, 2016), 97 

using the 3DVar NEMOVAR system to assimilate observations (Mogensen et al., 2012). These are 98 

surface temperature in-situ and satellite measurements, vertical profiles of temperature and 99 

salinity, and along track satellite sea level anomaly data. The models are forced by lateral 100 

boundary conditions from the UK Met Office North Atlantic Ocean forecast model and by the 101 

CMEMS Baltic forecast product BALTICSEA_ANALYSIS_FORECAST_PHY_003_006. The 102 

atmospheric forcing is given by the operational European Centre for Medium-Range Weather 103 

Forecasts (ECMWF) Numerical Weather Prediction model for AMM15, and by the operational UK 104 

Met Office Global Atmospheric model for AMM7. 105 

The AMM15 and AMM7 systems run once a day and provide forecasts for temperature, salinity, 106 

horizontal currents, sea level, mixed layer depth, and bottom temperature. These products are 107 

provided as hourly instantaneous and daily 25-hour, de-tided, averages.  108 

AMM7 has a regular latitude-longitude grid, whilst AMM15 is computed on a rotated grid and re-109 

gridded to have both models delivered to the (CMEMS) data catalogue 110 

(http://marine.copernicus.eu/services-portfolio/access-to-products/) on a regular grid. A fuller 111 
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description of the respective configurations of the two models can be found in Tonani et al., 112 

(2019).  113 

 114 

For the purposes of this assessment the 5-day daily mean sea surface potential temperature (SST) 115 

forecasts (with lead times of 12, 36, 60, 84, 108 hours) were utilised for the period from January 116 

to September 2019. Forecasts were compared for the co-located areas of AMM7 and AMM15. 117 

Figure 1 shows the AMM7 and AMM15 co-located domain along with the land-sea mask for each 118 

of the models. AMM15 has a more detailed coastline than AMM7 due to its higher resolution. 119 

These differences in coastline representation can have an impact on any HiRA results obtained, 120 

as will be discussed in a later section. 121 

 122 

Figure 1  - AMM7 and AMM15 co-located areas. Note the difference in the land-sea boundaries due to the different resolutions, 123 
notably around the Scandinavian coast. 124 

 125 

It should be noted that this study is an assessment of the application of spatial methods to ocean 126 

forecast data, and as such, is not meant as a full and formal assessment and evaluation of the 127 

forecast skill of the AMM7 and AMM15 ocean configurations. To this end, a number of 128 

considerations have had to be taken into account in order to reduce the complexity of this initial 129 

study. Specifically, it was decided at an early stage to use daily mean SST temperatures, as 130 
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opposed to hourly instantaneous SST, as this avoided any influence of the diurnal cycle and tides 131 

on any conclusions made. AMM15 and AMM7 daily means are calculated as means over 25 hours 132 

to remove both the diurnal cycle and the tides. Daily means are also one of the variables that are 133 

available from the majority of the products within the CMEMS catalogue, including reanalysis, so 134 

the application of the spatial methods could be relevant in other use cases beyond those 135 

considered here. In addition, there are differences in both the source and frequency of the air-136 

sea interface forcing used in both the AMM7 and AMM15 configurations which could influence 137 

the results. Most notably, the AMM7 uses hourly surface pressure and 10m winds from the Met 138 

Office Unified Model (UM), whereas the AMM15 uses 3-hourly data from ECMWF. 139 

2.2 Observations 140 

SST observations used in the verification were downloaded from the CMEMS catalogue from the 141 

product  142 

 143 

• INSITU_NWS_NRT_OBSERVATIONS_013_036 144 

 145 

This dataset consists of in-situ observations only, including daily drifters, mooring, ferry-box and 146 

Conductivity Temperature Depth (CTD) observations. This results in a varying number of 147 

observations being available throughout the verification period, with uneven spatial coverage 148 

over the verification domain. Figure 2 shows a snapshot of the typical observational coverage, in 149 

this case for 1200 UTC 6th June 2019. This coverage is important when assessing the results, 150 

notably when thinking about the size and type of area over which an observation is meant to be 151 

representative of, and how close to the coastline each observation is.  152 

 153 

This study was set up to detect issues that should be considered by users when applying HiRA 154 

within a routine ocean verification set-up, using a broad assessment containing as much data as 155 

was available in order to understand the impact of using HiRA for ocean forecasts. Several 156 

assumptions were made in this study. 157 

 158 
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For example, there is a temporal mismatch between the forecasts and observations used. The 159 

forecasts (which were available at the time of this study) are daily means of the SSTs from 00 UTC 160 

to 00 UTC, whilst the observations are instantaneous and usually available hourly. For the 161 

purposes of this assessment, we have focused on SSTs closest to the mid-point of the forecast 162 

period for each day (nominally 12 UTC). Observation times had to be within 90 minutes of this 163 

time, with any other times from the same observation site being rejected. A particular reason for 164 

picking a single observation time rather than daily averages was so that moving observations, 165 

such as drifting buoys, could be incorporated into the assessment. Creating daily mean 166 

observations from moving observations would involve averaging reports from different forecast 167 

grid- boxes, and hence contaminate the signal that HiRA is trying to evaluate. 168 

 169 

 170 

Figure 2 - Observation locations within the domain for 1200 UTC on 6th June 2019. 171 

Future applications would probably contain a stricter set-up, e.g. only using fixed daily mean 172 

observations, or verifying instantaneous (hourly) forecasts so as to provide a sub-daily 173 

assessment of the variable in question.  174 

  175 
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3. High Resolution Assessment (HiRA)  176 

The HiRA framework (Mittermaier, 2014) was designed to overcome the difficulties encountered 177 

in assessing the skill of high-resolution models when evaluating against point observations. 178 

Traditional verification metrics such as RMSE and mean error rely on a precise matching in space 179 

and time, by (typically) extracting the nearest model grid point to an observing location. The 180 

method is an example of a single-observation-neighbourhood-forecast (SO-NF) approach, with 181 

no smoothing. All the forecast grid points within a neighbourhood centred on an observing 182 

location are treated as a pseudo ensemble, which is evaluated using well known ensemble and 183 

probabilistic forecast metrics. Scores are computed for a range of (increasing) neighbourhood 184 

sizes to understand the scale-error relationship. This approach assumes that the observation is 185 

representative of not only its precise location but also has characteristics of the surrounding area 186 

as well. WMO manual No 8 (2017) suggests that observations can be considered to be 187 

representative of an area within a 100 km radius of a station, but this is often very optimistic. The 188 

manual states further: “For small-scale or local applications the considered area may have 189 

dimensions of 10 km or less.” Therefore, there is a limit to the forecast neighbourhood size when 190 

comparing to a point observation, based on the representativeness of the variable under 191 

consideration. Put differently, once the neighbourhoods become too big there will be forecast 192 

values in the ensemble which will not be representative of the observation (and the local 193 

climatology) and any skill calculated will be essentially random. The scale at which 194 

representativeness is lost will vary depending on the characteristics of the variable being 195 

assessed. 196 

HiRA can be based on a range of statistics, data thresholds and neighbourhood sizes in order to 197 

assess a forecast model. When comparing deterministic models of different resolutions, the 198 

approach is to equalise on the physical area of the neighbourhoods (i.e. having the same 199 

“footprint”). By choosing sequences of neighbourhoods that provide (at least) approximate 200 

equivalent neighbourhoods (in terms of area), two or more models can be fairly compared. 201 

HiRA works as follows. For each observation, several neighbourhood sizes are constructed, 202 

representing the length in forecast grid points of a square domain around the observation points, 203 
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centred on the grid point closest to the observation (Fig. 3). There is no interpolation applied to 204 

the forecast data to bring it to the observation point, all the data values are used unaltered.  205 

 206 

Figure 3 - Example of forecast grid point selections for different HiRA neighbourhoods for a single observation point. A 3x3 domain 207 

returns 9 points that represent the nearest forecast grid points in a square around the observation. A 5x5 domain encompasses 208 

more points.  209 

 210 

Once neighbourhoods have been constructed, the data can be assessed using a range of well-211 

known ensemble or probabilistic scores. The choice of statistic usually depends on the 212 

characteristics of the parameter being assessed. Parameters with significant thresholds can be 213 

assessed using the Brier score (Brier, 1950) or the Ranked Probability Score (RPS) (Epstein, 1969), 214 

i.e. assessing the ability of the forecast to correctly locate a forecast in the correct threshold 215 

band. For continuous variables such as SST, the data has been assessed using the continuous 216 

ranked probability score (CRPS) (Brown, 1974, Hersbach, 2000). 217 

The CRPS is a continuous extension of the RPS. Whereas the RPS is effectively an average of a 218 

user-defined set of Brier scores over a finite number of thresholds, the CRPS extends this by 219 

considering an integral over all possible thresholds. It lends itself well to ensemble forecasts of 220 

continuous variables such as temperature and has the useful property that the score reduces to 221 

the mean absolute error (MAE) for a single grid point deterministic model comparison. This 222 

means that if required, both deterministic and probabilistic forecasts can be compared using the 223 

same score.  224 
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𝐶𝑅𝑃𝑆 = ∫ [𝑃𝑓𝑐𝑠𝑡(𝑥) −  𝑃𝑜𝑏𝑠(𝑥)]
2

𝑑𝑥
∞

−∞
      (1) 225 

 226 

Equation (1) defines the CRPS, where for a parameter x, Pfcst(x) is the cumulative distribution of 227 

the neighbourhood forecast and Pobs(x) is the cumulative distribution of the observed value, 228 

represented by a Heaviside function (see Hersbach, 2000). The CRPS is an error-based score 229 

where a perfect forecast has a value of zero. It measures the difference between two cumulative 230 

distributions, a forecast distribution formed by ranking the (in this case quasi) -ensemble 231 

members represented by the forecast values in the neighbourhood, and a step function 232 

describing the observed state. To use an ensemble, HiRA makes the assumption that all grid 233 

points within a neighbourhood are equi-probable outcomes at the observing location. Therefore, 234 

aside from the observation representativeness limit, as the neighbourhood sizes increase, this 235 

assumption of equi-probability will break down as well, and scores become random. Care must 236 

therefore be taken to decide whether a particular neighbourhood size is appropriately 237 

representative. This decision will be based on the length scales appropriate for a variable as well 238 

as the resolution of the forecast model being assessed.     239 

 240 

AMM7 and AMM15 resolve different length scale of motion, due to their horizontal resolution. 241 

This should be taken into account when assessing the results of different neighbourhood sizes. 242 

Both models can resolve the large barotropic scale (~200 km) and the shorter baroclinic scale 243 

off the shelf, in deep water. On the continental shelf, only the resolution of ~1.5 km of AMM15, 244 

permits motions at the smallest baroclinic scale since the first baroclinic Rossby radius is of 245 

order of 4 km (O’Dea et al., 2012). AMM15 represents a step change in representing the eddy 246 

dynamics variability on the continental shelf. This difference has an impact also on the data 247 

assimilation scheme, where two horizontal correlation length scales (Mirouze et al., 2016) are 248 

used to represent large and small scales of ocean variability. The long length scale is 100 km 249 

while the short correlation length scale aims to account for internal ocean processes variability, 250 

characterized by the Rossby radius of deformation. Computational requirements restrict the 251 
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short length scale to be at least 3 model grid points, 4.5 km and 21 km respectively for AMM15 252 

and AMM7 (Tonani et al., 2019). Although AMM15 resolves smaller scale processes, comparing 253 

AMM7 and AMM15 in neighbourhood sizes between the AMM7 resolution and multiples of this 254 

resolution will address processes that should be accounted for in both models. 255 

 256 

As the methodology is based on ensemble and probabilistic metrics it is naturally extensible to 257 

ensemble forecasts (see Mittermaier and Csima, 2017), which are currently being developed in 258 

research-mode by the ocean community, allowing for inter-comparison between deterministic 259 

and probabilistic forecast models in an equitable and consistent way. 260 

 261 

4. Model Evaluation Tools (MET) 262 

Verification was performed using the Point-Stat tool, which is part of the Model Evaluation Tools 263 

(MET) verification package, that was developed by the National Center for Atmospheric Research 264 

(NCAR), and which can be configured to generate CRPS results using the HiRA framework. MET is 265 

free to download from GitHub at https://github.com/NCAR/MET. 266 

 267 

5. Equivalent neighbourhoods and equalisation 268 

When comparing neighbourhoods between models, the preference is to look for similar–sized 269 

areas around an observation and then transforming this to the closest odd-numbered, square 270 

neighbourhood, which will be called the ‘equivalent neighbourhood’. In the case of the two 271 

models used, the most appropriate neighbourhood size can change depending on the structure 272 

of the grid so the user needs to take into consideration what is an accurate match between the 273 

models being compared. 274 

 275 

The two model configurations used in this assessment are provided on standard latitude-276 

longitude grids via the CMEMS catalogue. The AMM7 and AMM15 configurations are stated to 277 
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have resolutions approximating 7 km and 1.5 km respectively. Thus, equivalent neighbourhoods 278 

should simply be a case of matching neighbourhoods with similar spatial distances. In fact, the 279 

AMM15 is originally run on a rotated latitude-longitude grid where the resolution is closely 280 

approximated by 1.5 km and subsequently provided to the CMEMS catalogue on the standard 281 

latitude-longitude grid. Once the grid has been transformed to a regular latitude-grid the 1.5 km 282 

nominal spatial resolution is not as accurate. This is particularly important when neighbourhood 283 

sizes become larger, since any error in the approximation of the resolution will become multiplied 284 

as the number of points being used increases.  285 

 286 

Additionally, the two model configurations do not have the same aspect ratio of grid points. 287 

AMM7 has a longitudinal resolution of ~0.11° and a latitudinal resolution of ~0.066° (a ratio of 288 

3:5) whilst the AMM15 grid has a resolution of ~0.03° and ~0.0135° respectively (a ratio of 5:11). 289 

HiRA neighbourhoods typically contain the same number of grid-points vertically and horizontally 290 

which will lead to discrepancies in the area selected when comparing models with different grid 291 

aspect ratios, depending on whether the comparison is based on neighbourhoods with a similar 292 

longitudinal or similar latitudinal size. This difference will scale as the neighbourhood size 293 

increases as shown in Fig. 4. The onus is therefore on the user to understand any difference in 294 

grid structure, and therefore HiRA neighbourhoods, between models being compared and to 295 

allow for this when comparing equivalent neighbourhoods.  296 

 297 
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 298 

 299 

Figure 4 - Similar neighbourhood sizes for a 49 km neighbourhood using the approximate resolutions (7 km and 1.5 km) with a) 300 

AMM7 with a 7x7 neighbourhood (NB4), b) AMM15 with a 33x33 neighbourhood (NB5) and c) details of equivalent neighbourhood 301 

sizes and naming conventions, with scales relating to AMM7. Whilst the neighbourhoods are similar sizes in the latitudinal 302 

direction, the AMM15 neighbourhood is sampling a significantly larger area due to different scales in the longitudinal direction. 303 

 304 

For this study we have matched neighbourhoods between model configurations based on their 305 

longitudinal size. The equivalent neighbourhoods used to show similar areas within the two 306 

configurations are indicated in Fig. 4c along with the bar style and naming convention used 307 

throughout. 308 

 309 

For ocean applications there are other aspects of the processing to be aware of when using 310 

neighbourhood methods. This is mainly related to the presence of coastlines and how their 311 
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representation changes resolution (as defined by the land-sea mask) and the treatment of 312 

observations within HiRA neighbourhoods. Figure 4 illustrates the contrasting land-sea 313 

boundaries due to the different resolutions of the two configurations. When calculating HiRA 314 

neighbourhood values, all forecast values in the specific neighbourhood around an observation 315 

must be present for a score to be calculated. This is to ensure that the resolution of the 316 

“ensemble”, which is defined or determined by the number of members, remains the same. For 317 

typical atmospheric fields such as screen temperature this is not an issue, but with parameters 318 

that have physical boundaries (coastlines), such as SST, there will be discontinuities in the 319 

forecast field that depend on the location of the land-sea boundary. For coastal observations, 320 

this means that as the neighbourhood size increases, it is more likely to be rejected from the 321 

comparison due to missing data. Even at the grid scale, the nearest model grid point to an 322 

observation may not be a sea point. In addition, different land-sea borders between models 323 

mean that potentially some observations will be rejected from one model comparison but will be 324 

retained in the other. Care should be taken when implementing HiRA to check the observations 325 

available to each model configuration when assessing the results and make a judgement as to 326 

whether the differences are important.  327 

There are potential ways to ensure equalisation, for example only using observations that are 328 

available in both configurations for a location and neighborhoods, or only observations away 329 

from the coast. For the purposes of this study, which aims to show the utility of the method, it 330 

was judged important to use as many observations as possible, so as to capture any potential 331 

pitfalls in the application of the framework, which would be relevant to any future application of 332 

it.  333 
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 334 

Figure 5- Number of observation sites for each neighbourhood size for AMM15 and AMM7. Numbers are those used during 335 

September 2019 but represent typical total observations during a month. Matching line styles represent equivalent 336 

neighbourhoods.  337 

 338 

Figure 5 shows the number of observations available to each neighbourhood for each day during 339 

September 2019. For each model configuration it shows how these observations vary within the 340 

HiRA framework. There are several reasons for the differences shown in the plot. There is the 341 

difference mentioned previously whereby a model neighbourhood includes a land point, and 342 

therefore is rejected from the calculations because the number of quasi-ensemble members is 343 

no longer the same. This is more likely for coastal observations and depends on the particularities 344 

of the model land-sea mask near each observation. This rejection is more likely for the high-345 

resolution AMM15 when looking at equivalent areas, in part due to the larger number of grid 346 

boxes being used; however, there are also instances of observations being rejected from the 347 

coarser resolution AMM7 and not the higher-resolution AMM15 due to nuances of the land-sea 348 

mask.  349 
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It is apparent that for equivalent neighbourhoods there are typically more observations available 350 

for the coarser model configuration and that this difference is largest for the smallest equivalent 351 

neighbourhood size but becoming less obvious at larger neighbourhoods. It could therefore be 352 

worth considering that the large benefit in AMM15 when looking at the first equivalent 353 

neighbourhood is potentially influenced by the difference in observations. As the neighbourhood 354 

sizes increase, the number of observations reduces due to the higher likelihood of a land point 355 

being part of a larger neighbourhood. It is also noted that there is a general daily variability in the 356 

number of observations present, based on differences in the observations reporting on any 357 

particular day within the co-located domain.  358 

 359 

6. Results 360 

 361 

Figure 6 - Verification results using a typical statistics approach for January – September 2019. Mean error (top), root mean square 362 

error (middle) and mean absolute error (bottom) results are shown for the two model configurations. Two methods of matching 363 
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forecast to observations points have been used; a nearest neighbor approach (solid) representing the single grid point results from 364 

HiRA, and a bilinear interpolation approach (dashed) more typically used in operational ocean verification. 365 

Figure 6 shows the aggregated results from the study period defined in Section 2 by applying 366 

typical verification statistics. Results have been averaged across the entire period from January 367 

to September and output relative to the forecast validity time. Two methods of matching forecast 368 

grid points to observation locations have been used. Bilinear interpolation is typically the 369 

approach used in traditional verification of SST, as it is a smoothly varying field. A nearest 370 

neighbour approach has also been shown, as this is the method that would be used for HiRA 371 

when applying it at the grid scale. 372 

It is noted that the two methods of matching forecasts to observation locations give quite 373 

different results. For the mean error, the impact of moving from a single grid point approach to 374 

a bilinear interpolation method appears to be minor for the AMM7 model, but is more severe for 375 

the AMM15, resulting in a larger error across all lead times. For the RMSE the picture is more 376 

mixed, generally suggesting that the AMM7 forecasts are better when using a bilinear 377 

interpolation method but giving no clear overall steer when the nearest grid point is used. 378 

However, the impact of taking a bilinear approach results in much higher gross errors across all 379 

lead times when compared to the nearest grid point approach. 380 

The MAE has been suggested as a more appropriate metric than the RMSE for ocean fields using 381 

(as is the case here) near real time observation data (Brassington, 2017). In Fig. 6 it can be seen 382 

that the nearest grid point approach for both AMM7 and AMM15 gives almost exactly the same 383 

results, except for the shortest of lead times. For the bilinear interpolation method, AMM15 has 384 

a smaller error than AMM7 as lead time increases, behavior which is not apparent when RMSE is 385 

applied. 386 

Based on the interpolated RMSE results in Fig. 6 it would be hard to conclude that there was a 387 

significant benefit to using high-resolution ocean models for forecasting SSTs. This is where the 388 

HiRA framework can be applied. It can be used to provide more information, which can better 389 

inform any conclusions on model error.   390 

 391 
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 392 

393 

Figure 7- Summary of CRPS (left axis, lines) and CRPS difference (right axis, bars) for the period January 2019 to September 2019 394 

for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95% confidence intervals generated using 395 

a bootstrap with replacement method for 10000 samples. 396 

Figure 7 shows the results for AMM7 and AMM15 for the period January - September 2019 using 397 

the HiRA framework with the CRPS. The lines on the plot show the CRPS for the two model 398 

configurations for different neighbourhood sizes, each plotted against lead-time. Similar line 399 

styles are used to represent equivalent neighbourhood sizes. Confidence intervals have been 400 

generated by applying a bootstrap with replacement method, using 10000 samples, to the 401 

domain-averaged CRPS (e.g. Efron and Tibshirani, 1993). The error bars represent the 95% 402 

confidence level. The results for the single grid-point show the MAE and are the same as would 403 

be obtained using a traditional (precise) matching. In the case of CRPS, where a lower score is 404 

better, we see that AMM15 is better than AMM7, though not significantly so, except at shorter 405 

lead-times where there is little difference.   406 

The differences at equivalent neighbourhood sizes are displayed as a bar plot on the same figure, 407 

with scores referenced with respect to the right-hand axis. Line markers and error bars have been 408 

offset to aid visualization, such that results for equivalent neighbourhoods are displayed in the 409 
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same vertical column as the difference indicated by the barplot. The details of the equivalent 410 

neighbourhood sizes are presented in Fig. 4c. Since a lower CRPS score is better, a positively 411 

orientated (upwards) bar implies AMM7 is better, whilst a negatively orientated (downwards) 412 

bar means AMM15 is better. 413 

As defined in Fig. 4c NB1 compares the single grid-point results of AMM7 with a 25-member 414 

pseudo-ensemble constructed from a 5x5 AMM15 neighbourhood. Given the different 415 

resolutions of the two configurations, these two neighbourhoods represent similar physical areas 416 

from each model domain, with AMM7 only represented by a single forecast value for each 417 

observation, but AMM15 represented by 25 values cover the same area, and as such potentially 418 

better able to represent small-scale variability within that area. 419 

At this equivalent scale the AMM15 results are markedly better than AMM7, with lower errors, 420 

suggesting that overall the AMM15 neighbourhood better represents the variation around the 421 

observation than the coarser single grid point of AMM7. At the next set of equivalent 422 

neighbourhoods (NB2), the gap between the two configurations has closed, but AMM15 is still 423 

consistently better than AMM7 as lead time increases.  Above this scale the neighbourhood 424 

values tend towards similarity, and then start to diverge again suggesting that the representative 425 

scale of the neighbourhoods has been reached and that errors are essentially random.  426 

Whilst the overall HiRA neighbourhood results for the co-located domains appear to show a 427 

benefit to using a higher resolution model forecast, it could be that these results are influenced 428 

by the spatial distribution of observations within the domain and the characteristics of the 429 

forecasts at those locations. In order to investigate whether this was important behaviour, the 430 

results were separated into two domains, one representing the continental shelf part of the 431 

domain (where the bathymetry < 200m), and the other representing the deeper, off-shelf, ocean 432 

component (Fig. 8). HiRA results were compared for observations only within each masked 433 

domain. 434 

https://doi.org/10.5194/os-2020-12
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



   
 

21 
 

 435 

Figure 8 - On-shelf and off-shelf masking regions within the co-located AMM7 and AMM15 domain. 436 

 437 

438 

Figure 9- Summary of on-shelf CRPS (left axis, lines) and CRPS difference (right axis, bars) for the period January 2019 to 439 

September 2019 for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95% confidence values 440 

obtained from 10000 samples using bootstrap with replacement. 441 

On-shelf results (Fig. 9) show that at the grid scale the results for both AMM7 and AMM15 are 442 

worse for this sub-domain. This could be explained by both the complexity of processes (tides, 443 
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friction, river mixing, topographical effects, etc.), and the small dynamical scales associated with 444 

shallow waters on the shelf (Holt et al., 2017). 445 

 446 

The on-shelf spatial variability in SST across a neighbourhood is likely to be higher than for an 447 

equivalent deep ocean neighbourhood due to small-scale changes in bathymetry, and for some 448 

observations, the impact of coastal effects. Both AMM7 and AMM15 show improvement in CRPS 449 

with increased neighbourhood size until the CRPS plateaus in the range 0.225 to 0.25, with 450 

AMM15 generally better than AMM7 for equivalent neighbourhood sizes. Scores get worse 451 

(errors increase) for both model configurations as the forecast lead time increases.  452 

 453 

 454 

455 

Figure 10 –  Summary of off-shelf CRPS (left axis, lines) and CRPS difference (right axis, bars) for the period January 2019 to 456 

September 2019 for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95% confidence values 457 

obtained from 10000 samples using bootstrap with replacement. 458 

 459 
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For off-shelf results (Fig. 10), the CRPS is much better (smaller error), at both the grid scale and 460 

for HiRA neighbourhoods, suggesting that both configurations are better at forecasting these 461 

deep ocean SSTs (or that it is easier to do so). There is still an improvement in CRPS when going 462 

from the grid scale (single grid box) to neighbourhoods, but the value of that change is much 463 

smaller than for the on-shelf sub-domain. When comparing equivalent neighbourhoods, the 464 

AMM15 still gives consistently better results (smaller errors) and appears to improve over AMM7 465 

as lead time increases in contrast to the on-shelf results.  466 

It is likely that the neighbourhood at which we lose representativity will be larger for the deeper 467 

ocean than the shelf area because of the larger scale of dynamical processes in deep water. When 468 

choosing an optimum neighbourhood to use for assessment, care should be taken to check 469 

whether there are different representativity levels in the data (such as here for on-shelf and off-470 

shelf) and pragmatically choose the smaller of those equivalent neighbourhoods when looking at 471 

data combining the different representativity levels. 472 

Overall, for the period January-September 2019, the AMM15 demonstrates a lower (better) CRPS 473 

than AMM7 when looking at the HiRA neighbourhoods. However, this also appears to be true at 474 

the grid scale over the assessment period. One of the aspects that HiRA is trying to provide 475 

additional information about is whether higher resolution models can demonstrate improvement 476 

over coarser models against a perception that the coarser models score better in standard 477 

verification forecast assessments. Assessed over the whole period, this initial premise does not 478 

appear to hold true, therefore a closer look at the data is required.   479 

Figure 11 shows a monthly breakdown of the grid scale and the NB2 HiRA neighbourhood scores 480 

at T+60. This shows the underlying monthly variability not immediately apparent in the whole-481 

period plots. Notably for the January to March period, AMM7 outperforms AMM15 at the grid 482 

scale. With the introduction of HiRA neighbourhoods, AMM7 still performs better for February 483 

and March but the difference between the models is significantly reduced. For these monthly 484 

timeseries the error bars increase in size relative to the summary plots (e.g. Fig 7) due to the 485 

reduction in data available. The sample size will have an impact on the error bars as the smaller 486 

the sample, the less representative of the true population the data is likely to be. April in 487 
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particular contains several days of missing data, leading to a reduction in sample size and 488 

corresponding increase in error bar size. 489 

 490 

 491 

Figure 11 – Monthly time series of whole-domain CRPS scores for grid scale (solid line) and NB2 neighbourhood (dashes) for T+60 492 

forecasts. Error bars represent 95% confidence values obtained from 10000 samples using bootstrap with replacement. Error bars 493 

have been staggered in the x-direction to aid clarity. 494 
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 495 

Figure 12 - On-shelf monthly time series of CRPS. Error bars represent 95% confidence values obtained from 10000 samples using 496 

bootstrap with replacement. 497 

 498 

 499 

Figure 13 - Off-shelf monthly time series of CRPS. Error bars represent 95% confidence values obtained from 10000 samples using 500 

bootstrap with replacement. 501 

 502 
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The same pattern is present for the on-shelf sub-domain (Fig. 12), where what appears to be a 503 

significant benefit for the AMM7 during February and March is less clear-cut at the NB2 504 

neighbourhood. For the off-shelf sub-domain (Fig. 13), differences between the two 505 

configurations at the grid scale are mainly apparent during the summer months. At the NB2 scale, 506 

the AMM15 demonstrates more benefit than AMM7 except for April and May, where the two 507 

show similar results.   508 

One noticeable aspect of the time series plots is that the whole-domain plot is heavily influenced 509 

by the on-shelf results. This is due to the difference in observation numbers as shown in Fig. 14, 510 

with the on-shelf domain having more observations overall, sometimes significantly more, for 511 

example during January or mid-late August. For the overall domain, the on-shelf observations 512 

will contribute more to the overall score and hence the underlying off-shelf signal will tend to be 513 

masked. This is an indication of why verification is more useful when done over smaller, more 514 

homogeneous sub-regions, rather than verifying everything together, with the caveat that 515 

sample sizes are large enough, since underlying signals can be swamped by dominant error types.   516 

 517 

Figure 14 - Number of grid scale observations for the on and off-shelf domains. 518 
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 519 

7. Discussion and Conclusions 520 

In this study, the HiRA framework has been applied to SST forecasts from two ocean models with 521 

different resolutions. This enables a different view of the forecast errors than obtained using 522 

traditional (precise) grid scale matching against ocean observations. Particularly it enables us to 523 

demonstrate the additional value of high-resolution model. When considered more 524 

appropriately high-resolution models (with the ability to forecast small-scale detail) have lower 525 

errors when compared to the smoother forecasts provided by a coarser-resolution model.  526 

The HiRA framework was intended to address the question ‘Does moving to higher resolution 527 

add value?’ This study has identified and highlighted aspects that need to be considered when 528 

setting up such an assessment. Prior to this study, routine verification statistics typically showed 529 

that coarser resolution models had equivalent or more skill than higher resolution models (e.g. 530 

Mass et al., 2002, Tonani et al., 2019).  During the period January to September 2019, grid scale 531 

verification within this assessment showed that the coarser-resolution AMM7 often 532 

demonstrated lower errors than the AMM15. 533 

HiRA neighbourhoods were applied and the data then assessed using the CRPS, showing a large 534 

reduction (improvement) in errors for AMM15 when going from a grid scale, point-based 535 

verification assessment to a neighbourhood, ensemble approach. When applying an equivalent-536 

sized neighbourhood to both configurations, AMM15 typically demonstrated lower (better) 537 

scores. These scores were in turn broken down into off-shelf and on-shelf sub-domains and 538 

showed that the different physical processes in these areas affected the results.  539 

When constructing HiRA neighbourhoods the spatial scales that are appropriate for the 540 

parameter must be considered carefully. This often means running at several neighbourhood 541 

sizes and determining where the scores no longer seem physically representative. When 542 

comparing models, care should be taken to construct neighbourhood sizes that are similarly sized 543 

spatially, the details of the neighbourhood sizes will depend on the structure and resolution of 544 

the model grid.   545 
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Treatment of observations is also important in any verification set-up. For this study, the fact that 546 

there are different numbers of observations present at each neighbourhood scale (as 547 

observations are rejected due to land contamination) means that there is never an optimally 548 

equalized data set (i.e. the same observations for all models and for all neighbourhood sizes). It 549 

also means that comparison of the different neighbourhood results from a single model is ill 550 

advised, in this case, as the observations numbers can be very different, and therefore the model 551 

forecast is being sampled at different locations. Despite this, observation numbers should be 552 

similar when looking at matched spatially sized neighbourhoods from different models if results 553 

are to be compared. One of the main constraints identified through this work is both the sparsity 554 

and geographical distribution of observations throughout the North West Shelf domain, with 555 

several viable locations rejected during the HiRA processing due to their proximity to coastlines. 556 

The purest assessment, in terms of observations, would involve a fixed set of observations, 557 

equalized across both model configurations and all neighbourhoods at every time. This would 558 

remove the variation in observation numbers seen as neighbourhood sizes increase as well as 559 

those seen between the two models and give a clean comparison between two models.  560 

Care should be taken when applying strict equalization rules as this could result in only a small 561 

number of observations being used. The total number of observations used should be large 562 

enough to ensure that the sample is large enough to produce robust results and satisfy rules for 563 

statistical significance. Equalisation rules could also unfairly affect the spatial sampling of the 564 

verification domain. For example, in this study coastal observations would be affected more than 565 

deep ocean observations if neighbourhood equalization were applied, due to the proximity of 566 

the coast.  567 

To a lesser extent, the variation in observation numbers on a day-to-day timescale also has an 568 

impact on any results and could mean that incorrect importance is attributed to certain results, 569 

which are simply due to fluctuations in observation numbers.  570 

The fact that the errors can be reduced through the use of neighbourhoods shows that the ocean 571 

and the atmosphere have similarities in the way the forecasts behave as a function of resolution. 572 

This study did not consider the concept of skill, which incorporates the performance of the 573 
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forecast relative to a pre-defined benchmark. For the ocean the choice of reference needs to be 574 

considered. This could be the subject of further work.  575 

To our knowledge, this work is the first attempt to use neighbourhood techniques to assess ocean 576 

models. The promising results showing reductions in errors of the finer resolution configuration 577 

warrant further work. We see a number of directions the current study could be extended.  578 

The study was conducted on daily output which should be appropriate to address eddy mesoscale 579 

variability, but observations are distributed at hourly resolution, and so the next logical step 580 

would be to assess the hourly forecasts against the hourly observation and see how this impacted 581 

the results. This will increase the sample size, if all hourly observations were considered together. 582 

However, it is impossible to speculate on whether considering hourly forecasts would lead to 583 

more noisy statistics, counteracting the larger sample size. Consideration of other ocean 584 

variables would also be of interest, including looking at derived diagnostics such as mixed layer 585 

depth, but the sparsity of observations available for some variables may limit the case studies 586 

available. HiRA as a framework is not remaining static. Enhancements to introduce non-regular 587 

flow-dependent neighbourhoods are planned and may be of benefit to ocean applications in the 588 

future. Finally, an advantage of using the HiRA framework is that results obtained from 589 

deterministic ocean models could also be compared against results from ensemble models when 590 

these become available for ocean applications.  591 

 592 
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