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Abstract 9 

The Met Office currently runs two operational ocean forecasting configurations for the North 10 

West European Shelf, an eddy-permitting model with a resolution of 7 km (AMM7), and an eddy-11 

resolving model at 1.5 km (AMM15).  12 

Whilst qualitative assessments have demonstrated the benefits brought by the increased 13 

resolution of AMM15, particularly in the ability to resolve finer-scale features, it has been difficult 14 

to show this quantitatively, especially in forecast mode. Application of typical assessment metrics 15 

such as the root mean square error have been inconclusive, as the high-resolution model tends 16 

to be penalised more severely, referred to as the double-penalty effect. This effect occurs in 17 

point-to point comparisons whereby features correctly forecast but misplaced with respect to 18 

the observations are penalised twice; once for not occurring at the observed location, and 19 

secondly for occurring at the forecast location, where they have not been observed. 20 

An exploratory assessment of sea surface temperature (SST) has been made at in-situ 21 

observation locations using a single-observation-neighbourhood-forecast (SO-NF) spatial 22 

verification method known as the High-Resolution Assessment (HiRA) framework. The primary 23 

focus of the assessment was to capture important aspects of methodology to consider when 24 

applying the HiRA framework. Forecast grid points within neighbourhoods centred on the 25 

observing location are considered as pseudo ensemble members, so that typical ensemble and 26 

probabilistic forecast verification metrics such as the Continuous Ranked Probability Score (CRPS) 27 

can be utilised. It is found that through the application of HiRA it is possible to identify 28 

improvements in the higher resolution model which were not apparent using typical grid scale 29 

assessments.   30 

This work suggests that future comparative assessments of ocean models with different 31 

resolutions would benefit from using HiRA as part of the evaluation process, as it gives a more 32 

equitable and appropriate reflection of model performance at higher resolutions.   33 
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1. Introduction 37 

When developing and improving forecast models an important aspect is to assess whether model 38 

changes have truly improved the forecast. Assessment can be a mixture of subjective approaches, 39 

such as visualising forecasts and assessing whether the broad structure of a field is appropriate, 40 

or objective methods, comparing the difference between the forecast and an observed or 41 

analysed value of ‘truth’ for the model domain. 42 

Different types of intercomparison can be applied to identify different underlying behaviours:  43 

• between different forecasting systems over an overlapping region to check for model 44 

consistency between the two;  45 

• between two versions of the same model to test the value of model upgrades prior to 46 

operational implementation; 47 

• parent-son intercomparison, evaluating the impact of downscaling or nesting of models; 48 

• a forecast comparison against reanalysis of the same model, inferring the effect of 49 

resolution and forcing, especially in coastal areas. 50 

There are a number of works which have used these types of assessment to delve into the 51 

characteristics of forecast models (e.g. Aznar et al., 2015, Mason et al., 2019, Juza et al., 2015) 52 

and produce coordinated validation approaches (Hernandez et al., 2015). 53 

To aid the production of quality model assessment, services exist which regularly produce multi-54 

model assessments to deliver to the ocean community (e.g. Lorente et al., 2019a) 55 

One of the issues faced when assessing high-resolution models against lower resolution models 56 

over the same domain is that often the coarser model appears to perform at least equivalently 57 

or better when using typical verification metrics such as root-mean-squared-error (RMSE) or 58 

mean error, which is a measure of the bias.  Whereas a higher resolution model has the ability 59 

and requirement to forecast greater variation, detail and extremes, a coarser model cannot 60 

resolve the detail and will, by its nature, produce smoother features with less variation resulting 61 

in smaller errors. This can lead to the situation that despite the higher resolution model looking 62 

more realistic it may verify worse (e.g. Mass et al., 2002, Tonani et al., 2019).  63 
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This is particularly the case when assessing forecast models categorically. If the location of a 64 

feature in the model is incorrect then two penalties will be accrued, one for not forecasting the 65 

feature where it should have been and one for forecasting the same feature where it did not 66 

occur (the double penalty effect, e.g. Rossa et al., 2008). This effect is more prevalent in higher-67 

resolution models due to their ability to, at least, partially resolve smaller-scale features of 68 

interest. If the lower resolution model could not resolve the feature, and therefore did not 69 

forecast it, that model would only be penalised once. Therefore, despite giving potentially better 70 

guidance the higher resolution model will verify worse. 71 

Yet, the underlying need to quantitatively show the value of high-resolution led to the 72 

development of so-called “spatial” verification methods which aimed to account for the fact the 73 

forecast produced realistic features that were not necessarily at the right place or at quite the 74 

right time (e.g. Ebert, 2008 or Gilleland, 2009).  These methods have been in routine use within 75 

the atmospheric model community for a number of years with some long-term assessments and 76 

model comparisons (e.g. Mittermaier et al. 2013 for precipitation).  77 

Spatial methods allow forecast models to be assessed with respect to several different types of 78 

focus. Initially these methods were classified into four groups. Some methods look at the ability 79 

to forecast specific features (e.g. Davis et al., 2006), some look at how well the model performs 80 

at different scales (scale-separation, e.g. Casati et al., 2004). Others look at field deformation 81 

(how much a field would have to be transformed to match a ‘truth’ field (e.g. Keil and Craig, 82 

2007). Finally, there is neighbourhood verification, many of which are equivalent to low band-83 

pass filters. In these methods forecasts are assessed at multiple spatial or temporal scales to see 84 

how model skill changes as the scale is varied. 85 

Dorninger et al. (2018) provides an updated classification of spatial methods, suggesting a fifth 86 

class of methods, known as distance metrics, which sit between field deformation and feature-87 

based methods. These methods evaluate the distances between features, but instead of just 88 

calculating the difference in object centroids (which is typical), the distances between all grid 89 

point pairs are calculated, which makes distance metrics more similar to field deformation 90 

approaches. Furthermore, there is no prior identification of features. This makes distance metrics 91 
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a distinct group that warrants being treated as such in terms of classification.  Not all methods 92 

are easy to classify. An example of this is the Integrated Ice Edge Error (IIEE) developed for 93 

assessing the sea ice extent (Goessling et al., 2016).  94 

This paper exploits the use of one such spatial technique for the verification of sea surface 95 

temperature (SST), in order to determine the levels of forecast accuracy and skill across a range 96 

of model resolutions. The High-Resolution Assessment framework (Mittermaier, 2014, 97 

Mittermaier and Csima, 2017) is applied to the Met Office Atlantic Margin Model running at 7 km  98 

(O’Dea et al., 2012, O’Dea et al., 2017, King et al., 2018) (AMM7), and 1.5 km (Graham et al., 99 

2018, Tonani et al., 2019) (AMM15) resolutions for the European North West Shelf (NWS).  The 100 

aim is to deliver an improved understanding beyond the use of basic biases and RMS errors for 101 

assessing higher resolution ocean models, which would then better inform users on the quality 102 

of regional forecast products. Atmospheric science has been using high-resolution convective-103 

scale models for over a decade, and so have experience in assessing forecast skill on these scales, 104 

so it is appropriate to trial these methods on eddy-resolving ocean model data. As part of the 105 

demonstration, the paper also looks at how the method should be applied to different ocean 106 

areas, where variation at different scales occurs due to underlying driving processes. 107 

 108 

The paper was influenced by discussions on how to quantify the added value from investments 109 

in higher resolution modelling given the issues around the double-penalty effect discussed above, 110 

which is currently an active area of research within the ocean community (Lorente et al., 2019b, 111 

Hernández et al., 2018, Mourre et al., 2019). 112 

Section 2 describes the model and observations used in this study along with the method applied. 113 

Section 3 presents the results, and section 4 discusses the lessons learnt while using HiRA on 114 

ocean forecasts and sets the path for future work by detailing the potential and limitations of the 115 

method. 116 

 117 

2. Data and Methods 118 
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2.1 Forecasts 119 

The forecast data used in this study are from the two products available in the Copernicus Marine 120 

Environment Monitoring Service (CMEMS, see e.g. Le Traon et al., 2019, for a summary of the 121 

service) for the North West European Shelf area: 122 

• NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b (AMM7) 123 

• NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013 (AMM15) 124 

The major difference between these two products is the horizontal resolution, ~7 km for AMM7 125 

and 1.5 km for AMM15. Both systems are based on a forecasting ocean assimilation model with 126 

tides. The ocean model is NEMO (Nucleus for European Modelling of the Ocean, Madec, 2016), 127 

using the 3DVar NEMOVAR system to assimilate observations (Mogensen et al., 2012). These are 128 

surface temperature in-situ and satellite measurements, vertical profiles of temperature and 129 

salinity, and along track satellite sea level anomaly data. The models are forced by lateral 130 

boundary conditions from the UK Met Office North Atlantic Ocean forecast model and by the 131 

CMEMS Baltic forecast product BALTICSEA_ANALYSIS_FORECAST_PHY_003_006. The 132 

atmospheric forcing is given by the operational European Centre for Medium-Range Weather 133 

Forecasts (ECMWF) Numerical Weather Prediction model for AMM15, and by the operational UK 134 

Met Office Global Atmospheric model for AMM7. 135 

 136 

 Resolution Atmospheric forcing Geographical model domain 

AMM7 ~7 km MetUM 10 km 40°N - 65°N                            20°W -13°E 

AMM15 ~1.5 km ECMWF IFS ~14 km ~45°N - 63°N                      ~20°W - 13°E 

 137 

Table 1: Summary of the main differences between NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b (AMM7) and 138 

NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_013 (AMM15) 139 

The AMM15 and AMM7 systems run once a day and provide forecasts for temperature, salinity, 140 

horizontal currents, sea level, mixed layer depth, and bottom temperature. Hourly instantaneous 141 

values and daily 25-hour, de-tided, averages are provided for the full water column.  142 

AMM7 has a regular latitude-longitude grid, whilst AMM15 is computed on a rotated grid and re-143 

gridded to have both models delivered to the (CMEMS) data catalogue 144 
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(http://marine.copernicus.eu/services-portfolio/access-to-products/) on a regular grid. A fuller 145 

description of the respective configurations of the two models can be found in Tonani et al., 146 

(2019).  147 

 148 

For the purposes of this assessment the 5-day daily mean sea surface potential temperature (SST) 149 

forecasts (with lead times of 12, 36, 60, 84, 108 hours) were utilised for the period from January 150 

to September 2019. Forecasts were compared for the co-located areas of AMM7 and AMM15. 151 

Figure 1 shows the AMM7 and AMM15 co-located domain along with the land-sea mask for each 152 

of the models. AMM15 has a more detailed coastline and SST field than AMM7 due to its higher 153 

resolution. When comparing two models with different resolutions it is important to know 154 

whether increased detail actually translates into better forecast skill. Additionally, the differences 155 

in coastline representation can have an impact on any HiRA results obtained, as will be discussed 156 

in a later section.  157 

 158 

Figure 1  - AMM7 and AMM15 co-located areas. Note the difference in the land-sea boundaries due to the different resolutions, 159 

notably around the Scandinavian coast. Contours show the model bathymetry at 200, 2000 and 4000 m.  160 

 161 

It should be noted that this study is an assessment of the application of spatial methods to ocean 162 

forecast data, and as such, is not meant as a full and formal assessment and evaluation of the 163 

http://marine.copernicus.eu/services-portfolio/access-to-products/
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forecast skill of the AMM7 and AMM15 ocean configurations. To this end, a number of 164 

considerations have had to be taken into account in order to reduce the complexity of this initial 165 

study. Specifically, it was decided at an early stage to use daily mean SST temperatures, as 166 

opposed to hourly instantaneous SST, as this avoided any influence of the diurnal cycle and tides 167 

on any conclusions made. AMM15 and AMM7 daily means are calculated as means over 25 hours 168 

to remove both the diurnal cycle and the tides. The tidal signal is removed because the period of 169 

the major tidal constituent, the semidiurnal lunar component M2, is 12 hr and 25 min (Howarth 170 

and Pugh, 1983). Daily means are also one of the variables that are available from the majority 171 

of the products within the CMEMS catalogue, including reanalysis, so the application of the 172 

spatial methods could be relevant in other use cases beyond those considered here. In addition, 173 

there are differences in both the source and frequency of the air-sea interface forcing used in 174 

both the AMM7 and AMM15 configurations which could influence the results. Most notably, the 175 

AMM7 uses hourly surface pressure and 10 m winds from the Met Office Unified Model (UM), 176 

whereas the AMM15 uses 3-hourly data from ECMWF. 177 

2.2 Observations 178 

SST observations used in the verification were downloaded from the CMEMS catalogue from the 179 

product  180 

 181 

• INSITU_NWS_NRT_OBSERVATIONS_013_036 182 

 183 

This dataset consists of in-situ observations only, including daily drifters, mooring, ferry-box and 184 

Conductivity Temperature Depth (CTD) observations. This results in a varying number of 185 

observations being available throughout the verification period, with uneven spatial coverage 186 

over the verification domain. Figure 2 shows a snapshot of the typical observational coverage, in 187 

this case for 1200 UTC 6th June 2019. This coverage is important when assessing the results, 188 

notably when thinking about the size and type of area over which an observation is meant to be 189 

representative of, and how close to the coastline each observation is.  190 

 191 
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This study was set up to detect issues that should be considered by users when applying HiRA 192 

within a routine ocean verification set-up, using a broad assessment containing as much data as 193 

was available in order to understand the impact of using HiRA for ocean forecasts. Several 194 

assumptions were made in this study. 195 

 196 

For example, there is a temporal mismatch between the forecasts and observations used. The 197 

forecasts (which were available at the time of this study) are daily means of the SSTs from 00 UTC 198 

to 00 UTC, whilst the observations are instantaneous and usually available hourly. For the 199 

purposes of this assessment, we have focused on SSTs closest to the mid-point of the forecast 200 

period for each day (nominally 12 UTC). Observation times had to be within 90 minutes of this 201 

time, with any other times from the same observation site being rejected. A particular reason for 202 

picking a single observation time rather than daily averages was so that moving observations, 203 

such as drifting buoys, could be incorporated into the assessment. Creating daily mean 204 

observations from moving observations would involve averaging reports from different forecast 205 

grid- boxes, and hence contaminate the signal that HiRA is trying to evaluate. 206 

 207 

 208 

Figure 2 - Observation locations within the domain for 1200 UTC on 6th June 2019. 209 
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Future applications would probably contain a stricter set-up, e.g. only using fixed daily mean 210 

observations, or verifying instantaneous (hourly) forecasts so as to provide a sub-daily 211 

assessment of the variable in question.  212 

  213 

3. High Resolution Assessment (HiRA)  214 

The HiRA framework (Mittermaier, 2014) was designed to overcome the difficulties encountered 215 

in assessing the skill of high-resolution models when evaluating against point observations. 216 

Traditional verification metrics such as RMSE and mean error rely on a precise matching in space 217 

and time, by (typically) extracting the nearest model grid point to an observing location. The 218 

method is an example of a single-observation-neighbourhood-forecast (SO-NF) approach, with 219 

no smoothing. All the forecast grid points within a neighbourhood centred on an observing 220 

location are treated as a pseudo ensemble, which is evaluated using well known ensemble and 221 

probabilistic forecast metrics. Scores are computed for a range of (increasing) neighbourhood 222 

sizes to understand the scale-error relationship. This approach assumes that the observation is 223 

representative of not only its precise location but also has characteristics of the surrounding area 224 

as well. WMO manual No 8 (2017) suggests that, in the atmosphere, observations can be 225 

considered to be representative of an area within a 100 km radius of a land station, but this is 226 

often very optimistic. The manual states further: “For small-scale or local applications the 227 

considered area may have dimensions of 10 km or less.” A similar principle applies to the ocean, 228 

i.e. observations can represent an area around the nominal observation location, though the 229 

representative scales are likely to be very different from in the atmosphere. The representative 230 

scale for an observation will also depend on local characteristics of the area, for example whether 231 

the observation is on the shelf, or in open ocean or likely to be impacted by river discharge. 232 

There will be a limit to the useful forecast neighbourhood size which can be used when comparing 233 

to a point observation. This maximum neighbourhood size will depend on the representative 234 

scale of the variable under consideration. Put differently, once the neighbourhoods become too 235 

big there will be forecast values in the pseudo ensemble which will not be representative of the 236 

observation (and the local climatology) and any skill calculated will be essentially random. 237 
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Combining results for multiple observations with very different representative scales (for 238 

example a mixture of deep ocean and coastal observations) could contaminate results, due to 239 

the forecast neighbourhood only being representative of a subset of the observations. The effect 240 

of this is explored later in this paper. 241 

 242 

HiRA can be based on a range of statistics, data thresholds and neighbourhood sizes in order to 243 

assess a forecast model. When comparing deterministic models of different resolutions, the 244 

approach is to equalise on the physical area of the neighbourhoods (i.e. having the same 245 

“footprint”). By choosing sequences of neighbourhoods that provide (at least) approximate 246 

equivalent neighbourhoods (in terms of area), two or more models can be fairly compared. 247 

HiRA works as follows. For each observation, several neighbourhood sizes are constructed, 248 

representing the length in forecast grid points of a square domain around the observation points, 249 

centred on the grid point closest to the observation (Fig. 3). There is no interpolation applied to 250 

the forecast data to bring it to the observation point, all the data values are used unaltered.  251 

 252 

Figure 3 - Example of forecast grid point selections for different HiRA neighbourhoods for a single observation point. A 3x3 domain 253 

returns 9 points that represent the nearest forecast grid points in a square around the observation. A 5x5 domain encompasses 254 

more points.  255 

 256 

Once neighbourhoods have been constructed, the data can be assessed using a range of well-257 

known ensemble or probabilistic scores. The choice of statistic usually depends on the 258 
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characteristics of the parameter being assessed. Parameters with significant thresholds can be 259 

assessed using the Brier score (Brier, 1950) or the Ranked Probability Score (RPS) (Epstein, 1969), 260 

i.e. assessing the ability of the forecast to correctly locate a forecast in the correct threshold 261 

band. For continuous variables such as SST, the data has been assessed using the continuous 262 

ranked probability score (CRPS) (Brown, 1974, Hersbach, 2000). 263 

The CRPS is a continuous extension of the RPS. Whereas the RPS is effectively an average of a 264 

user-defined set of Brier scores over a finite number of thresholds, the CRPS extends this by 265 

considering an integral over all possible thresholds. It lends itself well to ensemble forecasts of 266 

continuous variables such as temperature and has the useful property that the score reduces to 267 

the mean absolute error (MAE) for a single grid point deterministic model comparison. This 268 

means that if required, both deterministic and probabilistic forecasts can be compared using the 269 

same score.  270 

𝐶𝑅𝑃𝑆 = ∫ [𝑃𝑓𝑐𝑠𝑡(𝑥) −  𝑃𝑜𝑏𝑠(𝑥)]
2

𝑑𝑥
∞

−∞
      (1) 271 

 272 

Equation (1) defines the CRPS, where for a parameter x, Pfcst(x) is the cumulative distribution of 273 

the neighbourhood forecast and Pobs(x) is the cumulative distribution of the observed value, 274 

represented by a Heaviside function (see Hersbach, 2000). The CRPS is an error-based score 275 

where a perfect forecast has a value of zero. It measures the difference between two cumulative 276 

distributions, a forecast distribution formed by ranking the (in this case quasi) -ensemble 277 

members represented by the forecast values in the neighbourhood, and a step function 278 

describing the observed state. To use an ensemble, HiRA makes the assumption that all grid 279 

points within a neighbourhood are equi-probable outcomes at the observing location. Therefore, 280 

aside from the observation representativeness limit, as the neighbourhood sizes increase, this 281 

assumption of equi-probability will break down as well, and scores become random. Care must 282 

therefore be taken to decide whether a particular neighbourhood size is appropriately 283 

representative. This decision will be based on the length scales appropriate for a variable as well 284 

as the resolution of the forecast model being assessed. Figure 4 shows a schematic of how 285 
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different neighbourhood sizes contribute towards constructing forecast probability density 286 

functions around a single observation. 287 

 288 

Figure 4 – Example of how different forecast neighbourhood sizes would contribute to generation of a probability density function 289 

around an observation (denoted by x). The larger the neighbourhood, the better described the pdf, though potentially at the 290 

expense of larger spread. Where a forecast point is invalid within the forecast neighbourhood then that site is rejected from the 291 

calculations for that neighbourhood size. 292 

 293 

AMM7 and AMM15 resolve different length scale of motion, due to their horizontal resolution. 294 

This should be taken into account when assessing the results of different neighbourhood sizes. 295 

Both models can resolve the large barotropic scale (~200 km) and the shorter baroclinic scale off 296 

the shelf, in deep water. On the continental shelf, only the resolution of ~1.5 km of AMM15, 297 

permits motions at the smallest baroclinic scale since the first baroclinic Rossby radius is of order 298 

of 4 km (O’Dea et al., 2012). AMM15 represents a step change in representing the eddy dynamics 299 

variability on the continental shelf. This difference has an impact also on the data assimilation 300 

scheme, where two horizontal correlation length scales (Mirouze et al., 2016) are used to 301 

represent large and small scales of ocean variability. The long length scale is 100 km while the 302 

short correlation length scale aims to account for internal ocean processes variability, 303 

characterized by the Rossby radius of deformation. Computational requirements restrict the 304 

short length scale to be at least 3 model grid points, 4.5 km and 21 km respectively for AMM15 305 

and AMM7 (Tonani et al., 2019). Although AMM15 resolves smaller scale processes, comparing 306 
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AMM7 and AMM15 in neighbourhood sizes between the AMM7 resolution and multiples of this 307 

resolution will address processes that should be accounted for in both models. 308 

 309 

As the methodology is based on ensemble and probabilistic metrics it is naturally extensible to 310 

ensemble forecasts (see Mittermaier and Csima, 2017), which are currently being developed in 311 

research-mode by the ocean community, allowing for inter-comparison between deterministic 312 

and probabilistic forecast models in an equitable and consistent way. 313 

 314 

4. Model Evaluation Tools (MET) 315 

Verification was performed using the Point-Stat tool, which is part of the Model Evaluation Tools 316 

(MET) verification package, that was developed by the National Center for Atmospheric Research 317 

(NCAR), and which can be configured to generate CRPS results using the HiRA framework. MET is 318 

free to download from GitHub at https://github.com/NCAR/MET. 319 

 320 

5. Equivalent neighbourhoods and equalisation 321 

When comparing neighbourhoods between models, the preference is to look for similar–sized 322 

areas around an observation and then transforming this to the closest odd-numbered, square 323 

neighbourhood, which will be called the ‘equivalent neighbourhood’. In the case of the two 324 

models used, the most appropriate neighbourhood size can change depending on the structure 325 

of the grid so the user needs to take into consideration what is an accurate match between the 326 

models being compared. 327 

 328 

The two model configurations used in this assessment are provided on standard latitude-329 

longitude grids via the CMEMS catalogue. The AMM7 and AMM15 configurations are stated to 330 

have resolutions approximating 7 km and 1.5 km respectively. Thus, equivalent neighbourhoods 331 

should simply be a case of matching neighbourhoods with similar spatial distances. In fact, the 332 
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AMM15 is originally run on a rotated latitude-longitude grid where the resolution is closely 333 

approximated by 1.5 km and subsequently provided to the CMEMS catalogue on the standard 334 

latitude-longitude grid. Once the grid has been transformed to a regular latitude-longitude grid 335 

the 1.5 km nominal spatial resolution is not as accurate. This is particularly important when 336 

neighbourhood sizes become larger, since any error in the approximation of the resolution will 337 

become multiplied as the number of points being used increases.  338 

 339 

Additionally, the two model configurations do not have the same aspect ratio of grid points. 340 

AMM7 has a longitudinal resolution of ~0.11° and a latitudinal resolution of ~0.066° (a ratio of 341 

3:5) whilst the AMM15 grid has a resolution of ~0.03° and ~0.0135° respectively (a ratio of 5:11). 342 

HiRA neighbourhoods typically contain the same number of grid-points in the zonal and 343 

meridional directions which will lead to discrepancies in the area selected when comparing 344 

models with different grid aspect ratios, depending on whether the comparison is based on 345 

neighbourhoods with a similar longitudinal or similar latitudinal size. This difference will scale as 346 

the neighbourhood size increases as shown in Fig. 4 and Table 2. The onus is therefore on the 347 

user to understand any difference in grid structure, and therefore within the HiRA 348 

neighbourhoods, between models being compared and to allow for this when comparing 349 

equivalent neighbourhoods.  350 

 351 
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 352 

 353 

Figure 5 - Similar neighbourhood sizes for a 49 km neighbourhood using the approximate resolutions (7 km and 1.5 km) with a) 354 

AMM7 with a 7x7 neighbourhood, b) AMM15 with a 33x33 neighbourhood. Whilst the neighbourhoods are similar sizes in the 355 

latitudinal direction, the AMM15 neighbourhood is sampling a much larger area due to different scales in the longitudinal 356 

direction. This means that a comparison with a 25x25 AMM15 neighbourhood is more appropriate. 357 

Table 2 - Details of equivalent neighbourhoods used when comparing AMM7 and AMM15. 358 

 AMM7 AMM15 

Name Total 
Points 

Shape Size (E-W) 
 

Total 

Points 

Shape Size (E-W) 

 Actual 
(°) 

Nominal 
(km) 

 Actual 
(°) 

Nominal 

(km) 

NB1 1 1x1 0.11 7 25 5x5 0.15 7.5 
NB2 9 3x3 0.33 21 121 11x11 0.33 16.5 
NB3 25 5x5 0.55 35 361 19x19 0.57 28.5 
NB4 49 7x7 0.77 49 625 25x25 0.76 37.5 
NB5 81 9x9 0.99 63 1089 33x33 0.99 49.5 

 359 

For this study we have matched neighbourhoods between model configurations based on their 360 

longitudinal size. The equivalent neighbourhoods used to show similar areas within the two 361 

configurations are indicated in Table 2 along with the bar style and naming convention used 362 

throughout. 363 

 364 

For ocean applications there are other aspects of the processing to be aware of when using 365 

neighbourhood methods. This is mainly related to the presence of coastlines and how their 366 

representation changes resolution (as defined by the land-sea mask) and the treatment of 367 
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observations within HiRA neighbourhoods. Figure 5 illustrates the contrasting land-sea 368 

boundaries due to the different resolutions of the two configurations. When calculating HiRA 369 

neighbourhood values, all forecast values in the specific neighbourhood around an observation 370 

must be present for a score to be calculated. If any forecast points within a neighbourhood 371 

contain missing data then that observation at that neighbourhood size is rejected. This is to 372 

ensure that the resolution of the “ensemble”, which is defined or determined by the number of 373 

members, remains the same. For typical atmospheric fields such as screen temperature this is 374 

not an issue, but with parameters that have physical boundaries (coastlines), such as SST, there 375 

will be discontinuities in the forecast field that depend on the location of the land-sea boundary. 376 

For coastal observations, this means that as the neighbourhood size increases, it is more likely 377 

that an observation will be rejected from the comparison due to missing data. Even at the grid 378 

scale, the nearest model grid point to an observation may not be a sea point. In addition, different 379 

land-sea borders between models mean that potentially some observations will be rejected from 380 

one model comparison but will be retained in the other because of missing forecast points within 381 

their respective neighbourhoods. Care should be taken when implementing HiRA to check the 382 

observations available to each model configuration when assessing the results and make a 383 

judgement as to whether the differences are important.  384 

There are potential ways to ensure equalisation, for example only using observations that are 385 

available in both configurations for a location and neighborhoods, or only observations away 386 

from the coast. For the purposes of this study, which aims to show the utility of the method, it 387 

was judged important to use as many observations as possible, so as to capture any potential 388 

pitfalls in the application of the framework, which would be relevant to any future application of 389 

it.  390 
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 391 

Figure 6- Number of observation sites within NB1, NB3 and NB5 for AMM15 and AMM7. Numbers are those used during 392 

September 2019 but represent typical total observations during a month. Matching line styles represent equivalent 393 

neighbourhoods.  394 

 395 

Figure 6 shows the number of observations available to each neighbourhood for each day during 396 

September 2019. For each model configuration it shows how these observations vary within the 397 

HiRA framework. There are several reasons for the differences shown in the plot. There is the 398 

difference mentioned previously whereby a model neighbourhood includes a land point, and 399 

therefore is rejected from the calculations because the number of quasi-ensemble members is 400 

no longer the same. This is more likely for coastal observations and depends on the particularities 401 

of the model land-sea mask near each observation. This rejection is more likely for the high-402 

resolution AMM15 when looking at equivalent areas, in part due to the larger number of grid 403 

boxes being used; however, there are also instances of observations being rejected from the 404 

coarser resolution AMM7 and not the higher-resolution AMM15 due to nuances of the land-sea 405 

mask.  406 
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It is apparent that for equivalent neighbourhoods there are typically more observations available 407 

for the coarser model configuration and that this difference is largest for the smallest equivalent 408 

neighbourhood size but becoming less obvious at larger neighbourhoods. It could therefore be 409 

worth considering that the large benefit in AMM15 when looking at the first equivalent 410 

neighbourhood is potentially influenced by the difference in observations. As the neighbourhood 411 

sizes increase, the number of observations reduces due to the higher likelihood of a land point 412 

being part of a larger neighbourhood. It is also noted that there is a general daily variability in the 413 

number of observations present, based on differences in the observations reporting on any 414 

particular day within the co-located domain.  415 

 416 

6. Results 417 

 418 

Figure 7 - Verification results using a typical statistics approach for January – September 2019. Mean error (top), root mean square 419 

error (middle) and mean absolute error (bottom) results are shown for the two model configurations. Two methods of matching 420 
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forecast to observations points have been used; a nearest neighbor approach (solid) representing the single grid point results from 421 

HiRA, and a bilinear interpolation approach (dashed) more typically used in operational ocean verification. 422 

Figure 7 shows the aggregated results from the study period defined in Section 2 by applying 423 

typical verification statistics. Results have been averaged across the entire period from January 424 

to September and output relative to the forecast validity time. Two methods of matching forecast 425 

grid points to observation locations have been used. Bilinear interpolation is typically the 426 

approach used in traditional verification of SST, as it is a smoothly varying field. A nearest 427 

neighbour approach has also been shown, as this is the method that would be used for HiRA 428 

when applying it at the grid scale. 429 

It is noted that the two methods of matching forecasts to observation locations give quite 430 

different results. For the mean error, the impact of moving from a single grid point approach to 431 

a bilinear interpolation method appears to be minor for the AMM7 model, but is more severe for 432 

the AMM15, resulting in a larger error across all lead times. For the RMSE the picture is more 433 

mixed, generally suggesting that the AMM7 forecasts are better when using a bilinear 434 

interpolation method but giving no clear overall steer when the nearest grid point is used. 435 

However, the impact of taking a bilinear approach results in much higher gross errors across all 436 

lead times when compared to the nearest grid point approach. 437 

The MAE has been suggested as a more appropriate metric than the RMSE for ocean fields using 438 

(as is the case here) near real time observation data (Brassington, 2017). In Fig. 6 it can be seen 439 

that the nearest grid point approach for both AMM7 and AMM15 gives almost exactly the same 440 

results, except for the shortest of lead times. For the bilinear interpolation method, AMM15 has 441 

a smaller error than AMM7 as lead time increases, behavior which is not apparent when RMSE is 442 

applied. 443 

Based on the interpolated RMSE results in Fig. 6 it would be hard to conclude that there was a 444 

significant benefit to using high-resolution ocean models for forecasting SSTs. This is where the 445 

HiRA framework can be applied. It can be used to provide more information, which can better 446 

inform any conclusions on model error.   447 

 448 
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 449 

450 

Figure 8- Summary of CRPS (left axis, lines) and CRPS difference (right axis, bars) for the period January 2019 to September 2019 451 

for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95 % confidence intervals generated using 452 

a bootstrap with replacement method for 10000 samples. An ‘S’ above the bar denotes that 95 % error bars for the two models 453 

do not overlap. 454 

Figure 8 shows the results for AMM7 and AMM15 for the period January - September 2019 using 455 

the HiRA framework with the CRPS. The lines on the plot show the CRPS for the two model 456 

configurations for different neighbourhood sizes, each plotted against lead-time. Similar line 457 

styles are used to represent equivalent neighbourhood sizes. Confidence intervals have been 458 

generated by applying a bootstrap with replacement method, using 10000 samples, to the 459 

domain-averaged CRPS (e.g. Efron and Tibshirani, 1993). The error bars represent the 95 % 460 

confidence level. The results for the single grid-point show the MAE and are the same as would 461 

be obtained using a traditional (precise) matching. In the case of CRPS, where a lower score is 462 

better, we see that AMM15 is better than AMM7, though not significantly so, except at shorter 463 

lead-times where there is little difference.   464 

The differences at equivalent neighbourhood sizes are displayed as a bar plot on the same figure, 465 

with scores referenced with respect to the right-hand axis. Line markers and error bars have been 466 

offset to aid visualization, such that results for equivalent neighbourhoods are displayed in the 467 
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same vertical column as the difference indicated by the barplot. The details of the equivalent 468 

neighbourhood sizes are presented in Table 2. Since a lower CRPS score is better, a positively 469 

orientated (upwards) bar implies AMM7 is better, whilst a negatively orientated (downwards) 470 

bar means AMM15 is better. 471 

As indicated in Table 2, NB1 compares the single grid-point results of AMM7 with a 25-member 472 

pseudo-ensemble constructed from a 5x5 AMM15 neighbourhood. Given the different 473 

resolutions of the two configurations, these two neighbourhoods represent similar physical areas 474 

from each model domain, with AMM7 only represented by a single forecast value for each 475 

observation, but AMM15 represented by 25 values cover the same area, and as such potentially 476 

better able to represent small-scale variability within that area. 477 

At this equivalent scale the AMM15 results are markedly better than AMM7, with lower errors, 478 

suggesting that overall the AMM15 neighbourhood better represents the variation around the 479 

observation than the coarser single grid point of AMM7. At the next set of equivalent 480 

neighbourhoods (NB2), the gap between the two configurations has closed, but AMM15 is still 481 

consistently better than AMM7 as lead time increases.  Above this scale the neighbourhood 482 

values tend towards similarity, and then start to diverge again suggesting that the representative 483 

scale of the neighbourhoods has been reached and that errors are essentially random.  484 

Whilst the overall HiRA neighbourhood results for the co-located domains appear to show a 485 

benefit to using a higher resolution model forecast, it could be that these results are influenced 486 

by the spatial distribution of observations within the domain and the characteristics of the 487 

forecasts at those locations. In order to investigate whether this was important behaviour, the 488 

results were separated into two domains, one representing the continental shelf part of the 489 

domain (where the bathymetry < 200 m), and the other representing the deeper, off-shelf, ocean 490 

component (Fig. 8). HiRA results were compared for observations only within each masked 491 

domain. 492 
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 493 

Figure 9 - On-shelf and off-shelf masking regions within the co-located AMM7 and AMM15 domain (data within the grey areas is 494 

masked). 495 

 496 

497 

Figure 10- Summary of on-shelf CRPS (left axis, lines) and CRPS difference (right axis, bars) for the period January 2019 to 498 

September 2019 for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95 % confidence values 499 

obtained from 10000 samples using bootstrap with replacement. An ‘S’ above the bar denotes that 95 % error bars for the two 500 

models do not overlap. 501 
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On-shelf results (Fig. 10) show that at the grid scale the results for both AMM7 and AMM15 are 502 

worse for this sub-domain. This could be explained by both the complexity of processes (tides, 503 

friction, river mixing, topographical effects, etc.), and the small dynamical scales associated with 504 

shallow waters on the shelf (Holt et al., 2017). 505 

 506 

The on-shelf spatial variability in SST across a neighbourhood is likely to be higher than for an 507 

equivalent deep ocean neighbourhood due to small-scale changes in bathymetry, and for some 508 

observations, the impact of coastal effects. Both AMM7 and AMM15 show improvement in CRPS 509 

with increased neighbourhood size until the CRPS plateaus in the range 0.225 to 0.25, with 510 

AMM15 generally better than AMM7 for equivalent neighbourhood sizes. Scores get worse 511 

(errors increase) for both model configurations as the forecast lead time increases.  512 

 513 

 514 

515 

Figure 11 –  Summary of off-shelf CRPS (left axis, lines) and CRPS difference (right axis, bars) for the period January 2019 to 516 

September 2019 for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95 % confidence values 517 

obtained from 10000 samples using bootstrap with replacement. An ‘S’ above the bar denotes that 95 % error bars for the two 518 

models do not overlap. 519 
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 520 

For off-shelf results (Fig. 11), the CRPS is much better (smaller error), at both the grid scale and 521 

for HiRA neighbourhoods, suggesting that both configurations are better at forecasting these 522 

deep ocean SSTs (or that it is easier to do so). There is still an improvement in CRPS when going 523 

from the grid scale (single grid box) to neighbourhoods, but the value of that change is much 524 

smaller than for the on-shelf sub-domain. When comparing equivalent neighbourhoods, the 525 

AMM15 still gives consistently better results (smaller errors) and appears to improve over AMM7 526 

as lead time increases in contrast to the on-shelf results.  527 

It is likely that the neighbourhood at which we lose representativity will be larger for the deeper 528 

ocean than the shelf area because of the larger scale of dynamical processes in deep water. When 529 

choosing an optimum neighbourhood to use for assessment, care should be taken to check 530 

whether there are different representativity levels in the data (such as here for on-shelf and off-531 

shelf) and pragmatically choose the smaller of those equivalent neighbourhoods when looking at 532 

data combining the different representativity levels. 533 

Overall, for the period January-September 2019, the AMM15 demonstrates a lower (better) CRPS 534 

than AMM7 when looking at the HiRA neighbourhoods. However, this also appears to be true at 535 

the grid scale over the assessment period. One of the aspects that HiRA is trying to provide 536 

additional information about is whether higher resolution models can demonstrate improvement 537 

over coarser models against a perception that the coarser models score better in standard 538 

verification forecast assessments. Assessed over the whole period, this initial premise does not 539 

appear to hold true, therefore a deeper look at the data is required to assess whether this signal 540 

is consistent within shorter time periods, or whether there are underlying periods contributing 541 

significant and contrasting results to the whole-period aggregate.    542 

Figure 12 shows a monthly breakdown of the grid scale and the NB2 HiRA neighbourhood scores 543 

at T+60. This shows the underlying monthly variability not immediately apparent in the whole-544 

period plots. Notably for the January to March period, AMM7 outperforms AMM15 at the grid 545 

scale. With the introduction of HiRA neighbourhoods, AMM7 still performs better for February 546 

and March but the difference between the models is significantly reduced. For these monthly 547 
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timeseries the error bars increase in size relative to the summary plots (e.g. Fig 8) due to the 548 

reduction in data available. The sample size will have an impact on the error bars as the smaller 549 

the sample, the less representative of the true population the data is likely to be. April in 550 

particular contained several days of missing forecast data, leading to a reduction in sample size 551 

and corresponding increase in error bar size, whilst during May there was a period with reduced 552 

numbers of observations. 553 

 554 

 555 

Figure 12 – Monthly time series of whole-domain CRPS scores for grid scale (solid line) and NB2 neighbourhood (dashes) for T+60 556 

forecasts. Error bars represent 95 % confidence values obtained from 10000 samples using bootstrap with replacement. Error bars 557 

have been staggered in the x-direction to aid clarity. 558 
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 559 

Figure 13 - On-shelf monthly time series of CRPS. Error bars represent 95 % confidence values obtained from 10000 samples using 560 

bootstrap with replacement. 561 

 562 

 563 

Figure 14 - Off-shelf monthly time series of CRPS. Error bars represent 95 % confidence values obtained from 10000 samples using 564 

bootstrap with replacement. 565 

 566 
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The same pattern is present for the on-shelf sub-domain (Fig. 13), where what appears to be a 567 

significant benefit for the AMM7 during February and March is less clear-cut at the NB2 568 

neighbourhood. For the off-shelf sub-domain (Fig. 14), differences between the two 569 

configurations at the grid scale are mainly apparent during the summer months. At the NB2 scale, 570 

the AMM15 potentially demonstrates more benefit than AMM7 except for April and May, where 571 

the two show similar results.  There is a balance to be struck in this conclusion as the differences 572 

between the two models are rarely greater than the 95 % error bars. This in itself does not mean 573 

that the results are not significant. However, care should be taken when interpreting such a result 574 

as a statistical conclusion rather than broad guidance as to model performance. Attempts to 575 

reduce the error bar size, such as increasing the number of observations, or number of times 576 

within the period would aid this interpretation. 577 

One noticeable aspect of the time series plots is that the whole-domain plot is heavily influenced 578 

by the on-shelf results. This is due to the difference in observation numbers as shown in Fig. 15, 579 

with the on-shelf domain having more observations overall, sometimes significantly more, for 580 

example during January or mid-late August. For the overall domain, the on-shelf observations 581 

will contribute more to the overall score and hence the underlying off-shelf signal will tend to be 582 

masked. This is an indication of why verification is more useful when done over smaller, more 583 

homogeneous sub-regions, rather than verifying everything together, with the caveat that 584 

sample sizes are large enough, since underlying signals can be swamped by dominant error types.   585 
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 586 

Figure 15 - Number of grid scale observations for the on and off-shelf domains. 587 

 588 

7. Discussion and Conclusions 589 

In this study, the HiRA framework has been applied to SST forecasts from two ocean models with 590 

different resolutions. This enables a different view of the forecast errors than obtained using 591 

traditional (precise) grid scale matching against ocean observations. Particularly it enables us to 592 

demonstrate the additional value of high-resolution model. When considered more 593 

appropriately high-resolution models (with the ability to forecast small-scale detail) have lower 594 

errors when compared to the smoother forecasts provided by a coarser-resolution model.  595 

The HiRA framework was intended to address the question ‘Does moving to higher resolution 596 

add value?’ This study has identified and highlighted aspects that need to be considered when 597 

setting up such an assessment. Prior to this study, routine verification statistics typically showed 598 

that coarser resolution models had equivalent or more skill than higher resolution models (e.g. 599 

Mass et al., 2002, Tonani et al., 2019).  During the period January to September 2019, grid scale 600 
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verification within this assessment showed that the coarser-resolution AMM7 often 601 

demonstrated lower errors than the AMM15. 602 

HiRA neighbourhoods were applied and the data then assessed using the CRPS, showing a large 603 

reduction (improvement) in errors for AMM15 when going from a grid scale, point-based 604 

verification assessment to a neighbourhood, ensemble approach. When applying an equivalent-605 

sized neighbourhood to both configurations, AMM15 typically demonstrated lower (better) 606 

scores. These scores were in turn broken down into off-shelf and on-shelf sub-domains and 607 

showed that the different physical processes in these areas affected the results. Forecast 608 

verification studies tailored for the coastal/shelf areas are needed to properly understand the 609 

forecast skills in areas with high complexity and fast evolving dynamics. 610 

When constructing HiRA neighbourhoods the spatial scales that are appropriate for the 611 

parameter must be considered carefully. This often means running at several neighbourhood 612 

sizes and determining where the scores no longer seem physically representative. When 613 

comparing models, care should be taken to construct neighbourhood sizes that are similarly sized 614 

spatially, the details of the neighbourhood sizes will depend on the structure and resolution of 615 

the model grid.   616 

Treatment of observations is also important in any verification set-up. For this study, the fact that 617 

there are different numbers of observations present at each neighbourhood scale (as 618 

observations are rejected due to land contamination) means that there is never an optimally 619 

equalized data set (i.e. the same observations for all models and for all neighbourhood sizes). It 620 

also means that comparison of the different neighbourhood results from a single model is ill 621 

advised, in this case, as the observations numbers can be very different, and therefore the model 622 

forecast is being sampled at different locations. Despite this, observation numbers should be 623 

similar when looking at matched spatially sized neighbourhoods from different models if results 624 

are to be compared. One of the main constraints identified through this work is both the sparsity 625 

and geographical distribution of observations throughout the North West Shelf domain, with 626 

several viable locations rejected during the HiRA processing due to their proximity to coastlines. 627 
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The purest assessment, in terms of observations, would involve a fixed set of observations, 628 

equalized across both model configurations and all neighbourhoods at every time. This would 629 

remove the variation in observation numbers seen as neighbourhood sizes increase as well as 630 

those seen between the two models and give a clean comparison between two models.  631 

Care should be taken when applying strict equalization rules as this could result in only a small 632 

number of observations being used. The total number of observations used should be large 633 

enough to ensure that the sample is large enough to produce robust results and satisfy rules for 634 

statistical significance. Equalisation rules could also unfairly affect the spatial sampling of the 635 

verification domain. For example, in this study coastal observations would be affected more than 636 

deep ocean observations if neighbourhood equalization were applied, due to the proximity of 637 

the coast.  638 

To a lesser extent, the variation in observation numbers on a day-to-day timescale also has an 639 

impact on any results and could mean that incorrect importance is attributed to certain results, 640 

which are simply due to fluctuations in observation numbers.  641 

The fact that the errors can be reduced through the use of neighbourhoods shows that the ocean 642 

and the atmosphere have similarities in the way the forecasts behave as a function of resolution. 643 

This study did not consider the concept of skill, which incorporates the performance of the 644 

forecast relative to a pre-defined benchmark. For the ocean the choice of reference needs to be 645 

considered. This could be the subject of further work.  646 

To our knowledge, this work is the first attempt to use neighbourhood techniques to assess ocean 647 

models. The promising results showing reductions in errors of the finer resolution configuration 648 

warrant further work. We see a number of directions the current study could be extended.  649 

The study was conducted on daily output which should be appropriate to address eddy mesoscale 650 

variability, but observations are distributed at hourly resolution, and so the next logical step 651 

would be to assess the hourly forecasts against the hourly observation and see how this impacted 652 

the results. This will increase the sample size, if all hourly observations were considered together. 653 

However, it is impossible to speculate on whether considering hourly forecasts would lead to 654 

more noisy statistics, counteracting the larger sample size.  655 



   
 

33 
 

This assessment only looked at SST for this initial examination. Consideration of other ocean 656 

variables would also be of interest, including looking at derived diagnostics such as mixed layer 657 

depth, but the sparsity of observations available for some variables may limit the case studies 658 

available. HiRA as a framework is not remaining static. Enhancements to introduce non-regular 659 

flow-dependent neighbourhoods are planned and may be of benefit to ocean applications in the 660 

future. Finally, an advantage of using the HiRA framework is that results obtained from 661 

deterministic ocean models could also be compared against results from ensemble models when 662 

these become available for ocean applications.  663 

 664 
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