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Abstract.   9 

A feature-based verification method, commonly used for atmospheric model applications, has been 10 

applied to Chlorophyll-a (Chl-a) concentration forecasts from the Met Office Atlantic Margin Model at 11 

7 km resolution (AMM7) North West European Shelf Seas model, and compared against gridded 12 

satellite observations of Chl-a concentration from the Copernicus Marine Environmental Monitoring 13 

Service (CMEMS) catalogue. A significant concentration bias was found between the model and 14 

observations. Two variants of quantile mapping were used to mitigate against the impact of this bias on 15 

feature identification (determined by threshold exceedance). Forecast and observed Chl-a objects for the 16 

2019 bloom season (March 1 to 31 July), were analysed, firstly in space only, and secondly as space-17 

time objects, incorporating concepts of onset, duration and demise. It was found that forecast objects 18 

tend to be too large spatially, with lower object numbers produced by the forecasts compared to those 19 

observed. Based on an analysis of the space-time objects the onset of Chl-a blooming episodes at the 20 

start of the season is almost a month too late in the forecasts, whilst several forecast blooms did not 21 

materialise in the observations. Whilst the model does produce blooms in the right places, they may not 22 

be at the right time. There was very little variation in forecasts and results as a function of lead time. A 23 

pre-operational AMM7 analysis, which assimilates Chl-a concentrations was also assessed, and found 24 

to behave more like the observations, suggesting that forecasts driven from these analyses could 25 

improve both timing errors and the bias. 26 
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1 Introduction 27 

The advancements in atmospheric numerical weather prediction (NWP) such as the improvements in 28 

model resolution began to expose the relative weaknesses in so-called traditional verification scores 29 

(such as the root-mean-squared-error for example), which rely on the precise matching in space and 30 

time of the forecast to a suitable observation. These metrics and measures no longer provided adequate 31 

information to quantify forecast performance (e.g. Mass et al. 2002). One key characteristic of high-32 

resolution forecasts is the apparent detail they provide, but this detail may not be in the right place at the 33 

right time, a phenomenon referred to as the “double penalty effect” (Rossa et al. 2008). This realisation 34 

created the need within the atmospheric community for creating more informative yet robust 35 

verification methods. As a result, a multitude of so-called “spatial” verification methods were 36 

developed, which essentially provide a number of ways for accounting for the characteristics of high-37 

resolution forecasts.  38 

 39 

In 2007 a spatial verification method inter-comparison (Gilleland et al. 2009, 2010) was established 40 

with the aim of providing a better collective understanding of what each of the new methods was 41 

designed for, diagnosing and categorising what type of forecast errors each could quantify. A decade 42 

later Dorninger et al. (2018) revisited this inter-comparison, adding a fifth category so that all spatial 43 

methods fall into one of the following groupings: neighbourhood, scale separation, feature-based, 44 

distance metrics and field deformation.  45 

 46 

The use of spatial verification methods has therefore become commonplace for atmospheric NWP (see 47 

Dorninger et al. 2018 and references within). Neighbourhood-based methods in particular have become 48 

popular due to the relative ease of computation and intuitive interpretation. Recently one such 49 

neighbourhood spatial method was demonstrated as an effective approach for exploring the benefit of 50 

higher resolution ocean forecasts (Crocker et al. 2020). Another class of methods focus on how well 51 

particular features of interest are being forecast. Forecasting specific features of interest is one of the 52 

main reasons for higher horizontal resolution. Feature-based verification methods, such as the Method 53 

for Object-based Diagnostic Evaluation (MODE, Davis et al. 2006) and the time domain version 54 
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MODE-TD (Clark et al. 2014) enable an assessment of such features, focusing on the physical attributes 55 

of the features (identified using a threshold) and how they behave at a given point in time, and evolve 56 

over time. These methods require a gridded truth to compare to. Whilst the initial inter-comparison 57 

project was based on analysing precipitation forecasts, over recent years their use has extended to other 58 

variables, provided gridded data sets exist that can be used to compare against (e.g. Crocker and 59 

Mittermaier 2013, Mittermaier et al. 2016). Mittermaier and Bullock (2013) detailed the first of the 60 

MODE-TD prototype tools to analyse the evolution of cloud breaks over the UK using satellite-derived 61 

cloud analyses. 62 

 63 

In the ocean, several processes have strong visual signatures that can be detected by satellite sensors. 64 

For example, mesoscale eddies can be detected from sea surface temperature or sea level anomaly (e.g. 65 

Chelton et al. 2011, Morrow and Le Traon, 2012, Hausmann and Czaja, 2012). Phytoplankton blooms 66 

are seasonal events which see rapid phytoplankton growth as a result of changing ocean mixing, 67 

temperature and light conditions (Sverdrup, 1953, Winder and Cloern, 2010, Chiswell, 2011).  Blooms 68 

represent an important contribution to the oceanic primary production that is a key process for the 69 

oceanic carbon cycle (Falkowski et al. 1998). Their spatial extent and intensity in the upper ocean make 70 

them visible from space with ocean colour sensors (Gordon et al. 1983, Behrenfeld et al. 2005). 71 

Biogeochemical models coupled to physical models of the ocean provide simulations for the various 72 

parameters that characterise the evolution of a spring bloom. In particular, Chlorophyll-a (Chl-a) 73 

concentrations provide an index of phytoplankton biomass. Chl-a concentration can also be estimated 74 

from spaceborne ocean colour sensors (Antoine et al. 1996).  75 

 76 

Validation of marine biogeochemical models has traditionally relied on simple statistical comparisons 77 

with observation products, often limited to visual inspections (Stow et al. 2009; Hipsey et al. 2020). In 78 

response to this, various papers have outlined and advocated using a hierarchy of statistical techniques 79 

(Allen et al. 2007a, b; Stow et al. 2009; Hipsey et al. 2020), multivariate approaches (Allen and 80 

Somerfield, 2009), and novel diagrams (Jolliff et al. 2009). Many of these rely on matching to 81 

observations in space and time, but some studies have started applying feature-based verification 82 

https://doi.org/10.5194/os-2020-100
Preprint. Discussion started: 2 November 2020
c© Author(s) 2020. CC BY 4.0 License.



4 

 

methods. Emergent properties have been assessed in terms of geographical provinces (Vichi et al. 2011) 83 

and ecosystem functions (de Mora et al. 2016). In a previous application of spatial verification methods 84 

developed for NWP, Saux Picart et al. (2012) used a wavelet-based method to compare Chl-a 85 

concentrations from a model of the European North West Shelf to an ocean colour product. 86 

 87 

For this paper, both MODE and MODE-TD (or MTD for short) were applied to the Met Office Atlantic 88 

Margin Model at 7 km resolution (O’Dea et al. 2012, Edwards et al. 2012, O’Dea et al. 2017, King et al. 89 

2018) for the European North West Shelf (NWS), in order to evaluate the spatio-temporal evolution of 90 

the bloom season in both forecast and observation fields.   91 

 92 

In Section 2 the data sets used in the verification process are introduced. Section 3 describes MODE and 93 

MTD. Section 4 contains a selection of results, and their interpretation. Conclusions and 94 

recommendations follow in Section 5.  95 

2 Data sets for the 2019 Chl-a bloom  96 

As stated in Section 1, feature-based methods such as MODE and MTD require a gridded field of some 97 

description. In order to assess the European NWS Chl-a concentration forecast (AMM7v8), a satellite-98 

based gridded ocean colour product (L4) product and model assimilative analysis (AMM7v11) are 99 

considered as gridded “truth” sources. 100 

2.1 Satellite-based gridded ocean colour products 101 

A cloud-free gridded (space-time interpolated, L4) daily product delivered through the Copernicus 102 

Marine Environment Monitoring Service (CMEMS) catalogue provides Chl-a concentration at ~1 km 103 

resolution over the Atlantic (46°W–13°E, 20°N–66°N). The L4 Chl-a product is derived from merging 104 

of data from multiple sensors: MODIS-Aqua, VIIRSN and OLCI-S3A. The near-real-time (NRT) 105 

products, which are computed one day after satellite acquisition, were downloaded after a few days to 106 

benefit from the delayed-time (DT) update that provides a better-quality product. The satellite derived 107 

estimate is an integrated value over optical depth.  108 
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 109 

Errors in satellite-derived Chl-a can be more than 100% of the observed value (e.g. Moore et al., 2009). 110 

The errors in the L4 Chl-a values are often at their largest near the coast, especially near river outflows. 111 

However, in the rest of the domain, smaller values of Chl-a mean that even large percentage 112 

observation errors result in errors typically smaller than the difference between model and observations. 113 

As will be shown, the models at 7 km resolution cannot resolve the coasts in the same way as is seen in 114 

the satellite product.  115 

 116 

For this study the ~1 km resolution L4 satellite product was interpolated onto the AMM7 grid using 117 

standard two-dimensional horizontal cubic interpolation. This coarsening process retained some of the 118 

larger concentrations present in the L4 product.  119 

 120 

2.2 Model forecasts and analyses 121 

2.2.1. Forecasts  122 

Forecasts of ocean physics and biogeochemistry for the European NWS waters are delivered through 123 

CMEMS. For a summary of the principles underlying the service see e.g. Le Traon et al. (2019). 124 

 125 

The hydrodynamics of the NWS is provided by the Forecasting Ocean Assimilation Models (FOAM) 126 

system which consists of a NEMO-based (Nucleus for European Modelling of the Ocean, Madec et al. 127 

2016) hydrodynamic model coupled to the variational data assimilation scheme (NEMOVar – Waters et 128 

al., 2015, King et al., 2018, O’Dea et al 2017).  For the NWS region, FOAM is configured for the 129 

shallow water of the shelf sea. Coupled to FOAM is the European Regional Seas Ecosystem Model 130 

(ERSEM) which provides forecasts for the lower trophic levels of the marine food web (Butenschön et 131 

al. 2016). Satellite and in situ sea surface temperature (SST) observations are assimilated using a 3D-132 

Var method (King et al., 2018). The forecasts run on the Atlantic Margin Model grid at approximately 7 133 

km horizontal resolution (AMM7) from 40 °N, 20 °W to 65 °N, 13 °E. Daily mean Chl-a concentration 134 

forecast out to Day 4 for the period of 1 March-31 July 2019 were compiled from the current 135 
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operational version (hereafter referred to as AMM7v8). Note that the analysis (1-day hindcast) and 136 

forecasts used here are available from the CMEMS catalogue.  137 

 138 

Ideally, Chl-a concentration from the model should be integrated over optical depth to be equivalent to 139 

the satellite derived value defined in 2.1 (Dutkiewicz et al. 2018). However, this is currently a non-140 

trivial exercise, and cannot be accurately calculated from offline outputs. Therefore, the commonly 141 

accepted practice is to use the model surface Chl-a (Lorenzen 1970, Shutler et al. 2011). Here it is 142 

assumed that the difference between surface and optical depth-integrated Chl-a is likely to be small in 143 

comparison with the actual model errors. 144 

 145 

 146 

Figure 1. (a) Daily mean L4 multi-sensor observations (top left) regridded on the 7km resolution model grid and (b) AMM7v8 147 
output (top right) Chl-a for 1 June 2019. (c) Error estimates on the multi-sensor L4 Chl-a (bottom left) and (d) difference between 148 

model and observations (bottom right) 149 
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Figure 1 shows the L4 ocean colour product (left) and AMM7v8 analysis (right) for 1 June 2019 on the 150 

top row, using the same plotting ranges. The second row shows the difference field that is provided with 151 

the L4 ocean colour product (left), and the AMM7v8 minus L4 difference field (right). The mean error 152 

(bias) is generally positive with the AMM7v8 analysis containing higher Chl-a concentrations, 153 

especially in the deeper North Atlantic waters. The exceptions are along the coast where the AMM7v8 154 

analysis is deficient, but it should be noted that these are also the zones where some of the largest 155 

satellite retrieval errors occur and where a 7-km resolution model, with a coarse representation of the 156 

coast, does not fully represent complex coastal and estuarine processes. The differences between the 157 

analysis and the L4 product can be comparable in size to the retrieval errors.  158 

 159 

2.2.2. Analyses 160 

As well as the products from the CMEMS catalogue detailed above, there was also an opportunity to 161 

use model analyses provided from the latest pre-operational AMM7-ERSEM model due for release in 162 

late 2020 – hereafter referred to as AMM7v11. This system incorporates upgraded physics, and an 163 

improved data assimilation scheme including additional observations. Specifically, in addition to 164 

assimilation of more physical variables (water column temperature and salinity profiles and sea level 165 

anomaly), this new version includes assimilation of satellite-borne ocean colour Chl-a concentrations. 166 

The satellite ocean colour observations assimilated are from a daily multi-sensor composite product 167 

based on MODIS and VIIRS) with resolutions of 1 km for the Atlantic (for further information see 168 

OCEANCOLOUR_ATL_CHL_L3_NRT_OBSERVATIONS_009_036 on the CMEMS catalogue).  169 

 170 

Significant differences between the AMM7v11 and AMM7v8 (the forecast version) relevant to the 171 

biogeochemistry include new coupling through the Framework for Aquatic Biogeochemical Models 172 

(FABM, Bruggeman and Bolding, 2014), an improved river discharge dataset and new nitrogen 173 

deposition input. Note only the analysis (Day 0) of AMM7v11 (i.e. no corresponding forecasts) was 174 

available at the time of the assessment. 175 
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3 Method for Object-based Diagnostic Evaluation (MODE) and MODE Time-Domain (MTD) 176 

3.1. Description of the methods 177 

This section provides a description of the Method for Object-Based Diagnostic Evaluation (MODE) 178 

tool, first described in Davis et al. (2006) and its extension MODE Time-Domain (MTD).  179 

 180 

MODE and MTD can be used on any sequence of forecasts which contain a feature that is of interest to 181 

a user (whoever that user may be, model developer or more applied), thus mimicking what humans do.  182 

Therefore, they can be used in a very generalised way, comparing two fields: in this context one is a 183 

forecast, the other an observation-based gridded field or model-based analysis. MODE identifies the 184 

features (called objects), as areas for which Chl-a concentrations values exceed a threshold, in both the 185 

forecast and observed fields. Object attributes are calculated and compared. Simple objects can be 186 

merged (to form clusters) within a single forecast or observed field and matched to objects in the other 187 

field. Summary statistics describing the objects and object pairs are produced. These statistics can be 188 

used to identify similarities and differences between forecast and observed objects, which can provide 189 

diagnostic insights of forecast strengths and weaknesses.  190 

 191 

Briefly, applying MODE consists of the following steps (which are described in detail in Davis et al. 192 

2006):  193 

1) Both forecast and observation (or analysis) need to be on the same grid. Typically, this means 194 

interpolating the observations to the model grid to avoid the model being expected to resolve 195 

features which are sub-grid scale.  196 

2) Depending on how noisy the fields are they need to be smoothed further. Here convolution is 197 

used as the method and is based on a disk. The choice of smoothing (convolution) radius 198 

depends on the field to be evaluated. It is worth remembering that the numerical discretisation 199 

implies that any model’s true resolution (i.e. the scales which the model is resolving) is between 200 

2 and 4 times the horizontal grid (mesh) resolution. The number of areas identified will vary 201 

inversely with the convolving radius.   202 
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3) Define a threshold which captures the feature of interest and apply it to both the smoothed 203 

forecast and observed fields to identify simple objects. 204 

4) The original intensity information in the field is then reinstated in the identified features (i.e. the 205 

analysis of the object attributes is not based on the smoothed fields). 206 

5) Depending on the merging option that is chosen, simple objects that are identified as being 207 

related to each other are merged to form cluster (complex) objects. 208 

6) Lastly, objects in the forecast and observed fields can be matched based on a range of criteria 209 

using a fuzzy logic engine (low level artificial intelligence), which together are expressed as the 210 

so-called “interest” score. The higher the score the stronger the match. All objects are compared 211 

in both fields and interest scores are computed for all. A threshold is set on the interest score 212 

value (typically 0.7) to denote which are the best matches to provide a unique best match for 213 

each object pair. Some objects will remain unmatched (either because there is none or because 214 

there are no interest values high enough to provide a credible match) and these can be analysed 215 

separately.  216 

Simple forecast and observed (analysis) object attributes which can be evaluated include centroid 217 

location, area, axis angle, curvature and aspect ratio. They can also be split into matched and 218 

unmatched to see what proportion of objects are matched, for instance. Matched object pairs have 219 

different attributes such as centroid difference, angle difference, union and intersection area for 220 

example, focusing on the comparison between the matched objects in terms of how far apart they are, 221 

whether they are the same size etc. 222 

From the above it is clear that MODE is highly configurable. To gain an optimal combination of 223 

configurable parameters for each application requires extensive sensitivity testing to gain sufficient 224 

understanding of the behaviour of the data sets to be examined, and to achieve, on average, heuristically 225 

the right outcome. Initial tuning requires user input to check whether the method is replicating what a 226 

human would do.  227 
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1) The sensitivity to threshold and smoothing (convolution) radius should be explored. 228 

Numerically information such as the object counts, and areas associated with each combination 229 

of threshold and smoothing radius can be summarised into what is known as a “quilt plot”.  230 

2) The sensitivity to the merging option must also be investigated. The options provided include 231 

none, threshold only (using double thresholds), a fuzzy logic engine, or a combination of both 232 

threshold and fuzzy logic. Depending on the field this could have an impact. In this instance the 233 

merging option had very little impact. 234 

3) The behaviour of the matching can also be configured. The interest values that are computed for 235 

each possible pair of forecast-observation objects are thresholded to define which objects match. 236 

Options include no_merge, merge_forecast and merge_both. There is an increase in computation 237 

expense for the merge_both option, which may, or may not, be necessary for a given application.  238 

 239 

Note also that a minimum size (area) is set for object identification. This is often a somewhat pragmatic 240 

choice. If the size is set too small, too many objects are identified, which end up being merged. If too 241 

large, very few objects are identified. In this study the merge_both option was used for MODE with a 242 

minimum area of 10 grid squares (~70 km2).  243 

 244 

Identical to MODE, identifying time-space objects in MTD uses smoothing and thresholding. Applying 245 

a threshold yields a binary field where grid points exceeding the threshold are set to one. At this stage 246 

each contained region of non-zero grid points in space and time is considered a separate object, and the 247 

grid points within each object are assigned a unique object identifier. For MTD the search for 248 

contiguous grid points not only means examining adjacent grid points in space, but also the grid points 249 

in the same or similar location at adjacent times to define a space-time object. The same fuzzy logic-250 

based algorithms used for merging and matching in MODE apply to MTD as well. Similarly, to MODE 251 

a minimum volume of 1000 grid squares was imposed for space-time object identification. For MTD a 252 

lower interest score of 0.5 is used for matching objects.  253 

 254 
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MODE and MTD produces object attributes for both “single” and “paired” objects (when matching), as 255 

well as for “simple” or “cluster” (when merging objects within either the forecast or analysis field) 256 

object attributes. Throughout this analysis the single simple objects have been used when considering 257 

forecast-only or analysis-only attributes.  258 

 259 

3.2 Defining Chl-a concentration thresholds and other choices on tuneable parameters 260 

 261 

Chl-a can vary over several orders of magnitude. Often log10 thresholds are used to match the fact that 262 

Chl-a follows a lognormal distribution (e.g. Campbell 1995). Defining thresholds can be difficult: on 263 

the one hand there is the desire to capture events of interest, so the thresholds should not be too low, 264 

whereas on the other hand if the thresholds are too high no events are captured and there is nothing to 265 

analyse. From a regional perspective the values of interest are in the range of 3–5 mg.m-3 (Schalles, 266 

2006). For this study a range of log10 thresholds between 0.2 and 1.4 mg.m-3 were defined, 267 

corresponding to a lowest threshold of 1.62 and a highest threshold of 25 mg.m-3.  268 

 269 

In addition to the interpolation of the L4 ocean colour product onto the AMM7 grid a smoothing radius 270 

of 5 grid points was also applied to the observed fields to remove some of the very small and noisy 271 

objects typically found near the coast (which neither AMM7v8 nor AMM7v11 can resolve). No 272 

smoothing was applied to the forecasts or model analyses as these were considered to be smooth 273 

enough. This radius was identified based on the sensitivity analysis, which will be described in more 274 

detail in Section 4. This sensitivity analysis also identified the concentration thresholds which were 275 

viable for analysis. Only the 2.5 mg.m-3 threshold will be discussed here. For this study the default 276 

settings in MODE were used to compute the interest score.  277 

 278 

3.3 Software used 279 

Verification was performed using the Model Evaluation Tools (MET) verification package that was 280 

developed by the National Center for Atmospheric Research (NCAR), and which can be configured to 281 

generate both MODE and MTD outputs. MET is freely available for download from GitHub at 282 
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https://github.com/dtcenter/MET. For this study version 8.1 of the software was used. MET allows for a 283 

variety of input file formats but some pre-processing of the CMEMS NetCDF files was necessary 284 

before the MODE package could be applied. This includes regridding of the observations onto the 285 

model grid, and addition of forecast lead time and forecast reference time variables to the NetCDF 286 

attributes. All these attributes are detailed in the MET software documentation (Newman et al. 2018).  287 

4. Data analysis 288 

The data analysis presented in this section focuses on a subset of results computed for the following: 289 

• Comparing the L4 ocean colour product to the AMM7v8 and AMM7v11 analyses 290 

• Comparing the AMM7v8 forecasts to the L4 and AMM7v11 analyses 291 

 292 

 4.1 Understanding concentration differences and associated impacts 293 

  294 

Figure 1 suggests a considerable bias between the AMM7v8 forecasts and the L4 ocean colour product. 295 

Whenever a threshold is applied to define the range or features of interest, the presence of a bias can 296 

render the results impossible to interpret because being a spatial method, the object area forms an 297 

important part of any comparison. Consider for example the case where the bias is such that whilst 298 

features are present, they are so different in magnitude that the objects can only be identified in one of 299 

the fields, and not the other. Whilst it could be useful to simply analyse the unmatched objects, the 300 

purpose of MODE is to consider whether features are forecast correctly and if there are no matched 301 

pairs then this is impossible to do.  302 

 303 

This is illustrated in Figure 2 which shows the daily Chl-a concentrations as represented in L4, and the 304 

AMM7v8 and AMM7v11 analyses. The raw fields are plotted in (a) to (c). The AMM7v8 analysis in (a) 305 

is markedly different to (b) and (c). Applying a threshold of 6.3 mg.m-3 yields 12 objects in the 306 

AMM7v8 analysis, none in the AMM7v11 analysis and 6 in the L4 product. If these options were 307 

verified against each other, some comparisons would yield no matched pairs. If the objective is to see if 308 

the forecast has any skill in forecasting features (not just absolute concentrations) that data analysis 309 
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would yield no useful information. In that case the most sensible thing to do is to provide some form of 310 

bias removal to mitigate against the impact of the concentration differences affecting the ability to 311 

understand whether, at a base level, the forecasts have any skill at forecasting the features (blooms). 312 

 313 

 314 

Figure 2: Daily Chl-a concentrations (in mg.m-3) for 29 March 2019 showing the three different analyses in (a) to (c). If a constant 315 

threshold of 6.3 mg.m-3 is applied then MODE finds 12 objects exceeding this threshold (d), where the colour matches the object 316 

number.  No objects are identified in AMM7v11 (e) and 6 in the L4 ocean colour product (f). The raw fields in (a) to (c) indicate a 317 

considerable difference in concentrations between the analyses with AMM7v11 much closer to the L4 ocean colour product. The 318 

AMM7v8 analysis is indicative of the AMM7v8 forecast behaviour too. 319 

 320 

To understand the nature of the concentration differences better the study data set was turned into 321 

cumulative distribution functions (CDF) of the log10 Chl-a concentrations, by taking all grid points in 322 

the domain and all dates in the study period. This was done for the L4 ocean colour product and the 323 
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AMM7v8 analyses, the two that clearly differ more dramatically from Fig 2. These are plotted in Fig. 3, 324 

showing that the differences are not just due to an offset in the concentrations but a more complex 325 

difference. Close to half of the AMM7v8 analyses concentrations are significantly lower than observed, 326 

some extremely low (at the numerical noise level), whilst the L4 distribution’s smallest concentrations 327 

are several orders of magnitude greater. The two distributions cross over around ~3 mg.m-3, and whilst 328 

the shape of the upper half of the AMM7v8 and L4 CDFs shows the same rate of increase, here the 329 

AMM7v8 values are now larger than the L4 values. The L4 concentrations span a much smaller range 330 

in magnitudes providing a much tighter distribution with approximately 95% of the values below 331 

concentrations of 10 mg.m-3. Generally, the AMM7v8 does not contain as many larger concentrations 332 

so that the peak concentrations are too low when compared to the L4 product. The shape of this 333 

distribution shows that a bulk bias correction scheme which relies on a simple addition or subtraction 334 

(because the distributions are shifted) would not work. This situation requires a method like quantile 335 

mapping, which preserves the shape of the distribution. 336 

 337 

In practice the application of a quantile mapping method means that the threshold-exceedance seen in 338 

the forecasts occurs at the same proportion as that seen in the observations. This frequency equivalence, 339 

applied across the whole field, behaves as a bias removal tool. To explain quantile mapping another 340 

way, the observed values at that time are ranked and the threshold value is determined as a quantile of 341 

that distribution. The equivalent quantile is then selected from the ranked forecast values.  342 

 343 
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 344 

Figure 3. Empirical cumulative distribution functions of the log10 Chl-a concentration for observations (L4 ocean colour product) 345 
and Day 1 forecasts from AMM7v8 for the 2019 bloom season. 346 

 347 

It is probably too simplistic to call the differences a bias, but the impact the documented concentration 348 

differences may have on identifying objects (through the use of fixed concentration thresholds) for the 349 

purposes of analysing object properties (which almost exclusively relate to the spatial properties of the 350 

fields), needed to be minimised.  351 

 352 

For the analysis that follows quantile mapping was applied in one of two different ways, necessitated by 353 

what functionality was available in the MET software. For the 2-dimensional MODE analysis the option 354 

to remove the bias can be specified (available from MET v8.1) which performs a quantile mapping 355 

between the two fields for each forecast-analysis pair. Here the observed threshold is specified (fixed) 356 

and a ranking of values in both the forecast and observed field identifies the analysis value that has the 357 

equivalent rank in the forecast distribution. In this instance the forecast threshold varies with time to 358 

ensure that the frequency bias of the paired fields is equal to one at all times.  359 

 360 

For the three-dimensional MTD analysis tool this option was not available as yet. In this instance the 361 

seasonal distribution shown in Fig. 3 was used to derive a seasonal threshold denoting a percentile 362 
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equivalence across the two datasets. The reference (fixed) threshold is based on the L4 product.  In this 363 

instance the day-to-day frequency bias will not necessarily be 1 but the frequency bias will be 364 

approximately 1 when the season is taken as a whole. 365 

 366 

Once the bias has been taken account of in this manner, the spatial properties of the subsequent 367 

identified objects can be analysed without the concern that the concentration differences are leading to a 368 

misinterpretation of results (remembering that the primary purpose of a feature-based assessment is to 369 

determine whether features of interest can be identified with any skill).   370 

 371 

From Fig. 2 the concentration differences between the AMM7v11 analysis and L4 ocean colour product 372 

seem to be much reduced. MODE was used to compare these two “truths” by treating the AMM7v11 373 

analysis as the ‘forecast’ field with the latter as an observation field to understand what the day-to-day 374 

differences in thresholds are. Figure 4 provides the time series of AMM7v11 thresholds which provide 375 

the quantile (frequency) equivalence to 2.5 mg.m-3. There are still differences in behaviour between the 376 

two sources, but especially early on in the season the differences are small. Larger day-to-day variations 377 

are evident as the season progressed, where the threshold cycles between values of ~2.5 mg.m-3 and ~4-378 

5 mg.m-3. There are notable peaks at the end of May and the beginning of July. At these times the 379 

AMM7v11 appears to have higher Chl-a concentrations in large portions of the domain compared to the 380 

L4 product. The AMM7v11 threshold for the season is 2.9 mg.m-3, which can be considered a relatively 381 

small variation. From this result it would seem that the satellite observations constrain the model initial 382 

conditions, both in terms of the minimum values and also limiting any tendency to bloom where it is not 383 

seen in observations. The lack of constraint is very apparent in AMM7v8, as shown in Fig 5. 384 
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 385 

Figure 4. Threshold identified as producing a frequency bias of 1 for the AMM7v11 analysis compared to L4 ocean colour 386 
product. The mean threshold over the 2019 season, 2.9 mg.m-3, is indicated in the legend. The observed threshold used was 387 

2.5 mg.m-3. 388 

  389 

Error! Reference source not found. illustrates the AMM7v8 threshold variations based on a day 4 390 

forecast compared to AMM7v11 and L4 across the 2019 bloom season using the built-in functionality 391 

in MODE as for Fig 4. The same threshold of 2.5 mg.m-3 was used for both the AMM7v11 and L4 392 

products, whilst the AMM7v8 forecast thresholds are derived with respect to these two analyses. It is 393 

worth noting that there is very little variation with forecast lead time (and will not be shown), hence 394 

showing the day 4 forecast values is fairly representative of the AMM7v8 analysis and all forecast lead 395 

times.  396 

 397 

Within the first month, before the bloom started in earnest, the thresholds are similar to, if not slightly 398 

under, the observed value. This is consistent with Fig. 3. The forecast threshold values steadily increase 399 

through April, until at the end of the month there is a spike in the threshold required to maintain the 400 
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frequency bias at one. Looking at the MODE graphical output for this time period suggests that 401 

AMM7v8 has increased Chl-a concentrations in both the Bay of Biscay, the Norwegian Sea and North 402 

Sea which may account for this. From mid-May onwards, as the bloom extends to most of the offshore 403 

regions, the threshold increases most, peaking at ~13 mg.m-3. Investigating the objects identified over 404 

this period it can be seen that the forecasts are very active in the South West Approaches and the North 405 

Sea, in addition to north-west of Scotland and in a region off the northern domain edge. The latter 406 

object is not identified in the L4 ocean colour product. The spike towards the end of June coincides with 407 

an area of elevated forecast Chl-a in the North Atlantic, between Iceland and the United Kingdom. The 408 

region affected is physically far larger than seen in the observations. By the end of the bloom season, 409 

the threshold values are back down to similar values as the observed threshold. By contrast the forecast 410 

thresholds derived when using the AMM7v11 analysis are smaller but follow the same general pattern – 411 

providing evidence that the AMM7v11 analysis sits somewhere between the L4 and AMM7v8 in terms 412 

of concentrations but is still closer to the L4 product, as shown in Fig 4. The assimilation process 413 

provides a smoothing effect, which also means that peaks seen in the L4 will have been reduced in the 414 

AMM7v11 analysis, for example. 415 

 416 

Figure 5. Forecast threshold value (mg.m-3) which produced a frequency bias of 1 for the AMM7v8 day 4 forecasts versus L4 417 
satellite product (grey), and for the AMM7v8 day 4 forecasts against the AMM7v11 analysis (black). The L4 and AMM7v11 418 
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threshold used is 2.5 mg. m-3. The average value for the threshold across the time series is in brackets in the legend. 419 

  420 

For the MTD analysis objects in the L4 ocean colour product and the AMM7v11 analyses were defined 421 

using a Chl-a concentration threshold of 2.5 mg.m-3, whereas for the AMM7v8 forecasts and  analysis a 422 

threshold of 6 mg.m-3 was used, derived from the CDFs plotted in Fig. 3. This is slightly higher than the 423 

mean value derived in Figs 4 and 5 showing that the seasonal CDF does provide a slightly different 424 

overall range of concentrations than day-to-day variations.   425 

 426 

4.2 Sensitivity analysis  427 

 428 

In order to ensure that MODE used optimal settings for the ocean forecasts under study, the sensitivity 429 

of results to smoothing and Chl-a concentration were investigated to find the best object identification 430 

results, balancing the need for identifying objects with keeping the number of objects manageable.   431 

 432 

Much of the initial identification of thresholds and smoothing requirements was done using data from 433 

the 2018 bloom season. It is worth noting that this work was done without accounting for the 434 

concentration differences but simply analysing the distributions inherent within the data sets. Figure 6 435 

provides a selection of quilt plots derived from using the L4 ocean colour products and AMM7v8 436 

analyses during July 2018, using one of the merging options which was tested. As stated earlier, results 437 

for other options were very similar and will not be shown.  438 

 439 

The quilt plots essentially provide a two-dimensional mapping of frequencies or counts produced by 440 

running MODE multiple times with different settings for the level of smoothing (convolution) radius 441 

along the x-axis and increasing concentration thresholds along the y-axis.  442 

  443 

In Figure 6 some quilt “difference” plots are shown to focus on the individual characteristics of the 444 

AMM7v8 analysis and the L4 ocean colour product based on a set of initial data that was available for 445 

July 2018. Here the merge_both matching option is shown.  In (a) the difference in the number of 446 

https://doi.org/10.5194/os-2020-100
Preprint. Discussion started: 2 November 2020
c© Author(s) 2020. CC BY 4.0 License.



20 

 

simple AMM7v8 and L4 objects is shown as a function of smoothing radius and concentration 447 

threshold. In (b) the difference in median object areas for each combination is shown based on all 448 

objects identified in the July 2018 study period. 449 

 450 

From Fig. 6 it is clear there is switch in the sign of the object count “bias” for thresholds above 2.5 451 

mg.m-3, where the AMM7v8 analysis has far more objects than the L4 ocean colour product. 452 

Conversely at or below this threshold there are far more L4 objects identified than AMM7v8 objects. 453 

Further examination shows that there are very few L4 objects above 2.5 mg.m-3 of any sensible size, so 454 

this was chosen as the threshold for identifying Chl-a bloom objects. The median object area increases 455 

with increasing smoothing so that the largest areas occur for the largest smoothing radii. It is therefore 456 

logical that the potential for variations and larger differences increases also with increasing smoothing 457 

radius. This is shown in (b) where it is apparent that the differences between the data sets becomes 458 

larger with increasing smoothing, thus suggesting an upper limit of 6 grid squares on the smoothing 459 

radius for the L4 product. The starkest differences, and hence the need for addressing the concentration 460 

differences before proceeding with any formal analysis is shown in (c). It shows the difference in the 461 

total area enclosed within an object for the data set considered (July 2018). All the differences are 462 

positive, i.e. the AMM7v8 object areas in their entirety completely swamp the L4 object areas.  463 

 464 

 465 

Figure 6. Quilt “difference” plots for the sensitivity to smoothing (convolution) radius  as a function of threshold, showing the 466 

difference between AMM7v8 analysis and L4 ocean colour product object (AMM7v8 minus L4): (a) Difference in simple object 467 
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counts, (b) difference in the median areas (in grid squares over the period), and (c) difference in total area (adding all objects 468 

together for each field, also in grid squares). Here the results for the merge_both option are shown. Results are for July 2018. 469 

 470 

Figure 7. Average daily object counts for July 2018 produced by adding the L4 and AMM7v8 objects together. Also shown is the 471 

smoothing radius which ensures that there are no more than 30 objects (in total) on any given day that have to be analysed. Based 472 

on this a smoothing radius of 5 was used for the L4 product and 2.5 mg.m-3 threshold. 473 

 474 

The decision on smoothing radius was based on the average daily object count (which is a sum of the 475 

observed and forecast object counts). Based on visual inspection it is clear that more than 30 objects 476 

become difficult to analyse. This was used as the threshold to examine what the minimum smoothing 477 

radius is for each threshold that would ensure that the average daily object count is less than 30. Both 478 

these quantities are shown in Fig. 7. This suggests that smoothing needs to be reduced with increasing 479 

concentrations because objects become smaller and are less frequent. Too much smoothing could 480 

potentially remove these more intense objects from the analysis, though one has to ask the question 481 

whether these are genuine and whether meaningful statistics can be compiled if only a few objects are 482 

identified. AMM7v8 output is on a ~7 km grid. Given an understanding of what length scales are 483 

resolvable in the AMM7 models it was decided that further smoothing of the AMM7 data was not 484 

advantageous given the characteristics of the fields at the grid scale. However, it was decided that a 485 
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smoothing radius of 5 grid squares (~35 km) for the L4 ocean colour product would be beneficial to 486 

reduce some of the mismatches around the coast. 487 

 488 

How similar are the L4 ocean colour product and the AMM7v11 analysis? Put differently, how closely 489 

does the AMM7v11 analysis follow the most important observation source used to produce it? Figure 8 490 

shows the evolution of the proportion of matched object areas (to total area) through the 2019 season, 491 

when using MODE to compare the L4 and AMM7v11 analysis, to further explore the differences (and 492 

similarities) between them. The relatively high levels during April are due to the large numbers of well-493 

matched, physically small coastal objects in addition to the larger Chl-a bloom originating in the Dover 494 

Straits. There is a notable minimum at the beginning of July. Inspecting the MODE graphical output 495 

reveals this is in part due to only a few small objects being identified, and this is compounded by their 496 

complete mismatch; the L4 objects are all coastal, whilst the AMM7v11 objects are either coastal (but 497 

not in the same location as L4 objects) or in the North Atlantic, to the north-west of Scotland. The 498 

relatively high proportions either side of this time arise from a better correspondence in placement of 499 

the coastal objects (there is a distance limit on how far objects can be apart for the matching process to 500 

have a positive contribution to the interest score). 501 
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 502 

Figure 8. Proportion of total object area which is matched. Underlying matched and unmatched object areas (in units of numbers 503 
of grid squares) are taken from the MODE Analysis output. The threshold used to identify objects is based on the L4 value 504 

exceeding 2.5 mg.m-3. 505 

Overall, it will be shown that the AMM7v11 analysis is much closer to the L4 observations than the 506 

AMM7v8 analysis. Therefore, the AMM7v11 can be used as a credible source for assessing the AMM7 507 

forecast model system going forward. The AMM7v8 analysis on the other hand, does not resemble the 508 

L4 observations sufficiently, and should not be used for assessing the forecasts. The major benefit of 509 

using a model analysis is that it is at the same spatial resolution, with the same ability to resolve Chl-a 510 

bloom objects (i.e. limits the uncertainty due to whether an object could be missing due to the inability 511 

of the model to resolve the feature). At this model resolution any coastal objects do not feature in any 512 

subsequent data analysis. 513 

 514 

Subsequently, results are presented against both the AMM7v11 analysis and the L4 observations to see 515 

what effect the truth source may have and whether it could change the assessment of the AMM7v8 516 

forecasts (and analysis).  517 
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4.3 Examining the MODE object attributes 518 

This section demonstrates the kinds of results that can be extracted from the two-dimensional MODE 519 

objects. Aspects of the marginal (forecast or observed only) and joint (matched/paired) distributions can 520 

be examined. This includes object size (as a proxy for area) but also the proportion of areas that are 521 

matched or unmatched. This part of the analysis in particular is made possible by the quantile mapping, 522 

so that the mismatches in concentrations have been removed or mitigated against, to ensure that such 523 

differences cannot swamp the signal, as Fig. 6(c) suggests they would. 524 

 525 

The distributions across all the identified forecast and observed objects can be analysed separately and 526 

presented as box-and-whisker plots. Recall that the box encompasses the inter-quartile range (IQR, 25th 527 

to 75th percentile) and the notch and line through the box denotes the median or 50th percentile. The 528 

dashed line represents the mean, and the whiskers show ±1.5 times the IQR. For clarity, values outside 529 

that range have been filtered out of the plots shown here. 530 

 531 

Figure 9 shows a selection of AMM7v8 and L4 ocean colour product object attributes through the 2019 532 

bloom season, such as individual object areas and intensity information (concentrations) as a function of 533 

lead time (in days). Panel (a) shows the object areas (in model grid squares). AMM7v8 forecasts have a 534 

broader size distribution and are generally bigger than the L4 objects. The mean (dashed line) is outside 535 

the box denoting the IQR, suggesting that the area distributions are extremely skewed. The mean is 536 

completely dominated by the large areas, even if they are few in number. The same is true for the L4 537 

objects. Panels (b) to (d) try to provide some insights into the concentrations within objects. The lower 538 

end of the concentrations (below the defined threshold) have been removed through the thresholding 539 

process so that the distribution minimum here is defined as the object threshold. However, looking at 540 

the 10th percentile, 50th percentile and 90th percentile values of the within-object distributions (arguably 541 

the part of the distribution of interest) can provide information on the concentration biases and the 542 

general behaviour of the distribution, which is useful for aiding model development. It provides a 543 

specific way of looking at the bias, which having been accounted for in terms of thresholding, is still 544 

present within the objects. Figure 9(b) shows the range of 10th percentile concentration values within 545 
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the objects, i.e. above the threshold used to identify the object (in this case 2.5 mg.m-3). [The 546 

concentration values within all the objects already exceeding the threshold are ranked and specific 547 

percentiles of the values exceeding the threshold can be extracted.] The 10th percentile within-object 548 

concentration values for the L4 ocean colour product are lower than those from AMM7v8, showing the 549 

bias, and their median and mean values are closer together. The 50th percentile of the within-object 550 

distributions shown in Fig. 9(c) displays similar behaviour but the difference between the L4 and 551 

AMM7v8 “median of medians” is even larger than in (b). The 90th percentile within-object 552 

concentrations in Fig. 9(d) show that the AMM7v8 and L4 distributions have, for the first time, similar 553 

median values, with the L4 ocean colour product having somewhat broader distributions and larger 554 

values, which is consistent with the apparent convergence in the distribution shown in Fig. 3. In 555 

addition, the observed means appear slightly larger than those forecast, reflecting the tendency for the 556 

L4 objects to reach higher concentration values, especially in coastal locations. To summarise there are 557 

three main messages from this figure: 558 

• the AMM7v8 objects are too large, even when the bias is taken into account; 559 

• the AMM7v8 concentrations are very biased, except in the tail, where they are more similar but 560 

not predicted often enough; and 561 

• there is little to no change in the behaviour of the AMM7v8 forecast with lead time.    562 
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 563 

Figure 9. Object attribute distributions for a) object area (in grid squares), b) 10th percentile of concentration values (above the 564 
threshold, in units of mg.m-3), c) distribution of median concentrations (50th percentile) in units of mg.m-3, and d) 90th percentile 565 
of concentration (above the threshold, in units of mg.m-3), for both the forecast objects (AMM7v8) and the observed objects (L4). 566 

The evolution of the number of objects identified through the 2019 bloom season is shown in Figure 10, 567 

illustrating how elements of the marginal and joint distribution information provided by MODE can be 568 

used together. Here both matched (joint) and unmatched (marginal) objects are shown. Both L4 ocean 569 

colour product and AMM7v11 analyses results are shown separately in (a) and (b). It is important to 570 

emphasise that even though the forecasts are the same in both (a) and (b), the different “truths” used 571 

could affect which AMM7v8 forecast objects are matched. There should be fewer unmatched objects 572 

than matched ones (ideally there would be no unmatched objects in either the forecast or the analysis). 573 

In Fig. 10 the number of objects in both sets of observations (AMM7v11 and L4) starts off small and 574 

increases as the bloom develops. In general, the number of matched forecast objects in Fig. 10(a) 575 

evolves in the same way as the number seen in Fig. 10(b). A spike in the number of matched objects 576 

seen in early April can be attributed to several coastal locations, which appear to be spatially well-577 
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matched. In addition, a larger Chl-a bloom is seen in the Dover Straits region in the L4 ocean colour 578 

product and although not exactly spatially collocated, the objects are matched. There are a consistently 579 

large number of unmatched objects seen in the AMM7v11 analysis and L4 ocean colour product from 580 

the end of May onwards. In the AMM7v11 analysis this appears to be due to an increase in small 581 

objects identified, mainly to the west, north and east of the United Kingdom. The increase in unmatched 582 

objects in the L4 ocean colour product is of a different origin, being due to an increase in localised 583 

coastal blooms. 584 

 585 

Figure 10. Time series of the number of matched and unmatched objects from the MODE runs comparing (a) Day 4 AMM7v8 586 
forecasts (black) with AMM7v11 analysis fields (grey) and (b) comparing Day 4 AMM7v8 forecasts (black) with L4 satellite 587 

product observations (grey). 588 

The identified objects in each of the data sets: AMM7v8, AMM7v11 and L4 ocean colour product can 589 

also be considered spatially, by counting the frequency with which a given grid square falls within an 590 

identified object on any given day. These can be added up over the entire season to produce a spatial 591 
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composite object or “frequency-of-occurrence” plot. Figure 11 shows this spatial composite identified 592 

through the 2019 bloom season for each of the AMM7v8 Day 1 forecast objects (a), the L4 ocean 593 

colour product objects (b) and the AMM7v11 objects (c). All objects are identified using the 2.5 mg.m-3 594 

threshold. The AMM7v8 objects in (a) are clearly larger and cover more locations but each location 595 

with a lower frequency; there are more grid squares where there is an object identified between 0–20% 596 

of the time than for the L4 observed objects, as seen in Fig. 11(b). Noticeably, there is a patch in the 597 

central North Sea where the AMM7v8 forecasts identify objects some of the time, but the L4 ocean 598 

colour product does not have objects there at all. The AMM7v11 analysis, shown in Fig. 11(c) has 599 

objects there some of the time, but looks more like the L4 composite; this could indicate the model 600 

tends to generate high Chl-a concentrations in this area, but the data assimilation is able to constrain it. 601 

 602 

However, there are areas, for example in the South West Approaches, where there appears to be a good 603 

level of consistency between the forecast and observed object frequencies. AMM7v11 has elevated Chl-604 

a values along the northern and western edges of the domain, for a low proportion of the time, which 605 

are not seen in the L4 product, and are also different to AMM7v8.  This is likely due to changes in how 606 

the nutrient and phytoplankton boundary conditions have been specified between AMM7v8 and 607 

AMM7v11, due to Chl-a being too low near the boundaries in AMM7v8. The advantage of assimilation 608 

of the satellite observations within the AMM7v11 analysis can be seen around the coast; proportions in 609 

Figure 11(c) have moved to similar levels as seen in the L4 plot (b) in coastal locations. 610 

 611 

Figure 11 also shows that even when the differences in concentrations (bias) are accounted for in the 612 

thresholding, the extent or size of the AMM7v8 forecast objects (which represent the Chl-a blooms) is 613 

still overestimated compared to the L4 ocean colour product with the AMM7v11 analysis sitting 614 

somewhere in between these two solutions. 615 
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616 
Figure 11 Object composites (the proportion of time for which an object was present at the grid box throughout the 2019 bloom 617 
season) for a) the AMM7v8 day 1 forecast objects, b) the L4 ocean colour product objects and c) the AMM7v11 analysis objects. 618 

For (a) the thresholds varied to but were anchored to “truth” threshold of 2.5 mg.m-3, which was used for (b) and (c). 619 
 620 

Thus far all the attributes have been based on only the forecast or only the observed objects. Figure 12 621 

gives an example of a paired object attribute using box-and-whisker plots, which are produced by 622 

comparing the AMM7v8 day 0 forecast to L4 and AMM7v11 (labelled AMM7v8 vs AMM7v11, and 623 

AMM7v8 vs L4) and a third option of comparing the two truth sources (labelled AMM7v11 vs L4). 624 

Figure 12 shows the intersection-over-area diagnostic, which essentially gives a measure of how much 625 

the paired forecast-observed objects overlap in space. If the objects do not intersect, this metric is 0. The 626 

IQR is ~0.45 with 50% of paired objects having an intersection-over-area of 0.6 or greater (it is easy for 627 

smaller L4 ocean colour product areas to be completely enveloped by the model analyses, even with the 628 

concentration bias accounted for). However, the whisker spans the entire range of values (between 0 629 

and 1) which shows that there are instances where this metric is 0. It clearly shows that the AMM7v11 630 

analysis is closest to the L4 ocean colour product, with all pairs overlapping in some way. Finally, the 631 

AMM7v11 vs L4 shows the most compact distribution of values. There is quite a difference between 632 

the median (notch) and the mean (dashed line) for this metric, suggesting the distribution is skewed with 633 

the mean affected more by many small values.  634 
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 635 

Figure 12. Ratio of the intersection area over the largest of the forecast or observed object area for Day 0 Chl-a concentrations 636 
exceeding 2.5 mg.m-3 (for L4 ocean colour product and AMM7v11) and a smoothing radius of 5 grid squares.  637 

 638 

4.4 Location errors 639 

 640 

The focus shifts to MTD output in subsequent sections. Having information in space and time enables 641 

one to ask, and hopefully answer, many questions related to how the bloom season was initially 642 

detected and subsequently forecast. What is particularly helpful is that elements such as location and 643 

timing errors can be treated separately to answer: “did the model predict the bloom to start in the 644 

observed location?” or “did the model predict the onset at the right time?” and “did the model predict 645 

the peak and duration of the bloom correctly?”. We address location errors first. 646 

 647 

Recall that objects are now identified in space and time. Recall also that a manual quantile mapping was 648 

used here as a more automated method was not available for MTD. As previously described, all MTD 649 

results are based on a 2.5 mg.m-3 threshold applied to the L4 ocean colour products or AMM7v11 650 

analyses and a 6 mg.m-3 threshold to the AMM7v8 forecasts. First, the location error of the blooms is 651 

examined using the time centroid for a space-time object. This time centroid is derived from a time 652 
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series of spatial (two-dimensional) centroids which are extracted for each time slice, and which 653 

represents one of the inputs to identifying the 3-D space-time objects. The time centroids for all 654 

identified MTD objects during the 2019 bloom are shown in Fig. 13. The filled circles represent the 655 

observed time centroid (large represent AMM7v11 and small reflect L4). All other coloured symbols 656 

indicate the AMM7v8 forecast time centroids. The colours represent the relative position within the 657 

season, with blue (cool) colours early in the season (March onwards), and the reds and pinks (warm 658 

colours) towards the end of the season (July). The forecast time centroids for the different lead times are 659 

essentially on top of each other showing there is no variation with lead time in the centroid position. 660 

The impact of using the AMM7v11 analysis and L4 product is evident in the observed centroids, with 661 

the AMM7v11 analysis in (a) producing many more objects in deeper waters to the north and west of 662 

the domain.  663 

 664 

Figure 13. Time centroids for the simple objects identified from AMM7v8 forecast objects (various symbols), AMM7v11 (large 665 
filled circles) and L4 ocean colour product (small filled circles). Colours reflect approximate position in the season and also 666 

highlight the north- and westward progress of bloom over time. Also refer to Fig 16 for colour cross reference and Fig 14 for the 667 
forecast lead time symbols.  668 
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4.5 Onset and evolution 669 

 670 

A time series of all identified object areas (the 2-D individual time slices making up the 3-D space-time 671 

MTD objects) is plotted in Fig. 14. Being able to distinguish between the different objects is not 672 

relevant at this stage. In Fig. 14(a), all the L4 ocean colour product objects’ areas are in black and all the 673 

AMM7v11 objects’ areas in grey. There can be (and are at times) more than one space-time object on 674 

any given day. In (a) both sets of objects were identified using thresholds of 2.5 mg.m-3. The first 675 

identifiable Chl-a bloom object in the AMM7v11 analysis was identified on 29 March 2019 whereas in 676 

the L4 ocean colour product this was on 3 March, 26 days earlier. In (b) the black dots representing the 677 

L4 ocean colour product are the same as in (a). The different AMM7v8 forecast lead times are indicated 678 

by the different coloured symbols. On each day there are 5 coloured symbols for each object that exists 679 

on that day and for AMM7v8 a threshold of 6 mg.m-3 was used, which as described earlier, is based on 680 

the CDF for the whole season. The AMM7v8 forecasts only picked up the first event of the season on 681 

18 April 2019, which is another 20 days later. Subsequent events (represented by the objects) are 682 

somewhat better aligned in time but the mid-May peak is primarily associated with what could be a 683 

classified as a false alarm where AMM7v8 produces a substantial bloom to the SW of the UK which 684 

was not observed.  685 

 686 

The fact that all the forecast lead time symbols are very closely collocated on each day confirms that 687 

there is very little difference in the forecast areas as a function of lead time. The L4 ocean colour 688 

product also suggests that the bloom ends 30 June whereas both the AMM7v11 analyses and AMM7v8 689 

forecasts persist the space-time objects to 23 July and 14 July respectively. Taking the start of the 690 

earliest space-time object as the onset of the bloom season and the end of the last object as the end, the 691 

2019 season is 119 days long, based on the L4 product, 117 days in the AMM7v11 analysis and 87 days 692 

in AMM7v8. Therefore, the length of the season is comparable in the AMM7v11 analysis, albeit with a 693 

large offset. The AMM7v8 model produces a short and intense season which starts ~1.5 months (46 694 

days) too late and persists 2 weeks beyond the observed end. 695 
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 696 

Figure 14. Time series of all identified single simple MTD object areas. (a) AMM7v11 analysis and the L4 ocean colour product 697 
object areas, further confirming that for the most part the AMM7v11 analysis behaves more like the L4 product in both 698 

concentration and spatial extent of objects. (b) Comparing the AMM7v8 forecasts to the L4 ocean colour product objects (which 699 
are the same as in (a)), showing the mismatch in timings, in terms of onset of the bloom season as well as the mismatch in bloom 700 

extent. 701 

The temporal evolution of the Chl-a blooms during the 2019 season can also be viewed spatially as 702 

shown in Fig. 15. The space-time objects are shaded by object number with numbers increasing from 703 

the start of the season, showing how the bloom migrates north and westwards as the season unfolds. In 704 

(a) the L4 ocean colour product objects are shown, in (b) AMM7v11 and (c) shows the day 4 AMM7v8 705 

forecast objects. The L4 product in (a) has the fewest and smallest identified objects. The AMM7v8 in 706 

(c) produces fewer but much larger objects (blooms). The AMM7v11 analysis in (b) sits somewhere in 707 

the middle in terms of number of objects and extent. Both AMM7v8 and AMM7v11 provide poor 708 

information in the NW of the domain. This area is heavily influenced by the biogeochemical 709 

(climatological) boundary conditions, and fortunately not that relevant to users, who are primarily 710 

interested in the on-shelf region. 711 

 712 

 713 

 714 
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(a) (b) 

  

  

(c) 

 

  

Figure 15. Temporal evolution of identified Chl-a single simple MTD objects, based on the daily sequence of either the L4 ocean 715 
colour product (a), the AMM7v11 analysis (b) and the AMM7v8 day 4 forecast in (c). Colours correspond to the object numbers 716 

assigned by MTD but also act as a proxy of time. 717 
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The progression of the bloom can also be viewed purely from a temporal perspective, as shown in 718 

Figure 16 (a) and (b), providing a clearer view of the onset and demise of each object (bloom episode), 719 

compared to that provided in Figs 12 or 13. The x-axis represents elapsed time. Vertical lines on any 720 

given date indicate the temporal location of a time centroid and the initial identification and end of a 721 

given object/event are indicated by the start and end of the vertical lines. Solid lines represent the 722 

observed events (in either the L4 ocean colour product or AMM7v11) whereas dashed lines are the 723 

forecast events, which are the same in (a) and (b). From this the difference in the onset of the 2019 724 

season is very clear. Most forecast objects are of relatively short duration, but overall, most groups of 725 

forecast objects have some temporal association with an observed object around the same time (though 726 

this does not mean they are close in space). 727 

 728 

 729 

Figure 16. Duration of single simple time objects and their location relative to the start of the Chl-a bloom season for AMM7v8 730 
(dashed line) and (a) AMM7v11 and (b) L4 ocean colour product as observations.   731 

 732 
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4.5 Examining the MTD paired object attributes 733 

From Fig. 15 it is clear that there are relatively few space-time objects within the 2019 bloom season 734 

and MTD only identifies 13 matched object pairs based on using simple single objects. This makes 735 

drawing any robust statistical conclusions somewhat difficult. Nevertheless, a selection of paired object 736 

attributes is presented in Fig. 17 for AMM7v8 day 4 forecasts compared to the AMM7v11 analysis. The 737 

different shadings indicate groups of attributes which are similar to each other, i.e. relating to distance, 738 

time or volume. From the figure we can conclude the following: 739 

• The spatial centroid (centre of mass) differences can be extensive, but the majority are within 0 to 740 

50 grid squares apart (i.e. up to ~350 km).   741 

• The majority of paired objects have time centroid differences +/- 20 days of the observed, with a 742 

preference for the forecasts being later (difference being defined as forecast time minus observed 743 

time). This is better illustrated by the distribution of start and end times. In terms of the event 744 

duration forecast blooms are generally too short.  745 

• Generally, the orientation of objects is within 40 degrees.  746 

• There is a fairly even split in terms of the spatial speed of propagation of the bloom, though it is 747 

hard to infer whether there is a specific fast or slow bias.  748 

• Considering the volumes of the space-time objects, the majority of objects have volume ratios of 749 

less than 5 (forecast-to-observed ratio), i.e. AMM7v8 objects tend to be much larger, but despite this 750 

only one bloom episode provided a large overlap in space and time. In other words, despite the size 751 

of the forecast objects, the paired objects are sufficiently far apart (in space and/or time) they still do 752 

not overlap. 753 

 754 
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 755 

Figure 17. Summary of MTD simple pair forecast-analysis object attributes based on using the AMM7v11 analysis as the verifying 756 
analysis. Here the day 4 forecast results are shown but the results are very similar for all lead times. 757 

 758 

5. Conclusions 759 

MODE and MTD were used with the operational AMM7v8 European North West Shelf Chl-a 760 

concentration forecasts to evaluate whether the objects (blooms) produced were similar in structure, 761 

location and timing to those produced by the L4 ocean colour product. The pre-operational AMM7v11 762 

model analysis, which includes assimilation of Chl-a observations (referenced here as AMM7v11) was 763 

also assessed. 764 

 765 

There is a significant concentration bias in the forecasts compared to the satellite ocean colour product. 766 

This needs to be mitigated against before using a threshold-based methodology such as MODE or 767 

MTD, which aims to understand the spatial properties of the forecasts (i.e. the spatial extent is affected). 768 

A quantile mapping approach was used to mitigate against this concentration bias to ensure that the 769 

frequency of occurrence of specific concentrations remained the same, either precisely (for MODE) or 770 
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approximately (for MTD, where the seasonal CDF was used to estimate approximately equivalent 771 

concentrations). Blooms were said to occur when the observed concentration threshold exceeded 2.5 772 

mg.m-3. Forecast thresholds for MODE were then relative to this value and varied from day-to-day. For 773 

MTD the seasonal equivalent threshold for the AMM7v8 forecasts was 6 mg.m-3.   774 

 775 

With the impact of any concentration bias being mitigated against, MODE results suggest that the 776 

forecast blooms are too large; this spatial extent bias is in addition to the concentration bias noted 777 

above. As well as forecast objects generally being too large, AMM7v8 produces more objects (in 778 

number) than seen in the L4 ocean colour product, yet many of the coastal objects seen in the L4 779 

product cannot be resolved by the model due to the coarseness of the coastline in the 7 km model. This 780 

situation would improve should the model resolution increase from 7 km to 1.5 km. 781 

 782 

The lack of variation of results with increasing lead time is important to note. For all forecast lead times 783 

out to day 4 there was no significant change in results for any of the thresholds analysed. This could be 784 

an indication of the processes involved acting on timescales longer than this, or it could be an indication 785 

of a deficiency within the model. In addition, predicting the onset of a Chl-a bloom seems problematic 786 

for the model as it currently stands (AMM7v8), with the forecast being 46 days later than observed. The 787 

AMM7v11 analysis reduced this to 26 days, so it would be reasonable to expect that when forecasts are 788 

initialised from this analysis in the future, that the lag in the onset will be reduced significantly. The 789 

AMM7v8 forecasts reflect a model climate which wants to produce a shorter and more intense season 790 

than what is observed. The model also struggles with predicting the end of the season, being around 2-3 791 

weeks later than observed, suggesting that AMM7v8 blooms persist too long compared to those in the 792 

L4 ocean colour product. 793 

 794 

Once AMM7v8 has picked up the start of the season, subsequent events are handled somewhat better. 795 

Beyond the timing issues, the model does generally produce Chl-a blooms in roughly the right locations 796 

but not necessarily at the right time, though the overlap between blooms can still be limited, despite the 797 

apparent size advantage of the AMM7v8 bloom objects. 798 
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Constraining the Chl-a using assimilation of the satellite observations appears to benefit the model in 799 

terms of less unmatched bloom regions; an improvement in the forecasts generated from this analysis is 800 

expected and will be the subject of future work. 801 

 802 

6. Code availability 803 

Model Evaluation Tools (MET) was initially developed at the National Center for Atmospheric 804 

Research (NCAR) through grants from the National Science Foundation (NSF), the National Oceanic 805 

and Atmospheric Administration (NOAA), the United States Air Force (USAF) and the United States 806 

Department of Energy (DOE). The tool is now open source and available for download on github: 807 

https://github.com/dtcenter/MET. 808 

 809 

7. Data availability 810 

Data used in this paper was downloaded from the Copernicus Marine and Environment Monitoring 811 

Service (CMEMS). The datasets used were:  812 

• https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_csw&view=de813 

tails&product_id=OCEANCOLOUR_ATL_CHL_L4_NRT_OBSERVATIONS_009_037 (last 814 

access: August 2019),  815 

• https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWES816 

TSHELF_ANALYSIS_FORECAST_BIO_004_002_b (last access: August 2019) 817 

 818 

The AMM7v11 analyses are not operational and not yet available from the CMEMS server. 819 
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