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Abstract.   9 

Two feature-based verification methods, thus far only used for the diagnostic evaluation of atmospheric 10 

models, have been applied to compare ~7 km resolution pre-operational analyses of Chlorophyll-a (Chl-11 

a) concentrations to a 1 km gridded satellite-derived Chl-a concentrations product. The aim of this 12 

study was to assess the value of applying such methods to ocean models. Chl-a bloom objects were 13 

identified in both datasets for the 2019 bloom season (March 1 to 31 July). These bloom objects were 14 

analysed as discrete (2D) spatial features, but also as space-time (3D) features, providing the means of 15 

defining the onset, duration, and demise of distinct bloom episodes and the season as a whole. 16 

The model analyses are not able to represent small coastal bloom objects, given the coarser definition of 17 

the coastline. The analyses also wrongly produce more bloom objects in deeper Atlantic waters. 18 

Concentrations in the model analyses are somewhat higher overall. The bias manifests itself in the size 19 

of the model analysis bloom objects, which tend to be larger than the satellite-derived bloom objects. 20 

Based on these feature-based methods the onset of the bloom season is delayed by 26 days in the model 21 

analyses, but the season also persists for another month beyond the diagnosed end. The season was 22 

diagnosed to be 119 days long in the model analyses, compared to 117 days from the satellite product. 23 

Geographically the model analyses and satellite-derived bloom objects do not necessarily exist in a 24 

specific location at the same time, and only overlap occasionally. 25 
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1 Introduction 26 

The advancements in atmospheric numerical weather prediction (NWP) such as the improvements in 27 

model resolution began to expose the relative weaknesses in so-called traditional verification scores 28 

(such as the root-mean-squared-error for example), which rely on the precise matching in space and 29 

time of the forecast to a suitable observation. These metrics and measures no longer provided adequate 30 

information to quantify forecast performance (e.g. Mass et al. 2002). One key characteristic of high-31 

resolution forecasts is the apparent detail they provide, but this detail may not be in the right place at the 32 

right time, a phenomenon referred to as the “double penalty effect” (Rossa et al., 2008). Essentially it 33 

means that at any given time the error is counted twice because the forecast occurred where it was not 34 

observed, and it did not occur where it was observed. This realisation created the need within the 35 

atmospheric community for creating more informative yet robust verification methods. As a result, a 36 

multitude of so-called “spatial” verification methods were developed, which essentially provide a 37 

number of ways for accounting for the characteristics of high-resolution forecasts.  38 

 39 

In 2007 a spatial verification method inter-comparison (Gilleland et al., 2009, 2010) was established 40 

with the aim of providing a better collective understanding of what each of the new methods was 41 

designed for, and categorising what type of forecast errors each could quantify. A decade later 42 

Dorninger et al. (2018) revisited this inter-comparison, adding a fifth category so that all spatial 43 

methods fall into one of the following groupings: neighbourhood, scale separation, feature-based, 44 

distance metrics or field deformation. 45 

 46 

The use of spatial verification methods has therefore become commonplace for atmospheric NWP (see 47 

Dorninger et al. (2018) and references within). Neighbourhood-based methods in particular have 48 

become popular due to the relative ease of computation and intuitive interpretation. Recently one such 49 

neighbourhood spatial method was demonstrated as an effective approach for exploring the benefit of 50 

higher resolution ocean forecasts (Crocker et al., 2020). Another class of methods focus on how well 51 

particular features of interest are being forecast. Forecasting specific features of interest is one of the 52 

main reasons for increasing horizontal resolution. Feature-based verification methods, such as the 53 
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Method for Object-based Diagnostic Evaluation (MODE, Davis et al., 2006) and the time domain 54 

version MODE-TD (Clark et al., 2014) enable an assessment of such features, focusing on the physical 55 

attributes of the features (identified using a threshold) and how they behave at a given point in time, and 56 

evolve over time. These methods require a gridded truth to compare to. Whilst the initial inter-57 

comparison project was based on analysing precipitation forecasts, over recent years their use has 58 

extended to other variables, provided gridded data sets exist that can be used to compare against (e.g. 59 

Crocker & Mittermaier (2013) considered cloud masks and Mittermaier et al., (2016) considered more 60 

continuous fields in a global NWP model such as upper-level jet cores, surface lows and high pressure 61 

cells using model analyses). Mittermaier & Bullock (2013) detailed the first study to use MODE-TD 62 

prototype tools to analyse the evolution of cloud breaks over the UK using satellite-derived cloud 63 

analyses. 64 

 65 

In the ocean, several processes have strong visual signatures that can be detected by satellite sensors. 66 

For example, mesoscale eddies can be detected from sea surface temperature or sea level anomaly (e.g. 67 

(Chelton et al., 2011, Morrow and Le Traon, 2012, Hausmann and Czaja, 2012). Phytoplankton blooms 68 

are seasonal events which see rapid phytoplankton growth as a result of changing ocean mixing, 69 

temperature and light conditions (Sverdrup, 1953, Winder and Cloern, 2010, Chiswell, 2011)).  Blooms 70 

represent an important contribution to the oceanic primary production, a key process for the oceanic 71 

carbon cycle (Falkowski et al., 1998). Their spatial extent and intensity in the upper ocean make them 72 

visible from space with ocean colour sensors (Gordon et al., 1983, Behrenfeld et al., 2005). 73 

Biogeochemical models coupled to physical models of the ocean provide simulations for the various 74 

parameters that characterize the evolution of a spring bloom, such as Chl-a concentration which can 75 

also be estimated from spaceborne ocean colour sensors (Antoine et al., 1996).  76 

 77 

Validation of marine biogeochemical models has traditionally relied on simple statistical comparisons 78 

with observation products, often limited to visual inspections (Stow et al., 2009; Hipsey et al., 2020). In 79 

response to this, various papers have outlined and advocated using a hierarchy of statistical techniques 80 

(Allen et al., 2007a, 2007b; Stow et al., 2009; Hipsey et al., 2020), multivariate approaches (Allen and 81 
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Somerfield, 2009), and novel diagrams (Jolliff et al., 2009). Many of these rely on matching to 82 

observations in space and time, but some studies have started applying feature-based verification 83 

methods ((Mattern, et al.2010)). Emergent properties have been assessed in terms of geographical 84 

provinces (Vichi et al., 2011), phenological indices (Anugerahanti et al., 2018), and ecosystem 85 

functions (de Mora et al., 2016). In a previous application of spatial verification methods developed for 86 

NWP, Saux Picart et al. (2012) used a wavelet-based method to compare Chl-a concentrations from a 87 

model of the European North West Shelf to an ocean colour product. 88 

 89 

For this paper, both MODE and MODE-TD (or MTD for short) were applied to the latest pre-90 

operational analysis (at the time) of the Met Office Atlantic Margin Model (AMM7) at 7 km resolution 91 

(O’Dea et al., 2012; Edwards et al., 2012; O'Dea et al., 2017; King et al., 2018; (McEwan  et al., 2021)) 92 

for the European North West Shelf (NWS), in order to evaluate the spatio-temporal evolution of the 93 

bloom season in both model and observation fields. A full traditional verification of the system (e.g. 94 

using root-mean-squared-error and similar metrics) is out of scope of this study and will be presented in 95 

a separate publication. For comparison with the MODE and MTD results, a few traditional metrics are 96 

included here, based on the Copernicus Marine Environment Monitoring Service (CMEMS) Quality 97 

Information Document for the model (McEwan et al., 2021). Traditional verification of a previous 98 

version, prior to the introduction of ocean colour data assimilation, was presented by Edwards et al. 99 

(2012), who used various metrics and Taylor diagrams (Taylor, 2001) to compare model analyses to 100 

satellite and in-situ observations. Ford et al. (2017) presented further validation, to understand the skill 101 

of the model at representing phytoplankton community structure in the North Sea. A similar version of 102 

the system used in this study, including ocean colour data assimilation, was assessed in Skákala et al. 103 

(2018), who validated both analysis and forecast skill using traditional methods. The assimilation 104 

improved analysis and forecast skill compared with the free-running model, but when assessed against 105 

satellite ocean colour the forecasts were not found to beat persistence. On the NWS the spring bloom 106 

usually begins between February and April, varying across the domain and interannually (Siegel et al., 107 

2002; Smyth et al., 2014), and lasts until summer. Without data assimilation the spring bloom in the 108 
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model typically occurs later than in observations (Skákala et al., 2018, 2020), a bias which is largely 109 

corrected by assimilating ocean colour data. 110 

 111 

In Section 2 the data sets used in the verification process are introduced. Section 3 describes MODE and 112 

MTD. Section 4 contains a selection of results, and their interpretation. Conclusions and 113 

recommendations follow in Section 5.  114 

2 Data sets for the 2019 Chl-a bloom  115 

As stated in Section 1, feature-based methods such as MODE and MTD require the fields to be 116 

compared to be on the same grid.  The model grid is used here. 117 

2.1 Satellite-derived gridded ocean colour products 118 

A cloud-free gridded (space-time interpolated, L4) daily product delivered through the Copernicus 119 

Marine Environment Monitoring Service (CMEMS, Le Traon et al., 2019) catalogue provides Chl-a 120 

concentration at ~1 km resolution over the Atlantic (46°W–13°E, 20°N–66°N). The L4 Chl-a product is 121 

derived from merging of data from multiple satellite-borne sensors: MODIS-Aqua, VIIRSN and OLCI-122 

S3A. The reprocessed (REP) products available nearly 6 months after the measurements 123 

(OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_009_098) are used here as it is the best-124 

quality gridded product available for comparison. The satellite derived Chl-a concentration estimate is 125 

an integrated value over optical depth.  126 

 127 

Errors in satellite-derived Chl-a can be more than 100% of the observed value (e.g. Moore et al., 2009). 128 

The errors in the L4 Chl-a values are often at their largest near the coast, especially near river outflows. 129 

However, in the rest of the domain, smaller values of Chl-a mean that even large percentage 130 

observation errors result in errors typically smaller than the difference between model and observations. 131 

As will be shown, the models at 7 km resolution cannot resolve the coasts in the same way as is seen in 132 

the satellite product as some of the coastal Chl-a dynamics are sub-grid scale for a 7 km resolution 133 

model. 134 
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 135 

For this study the ~1 km resolution L4 satellite product was interpolated onto the AMM7 grid using 136 

standard two-dimensional horizontal cubic interpolation. This coarsening process retained some of the 137 

larger concentrations present in the L4 product. 138 

2.2 Model description 139 

Operational modelling of the NWS is performed using the Forecast Ocean Assimilation Model (FOAM) 140 

system. This consists of the NEMO (Nucleus for European Modelling of the Ocean) hydrodynamic 141 

model (Madec et al., 2016; O'Dea et al., 2017), the NEMOVAR data assimilation scheme (Waters et al., 142 

2015; King et al., 2018), and for the NWS region the European Regional Seas Ecosystem Model 143 

(ERSEM), which provides forecasts for the lower trophic levels of the marine food web (Butenschön et 144 

al., 2016).  The version of FOAM used in this study is AMM7v11, using the ~7 km horizontal 145 

resolution domain stretching from 40 °N, 20 °W to 65 °N, 13 °E. Operational forecasts of ocean physics 146 

and biogeochemistry for the NWS are delivered through CMEMS, for a summary of the principles 147 

underlying the service see e.g. Le Traon et al. (2019). 148 

 149 

AMM7v11 uses the CO6 configuration of NEMO, which is configured for the shallow water of the 150 

shelf sea and is a development of the CO5 configuration described by O'Dea et al. (2017). The ERSEM 151 

version used is v19.04, coupled to NEMO using the Framework for Aquatic Biogeochemical Models 152 

(FABM, Bruggeman and Bolding, 2014). The NEMOVAR version is v6.0, with a 3D-Var method used 153 

to assimilate satellite and in situ sea surface temperature (SST) observations, in situ temperature and 154 

salinity profiles, and altimetry data into NEMO (King et al., 2018), and chlorophyll derived from 155 

satellite ocean colour into ERSEM (Skákala et al., 2018). The introduction of ocean colour assimilation 156 

in AMM7v11 is a major development for the biogeochemistry over previous versions of the system 157 

(Edwards et al., 2012). The satellite ocean colour observations assimilated are from a daily L3 multi-158 

sensor composite product based on MODIS and VIIRS with resolutions of 1 km for the Atlantic (for 159 

further information see OCEANCOLOUR_ATL_CHL_L3_NRT_OBSERVATIONS_009_036 on the 160 
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CMEMS catalogue). The L3 product is based on two of the same three ocean colours sensors used in 161 

the L4 product described in Section 2.1, but with different processing and no gap-filling. 162 

 163 

In this study daily mean Chl-a concentrations for the period of 1 March-31 July 2019 from AMM7v11 164 

were used to illustrate the verification methodology. AMM7v11 entered operational use in December 165 

2020, and the data used here came from a pre-operational run of the system. Note only the analysis of 166 

AMM7v11 (i.e. no corresponding forecasts) was available at the time of the assessment, and the results 167 

presented in this paper show how close the data assimilation draws the model to the observed state. 168 

2.3 Visual inspection of data sets 169 

Ideally, Chl-a concentration from the model should be integrated over optical depth to be equivalent to 170 

the satellite derived value defined in Section 2.1 (Dutkiewicz et al., 2018). However, this is currently a 171 

non-trivial exercise, and cannot be accurately calculated from offline outputs. Therefore, the commonly 172 

accepted practice is to use the model surface Chl-a (Lorenzen, 1970, (Shutler et al., 2011). Here it is 173 

assumed that the difference between surface and optical depth-integrated Chl-a is likely to be small in 174 

comparison with the actual model errors. 175 
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 176 

Figure 1 (a) Daily mean L4 multi-sensor observations regridded on the 7 km resolution model grid and (b) AMM7v11 177 

Chl-a for 1 June 2019. (c) Error estimates on the multi-sensor L4 Chl-a and (d) difference between AMM7v11 and 178 

the L4 product. 179 

 180 

Figure 1 shows the L4 ocean colour product (a) and AMM7v11 analysis (b) for 1 June 2019 on the top 181 

row, using the same plotting ranges. The second row shows the difference field that is provided with the 182 

L4 ocean colour product (c), and the AMM7v11 minus L4 difference field (d). The mean error (bias) is 183 

generally positive with the AMM7v11 analysis containing higher Chl-a concentrations, especially in the 184 

deeper North Atlantic waters. The exceptions are along the coast where the AMM7v11 analysis is 185 

deficient, but it should be noted that these are also the zones where some of the largest satellite retrieval 186 

errors occur and where a 7-km resolution model, with a coarse representation of the coast, does not fully 187 

represent complex coastal and estuarine processes.   188 
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3 Method for Object-based Diagnostic Evaluation (MODE) and MODE Time-Domain (MTD) 189 

3.1. Description of the methods 190 

This section provides a brief description of the Method for Object-Based Diagnostic Evaluation 191 

(MODE), first described in Davis et al. (2006) and its extension MODE Time-Domain (MTD).  192 

 193 

MODE and MTD can be used on any temporal sequence of two gridded data sets which contain features 194 

that are of interest to a user (whoever that user may be, model developer or more applied). By extracting 195 

only the feature(s) of interest, the method allows one to mimic what humans do, but in an objective 196 

way. Once identified the features can then be mathematically analysed over many days or seasons to 197 

compute aggregate statistics of behaviour. MODE can be used in a very generalised way. The key 198 

requirements are to 1) have gridded fields to compare and 2) be able to set a threshold for identifying 199 

features of interest.  200 

 201 

In this instance the comparison will involve the AMM7v11 model data assimilation analysis and the 202 

gridded L4 satellite product. MODE identifies the features (called objects), as areas for which a 203 

specified threshold is exceeded, here it is a Chl-a concentration. Consider Figure 2 which shows a 204 

number of objects that have been identified after a threshold has been applied to two fields (blue and 205 

orange). The identified objects in the two fields are of different sizes and shapes and do not overlap in 206 

space, though they are not far apart. Object characteristics or attributes such as the area and mass-207 

weighted centroid are computed for each single object. Simple (also known as single) objects can be 208 

merged (to form clusters) within one field (illustrated here for the orange field). This may be useful to 209 

do if it is clear that there are many small objects close together which should really be treated as one. 210 

Furthermore, objects in one field can be matched to objects in the other field. To find the best match an 211 

interest score is computed for each possible pairing between all identified objects. The components used 212 

for computing the interest score can be tuned to meet specific user needs. In Figure 2(a) it is based on 213 

the area ratio, intersection-area ratio, minimum boundary distance and centroid difference. Furthermore, 214 

the components can be weighted according to relative importance. Given a scenario where there are 2 215 

identified objects in the blue field and 3 in the orange field Figure 2(b) shows the interest score for each 216 
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possible pairing in this hypothetical example. Only the pairing with the highest score is analysed 217 

further, and only if it exceeds the set threshold for defining an acceptable match. The default value for 218 

this is 0.7. For the example blue object 1 is best matched against orange object 1, and this match is used 219 

in the analysis. Note that there is another good match with orange object 2 as it is above the threshold of 220 

0.7, but it, as well as the orange object 3 would not be used, with orange object 3 below the 0.7 221 

threshold. In all likelihood a scenario such as shown in Figure 2(b) would be assessed as clusters with 222 

blue objects 1 and 2 forming a cluster and orange objects 1 and 2 also forming a cluster. An interest 223 

score for the cluster pairing above 0.7 would then create a matched pair. Once these matches are 224 

completed summary statistics describing the individual objects (both matched and unmatched) and 225 

matched object pairs are produced. These statistics can be used to identify similarities and differences 226 

between the objects identified in two different data sets, which can provide diagnostic insights on the 227 

relative strengths and weaknesses of one compared to the other. 228 

 229 

Figure 2 Schematic illustrating some of the key components of identifying objects using MODE. (a) Defining some of 230 

the terminology and key components for computing matched pairs. (b) Example of how the best matched pair is 231 

identified. 232 

 233 
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The important steps for applying MODE can be summarised as follows (which are described in detail in 234 

Davis et al. 2006):  235 

1) Both forecast and observation (or analysis) need to be on the same grid. Typically, this means 236 

interpolating the observations to the model grid to avoid the model being expected to resolve 237 

features which are sub-grid scale.  238 

2) Depending on how noisy the fields are they should be smoothed. Gridded observations (not 239 

analyses) can be noisy and usually need some smoothing. Models and model analyses are built 240 

on numerical methods which come with discretisation effects. Depending on the method this 241 

implies that any model’s true resolution (i.e. the scales which the model is resolving) is between 242 

2 and 4 times the horizontal grid (mesh) resolution. The number of objects identified will vary 243 

inversely with the smoothing radius.  244 

3) Define a threshold which captures the feature of interest and apply it to both the smoothed 245 

forecast and observed fields to identify simple objects as shown in Figure 2. 246 

4) Any smoothing is only for object identification purposes. The original intensity information 247 

within the object boundaries is analysed. 248 

5) Lastly, the object matching is accomplished using a fuzzy logic engine (low level artificial 249 

intelligence), which is expressed as the so-called “interest” score as shown in Figure 2(b). The 250 

higher the score the stronger the match. All objects are compared in both fields and interest 251 

scores are computed for all combinations. A threshold is set on the interest score value (typically 252 

0.7) to denote which are the best matches, and on the unique pairing with the highest score is 253 

kept for analysis purposes. Some objects will remain unmatched (either because there is none or 254 

because there are no interest values above the set threshold to provide a credible match) and 255 

these can be analysed separately.  256 

MODE is highly configurable. To gain an optimal combination of configurable parameters for each 257 

application requires extensive sensitivity testing to gain sufficient understanding of the behaviour of the 258 

data sets to be examined, and to achieve, on average, heuristically the right outcome. Initial tuning 259 

requires user input to check whether the method is replicating what a human would do.  260 
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1) The sensitivity to threshold and smoothing radius should be explored. The threshold and 261 

variability in the fields can affect the number of objects which are identified. The process of 262 

exploring the relationship between threshold and smoothness helps to identify what would 263 

heuristically be considered a reasonable number of objects.  264 

2) The sensitivity to the merging option must also be investigated. In this instance the merging 265 

option had very little impact. 266 

3) The behaviour of the matching can also be configured, with a number of options ranging from 267 

the simple to the more complicated, which added computational expense. There may be very 268 

little difference in outcomes, but it is worth checking. Here the merge_both option was used but 269 

it was not strictly necessary as there was little difference between the available options.  270 

 271 

Note also that a minimum size (area) is set for object identification. This is often a somewhat pragmatic 272 

choice. If the size is set too small, too many objects are identified, which end up being merged. If too 273 

large, very few objects are identified. Here a minimum area of 10 grid squares (~70 km2) was used for 274 

an object to be included in the analysis. For this study the default settings were used for matching and 275 

computing the interest score (as provided in the default configuration file (see example configuration 276 

files in https://github.com/dtcenter/MET/tree/main_v8.1/met/scripts/config). The default threshold of 277 

0.7 for the interest score was also used to identify acceptable matches. 278 

 279 

Identical to MODE, identifying time-space objects in MTD uses smoothing and thresholding. Applying 280 

a threshold yields a binary field where grid points exceeding the defined threshold are set to one. At this 281 

stage each region of non-zero grid points in space and time is considered a separate object, and the grid 282 

points within each object are assigned a unique object identifier. For MTD the search for contiguous 283 

grid points not only means examining adjacent grid points in space, but also the grid points in the same 284 

or similar location at adjacent times to define a space-time object. The same fuzzy logic-based 285 

algorithms used for merging and matching in MODE apply to MTD as well. Similarly, to MODE a 286 

minimum volume must be set. Here a volume threshold of 1000 grid squares (a summation of the daily 287 

object areas identified to be part of the space-time object) was imposed for space-time object 288 

https://github.com/dtcenter/MET/tree/main_v8.1/met/scripts/config
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identification to be included in the analysis. This represents the accumulated number of grid squares 289 

associated with an object over consecutive time slices. Otherwise, the default settings were used for 290 

object matching. For MTD a lower interest score of 0.5 was used for matching objects. Finally, it is 291 

worth noting that the MODE and MTD tools, though similar, are completely independent of each other, 292 

and were set up differently here. MODE is ideal for understanding the identified features in individual 293 

daily fields in some detail. MTD, it was felt, would be best used to look at larger scales. Here it was set 294 

up to capture the most significant (in size) and long-lasting blooms. 295 

 296 

3.2 Defining Chl-a concentration thresholds and other choices on tuneable parameters 297 

Chl-a can vary over several orders of magnitude. Often log10 thresholds are used to match the fact that 298 

Chl-a follows a lognormal distribution (e.g. Campbell 1995). Defining thresholds can be difficult: on 299 

the one hand there is the desire to only capture events of interest, so the thresholds should not be too 300 

low, whereas on the other hand if the thresholds are too high no events are captured and there is nothing 301 

to analyse. From a regional (NW European Shelf) perspective the values of interest are typically in the 302 

range of 3–5 mg m-3 (Schalles, 2006), though higher Chl-a concentrations can be measured in-situ or 303 

diagnosed in satellite products. For this study, the data sets were not transformed but the thresholds 304 

were selected in such a way that they would correspond to being equally spaced in logarithmic space, 305 

staying true to the underlying distribution shape of Chl-a concentrations. Here the primary focus is on 306 

the results for the 2.5 mg m-3 threshold, though some results for the 4 and 6.3 mg m-3 thresholds are also 307 

presented. 308 

 309 

In addition to the interpolation of the L4 ocean colour product onto the ~7 km AMM7v11 grid, it is 310 

important to ensure that MODE and MTD use optimal settings for the fields under study. Results are 311 

sensitive to characteristics of the fields (how smooth or noisy). Right at the start the emphasis was on 312 

finding the right combination of Chl-a concentration threshold and smoothing, balancing the need for 313 

identifying objects with keeping the number of objects manageable. The guiding principles in 314 

identifying the right combination were to ensure that the daily object count remained low enough, 315 

recalling that these methods were developed to mimic what a human would do. The human brain would 316 
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struggle to cope with as many as 30, but this was considered to be an acceptable upper limit after 317 

considerable visual inspection of output. Furthermore, the smoothing applied needs to be reduced with 318 

increasing concentration thresholds because objects become smaller and are less frequent. This is to 319 

ensure that too much smoothing does not remove more intense objects from the analysis. However, 320 

pushing the concentration threshold too high may also be detrimental; depending on the input fields, 321 

identified objects may be spurious (due to e.g. a failure of quality control processes removing such). 322 

Too few objects also make the compilation of robust aggregated statistics impossible.   323 

 324 

For the lowest thresholds including 2.5 and 4.0 mg m-3 a smoothing radius of 5 grid squares (~35 km) 325 

was applied to both L4 and AMM7v11 fields, but for higher thresholds (e.g. 6.3 mg m-3) the smoothing 326 

radius was reduced to 3 grid squares, to prevent the higher peak concentrations, which are often small in 327 

spatial extent, from being lost due to the smoothing. Thresholds above 6.3 mg m-3 yielded too few 328 

objects to be analysed with any rigour. The smoothing was particularly necessary for the L4 product 329 

which, because of its native 1 km resolution is able to resolve very small (noisy) objects typically found 330 

near the coast and which a 7 km resolution model cannot resolve.  For the MTD analysis, objects in the 331 

L4 ocean colour product and the AMM7v11 analyses were only defined using a Chl-a concentration 332 

threshold of 2.5 mg m-3.   333 

  334 
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4. Results 335 

4.1 Traditional statistics 336 

Traditional verification metrics are based on a set of observations and a set of model outputs matched in 337 

time and space. The statistics that are typically considered (McEwan  et al., 2021)  are the median error 338 

(bias), median absolute difference (MAD) and Spearman rank correlation coefficient. The median bias 339 

gives indication of consistent differences between the model and observations, with a positive bias 340 

indicating the model concentration is higher than observed. The MAD provides an absolute magnitude 341 

of the difference. The Spearman rank correlation coefficient is the Pearson correlation coefficient 342 

between the ranked values of the model and observation data so that if the model data increases when 343 

the observations do, they are positively correlated. It has the same interpretation as the more common 344 

Pearson correlation coefficient where a correlation of 1 shows perfect correlation and 0 shows no 345 

correlation. Figure 3 provides a map of the model domain and the subregions over which traditional 346 

metrics are computed. Table 1 shows results for log(Chl-a) assessed against the L4 ocean colour 347 

product. 348 

 349 

Figure 3 Map showing the sub-regions over which statistics are computed. 350 

Regions: 

EC: English Channel 

IS: Irish Sea 

NNS: Northern North Sea 

NT: Norwegian Trench 

NWA: North Western Approaches 

SNS: Southern North Sea 

SWA: South Western Approaches 

The Continental Shelf regions includes all the above, i.e. all 

regions except Off-shelf.  

Observation stations: 

L4: station L4 of the Western Channel Observatory 
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 351 

Table 1 Statistics for matched pairs of daily model surface log-chlorophyll-a outputs and satellite ocean colour Chl-a 352 

for the full domain and sub-regions for the period March to July 2019. See Figure 3 for the location of the regions. 353 

The Continental shelf includes all regions except Off-shelf (ICES, 2014) 354 

Region Median bias  

 (log(mg m-3)) 

MAD 

(log(mg m-3)) 

Spearman correlation 

coefficient 

Full Domain <0.01 (0.004) 0.21 0.62 

Continental shelf -0.09 0.17 0.71 

Off-shelf 0.06 0.23 0.51 

Norwegian Trench -0.04 0.18 0.61 

Northern North Sea -0.05 0.17 0.64 

Southern North Sea -0.17 0.19 0.82 

English Channel -0.13 0.16 0.68 

Irish Sea -0.13 0.19 0.49 

South Western 

Approaches 

-0.07 0.15 0.69 

North Western 

Approaches 

<0.01 (0.006) 0.18 0.51 

 355 

Compared with the L4 product, the AMM7v11 analysis slightly overestimates Chl-a off-shelf, and 356 

underestimates Chl-a in the on-shelf regions (Table 1). Regions show moderate to strong positive 357 

correlations, highest in the Southern North Sea and lowest in the Irish Sea. These statistics give useful 358 

insight into model skill but provide limited information about how model performance changes as the 359 

bloom season progresses (McEwan et al., 2021; Skákala et al., 2018, 2020). As will be shown, the 360 

output from MODE and MTD provides a very different perspective from these traditional verification 361 

metrics, allowing a more detailed understanding of model performance. 362 

 363 

4.2 Chl-a distributions 364 

It is important to understand the nature of the underlying L4 and AMM7v11 Chl-a distributions and any 365 

differences between them. This can be done by creating cumulative distribution functions (CDF) of the 366 

log10 L4 and AMM7v11 Chl-a concentrations, by taking all grid points in the domain and all dates in 367 

the study period. These are plotted in Figure 4, showing that there is an offset between the distributions, 368 
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the AMM7v11 analysis having more low concentrations, though the distributions appear to be 369 

converging in the upper tail. 370 

 371 

Figure 4 Empirical cumulative distribution functions of the log10 Chl-a concentration for the L4 ocean colour 372 

product and AMM7v11 analyses for the 2019 bloom season. 373 

Exploring this further the AMM7v11 and L4 Chl-a concentration CDFs can be derived for each 374 

individual day, rather than for the season as a whole. From these the quantile where the L4 product is 375 

less than or equal to 2.5 mg m-3 (29.7%) can be compared to the corresponding AMM7v11 376 

concentration associated with the same quantile of 29.7%. From Figure 4 this gives an equivalent 377 

concentration of 1.15 mg m-3 for the season. The daily matched quantile Chl-a values provide an 378 

estimate of the daily bias.  This is plotted in Figure 5 as a time series for the 2019 bloom season. It 379 

shows that the daily AMM7v11 corresponding quantile values are mainly in the range of ~1.5—4.5 mg 380 

m-3, averaging out to 2.9 mg m-3 over the season, which suggests a modest difference overall. The larger 381 

day-to-day variations show some cyclical patterns. There are notable peaks at the end of May and the 382 

beginning of July. An inspection of the fields (not shown) suggests that at these times the AMM7v11 383 
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appears to have higher Chl-a concentrations over large portions of the domain compared to the L4 384 

product. 385 

 386 

Figure 5 The day-to-day AMM7v11 quantile Chl-a value corresponding to the L4 product quantile representing 2.5 387 

mg m-3 derived from the L4 daily CDFs. The mean AMM7v11 Chl-a equivalent quantile value for the 2019 season is 388 

2.9 mg m-3. 389 

In employing a threshold-based approach, generally the same threshold is applied to both data sets. In 390 

the presence of a bias this requires a little bit of thought. In extreme cases, it could mean the inability to 391 

identify objects in one of the data sets, which would then mean objects cannot be matched and paired, 392 

negating the purpose of a spatial method like MODE or MTD. Not being able to identify any objects 393 

does provide some useful information, though arguably not enough context. The lack of objects does 394 

suggest the presence of a bias but it does not provide any sense of whether the model is producing a 395 

constant value of Chl-a for example, which would be of no use to the user, or whether it does capture 396 

regions of enhanced Chl-a, albeit with an offset which means it does not exceed the set threshold. 397 

Therefore, a more likely scenario is that a bias could partially mask relevant signals in the derived 398 

object properties, which could lead to the potential misinterpretation of results. If there is a significant 399 
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risk of this occurring the bias could be addressed before features are identified to ensure that the 400 

primary purpose of using a feature-based assessment can be achieved, i.e. identifying features of interest 401 

in two sets of fields to assess their location, timing and other properties and assessing their skill. The 402 

fact that there is an intensity offset should not prevent the method from providing information about the 403 

skill of identified features. As is seen here, though there is bias (as seen in Figure 4Figure 5), it does not 404 

prevent the method from successfully identifying objects using the same threshold for both datasets, 405 

though it will be shown that the effect of the bias can affect some object attributes, e.g. object areas. 406 

However, a more prohibitive bias could compromise the methods, e.g. being unable to identify objects 407 

in a dataset. This would have a disproportionate effect on the statistics for the matched pairs in 408 

particular. Under such circumstances the quantile mapping functionality within MODE (to remove the 409 

effect of the bias) is strongly recommended. 410 

 4.3 Visualising daily objects 411 

Figure 6 shows the daily Chl-a concentration fields as represented in the L4 ocean colour product and 412 

the AMM7v11 analyses for 21 April 2019, which is near the peak of the bloom season. The respective 413 

fields are plotted in (a) and (b), noting that the 1 km resolution L4 product has been interpolated onto 414 

the ~7 km AMM7 grid. Applying a threshold of 6.3 mg m-3 to both with a smoothing radius of ~21 km 415 

(3 grid lengths) yields 8 objects in the AMM7v11 analysis (7 visible in this zoomed region) and 11 416 

objects in the L4 product. As discussed, the bias described in Section 4.1 does not appear to prevent the 417 

identification of objects in the L4 product and the AMM7v11 analyses, and the process of finding 418 

matches is possible. 419 

 420 
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 421 

Figure 6 Daily Chl-a concentrations (in mg m-3) for 21 April 2019: (a) AMM7v11 analysis and (b) L4 ocean colour 422 

product. The MODE objects shown in (c) and (d) are identified using a threshold of 6.3 mg m-3 and a smoothing 423 

radius of ~21 km. Note (c) and (d) show a smaller (inner) domain. The colours show the matching clusters. Objects 424 

denoted with -1 (grey) are unmatched.   425 

4.4 Spatial characteristics 426 

This section demonstrates the kinds of results that can be extracted from the two-dimensional MODE 427 

objects. Aspects of the marginal (AMM7v11 or L4 product only) and joint (matched/paired) 428 
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distributions can be examined. This includes object size (as a proxy for area) but also the proportion of 429 

areas that are matched or unmatched.  430 

 431 

Firstly, how similar is the L4 ocean colour product and the AMM7v11 analysis in terms of the features 432 

of most interest, i.e. the Chl-a blooms? Figure 7 shows the evolution of the proportion of matched 433 

object areas (to total combined area) through the 2019 season, when using MODE to compare the L4 434 

product and AMM7v11 analyses, to further explore the differences (and similarities) between them. A 435 

value of one would suggest that all identified areas are matched. Values less than one suggest that some 436 

objects remain unmatched. The relatively high values of matched object-to-total area during April are 437 

due to the large numbers of well-matched, physically small coastal objects in addition to the larger Chl-438 

a bloom originating in the Dover Straits (not shown). There is a notable minimum at the beginning of 439 

July. Inspecting the MODE graphical output reveals this is in part due to only a few small objects being 440 

identified, and this is compounded by their complete mismatch; the L4 objects are all coastal, whilst the 441 

AMM7v11 objects are either coastal (but not in the same location as L4 objects) or in the deep waters of 442 

the North Atlantic, to the north-west of Scotland. The relatively high proportions either side of this time 443 

arise from a better correspondence in placement of the coastal objects (noting that there is a distance 444 

limit on how far objects can be apart for the matching process to have a positive contribution to the 445 

interest score). 446 
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 447 

Figure 7 Proportion of total object area which is matched. Underlying matched and unmatched object areas (in units 448 

of numbers of grid squares) are taken from the MODE output. These areas are for the 2.5 mg m-3 concentration 449 

threshold objects. 450 

Overall, the AMM7v11 analysis is similar, but clearly not identical, to the L4 product. Best 451 

correspondence appears to be during the first half of the bloom season. Later in the season the model’s 452 

determination to produce blooms in deep North Atlantic waters is a model deficiency that the 453 

assimilation is (at this stage) unable to fix. The AMM7v11 analyses could conceivably be used as a 454 

credible source for assessing the AMM7 Chl-a forecasts in the future. The major benefit of using a 455 

model analysis is that it is at the same spatial resolution, with the same ability to resolve Chl-a bloom 456 

objects, especially along the coast (i.e. the analysis limits the uncertainty due to whether an object could 457 

be missing due to the inability of the model to resolve the feature).   458 

 459 

The day-to-day number of objects identified through the 2019 bloom season is shown in Figure 8￼, 460 

illustrating how elements of the marginal and joint distribution provided by MODE can be used 461 

together. Here, numbers of total and matched (joint)  objects are shown. If the AMM7v11 analyses are 462 
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good (i.e. similar to the L4 product), there should be fewer unmatched (marginal) objects than matched 463 

ones (indicated by the proximity of the solid and dashed lines); ideally there would be no unmatched 464 

objects in either the L4 product or the AMM7v11 analysis. In Figure 8 the number of objects in 465 

AMM7v11 starts off small and increases as the bloom develops. For the L4 product there are already 466 

many objects identified at the start of the timeseries, leading to many unmatched L4 objects (these could 467 

be considered misses in a more categorical analysis). A spike in the number of matched objects seen in 468 

early April can be attributed to several coastal locations, which appear to be spatially well-matched. In 469 

addition, a larger Chl-a bloom is seen in the Dover Straits region in the L4 product and although not 470 

exactly spatially collocated, the objects are matched. There are a consistently large number of 471 

unmatched objects seen in the AMM7v11 analysis and L4 ocean colour product from the end of May 472 

onwards. In the AMM7v11 analysis this appears to be due to an increase in small objects identified, 473 

mainly to the west, north and east of the United Kingdom. The increase in unmatched objects in the L4 474 

ocean colour product is of a different origin, being due to an increase in localised coastal blooms. 475 

Generally, the AMM7v11 analyses do not have the resolution to resolve these. Overall, there are 2632 476 

AMM7v11 bloom objects identified in the season using the 2.5 mg m-3 threshold, and 2341 L4 bloom 477 

objects, with 56% of AMM7v11 objects matched and 59% of L4 objects matched. 478 

The identified objects in AMM7v11 and the L4 product can also be considered spatially over the season 479 

by compositing the objects. This is done by counting the frequency with which a given grid square falls 480 

within an identified object on any given day, essentially creating a binary map. These can be added up 481 

over the entire season to produce a spatial composite object or temporal “frequency-of-occurrence” plot. 482 
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 483 

Figure 8 Time series of the number of matched and total objects per day from MODE comparing AMM7v11 analyses 484 

(black) with L4 satellite product (grey). Objects are identified using a threshold of 2.5 mg m-3. Total object numbers 485 

for the season are 2341 for L4 satellite product and 2632 for AMM7v11. 486 

Figure 9 shows this spatial composite for the 2019 bloom season for the L4 ocean colour product 487 

objects (a) and the AMM7v11 objects (b). These are the composites based on the 2.5 mg m-3 threshold 488 

objects. There are areas, for example in the South West Approaches (SWA, see Figure 3), where there 489 

appears to be a good level of consistency. AMM7v11 analyses have elevated Chl-a values along the 490 

northern and western edges of the domain, for a low proportion of the time, which are not seen in the L4 491 

product. This is likely due to the way that nutrient and phytoplankton boundary conditions are specified 492 

in AMM7v11. Overall, the low temporal frequency extent of the AMM7v11 objects is greater than for 493 

the L4 product. 494 
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 495 

Figure 9 Object composites (the proportion of time for which an object was present at the grid box throughout the 496 

2019 bloom season) for (a) the L4 ocean colour product objects and (b) the AMM7v11 analysis objects. 497 

Thus far all the attributes have been based on only the AMM7v11 or L4 objects. The distribution of 498 

object properties, derived for the season from the daily comparisons, can be summarised using box-and-499 

whisker plots. Recall that the box encompasses the inter-quartile range (IQR, 25th to 75th quantile) and 500 
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the notch and line through the box denotes the median or 50th quantile. The dashed line represents the 501 

mean, and the whiskers show ±1.5 times the IQR. For clarity, values outside that range have been 502 

filtered out of the plots shown here. Figure 10 shows the intersection-over-area paired object attribute 503 

distribution as box-and-whisker plots for all object pairs during the 2019 bloom season, comparing the 504 

AMM7v11 analyses to L4 for three of the thresholds: 2.5 and 4.0 and 6.3 mg m-3. The intersection-over-505 

area diagnostic gives a measure of how much the matched (paired) objects overlap in space. If the 506 

objects do not intersect, this metric is 0. The ratio is bounded at 1 because any area of overlap is always 507 

divided by the larger of the two object areas. The IQR for the 2.5 mg m-3 threshold is 0.25 with 50% of 508 

paired objects having an intersection-over-area of 0.97 or greater. However, the lower whisker spans a 509 

large range of values to as low as 0.375, suggesting that there is a proportion of object pairs with only 510 

small overlaps. There is quite a difference between the median (notch) and the mean (dashed line) for 511 

this metric, suggesting the distribution is skewed with the mean affected more by many small overlaps. 512 

For the 4.0 mg m-3 threshold paired objects the intersection-over-area distribution is much broader, 513 

though the difference between the mean and medians is similar. The proportion of paired objects with 514 

smaller overlaps has also increased. This should not be surprising given that the objects generally get 515 

smaller with increasing threshold such that the ability for object pairs to overlap actually decreases 516 

unless they are very closely collocated. At the 6.3 mg m-3 threshold the median is lower (0.93) with a 517 

similar difference from the mean, however the sample size is much smaller (only 130 paired objects 518 

over the season).  519 
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 520 

Figure 10 Box-and-whisker plots of the paired object property “intersection area” ratio computed by dividing the spatially 521 

collocated area between the paired objects by the largest of either the AMM7v11 or L4 observed object areas (to keep the ratio to 522 

be bounded by 0 and 1). Three object thresholds are shown: 2.5 mg m-3, 4.0 mg m-3 and 6.3 mg m-3. Smoothing radii of 5, 5 and 3 523 

grid lengths were applied for the three thresholds respectively. The sample sizes for each threshold were 1004, 401 and 130 paired 524 

objects respectively. 525 

 526 

4.5 Incorporating the time dimension 527 

 528 

Having information in space and time enables one to ask, and hopefully answer questions such as: “did 529 

the model predict the bloom to start in the observed location?” or “did the model predict the onset at 530 

the right time?” and “did the model predict the peak (in terms of extent) and duration of the bloom 531 

correctly?”.  532 

 533 

MTD identifies objects in space and time. As previously described, all MTD results are based on a 2.5 534 

mg m-3 threshold applied to both the L4 ocean colour products and AMM7v11 analyses. A time 535 

centroid is derived from a time series of the spatial (two-dimensional) centroids which are computed for 536 

each (daily) time slice. In addition to this, each identified MTD object has a start and end time, and a 537 
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geographical location of the time centroid, which is the average of the two-dimensional locations. The 538 

time component of the time centroid is weighted by volume.  539 

 540 

The temporal progression of the 2019 bloom season along with spatial information as defined by the 541 

MTD objects’ is shown in Figure 11.  The object start and end times as well as the date of their time 542 

centroids in (a) provide a clear view of the onset and demise of each object (bloom episode). In total 543 

there are 22 AMM7v11 and 11 L4 MTD objects. The x-axis in (a) represents elapsed time. The location 544 

of the vertical lines along the x-axis on any given date indicates the date of the time centroid whilst the 545 

duration of the space-time object can be gleaned from the y-axis based on the start and end of the 546 

vertical line which defines the time the object was in existence. Solid lines represent the L4 product 547 

objects whereas dashed lines represent the AMM7v11 objects. The colour palette is graduated from 548 

grey and blue through green, yellow, red, and purple, denoting the relative time in the season. In (a) the 549 

first Chl-a bloom object in the AMM7v11 analysis was identified on 29 March 2019 whereas in the L4 550 

ocean colour product the first bloom object was identified on 3 March, 26 days earlier. The first time 551 

the L4 product and AMM7v11 analyses have concurrent objects (blooms) is in late March. The L4 552 

product also suggests that the season ends 30 June whereas the AMM7v11 analyses persists the bloom 553 

season with objects identified until 23 July. Most AMM7v11 objects are of relatively short duration, but 554 

overall, most groups of AMM7v11 objects have some temporal association with an L4 product object 555 

around the same time.  In this instance it is also illuminating to consider the daily object areas 556 

associated with the MTD objects (which are used to compute the volume of MTD objects). These are 557 

plotted in Figure 11(b) showing all daily L4 object areas in the filled circles, and the AMM7v11 object 558 

areas (crosses), in the same colours as in (a). The main purpose is to highlight the relative size of the L4 559 

and AMM7v11 objects on any given day, as well as how many objects there were. Recall that these are 560 

the objects identified using a Chl-a concentration threshold of 2.5 mg m-3. Some of the AMM7v11 561 

objects are considerably larger than those in L4 in the mid- and latter part of the bloom season from 562 

mid-May onwards, just not necessarily at exactly the same time or location. As seen in Figure 11(b), the 563 

area time series also illustrates the offsets in the start and end of the bloom season. Some of the objects 564 

detected in AMM7v11 beyond the end of the observed bloom season provided by L4, suggests that at 565 
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least three substantial areas are still diagnosed to exceed the threshold of 2.5 mg m-3 into July. Taking 566 

the start of the earliest space-time object as the onset of the bloom season and the end of the last object 567 

as the end, the 2019 season is 119 days long based on the L4 product, and 117 days in the AMM7v11 568 

analysis. Therefore, the overall length of the season as defined by the space-time objects is comparable 569 

in the AMM7v11 analysis, albeit with a substantial offset. Finally, even if (a) and (b) suggest that 570 

AMM7v11 and L4 objects exist at the nearly the same time, this does not mean they are geographically 571 

close to each other. This is illustrated in Figure 11(c) which provides the spatial context. The colours 572 

and symbols are consistent across all panels and show that even when the MTD objects are identified at 573 

the same time they may be geographically quite far apart, or more typically there is no L4 counterpart 574 

(filled circle) to an AMM7v11 bloom object (cross). The north- and westward progression of the bloom 575 

as the season unfolds can be seen through the use of the colours, with the AMM7v11 analysis producing 576 

enhanced Chl-a concentrations in deeper waters to the north and west of the domain beyond the end of 577 

the observed season. 578 
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Figure 11 Space-time information from the L4 

(filled circle) and AMM7v11 (cross) MTD 

objects. (a) The timing of each identified bloom 

event (time centroid) plotted on the x-axis against 

the duration of the bloom event, denoted by the 

vertical line which represents the start and end 

time of each space-time object. (b) Daily object 

areas. (c) Spatial location of the time centroid 

shown in (a) to indicate that even if AMM7v11 

and L4 objects exist at the same time they may 

not be geographically close. Colours are 

coordinated across all panels. 

 



31 

 

With only 22 AMM7v11 and 11 L4 product MTD objects, which are temporally and geographically 579 

well dispersed, three of the L4 objects remained unmatched, leaving only 8 matched MTD objects for 580 

the 2019 bloom season with an overall interest score greater than 0.5. This represented an insufficient 581 

sample for drawing any robust statistical conclusions. Nevertheless, some inspection of the paired MTD 582 

object attributes are summarised below: 583 

• The spatial centroid (centre of mass) differences can be extensive, but the majority are within 0 to 584 

100 grid squares apart (i.e. up to ~700 km).   585 

• The majority of paired objects have time centroid differences +/- 10 days. 586 

• Considering the volumes of the space-time objects, half the paired objects have volume ratios of less 587 

than 1, i.e. AMM7v11 objects tend to be smaller or similar in size. The other pairs have ratios as 588 

high as 4. 589 

• Overlaps between AMM7v11 and L4 MTD objects remain small and infrequent with only one pair 590 

with a significant overlap in space and time. 591 

5. Discussion and conclusions 592 

MODE and MTD were used as two distinct but related feature-based diagnostic verification methods to 593 

evaluate and compare the pre-operational AMM7v11 European North West Shelf Chl-a concentration 594 

bloom objects to those identified in the satellite-based L4 ocean colour product. Nominally blooms were 595 

said to occur when the concentration threshold exceeded 2.5 mg m-3 and two higher thresholds were 596 

also considered. Sample sizes dwindle rapidly with increasing threshold. Of specific interest were the 597 

similarities and differences in respective bloom object sizes, their geographical location and collocation 598 

and timing. For the timing component the onset, duration, and demise of individual bloom objects 599 

(events) could be considered. For the season all the identified space-time objects provided an estimate 600 

of the onset, duration and end of the bloom season as a whole. The season was found to be of similar 601 

length, but the onset was found to begin 26 days later in the AMM7v11 analyses than in the L4 product, 602 

and the AMM7v11 analyses persist the season for almost a month beyond the diagnosed end identified 603 

in the L4 product. Using traditional verification methods, data assimilation has been shown to 604 
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considerably reduce the delay in bloom onset in the model (Skákala et al., 2020). Using feature-based 605 

verification methods, this study suggests that a substantial delay still remains. 606 

 607 

There is a modest concentration bias in the AMM7v11 analyses compared to the L4 satellite ocean 608 

colour product. In this study we chose not to mitigate against this bias as it was not considered to 609 

impede the identification of bloom objects, which would prevent the ability of the methodology to 610 

identify matches and create paired object statistics. Any concentration bias does affect the results and 611 

this effect must be understood or at least kept in mind when interpreting results, in this case it will have 612 

contributed to the result that the AMM7v11 bloom objects are generally larger. An alternative approach 613 

would be to mitigate against the impact of the bias before using a threshold-based methodology such as 614 

MODE or MTD. A quantile mapping approach is available within the MODE tool (not yet available in 615 

MTD but should be available at some point) to remove the biases between two distributions as each 616 

temporal data set is analysed. Using this method the one threshold is fixed and the other threshold varies 617 

day-to-day (as shown in Figure 5). Another approach would be to analyse the bias for the whole season 618 

(as shown in Figure 4) and deriving an equivalent threshold from this larger data set, thus applying a 619 

fixed threshold to all the days in the season, though there would still be two different thresholds applied 620 

to the two data sets.  621 

 622 

MODE results suggest that the AMM7v11 bloom objects are larger than those in the L4 product. 623 

AMM7v11 produces more objects (in number) than seen in the L4 ocean colour product, yet many of 624 

the coastal objects seen in the L4 product are not as well resolved in AMM7v11 due to the coarseness of 625 

the coastline in the 7 km model. The additional AMM7v11 objects are mainly found in deeper Atlantic 626 

waters. The diagnosis of coastal blooms should improve if the model resolution were increased from 627 

7 km to 1.5 km. 628 

 629 

Using MODE and MTD clearly gives extra information not obtained from traditional verification 630 

metrics that are more routinely used (McEwan et al., 2021). An alternative approach to assessing the 631 

representation of phytoplankton blooms might be to use phenological indices (Siegel et al., 2002; 632 
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Soppa,  et al., 2016), which measure the day of the year on which Chl-a concentration first crosses a 633 

threshold based on the median concentration. Phenological indices have been used in observation 634 

process studies (Racault et al., 2012), but very rarely for model verification, and then only in 1D 635 

(Anugerahanti et al., 2018). One reason for this is that daily model Chl-a will frequently cross such a 636 

threshold throughout the bloom season, meaning temporal smoothing and other processing (Cole et al., 637 

2012) would be required, which is not straightforward to apply consistently. Objective methods such as 638 

MODE and MTD, which consider individual bloom objects throughout the season, rather than assuming 639 

a single spring bloom will occur at each location, bypass these difficulties. 640 

 641 

Other work that formed part of this study, but is not reported on here, showed that constraining the Chl-642 

a using assimilation of the satellite observations appears to benefit the model in terms of fewer 643 

unmatched bloom regions. This should translate to an improvement in the forecasts generated from this 644 

analysis compared with previous versions of the operational system and will be the subject of future 645 

work. 646 

6. Code availability 647 

Model Evaluation Tools (MET) was initially developed at the National Center for Atmospheric 648 

Research (NCAR) through grants from the National Science Foundation (NSF), the National Oceanic 649 

and Atmospheric Administration (NOAA), the United States Air Force (USAF) and the United States 650 

Department of Energy (DOE). The tool is now open source and available for download on github: 651 

https://github.com/dtcenter/MET. For this study MET version 8.1 of the software was used. MET 652 

allows for a variety of input file formats but some pre-processing of the CMEMS NetCDF files was 653 

necessary before the MODE package could be applied. This includes regridding of the observations 654 

onto the model grid, and addition of the forecast reference time variables to the NetCDF attributes. All 655 

aspects on the use of MET are provided in in the MET software documentation available online at 656 

https://dtcenter.github.io/MET.  657 

https://github.com/dtcenter/MET
https://dtcenter.github.io/MET
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7. Data availability 658 

Data used in this paper was downloaded from the Copernicus Marine and Environment Monitoring 659 

Service (CMEMS). The datasets used were:  660 

• https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_csw&view=de661 

tails&product_id=OCEANCOLOUR_ATL_CHL_L4_NRT_OBSERVATIONS_009_037 (last 662 

access: August 2019),  663 

• https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWES664 

TSHELF_ANALYSIS_FORECAST_BIO_004_002_b (last access: August 2019) 665 

 666 

The AMM7v11 analyses were not operational at the time of this study and not yet available from the 667 

CMEMS server. 668 
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