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Abstract.

Two feature-based verification methods, thus far only used for the diagnostic evaluation of atmospheric
models, have been applied to compare ~7 km resolution pre-operational analyses of Chlorophyll-a (Chl-
a) concentrations to a 1 km gridded satellite-derived Chl-a concentrations product. The aim of this
study was to assess the value of applying such methods to ocean models. Chl-a bloom objects were
identified in both datasets for the 2019 bloom season (March 1 to 31 July). These bloom objects were
analysed as discrete (2D) spatial features, but also as space-time (3D) features, providing the means of
defining the onset, duration, and demise of distinct bloom episodes and the season as a whole.

The model analyses are not able to represent small coastal bloom objects, given the coarser definition of
the coastline. The analyses also wrongly produce more bloom objects in deeper Atlantic waters.
Concentrations in the model analyses are somewhat higher overall. The bias manifests itself in the size
of the model analysis bloom objects, which tend to be larger than the satellite-derived bloom objects.
Based on these feature-based methods the onset of the bloom season is delayed by 26 days in the model
analyses, but the season also persists for another month beyond the diagnosed end. The season was
diagnosed to be 119 days long in the model analyses, compared to 117 days from the satellite product.
Geographically the model analyses and satellite-derived bloom objects do not necessarily exist in a

specific location at the same time, and only overlap occasionally.
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1 Introduction

The advancements in atmospheric numerical weather prediction (NWP) such as the improvements in
model resolution began to expose the relative weaknesses in so-called traditional verification scores
(such as the root-mean-squared-error for example), which rely on the precise matching in space and
time of the forecast to a suitable observation. These metrics and measures no longer provided adequate
information to quantify forecast performance (e.g. Mass et al. 2002). One key characteristic of high-
resolution forecasts is the apparent detail they provide, but this detail may not be in the right place at the
right time, a phenomenon referred to as the “double penalty effect” (Rossa et al., 2008). Essentially it
means that at any given time the error is counted twice because the forecast occurred where it was not
observed, and it did not occur where it was observed. This realisation created the need within the
atmospheric community for creating more informative yet robust verification methods. As a result, a
multitude of so-called “spatial” verification methods were developed, which essentially provide a

number of ways for accounting for the characteristics of high-resolution forecasts.

In 2007 a spatial verification method inter-comparison (Gilleland et al., 2009, 2010) was established
with the aim of providing a better collective understanding of what each of the new methods was
designed for, and categorising what type of forecast errors each could quantify. A decade later
Dorninger et al. (2018) revisited this inter-comparison, adding a fifth category so that all spatial
methods fall into one of the following groupings: neighbourhood, scale separation, feature-based,

distance metrics or field deformation.

The use of spatial verification methods has therefore become commonplace for atmospheric NWP (see
Dorninger et al. (2018) and references within). Neighbourhood-based methods in particular have
become popular due to the relative ease of computation and intuitive interpretation. Recently one such
neighbourhood spatial method was demonstrated as an effective approach for exploring the benefit of
higher resolution ocean forecasts (Crocker et al., 2020). Another class of methods focus on how well
particular features of interest are being forecast. Forecasting specific features of interest is one of the

main reasons for increasing horizontal resolution. Feature-based verification methods, such as the
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Method for Object-based Diagnostic Evaluation (MODE, Davis et al., 2006) and the time domain
version MODE-TD (Clark et al., 2014) enable an assessment of such features, focusing on the physical
attributes of the features (identified using a threshold) and how they behave at a given point in time, and
evolve over time. These methods require a gridded truth to compare to. Whilst the initial inter-
comparison project was based on analysing precipitation forecasts, over recent years their use has
extended to other variables, provided gridded data sets exist that can be used to compare against (e.g.
Crocker & Mittermaier (2013) considered cloud masks and Mittermaier et al., (2016) considered more
continuous fields in a global NWP model such as upper-level jet cores, surface lows and high pressure
cells using model analyses). Mittermaier & Bullock (2013) detailed the first study to use MODE-TD
prototype tools to analyse the evolution of cloud breaks over the UK using satellite-derived cloud

analyses.

In the ocean, several processes have strong visual signatures that can be detected by satellite sensors.
For example, mesoscale eddies can be detected from sea surface temperature or sea level anomaly (e.g.
(Chelton et al., 2011, Morrow and Le Traon, 2012, Hausmann and Czaja, 2012). Phytoplankton blooms
are seasonal events which see rapid phytoplankton growth as a result of changing ocean mixing,
temperature and light conditions (Sverdrup, 1953, Winder and Cloern, 2010, Chiswell, 2011)). Blooms
represent an important contribution to the oceanic primary production, a key process for the oceanic
carbon cycle (Falkowski et al., 1998). Their spatial extent and intensity in the upper ocean make them
visible from space with ocean colour sensors (Gordon et al., 1983, Behrenfeld et al., 2005).
Biogeochemical models coupled to physical models of the ocean provide simulations for the various
parameters that characterize the evolution of a spring bloom, such as Chl-a concentration which can

also be estimated from spaceborne ocean colour sensors (Antoine et al., 1996).

Validation of marine biogeochemical models has traditionally relied on simple statistical comparisons
with observation products, often limited to visual inspections (Stow et al., 2009; Hipsey et al., 2020). In
response to this, various papers have outlined and advocated using a hierarchy of statistical techniques
(Allen et al., 2007a, 2007b; Stow et al., 2009; Hipsey et al., 2020), multivariate approaches (Allen and
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Somerfield, 2009), and novel diagrams (Jolliff et al., 2009). Many of these rely on matching to
observations in space and time, but some studies have started applying feature-based verification
methods ((Mattern, et al.2010)). Emergent properties have been assessed in terms of geographical
provinces (Vichi et al., 2011), phenological indices (Anugerahanti et al., 2018), and ecosystem
functions (de Mora et al., 2016). In a previous application of spatial verification methods developed for
NWP, Saux Picart et al. (2012) used a wavelet-based method to compare Chl-a concentrations from a
model of the European North West Shelf to an ocean colour product.

For this paper, both MODE and MODE-TD (or MTD for short) were applied to the latest pre-
operational analysis (at the time) of the Met Office Atlantic Margin Model (AMM7) at 7 km resolution
(O’Dea et al., 2012; Edwards et al., 2012; O'Dea et al., 2017; King et al., 2018; (McEwan et al., 2021))
for the European North West Shelf (NWS), in order to evaluate the spatio-temporal evolution of the
bloom season in both model and observation fields. A full traditional verification of the system (e.g.
using root-mean-squared-error and similar metrics) is out of scope of this study and will be presented in
a separate publication. For comparison with the MODE and MTD results, a few traditional metrics are
included here, based on the Copernicus Marine Environment Monitoring Service (CMEMS) Quality
Information Document for the model (McEwan et al., 2021). Traditional verification of a previous
version, prior to the introduction of ocean colour data assimilation, was presented by Edwards et al.
(2012), who used various metrics and Taylor diagrams (Taylor, 2001) to compare model analyses to
satellite and in-situ observations. Ford et al. (2017) presented further validation, to understand the skill
of the model at representing phytoplankton community structure in the North Sea. A similar version of
the system used in this study, including ocean colour data assimilation, was assessed in Skakala et al.
(2018), who validated both analysis and forecast skill using traditional methods. The assimilation
improved analysis and forecast skill compared with the free-running model, but when assessed against
satellite ocean colour the forecasts were not found to beat persistence. On the NWS the spring bloom
usually begins between February and April, varying across the domain and interannually (Siegel et al.,

2002; Smyth et al., 2014), and lasts until summer. Without data assimilation the spring bloom in the
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model typically occurs later than in observations (Skakala et al., 2018, 2020), a bias which is largely

corrected by assimilating ocean colour data.

In Section 2 the data sets used in the verification process are introduced. Section 3 describes MODE and
MTD. Section 4 contains a selection of results, and their interpretation. Conclusions and

recommendations follow in Section 5.

2 Data sets for the 2019 Chl-a bloom

As stated in Section 1, feature-based methods such as MODE and MTD require the fields to be
compared to be on the same grid. The model grid is used here.

2.1 Satellite-derived gridded ocean colour products

A cloud-free gridded (space-time interpolated, L4) daily product delivered through the Copernicus
Marine Environment Monitoring Service (CMEMS, Le Traon et al., 2019) catalogue provides Chl-a
concentration at ~1 km resolution over the Atlantic (46°W-13°E, 20°N-66°N). The L4 Chl-a product is
derived from merging of data from multiple satellite-borne sensors: MODIS-Aqua, VIIRSN and OLCI-
S3A. The reprocessed (REP) products available nearly 6 months after the measurements
(OCEANCOLOUR_ATL_CHL_L4 REP_OBSERVATIONS 009 098) are used here as it is the best-
quality gridded product available for comparison. The satellite derived Chl-a concentration estimate is

an integrated value over optical depth.

Errors in satellite-derived Chl-a can be more than 100% of the observed value (e.g. Moore et al., 2009).
The errors in the L4 Chl-a values are often at their largest near the coast, especially near river outflows.
However, in the rest of the domain, smaller values of Chl-a mean that even large percentage
observation errors result in errors typically smaller than the difference between model and observations.
As will be shown, the models at 7 km resolution cannot resolve the coasts in the same way as is seen in
the satellite product as some of the coastal Chl-a dynamics are sub-grid scale for a 7 km resolution
model.



135
136
137
138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

For this study the ~1 km resolution L4 satellite product was interpolated onto the AMM?7 grid using
standard two-dimensional horizontal cubic interpolation. This coarsening process retained some of the

larger concentrations present in the L4 product.

2.2 Model description

Operational modelling of the NWS is performed using the Forecast Ocean Assimilation Model (FOAM)
system. This consists of the NEMO (Nucleus for European Modelling of the Ocean) hydrodynamic
model (Madec et al., 2016; O'Dea et al., 2017), the NEMOVAR data assimilation scheme (Waters et al.,
2015; King et al., 2018), and for the NWS region the European Regional Seas Ecosystem Model
(ERSEM), which provides forecasts for the lower trophic levels of the marine food web (Butenschon et
al., 2016). The version of FOAM used in this study is AMM7v11, using the ~7 km horizontal
resolution domain stretching from 40 °N, 20 °W to 65 °N, 13 °E. Operational forecasts of ocean physics
and biogeochemistry for the NWS are delivered through CMEMS, for a summary of the principles
underlying the service see e.g. Le Traon et al. (2019).

AMM7v11 uses the CO6 configuration of NEMO, which is configured for the shallow water of the
shelf sea and is a development of the CO5 configuration described by O'Dea et al. (2017). The ERSEM
version used is v19.04, coupled to NEMO using the Framework for Aquatic Biogeochemical Models
(FABM, Bruggeman and Bolding, 2014). The NEMOVAR version is v6.0, with a 3D-Var method used
to assimilate satellite and in situ sea surface temperature (SST) observations, in situ temperature and
salinity profiles, and altimetry data into NEMO (King et al., 2018), and chlorophyll derived from
satellite ocean colour into ERSEM (Skékala et al., 2018). The introduction of ocean colour assimilation
in AMM7v11 is a major development for the biogeochemistry over previous versions of the system
(Edwards et al., 2012). The satellite ocean colour observations assimilated are from a daily L3 multi-
sensor composite product based on MODIS and VIIRS with resolutions of 1 km for the Atlantic (for
further information see OCEANCOLOUR_ATL_CHL L3 NRT_OBSERVATIONS 009 036 on the
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CMEMS catalogue). The L3 product is based on two of the same three ocean colours sensors used in

the L4 product described in Section 2.1, but with different processing and no gap-filling.

In this study daily mean Chl-a concentrations for the period of 1 March-31 July 2019 from AMM7v11
were used to illustrate the verification methodology. AMM7v11 entered operational use in December
2020, and the data used here came from a pre-operational run of the system. Note only the analysis of
AMMT7v11 (i.e. no corresponding forecasts) was available at the time of the assessment, and the results

presented in this paper show how close the data assimilation draws the model to the observed state.

2.3 Visual inspection of data sets

Ideally, Chl-a concentration from the model should be integrated over optical depth to be equivalent to
the satellite derived value defined in Section 2.1 (Dutkiewicz et al., 2018). However, this is currently a
non-trivial exercise, and cannot be accurately calculated from offline outputs. Therefore, the commonly
accepted practice is to use the model surface Chl-a (Lorenzen, 1970, (Shutler et al., 2011). Here it is
assumed that the difference between surface and optical depth-integrated Chl-a is likely to be small in

comparison with the actual model errors.
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Figure 1 (a) Daily mean L4 multi-sensor observations regridded on the 7 km resolution model grid and (b) AMM7v11
Chl-a for 1 June 2019. (c) Error estimates on the multi-sensor L4 Chl-a and (d) difference between AMM7v11 and
the L4 product.

Figure 1 shows the L4 ocean colour product (a) and AMM7v11 analysis (b) for 1 June 2019 on the top
row, using the same plotting ranges. The second row shows the difference field that is provided with the
L4 ocean colour product (c), and the AMM7v11 minus L4 difference field (d). The mean error (bias) is
generally positive with the AMM7v11 analysis containing higher Chl-a concentrations, especially in the
deeper North Atlantic waters. The exceptions are along the coast where the AMM7v11 analysis is
deficient, but it should be noted that these are also the zones where some of the largest satellite retrieval
errors occur and where a 7-km resolution model, with a coarse representation of the coast, does not fully

represent complex coastal and estuarine processes.
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3 Method for Object-based Diagnostic Evaluation (MODE) and MODE Time-Domain (MTD)

3.1. Description of the methods
This section provides a brief description of the Method for Object-Based Diagnostic Evaluation
(MODE), first described in Davis et al. (2006) and its extension MODE Time-Domain (MTD).

MODE and MTD can be used on any temporal sequence of two gridded data sets which contain features
that are of interest to a user (whoever that user may be, model developer or more applied). By extracting
only the feature(s) of interest, the method allows one to mimic what humans do, but in an objective
way. Once identified the features can then be mathematically analysed over many days or seasons to
compute aggregate statistics of behaviour. MODE can be used in a very generalised way. The key
requirements are to 1) have gridded fields to compare and 2) be able to set a threshold for identifying

features of interest.

In this instance the comparison will involve the AMM7v11 model data assimilation analysis and the
gridded L4 satellite product. MODE identifies the features (called objects), as areas for which a
specified threshold is exceeded, here it is a Chl-a concentration. Consider Figure 2 which shows a
number of objects that have been identified after a threshold has been applied to two fields (blue and
orange). The identified objects in the two fields are of different sizes and shapes and do not overlap in
space, though they are not far apart. Object characteristics or attributes such as the area and mass-
weighted centroid are computed for each single object. Simple (also known as single) objects can be
merged (to form clusters) within one field (illustrated here for the orange field). This may be useful to
do if it is clear that there are many small objects close together which should really be treated as one.
Furthermore, objects in one field can be matched to objects in the other field. To find the best match an
interest score is computed for each possible pairing between all identified objects. The components used
for computing the interest score can be tuned to meet specific user needs. In Figure 2(a) it is based on
the area ratio, intersection-area ratio, minimum boundary distance and centroid difference. Furthermore,
the components can be weighted according to relative importance. Given a scenario where there are 2

identified objects in the blue field and 3 in the orange field Figure 2(b) shows the interest score for each

9
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possible pairing in this hypothetical example. Only the pairing with the highest score is analysed
further, and only if it exceeds the set threshold for defining an acceptable match. The default value for
this is 0.7. For the example blue object 1 is best matched against orange object 1, and this match is used
in the analysis. Note that there is another good match with orange object 2 as it is above the threshold of
0.7, but it, as well as the orange object 3 would not be used, with orange object 3 below the 0.7
threshold. In all likelihood a scenario such as shown in Figure 2(b) would be assessed as clusters with
blue objects 1 and 2 forming a cluster and orange objects 1 and 2 also forming a cluster. An interest
score for the cluster pairing above 0.7 would then create a matched pair. Once these matches are
completed summary statistics describing the individual objects (both matched and unmatched) and
matched object pairs are produced. These statistics can be used to identify similarities and differences
between the objects identified in two different data sets, which can provide diagnostic insights on the
relative strengths and weaknesses of one compared to the other.

(a) (b)

Min. boundary distance

Simple single ~1.5 km
field 1 object
with area é km? / Total interest score is
computed between all possible
object combinations in field 1
° and 2
1 0.9 0.7
gi?tmld 1km For each object the object in the other 2 0.8 0.5
~I3 esrince f— field with highest score is taken forward
=2 km as the matched pair. This process is 3 0.3 0.6

repeated. Only matched pairs which
have a total interest score greater than a
preset threshold (default 0.7) are
analysed to remove bad matches.

Area ratio = min (A, A;) / max (A;, A;)=0.4

Intersection area ratio = A; n A / mean (A, A))=0

Figure 2 Schematic illustrating some of the key components of identifying objects using MODE. (a) Defining some of
the terminology and key components for computing matched pairs. (b) Example of how the best matched pair is
identified.

10
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Davis et al. 2006):

1) Both forecast and observation (or analysis) need to be on the same grid. Typically, this means
interpolating the observations to the model grid to avoid the model being expected to resolve
features which are sub-grid scale.

2) Depending on how noisy the fields are they should be smoothed. Gridded observations (not
analyses) can be noisy and usually need some smoothing. Models and model analyses are built
on numerical methods which come with discretisation effects. Depending on the method this
implies that any model’s true resolution (i.e. the scales which the model is resolving) is between
2 and 4 times the horizontal grid (mesh) resolution. The number of objects identified will vary
inversely with the smoothing radius.

3) Define a threshold which captures the feature of interest and apply it to both the smoothed
forecast and observed fields to identify simple objects as shown in Figure 2.

4) Any smoothing is only for object identification purposes. The original intensity information
within the object boundaries is analysed.

5) Lastly, the object matching is accomplished using a fuzzy logic engine (low level artificial
intelligence), which is expressed as the so-called “interest” score as shown in Figure 2(b). The
higher the score the stronger the match. All objects are compared in both fields and interest
scores are computed for all combinations. A threshold is set on the interest score value (typically
0.7) to denote which are the best matches, and on the unique pairing with the highest score is
kept for analysis purposes. Some objects will remain unmatched (either because there is none or
because there are no interest values above the set threshold to provide a credible match) and

these can be analysed separately.

MODE is highly configurable. To gain an optimal combination of configurable parameters for each
application requires extensive sensitivity testing to gain sufficient understanding of the behaviour of the
data sets to be examined, and to achieve, on average, heuristically the right outcome. Initial tuning

requires user input to check whether the method is replicating what a human would do.

11
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1) The sensitivity to threshold and smoothing radius should be explored. The threshold and
variability in the fields can affect the number of objects which are identified. The process of
exploring the relationship between threshold and smoothness helps to identify what would
heuristically be considered a reasonable number of objects.

2) The sensitivity to the merging option must also be investigated. In this instance the merging
option had very little impact.

3) The behaviour of the matching can also be configured, with a number of options ranging from
the simple to the more complicated, which added computational expense. There may be very
little difference in outcomes, but it is worth checking. Here the merge_both option was used but

it was not strictly necessary as there was little difference between the available options.

Note also that a minimum size (area) is set for object identification. This is often a somewhat pragmatic
choice. If the size is set too small, too many objects are identified, which end up being merged. If too
large, very few objects are identified. Here a minimum area of 10 grid squares (~70 km?) was used for
an object to be included in the analysis. For this study the default settings were used for matching and
computing the interest score (as provided in the default configuration file (see example configuration
files in https://github.com/dtcenter/MET/tree/main_v8.1/met/scripts/config). The default threshold of

0.7 for the interest score was also used to identify acceptable matches.

Identical to MODE, identifying time-space objects in MTD uses smoothing and thresholding. Applying
a threshold yields a binary field where grid points exceeding the defined threshold are set to one. At this
stage each region of non-zero grid points in space and time is considered a separate object, and the grid
points within each object are assigned a unique object identifier. For MTD the search for contiguous
grid points not only means examining adjacent grid points in space, but also the grid points in the same
or similar location at adjacent times to define a space-time object. The same fuzzy logic-based
algorithms used for merging and matching in MODE apply to MTD as well. Similarly, to MODE a
minimum volume must be set. Here a volume threshold of 1000 grid squares (a summation of the daily

object areas identified to be part of the space-time object) was imposed for space-time object

12
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identification to be included in the analysis. This represents the accumulated number of grid squares
associated with an object over consecutive time slices. Otherwise, the default settings were used for
object matching. For MTD a lower interest score of 0.5 was used for matching objects. Finally, it is
worth noting that the MODE and MTD tools, though similar, are completely independent of each other,
and were set up differently here. MODE is ideal for understanding the identified features in individual
daily fields in some detail. MTD, it was felt, would be best used to look at larger scales. Here it was set
up to capture the most significant (in size) and long-lasting blooms.

3.2 Defining Chl-a concentration thresholds and other choices on tuneable parameters

Chl-a can vary over several orders of magnitude. Often logio thresholds are used to match the fact that
Chl-a follows a lognormal distribution (e.g. Campbell 1995). Defining thresholds can be difficult: on
the one hand there is the desire to only capture events of interest, so the thresholds should not be too
low, whereas on the other hand if the thresholds are too high no events are captured and there is nothing
to analyse. From a regional (NW European Shelf) perspective the values of interest are typically in the
range of 3-5 mg m™ (Schalles, 2006), though higher Chl-a concentrations can be measured in-situ or
diagnosed in satellite products. For this study, the data sets were not transformed but the thresholds
were selected in such a way that they would correspond to being equally spaced in logarithmic space,
staying true to the underlying distribution shape of Chl-a concentrations. Here the primary focus is on
the results for the 2.5 mg m™ threshold, though some results for the 4 and 6.3 mg m™ thresholds are also
presented.

In addition to the interpolation of the L4 ocean colour product onto the ~7 km AMM7v11 grid, it is
important to ensure that MODE and MTD use optimal settings for the fields under study. Results are
sensitive to characteristics of the fields (how smooth or noisy). Right at the start the emphasis was on
finding the right combination of Chl-a concentration threshold and smoothing, balancing the need for
identifying objects with keeping the number of objects manageable. The guiding principles in
identifying the right combination were to ensure that the daily object count remained low enough,

recalling that these methods were developed to mimic what a human would do. The human brain would

13



317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

struggle to cope with as many as 30, but this was considered to be an acceptable upper limit after
considerable visual inspection of output. Furthermore, the smoothing applied needs to be reduced with
increasing concentration thresholds because objects become smaller and are less frequent. This is to
ensure that too much smoothing does not remove more intense objects from the analysis. However,
pushing the concentration threshold too high may also be detrimental; depending on the input fields,
identified objects may be spurious (due to e.g. a failure of quality control processes removing such).
Too few objects also make the compilation of robust aggregated statistics impossible.

For the lowest thresholds including 2.5 and 4.0 mg m= a smoothing radius of 5 grid squares (~35 km)
was applied to both L4 and AMM7v11 fields, but for higher thresholds (e.g. 6.3 mg m=) the smoothing
radius was reduced to 3 grid squares, to prevent the higher peak concentrations, which are often small in
spatial extent, from being lost due to the smoothing. Thresholds above 6.3 mg m™ yielded too few
objects to be analysed with any rigour. The smoothing was particularly necessary for the L4 product
which, because of its native 1 km resolution is able to resolve very small (noisy) objects typically found
near the coast and which a 7 km resolution model cannot resolve. For the MTD analysis, objects in the
L4 ocean colour product and the AMM7v11 analyses were only defined using a Chl-a concentration
threshold of 2.5 mg m™.
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4. Results

4.1 Traditional statistics

Traditional verification metrics are based on a set of observations and a set of model outputs matched in
time and space. The statistics that are typically considered (McEwan et al., 2021) are the median error
(bias), median absolute difference (MAD) and Spearman rank correlation coefficient. The median bias
gives indication of consistent differences between the model and observations, with a positive bias
indicating the model concentration is higher than observed. The MAD provides an absolute magnitude
of the difference. The Spearman rank correlation coefficient is the Pearson correlation coefficient
between the ranked values of the model and observation data so that if the model data increases when
the observations do, they are positively correlated. It has the same interpretation as the more common
Pearson correlation coefficient where a correlation of 1 shows perfect correlation and 0 shows no
correlation. Figure 3 provides a map of the model domain and the subregions over which traditional
metrics are computed. Table 1 shows results for log(Chl-a) assessed against the L4 ocean colour

product.
65°N Regions:
EC: English Channel
IS: Irish Sea

60°N NNS: Northern North Sea

NT: Norwegian Trench

NWA: North Western Approaches
SNS: Southern North Sea

SWA: South Western Approaches

The Continental Shelf regions includes all the above, i.e. all

55°N

509N
regions except Off-shelf.

Observation stations:
45°N

L4: station L4 of the Western Channel Observatory

15°W  10°W  5°W 0° 5°E 10°E

Figure 3 Map showing the sub-regions over which statistics are computed.
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Table 1 Statistics for matched pairs of daily model surface log-chlorophyll-a outputs and satellite ocean colour Chl-a
for the full domain and sub-regions for the period March to July 2019. See Figure 3 for the location of the regions.
The Continental shelf includes all regions except Off-shelf (ICES, 2014)

Region Median bias MAD Spearman correlation
(log(mg m™)) (log(mg m>)) coefficient

Full Domain <0.01 (0.004) 0.21 0.62
Continental shelf -0.09 0.17 0.71
Off-shelf 0.06 0.23 0.51
Norwegian Trench -0.04 0.18 0.61
Northern North Sea -0.05 0.17 0.64
Southern North Sea -0.17 0.19 0.82
English Channel -0.13 0.16 0.68
Irish Sea -0.13 0.19 0.49
South Western -0.07 0.15 0.69
Approaches

North Western <0.01 (0.006) 0.18 0.51
Approaches

Compared with the L4 product, the AMM7v11 analysis slightly overestimates Chl-a off-shelf, and
underestimates Chl-a in the on-shelf regions (Table 1). Regions show moderate to strong positive
correlations, highest in the Southern North Sea and lowest in the Irish Sea. These statistics give useful
insight into model skill but provide limited information about how model performance changes as the
bloom season progresses (McEwan et al., 2021; Skakala et al., 2018, 2020). As will be shown, the
output from MODE and MTD provides a very different perspective from these traditional verification

metrics, allowing a more detailed understanding of model performance.

4.2 Chl-a distributions

It is important to understand the nature of the underlying L4 and AMM7v11 Chl-a distributions and any
differences between them. This can be done by creating cumulative distribution functions (CDF) of the
logio L4 and AMM7v11 Chl-a concentrations, by taking all grid points in the domain and all dates in

the study period. These are plotted in Figure 4, showing that there is an offset between the distributions,
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369 the AMMY7v11l analysis having more low concentrations, though the distributions appear to be

370 converging in the upper tail.
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Figure 4 Empirical cumulative distribution functions of the log10 Chl-a concentration for the L4 ocean colour

product and AMM?7v11 analyses for the 2019 bloom season.

Exploring this further the AMM7v11 and L4 Chl-a concentration CDFs can be derived for each
individual day, rather than for the season as a whole. From these the quantile where the L4 product is
less than or equal to 2.5 mg m? (29.7%) can be compared to the corresponding AMM7v11
concentration associated with the same quantile of 29.7%. From Figure 4 this gives an equivalent
concentration of 1.15 mg m= for the season. The daily matched quantile Chl-a values provide an
estimate of the daily bias. This is plotted in Figure 5 as a time series for the 2019 bloom season. It
shows that the daily AMM7v11 corresponding quantile values are mainly in the range of ~1.5—4.5 mg
m3, averaging out to 2.9 mg m™ over the season, which suggests a modest difference overall. The larger
day-to-day variations show some cyclical patterns. There are notable peaks at the end of May and the
beginning of July. An inspection of the fields (not shown) suggests that at these times the AMM7v11
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384 appears to have higher Chl-a concentrations over large portions of the domain compared to the L4
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Figure 5 The day-to-day AMM7v11 quantile Chl-a value corresponding to the L4 product quantile representing 2.5
mg m3 derived from the L4 daily CDFs. The mean AMM7v11 Chl-a equivalent quantile value for the 2019 season is

2.9 mgm=,

In employing a threshold-based approach, generally the same threshold is applied to both data sets. In
the presence of a bias this requires a little bit of thought. In extreme cases, it could mean the inability to
identify objects in one of the data sets, which would then mean objects cannot be matched and paired,
negating the purpose of a spatial method like MODE or MTD. Not being able to identify any objects
does provide some useful information, though arguably not enough context. The lack of objects does
suggest the presence of a bias but it does not provide any sense of whether the model is producing a
constant value of Chl-a for example, which would be of no use to the user, or whether it does capture
regions of enhanced Chl-a, albeit with an offset which means it does not exceed the set threshold.
Therefore, a more likely scenario is that a bias could partially mask relevant signals in the derived

object properties, which could lead to the potential misinterpretation of results. If there is a significant
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risk of this occurring the bias could be addressed before features are identified to ensure that the
primary purpose of using a feature-based assessment can be achieved, i.e. identifying features of interest
in two sets of fields to assess their location, timing and other properties and assessing their skill. The
fact that there is an intensity offset should not prevent the method from providing information about the
skill of identified features. As is seen here, though there is bias (as seen in Figure 4Figure 5), it does not
prevent the method from successfully identifying objects using the same threshold for both datasets,
though it will be shown that the effect of the bias can affect some object attributes, e.g. object areas.
However, a more prohibitive bias could compromise the methods, e.g. being unable to identify objects
in a dataset. This would have a disproportionate effect on the statistics for the matched pairs in
particular. Under such circumstances the quantile mapping functionality within MODE (to remove the
effect of the bias) is strongly recommended.

4.3 Visualising daily objects

Figure 6 shows the daily Chl-a concentration fields as represented in the L4 ocean colour product and
the AMM7v11 analyses for 21 April 2019, which is near the peak of the bloom season. The respective
fields are plotted in (a) and (b), noting that the 1 km resolution L4 product has been interpolated onto
the ~7 km AMM?7 grid. Applying a threshold of 6.3 mg m to both with a smoothing radius of ~21 km
(3 grid lengths) yields 8 objects in the AMM7v11 analysis (7 visible in this zoomed region) and 11
objects in the L4 product. As discussed, the bias described in Section 4.1 does not appear to prevent the
identification of objects in the L4 product and the AMM7v11 analyses, and the process of finding

matches is possible.
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Figure 6 Daily Chl-a concentrations (in mg m=) for 21 April 2019: (a) AMM7v11 analysis and (b) L4 ocean colour

product. The MODE objects shown in (c) and (d) are identified using a threshold of 6.3 mg m and a smoothing

radius of ~21 km. Note (c) and (d) show a smaller (inner) domain. The colours show the matching clusters. Objects

denoted with -1 (grey) are unmatched.

4.4 Spatial characteristics

This section demonstrates the kinds of results that can be extracted from the two-dimensional MODE

objects. Aspects of the marginal (AMM7v11l or L4 product only) and joint (matched/paired)
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distributions can be examined. This includes object size (as a proxy for area) but also the proportion of

areas that are matched or unmatched.

Firstly, how similar is the L4 ocean colour product and the AMM7v11 analysis in terms of the features
of most interest, i.e. the Chl-a blooms? Figure 7 shows the evolution of the proportion of matched
object areas (to total combined area) through the 2019 season, when using MODE to compare the L4
product and AMMT7v11 analyses, to further explore the differences (and similarities) between them. A
value of one would suggest that all identified areas are matched. Values less than one suggest that some
objects remain unmatched. The relatively high values of matched object-to-total area during April are
due to the large numbers of well-matched, physically small coastal objects in addition to the larger Chl-
a bloom originating in the Dover Straits (not shown). There is a notable minimum at the beginning of
July. Inspecting the MODE graphical output reveals this is in part due to only a few small objects being
identified, and this is compounded by their complete mismatch; the L4 objects are all coastal, whilst the
AMM7v11 objects are either coastal (but not in the same location as L4 objects) or in the deep waters of
the North Atlantic, to the north-west of Scotland. The relatively high proportions either side of this time
arise from a better correspondence in placement of the coastal objects (noting that there is a distance
limit on how far objects can be apart for the matching process to have a positive contribution to the

interest score).
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Figure 7 Proportion of total object area which is matched. Underlying matched and unmatched object areas (in units
of numbers of grid squares) are taken from the MODE output. These areas are for the 2.5 mg m= concentration

threshold objects.

Overall, the AMM7v11l analysis is similar, but clearly not identical, to the L4 product. Best
correspondence appears to be during the first half of the bloom season. Later in the season the model’s
determination to produce blooms in deep North Atlantic waters is a model deficiency that the
assimilation is (at this stage) unable to fix. The AMM7v11 analyses could conceivably be used as a
credible source for assessing the AMM7 Chl-a forecasts in the future. The major benefit of using a
model analysis is that it is at the same spatial resolution, with the same ability to resolve Chl-a bloom
objects, especially along the coast (i.e. the analysis limits the uncertainty due to whether an object could

be missing due to the inability of the model to resolve the feature).

The day-to-day number of objects identified through the 2019 bloom season is shown in Figure 8,
illustrating how elements of the marginal and joint distribution provided by MODE can be used

together. Here, numbers of total and matched (joint) objects are shown. If the AMM7v11 analyses are
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good (i.e. similar to the L4 product), there should be fewer unmatched (marginal) objects than matched
ones (indicated by the proximity of the solid and dashed lines); ideally there would be no unmatched
objects in either the L4 product or the AMM7v11 analysis. In Figure 8 the number of objects in
AMM7v11 starts off small and increases as the bloom develops. For the L4 product there are already
many objects identified at the start of the timeseries, leading to many unmatched L4 objects (these could
be considered misses in a more categorical analysis). A spike in the number of matched objects seen in
early April can be attributed to several coastal locations, which appear to be spatially well-matched. In
addition, a larger Chl-a bloom is seen in the Dover Straits region in the L4 product and although not
exactly spatially collocated, the objects are matched. There are a consistently large number of
unmatched objects seen in the AMM7v11 analysis and L4 ocean colour product from the end of May
onwards. In the AMM7v11 analysis this appears to be due to an increase in small objects identified,
mainly to the west, north and east of the United Kingdom. The increase in unmatched objects in the L4
ocean colour product is of a different origin, being due to an increase in localised coastal blooms.
Generally, the AMM7v11 analyses do not have the resolution to resolve these. Overall, there are 2632
AMM7v11 bloom objects identified in the season using the 2.5 mg m™ threshold, and 2341 L4 bloom
objects, with 56% of AMM7v11 objects matched and 59% of L4 objects matched.

The identified objects in AMM7v11 and the L4 product can also be considered spatially over the season
by compositing the objects. This is done by counting the frequency with which a given grid square falls
within an identified object on any given day, essentially creating a binary map. These can be added up

over the entire season to produce a spatial composite object or temporal “frequency-of-occurrence” plot.

23



483

484
485
486

487
488
489
490
491
492
493

494

— AMMT7Tv11 {cbjects matched) L4 {objects matched)
- = AMM7Tv1l (total objects) L4 (total objects)

50

40 -

30 +

20 4

10 ~

2605121926020916233007 1421280411 182502091623 30 06
\
*{N{; PQ‘;. ﬁh“}\i \\}f\ \0 N}Q
2019

Figure 8 Time series of the number of matched and total objects per day from MODE comparing AMM7v11 analyses
(black) with L4 satellite product (grey). Objects are identified using a threshold of 2.5 mg m-3. Total object numbers
for the season are 2341 for L4 satellite product and 2632 for AMM7v11.

Figure 9 shows this spatial composite for the 2019 bloom season for the L4 ocean colour product
objects (a) and the AMM7v11 objects (b). These are the composites based on the 2.5 mg m threshold
objects. There are areas, for example in the South West Approaches (SWA, see Figure 3), where there
appears to be a good level of consistency. AMM7v11 analyses have elevated Chl-a values along the
northern and western edges of the domain, for a low proportion of the time, which are not seen in the L4
product. This is likely due to the way that nutrient and phytoplankton boundary conditions are specified
in AMM7v11. Overall, the low temporal frequency extent of the AMM7v11 objects is greater than for
the L4 product.
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Figure 9 Object composites (the proportion of time for which an object was present at the grid box throughout the

2019 bloom season) for (a) the L4 ocean colour product objects and (b) the AMM7v11 analysis objects.

Thus far all the attributes have been based on only the AMM7v11 or L4 objects. The distribution of
object properties, derived for the season from the daily comparisons, can be summarised using box-and-

whisker plots. Recall that the box encompasses the inter-quartile range (IQR, 25" to 75" quantile) and
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the notch and line through the box denotes the median or 50" quantile. The dashed line represents the
mean, and the whiskers show +1.5 times the IQR. For clarity, values outside that range have been
filtered out of the plots shown here. Figure 10 shows the intersection-over-area paired object attribute
distribution as box-and-whisker plots for all object pairs during the 2019 bloom season, comparing the
AMM7v11 analyses to L4 for three of the thresholds: 2.5 and 4.0 and 6.3 mg m™. The intersection-over-
area diagnostic gives a measure of how much the matched (paired) objects overlap in space. If the
objects do not intersect, this metric is 0. The ratio is bounded at 1 because any area of overlap is always
divided by the larger of the two object areas. The IQR for the 2.5 mg m= threshold is 0.25 with 50% of
paired objects having an intersection-over-area of 0.97 or greater. However, the lower whisker spans a
large range of values to as low as 0.375, suggesting that there is a proportion of object pairs with only
small overlaps. There is quite a difference between the median (notch) and the mean (dashed line) for
this metric, suggesting the distribution is skewed with the mean affected more by many small overlaps.
For the 4.0 mg m™ threshold paired objects the intersection-over-area distribution is much broader,
though the difference between the mean and medians is similar. The proportion of paired objects with
smaller overlaps has also increased. This should not be surprising given that the objects generally get
smaller with increasing threshold such that the ability for object pairs to overlap actually decreases
unless they are very closely collocated. At the 6.3 mg m™ threshold the median is lower (0.93) with a
similar difference from the mean, however the sample size is much smaller (only 130 paired objects
over the season).
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Figure 10 Box-and-whisker plots of the paired object property “intersection area” ratio computed by dividing the spatially
collocated area between the paired objects by the largest of either the AMM7v11 or L4 observed object areas (to keep the ratio to
be bounded by 0 and 1). Three object thresholds are shown: 2.5 mg m=, 4.0 mg m=and 6.3 mg m-. Smoothing radii of 5, 5 and 3
grid lengths were applied for the three thresholds respectively. The sample sizes for each threshold were 1004, 401 and 130 paired

objects respectively.

4.5 Incorporating the time dimension

Having information in space and time enables one to ask, and hopefully answer questions such as: “did
the model predict the bloom to start in the observed location?” or “did the model predict the onset at
the right time?” and “did the model predict the peak (in terms of extent) and duration of the bloom

correctly?”.

MTD identifies objects in space and time. As previously described, all MTD results are based on a 2.5
mg m threshold applied to both the L4 ocean colour products and AMM7v11l analyses. A time
centroid is derived from a time series of the spatial (two-dimensional) centroids which are computed for

each (daily) time slice. In addition to this, each identified MTD object has a start and end time, and a
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geographical location of the time centroid, which is the average of the two-dimensional locations. The

time component of the time centroid is weighted by volume.

The temporal progression of the 2019 bloom season along with spatial information as defined by the
MTD objects’ is shown in Figure 11. The object start and end times as well as the date of their time
centroids in (a) provide a clear view of the onset and demise of each object (bloom episode). In total
there are 22 AMM7v11 and 11 L4 MTD objects. The x-axis in (a) represents elapsed time. The location
of the vertical lines along the x-axis on any given date indicates the date of the time centroid whilst the
duration of the space-time object can be gleaned from the y-axis based on the start and end of the
vertical line which defines the time the object was in existence. Solid lines represent the L4 product
objects whereas dashed lines represent the AMM7v11 objects. The colour palette is graduated from
grey and blue through green, yellow, red, and purple, denoting the relative time in the season. In (a) the
first Chl-a bloom object in the AMM7v11 analysis was identified on 29 March 2019 whereas in the L4
ocean colour product the first bloom object was identified on 3 March, 26 days earlier. The first time
the L4 product and AMM7v11 analyses have concurrent objects (blooms) is in late March. The L4
product also suggests that the season ends 30 June whereas the AMM7v11 analyses persists the bloom
season with objects identified until 23 July. Most AMM7v11 objects are of relatively short duration, but
overall, most groups of AMM7v11 objects have some temporal association with an L4 product object
around the same time. In this instance it is also illuminating to consider the daily object areas
associated with the MTD objects (which are used to compute the volume of MTD objects). These are
plotted in Figure 11(b) showing all daily L4 object areas in the filled circles, and the AMM7v11 object
areas (crosses), in the same colours as in (a). The main purpose is to highlight the relative size of the L4
and AMM7v11 objects on any given day, as well as how many objects there were. Recall that these are
the objects identified using a Chl-a concentration threshold of 2.5 mg m=. Some of the AMM7v11
objects are considerably larger than those in L4 in the mid- and latter part of the bloom season from
mid-May onwards, just not necessarily at exactly the same time or location. As seen in Figure 11(b), the
area time series also illustrates the offsets in the start and end of the bloom season. Some of the objects

detected in AMMT7v11 beyond the end of the observed bloom season provided by L4, suggests that at
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least three substantial areas are still diagnosed to exceed the threshold of 2.5 mg m= into July. Taking
the start of the earliest space-time object as the onset of the bloom season and the end of the last object
as the end, the 2019 season is 119 days long based on the L4 product, and 117 days in the AMM7v11
analysis. Therefore, the overall length of the season as defined by the space-time objects is comparable
in the AMM7v11 analysis, albeit with a substantial offset. Finally, even if (a) and (b) suggest that
AMM7v11 and L4 objects exist at the nearly the same time, this does not mean they are geographically
close to each other. This is illustrated in Figure 11(c) which provides the spatial context. The colours
and symbols are consistent across all panels and show that even when the MTD objects are identified at
the same time they may be geographically quite far apart, or more typically there is no L4 counterpart
(filled circle) to an AMM7v11 bloom object (cross). The north- and westward progression of the bloom
as the season unfolds can be seen through the use of the colours, with the AMM7v11 analysis producing
enhanced Chl-a concentrations in deeper waters to the north and west of the domain beyond the end of

the observed season.
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Figure 11 Space-time information from the L4
(filled circle) and AMMT7v11 (cross) MTD
objects. (a) The timing of each identified bloom
event (time centroid) plotted on the x-axis against
the duration of the bloom event, denoted by the
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time of each space-time object. (b) Daily object
areas. (c) Spatial location of the time centroid
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With only 22 AMM7v11 and 11 L4 product MTD objects, which are temporally and geographically

well dispersed, three of the L4 objects remained unmatched, leaving only 8 matched MTD objects for

the 2019 bloom season with an overall interest score greater than 0.5. This represented an insufficient
sample for drawing any robust statistical conclusions. Nevertheless, some inspection of the paired MTD
object attributes are summarised below:

» The spatial centroid (centre of mass) differences can be extensive, but the majority are within 0 to
100 grid squares apart (i.e. up to ~700 km).

« The majority of paired objects have time centroid differences +/- 10 days.

« Considering the volumes of the space-time objects, half the paired objects have volume ratios of less
than 1, i.,e. AMM7v11 objects tend to be smaller or similar in size. The other pairs have ratios as
high as 4.

« Overlaps between AMM7v11 and L4 MTD objects remain small and infrequent with only one pair

with a significant overlap in space and time.

5. Discussion and conclusions

MODE and MTD were used as two distinct but related feature-based diagnostic verification methods to
evaluate and compare the pre-operational AMM7v11 European North West Shelf Chl-a concentration
bloom objects to those identified in the satellite-based L4 ocean colour product. Nominally blooms were
said to occur when the concentration threshold exceeded 2.5 mg m= and two higher thresholds were
also considered. Sample sizes dwindle rapidly with increasing threshold. Of specific interest were the
similarities and differences in respective bloom object sizes, their geographical location and collocation
and timing. For the timing component the onset, duration, and demise of individual bloom objects
(events) could be considered. For the season all the identified space-time objects provided an estimate
of the onset, duration and end of the bloom season as a whole. The season was found to be of similar
length, but the onset was found to begin 26 days later in the AMM7v11 analyses than in the L4 product,
and the AMMT7v11 analyses persist the season for almost a month beyond the diagnosed end identified

in the L4 product. Using traditional verification methods, data assimilation has been shown to
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considerably reduce the delay in bloom onset in the model (Skékala et al., 2020). Using feature-based

verification methods, this study suggests that a substantial delay still remains.

There is a modest concentration bias in the AMM7v11 analyses compared to the L4 satellite ocean
colour product. In this study we chose not to mitigate against this bias as it was not considered to
impede the identification of bloom objects, which would prevent the ability of the methodology to
identify matches and create paired object statistics. Any concentration bias does affect the results and
this effect must be understood or at least kept in mind when interpreting results, in this case it will have
contributed to the result that the AMM7v11 bloom objects are generally larger. An alternative approach
would be to mitigate against the impact of the bias before using a threshold-based methodology such as
MODE or MTD. A quantile mapping approach is available within the MODE tool (not yet available in
MTD but should be available at some point) to remove the biases between two distributions as each
temporal data set is analysed. Using this method the one threshold is fixed and the other threshold varies
day-to-day (as shown in Figure 5). Another approach would be to analyse the bias for the whole season
(as shown in Figure 4) and deriving an equivalent threshold from this larger data set, thus applying a
fixed threshold to all the days in the season, though there would still be two different thresholds applied

to the two data sets.

MODE results suggest that the AMM7v11l bloom objects are larger than those in the L4 product.
AMM7v11 produces more objects (in number) than seen in the L4 ocean colour product, yet many of
the coastal objects seen in the L4 product are not as well resolved in AMM7v11 due to the coarseness of
the coastline in the 7 km model. The additional AMM7v11 objects are mainly found in deeper Atlantic
waters. The diagnosis of coastal blooms should improve if the model resolution were increased from
7 km to 1.5 km.

Using MODE and MTD clearly gives extra information not obtained from traditional verification
metrics that are more routinely used (McEwan et al., 2021). An alternative approach to assessing the

representation of phytoplankton blooms might be to use phenological indices (Siegel et al., 2002;
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Soppa, et al., 2016), which measure the day of the year on which Chl-a concentration first crosses a
threshold based on the median concentration. Phenological indices have been used in observation
process studies (Racault et al., 2012), but very rarely for model verification, and then only in 1D
(Anugerahanti et al., 2018). One reason for this is that daily model Chl-a will frequently cross such a
threshold throughout the bloom season, meaning temporal smoothing and other processing (Cole et al.,
2012) would be required, which is not straightforward to apply consistently. Objective methods such as
MODE and MTD, which consider individual bloom objects throughout the season, rather than assuming

a single spring bloom will occur at each location, bypass these difficulties.

Other work that formed part of this study, but is not reported on here, showed that constraining the Chl-
a using assimilation of the satellite observations appears to benefit the model in terms of fewer
unmatched bloom regions. This should translate to an improvement in the forecasts generated from this
analysis compared with previous versions of the operational system and will be the subject of future

work.

6. Code availability

Model Evaluation Tools (MET) was initially developed at the National Center for Atmospheric
Research (NCAR) through grants from the National Science Foundation (NSF), the National Oceanic
and Atmospheric Administration (NOAA), the United States Air Force (USAF) and the United States
Department of Energy (DOE). The tool is now open source and available for download on github:
https://github.com/dtcenter/MET. For this study MET version 8.1 of the software was used. MET

allows for a variety of input file formats but some pre-processing of the CMEMS NetCDF files was
necessary before the MODE package could be applied. This includes regridding of the observations
onto the model grid, and addition of the forecast reference time variables to the NetCDF attributes. All
aspects on the use of MET are provided in in the MET software documentation available online at
https://dtcenter.github.io/MET.
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7. Data availability

Data used in this paper was downloaded from the Copernicus Marine and Environment Monitoring

Service (CMEMS). The datasets used were:

e https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_csw&view=de
tails&product id=OCEANCOLOUR_ATL _CHL_L4 NRT_OBSERVATIONS 009 037 (last
access: August 2019),

e https://resources.marine.copernicus.eu/?option=com csw&view=details&product id=NORTHWES
TSHELF_ANALYSIS FORECAST BIO 004 002 b (last access: August 2019)

The AMMT7v11 analyses were not operational at the time of this study and not yet available from the
CMEMS server.
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