

1 **Using feature-based verification methods to explore the spatial and**
2 **temporal characteristics of the 2019 Chlorophyll-*a* bloom season in a**
3 **model of the European North-West Shelf**

4 Marion Mittermaier¹, Rachel North¹, Jan Maksymczuk², Christine Pequignet², David Ford²

5 ¹Verification, Impacts and Post-Processing, Weather Science, Met Office, Exeter, EX1 3PB, United Kingdom

6 ²Ocean Forecasting Research & Development, Weather Science, Met Office, Exeter, EX1 3PB, United Kingdom

7

8 *Correspondence to:* Marion Mittermaier (marion.mittermaier@metoffice.gov.uk)

9 **Abstract.**

10 Two feature-based verification methods, thus far only used for the diagnostic evaluation of atmospheric
11 models, have been applied to compare ~7 km resolution pre-operational analyses of Chlorophyll-*a* (Chl-
12 *a*) concentrations to a 1 km gridded satellite-derived Chl-*a* concentrations product. The aim of this
13 study was to assess the value of applying such methods to ocean models. Chl-*a* bloom objects were
14 identified in both datasets for the 2019 bloom season (March 1 to 31 July). These bloom objects were
15 analysed as discrete (2D) spatial features, but also as space-time (3D) features, providing the means of
16 defining the onset, duration, and demise of distinct bloom episodes and the season as a whole.

17 The model analyses are not able to represent small coastal bloom objects, given the coarser definition of
18 the coastline. The analyses also wrongly produce more bloom objects in deeper Atlantic waters.
19 Concentrations in the model analyses are somewhat higher overall. The bias manifests itself in the size
20 of the model analysis bloom objects, which tend to be larger than the satellite-derived bloom objects.
21 Based on these feature-based methods the onset of the bloom season is delayed by 26 days in the model
22 analyses, but the season also persists for another month beyond the diagnosed end. The season was
23 diagnosed to be 119 days long in the model analyses, compared to 117 days from the satellite product.
24 Geographically the model analyses and satellite-derived bloom objects do not necessarily exist in a
25 specific location at the same time, and only overlap occasionally.

26 **1 Introduction**

27 The advancements in atmospheric numerical weather prediction (NWP) such as the improvements in
28 model resolution began to expose the relative weaknesses in so-called traditional verification scores
29 (such as the root-mean-squared-error for example), which rely on the precise matching in space and
30 time of the forecast to a suitable observation. These metrics and measures no longer provided adequate
31 information to quantify forecast performance (e.g. Mass et al. 2002). One key characteristic of high-
32 resolution forecasts is the apparent detail they provide, but this detail may not be in the right place at the
33 right time, a phenomenon referred to as the “double penalty effect” (Rossa et al., 2008). Essentially it
34 means that at any given time the error is counted twice because the forecast occurred where it was not
35 observed, and it did not occur where it was observed. This realisation created the need within the
36 atmospheric community for creating more informative yet robust verification methods. As a result, a
37 multitude of so-called “spatial” verification methods were developed, which essentially provide a
38 number of ways for accounting for the characteristics of high-resolution forecasts.

39

40 In 2007 a spatial verification method inter-comparison (Gilleland et al., 2009, 2010) was established
41 with the aim of providing a better collective understanding of what each of the new methods was
42 designed for, and categorising what type of forecast errors each could quantify. A decade later
43 Dorninger et al. (2018) revisited this inter-comparison, adding a fifth category so that all spatial
44 methods fall into one of the following groupings: neighbourhood, scale separation, feature-based,
45 distance metrics or field deformation.

46

47 The use of spatial verification methods has therefore become commonplace for atmospheric NWP (see
48 Dorninger et al. (2018) and references within). Neighbourhood-based methods in particular have
49 become popular due to the relative ease of computation and intuitive interpretation. Recently one such
50 neighbourhood spatial method was demonstrated as an effective approach for exploring the benefit of
51 higher resolution ocean forecasts (Crocker et al., 2020). Another class of methods focus on how well
52 particular features of interest are being forecast. Forecasting specific features of interest is one of the
53 main reasons for increasing horizontal resolution. Feature-based verification methods, such as the

54 Method for Object-based Diagnostic Evaluation (MODE, Davis et al., 2006) and the time domain
55 version MODE-TD (Clark et al., 2014) enable an assessment of such features, focusing on the physical
56 attributes of the features (identified using a threshold) and how they behave at a given point in time, and
57 evolve over time. These methods require a gridded truth to compare to. Whilst the initial inter-
58 comparison project was based on analysing precipitation forecasts, over recent years their use has
59 extended to other variables, provided gridded data sets exist that can be used to compare against (e.g.
60 Crocker & Mittermaier (2013) considered cloud masks and Mittermaier et al., (2016) considered more
61 continuous fields in a global NWP model such as upper-level jet cores, surface lows and high pressure
62 cells using model analyses). Mittermaier & Bullock (2013) detailed the first study to use MODE-TD
63 prototype tools to analyse the evolution of cloud breaks over the UK using satellite-derived cloud
64 analyses.

65

66 In the ocean, several processes have strong visual signatures that can be detected by satellite sensors.
67 For example, mesoscale eddies can be detected from sea surface temperature or sea level anomaly (e.g.
68 (Chelton et al., 2011, Morrow and Le Traon, 2012, Hausmann and Czaja, 2012). Phytoplankton blooms
69 are seasonal events which see rapid phytoplankton growth as a result of changing ocean mixing,
70 temperature and light conditions (Sverdrup, 1953, Winder and Cloern, 2010, Chiswell, 2011)). Blooms
71 represent an important contribution to the oceanic primary production, a key process for the oceanic
72 carbon cycle (Falkowski et al., 1998). Their spatial extent and intensity in the upper ocean make them
73 visible from space with ocean colour sensors (Gordon et al., 1983, Behrenfeld et al., 2005).
74 Biogeochemical models coupled to physical models of the ocean provide simulations for the various
75 parameters that characterize the evolution of a spring bloom, such as Chl-*a* concentration which can
76 also be estimated from spaceborne ocean colour sensors (Antoine et al., 1996).

77

78 Validation of marine biogeochemical models has traditionally relied on simple statistical comparisons
79 with observation products, often limited to visual inspections (Stow et al., 2009; Hipsey et al., 2020). In
80 response to this, various papers have outlined and advocated using a hierarchy of statistical techniques
81 (Allen et al., 2007a, 2007b; Stow et al., 2009; Hipsey et al., 2020), multivariate approaches (Allen and

82 Somerfield, 2009), and novel diagrams (Jolliff et al., 2009). Many of these rely on matching to
83 observations in space and time, but some studies have started applying feature-based verification
84 methods ((Mattern, et al.2010)). Emergent properties have been assessed in terms of geographical
85 provinces (Vichi et al., 2011), phenological indices (Anugerahanti et al., 2018), and ecosystem
86 functions (de Mora et al., 2016). In a previous application of spatial verification methods developed for
87 NWP, Saux Picart et al. (2012) used a wavelet-based method to compare Chl- a concentrations from a
88 model of the European North West Shelf to an ocean colour product.

89

90 For this paper, both MODE and MODE-TD (or MTD for short) were applied to the latest pre-
91 operational analysis (at the time) of the Met Office Atlantic Margin Model (AMM7) at 7 km resolution
92 (O'Dea et al., 2012; Edwards et al., 2012; O'Dea et al., 2017; King et al., 2018; (McEwan et al., 2021))
93 for the European North West Shelf (NWS), in order to evaluate the spatio-temporal evolution of the
94 bloom season in both model and observation fields. A full traditional verification of the system (e.g.
95 using root-mean-squared-error and similar metrics) is out of scope of this study and will be presented in
96 a separate publication. For comparison with the MODE and MTD results, a few traditional metrics are
97 included here, based on the Copernicus Marine Environment Monitoring Service (CMEMS) Quality
98 Information Document for the model (McEwan et al., 2021). Traditional verification of a previous
99 version, prior to the introduction of ocean colour data assimilation, was presented by Edwards et al.
100 (2012), who used various metrics and Taylor diagrams (Taylor, 2001) to compare model analyses to
101 satellite and in-situ observations. Ford et al. (2017) presented further validation, to understand the skill
102 of the model at representing phytoplankton community structure in the North Sea. A similar version of
103 the system used in this study, including ocean colour data assimilation, was assessed in Skákala et al.
104 (2018), who validated both analysis and forecast skill using traditional methods. The assimilation
105 improved analysis and forecast skill compared with the free-running model, but when assessed against
106 satellite ocean colour the forecasts were not found to beat persistence. On the NWS the spring bloom
107 usually begins between February and April, varying across the domain and interannually (Siegel et al.,
108 2002; Smyth et al., 2014), and lasts until summer. Without data assimilation the spring bloom in the

109 model typically occurs later than in observations (Skákala et al., 2018, 2020), a bias which is largely
110 corrected by assimilating ocean colour data.

111
112 In Section 2 the data sets used in the verification process are introduced. Section 3 describes MODE and
113 MTD. Section 4 contains a selection of results, and their interpretation. Conclusions and
114 recommendations follow in Section 5.

115 **2 Data sets for the 2019 Chl-*a* bloom**

116 As stated in Section 1, feature-based methods such as MODE and MTD require the fields to be
117 compared to be on the same grid. The model grid is used here.

118 **2.1 Satellite-derived gridded ocean colour products**

119 A cloud-free gridded (space-time interpolated, L4) daily product delivered through the Copernicus
120 Marine Environment Monitoring Service (CMEMS, Le Traon et al., 2019) catalogue provides Chl-*a*
121 concentration at ~1 km resolution over the Atlantic (46°W–13°E, 20°N–66°N). The L4 Chl-*a* product is
122 derived from merging of data from multiple satellite-borne sensors: MODIS-Aqua, VIIRSN and OLCI-
123 S3A. The reprocessed (REP) products available nearly 6 months after the measurements
124 (OCEANCOLOUR_ATL_CHL_L4 REP_OBSERVATIONS_009_098) are used here as it is the best-
125 quality gridded product available for comparison. The satellite derived Chl-*a* concentration estimate is
126 an integrated value over optical depth.

127
128 Errors in satellite-derived Chl-*a* can be more than 100% of the observed value (e.g. Moore et al., 2009).
129 The errors in the L4 Chl-*a* values are often at their largest near the coast, especially near river outflows.
130 However, in the rest of the domain, smaller values of Chl-*a* mean that even large percentage
131 observation errors result in errors typically smaller than the difference between model and observations.
132 As will be shown, the models at 7 km resolution cannot resolve the coasts in the same way as is seen in
133 the satellite product as some of the coastal Chl-*a* dynamics are sub-grid scale for a 7 km resolution
134 model.

135

136 For this study the ~1 km resolution L4 satellite product was interpolated onto the AMM7 grid using
137 standard two-dimensional horizontal cubic interpolation. This coarsening process retained some of the
138 larger concentrations present in the L4 product.

139 **2.2 Model description**

140 Operational modelling of the NWS is performed using the Forecast Ocean Assimilation Model (FOAM)
141 system. This consists of the NEMO (Nucleus for European Modelling of the Ocean) hydrodynamic
142 model (Madec et al., 2016; O'Dea et al., 2017), the NEMOVAR data assimilation scheme (Waters et al.,
143 2015; King et al., 2018), and for the NWS region the European Regional Seas Ecosystem Model
144 (ERSEM), which provides forecasts for the lower trophic levels of the marine food web (Butenschön et
145 al., 2016). The version of FOAM used in this study is AMM7v11, using the ~7 km horizontal
146 resolution domain stretching from 40 °N, 20 °W to 65 °N, 13 °E. Operational forecasts of ocean physics
147 and biogeochemistry for the NWS are delivered through CMEMS, for a summary of the principles
148 underlying the service see e.g. Le Traon et al. (2019).

149

150 AMM7v11 uses the CO6 configuration of NEMO, which is configured for the shallow water of the
151 shelf sea and is a development of the CO5 configuration described by O'Dea et al. (2017). The ERSEM
152 version used is v19.04, coupled to NEMO using the Framework for Aquatic Biogeochemical Models
153 (FABM, Bruggeman and Bolding, 2014). The NEMOVAR version is v6.0, with a 3D-Var method used
154 to assimilate satellite and in situ sea surface temperature (SST) observations, in situ temperature and
155 salinity profiles, and altimetry data into NEMO (King et al., 2018), and chlorophyll derived from
156 satellite ocean colour into ERSEM (Skákala et al., 2018). The introduction of ocean colour assimilation
157 in AMM7v11 is a major development for the biogeochemistry over previous versions of the system
158 (Edwards et al., 2012). The satellite ocean colour observations assimilated are from a daily L3 multi-
159 sensor composite product based on MODIS and VIIRS with resolutions of 1 km for the Atlantic (for
160 further information see OCEANCOLOUR_ATL_CHL_L3_NRT_OBSERVATIONS_009_036 on the

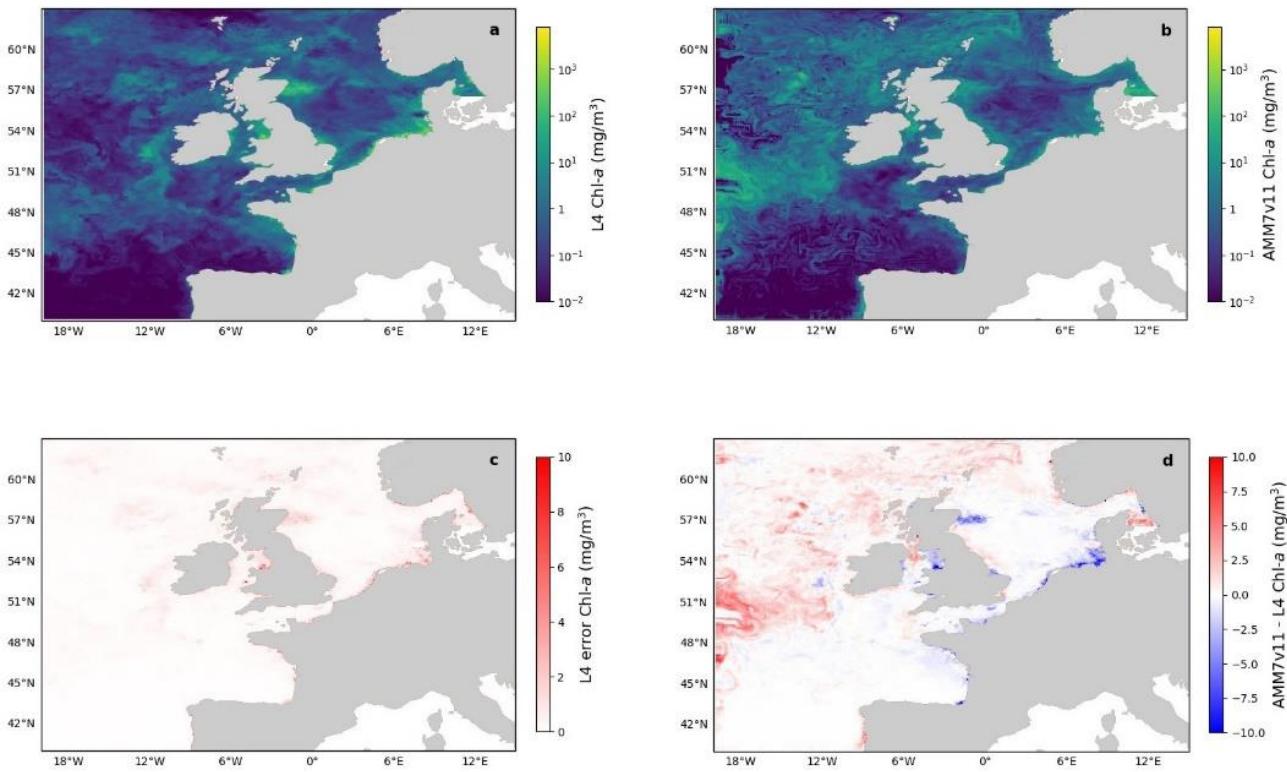
161 CMEMS catalogue). The L3 product is based on two of the same three ocean colours sensors used in
162 the L4 product described in Section 2.1, but with different processing and no gap-filling.

163

164 In this study daily mean Chl-a concentrations for the period of 1 March-31 July 2019 from AMM7v11
165 were used to illustrate the verification methodology. AMM7v11 entered operational use in December
166 2020, and the data used here came from a pre-operational run of the system. Note only the analysis of
167 AMM7v11 (i.e. no corresponding forecasts) was available at the time of the assessment, and the results
168 presented in this paper show how close the data assimilation draws the model to the observed state.

169 **2.3 Visual inspection of data sets**

170 Ideally, Chl-*a* concentration from the model should be integrated over optical depth to be equivalent to
171 the satellite derived value defined in Section 2.1 (Dutkiewicz et al., 2018). However, this is currently a
172 non-trivial exercise, and cannot be accurately calculated from offline outputs. Therefore, the commonly
173 accepted practice is to use the model surface Chl-*a* (Lorenzen, 1970, (Shutler et al., 2011). Here it is
174 assumed that the difference between surface and optical depth-integrated Chl-*a* is likely to be small in
175 comparison with the actual model errors.



176

177 **Figure 1 (a) Daily mean L4 multi-sensor observations regressed on the 7 km resolution model grid and (b) AMM7v11**
 178 **Chl-a for 1 June 2019. (c) Error estimates on the multi-sensor L4 Chl-a and (d) difference between AMM7v11 and**
 179 **the L4 product.**

180

181 Figure 1 shows the L4 ocean colour product (a) and AMM7v11 analysis (b) for 1 June 2019 on the top
 182 row, using the same plotting ranges. The second row shows the difference field that is provided with the
 183 L4 ocean colour product (c), and the AMM7v11 minus L4 difference field (d). The mean error (bias) is
 184 generally positive with the AMM7v11 analysis containing higher Chl-a concentrations, especially in the
 185 deeper North Atlantic waters. The exceptions are along the coast where the AMM7v11 analysis is
 186 deficient, but it should be noted that these are also the zones where some of the largest satellite retrieval
 187 errors occur and where a 7-km resolution model, with a coarse representation of the coast, does not fully
 188 represent complex coastal and estuarine processes.

189 **3 Method for Object-based Diagnostic Evaluation (MODE) and MODE Time-Domain (MTD)**

190 **3.1. Description of the methods**

191 This section provides a brief description of the Method for Object-Based Diagnostic Evaluation
192 (MODE), first described in Davis et al. (2006) and its extension MODE Time-Domain (MTD).

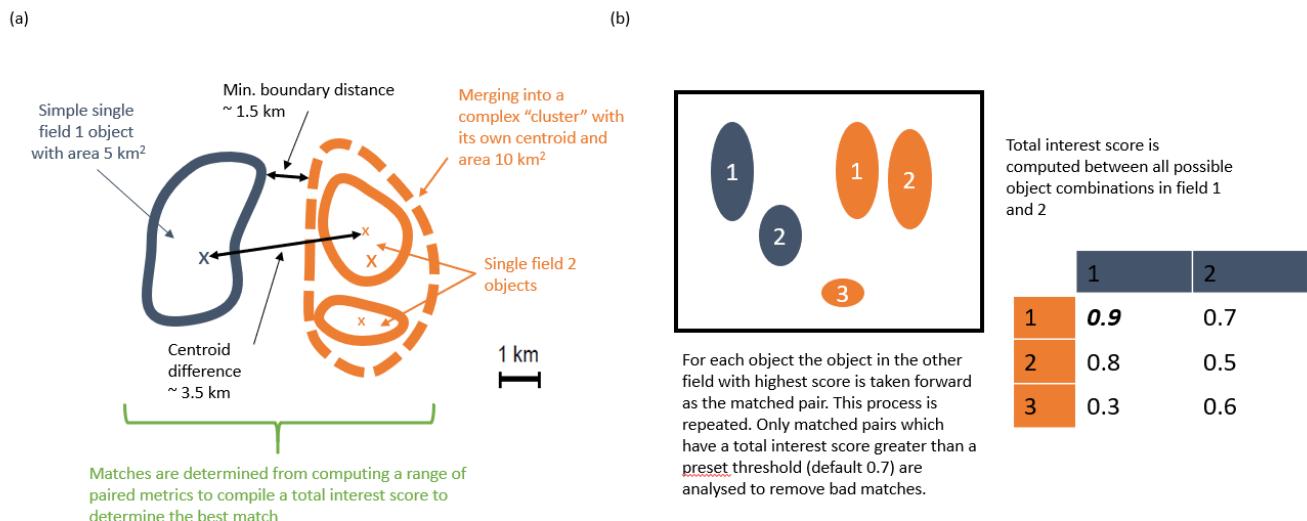
193

194 MODE and MTD can be used on any temporal sequence of two gridded data sets which contain features
195 that are of interest to a user (whoever that user may be, model developer or more applied). By extracting
196 only the feature(s) of interest, the method allows one to mimic what humans do, but in an objective
197 way. Once identified the features can then be mathematically analysed over many days or seasons to
198 compute aggregate statistics of behaviour. MODE can be used in a very generalised way. The key
199 requirements are to 1) have gridded fields to compare and 2) be able to set a threshold for identifying
200 features of interest.

201

202 In this instance the comparison will involve the AMM7v11 model data assimilation analysis and the
203 gridded L4 satellite product. MODE identifies the features (called objects), as areas for which a
204 specified threshold is exceeded, here it is a Chl- a concentration. Consider Figure 2 which shows a
205 number of objects that have been identified after a threshold has been applied to two fields (blue and
206 orange). The identified objects in the two fields are of different sizes and shapes and do not overlap in
207 space, though they are not far apart. Object characteristics or attributes such as the area and mass-
208 weighted centroid are computed for each single object. Simple (also known as single) objects can be
209 *merged* (to form clusters) within *one* field (illustrated here for the orange field). This may be useful to
210 do if it is clear that there are many small objects close together which should really be treated as one.
211 Furthermore, objects in one field can be *matched* to objects in the other field. To find the best match an
212 interest score is computed for each possible pairing between all identified objects. The components used
213 for computing the interest score can be tuned to meet specific user needs. In Figure 2(a) it is based on
214 the area ratio, intersection-area ratio, minimum boundary distance and centroid difference. Furthermore,
215 the components can be weighted according to relative importance. Given a scenario where there are 2
216 identified objects in the blue field and 3 in the orange field Figure 2(b) shows the interest score for each

217 possible pairing in this hypothetical example. Only the pairing with the highest score is analysed
 218 further, and only if it exceeds the set threshold for defining an acceptable match. The default value for
 219 this is 0.7. For the example blue object 1 is best matched against orange object 1, and this match is used
 220 in the analysis. Note that there is another good match with orange object 2 as it is above the threshold of
 221 0.7, but it, as well as the orange object 3 would not be used, with orange object 3 below the 0.7
 222 threshold. In all likelihood a scenario such as shown in Figure 2(b) would be assessed as clusters with
 223 blue objects 1 and 2 forming a cluster and orange objects 1 and 2 also forming a cluster. An interest
 224 score for the cluster pairing above 0.7 would then create a matched pair. Once these matches are
 225 completed summary statistics describing the individual objects (both matched and unmatched) and
 226 matched object pairs are produced. These statistics can be used to identify similarities and differences
 227 between the objects identified in two different data sets, which can provide diagnostic insights on the
 228 relative strengths and weaknesses of one compared to the other.



229

230 **Figure 2 Schematic illustrating some of the key components of identifying objects using MODE. (a) Defining some of**
 231 **the terminology and key components for computing matched pairs. (b) Example of how the best matched pair is**
 232 **identified.**

233

234 The important steps for applying MODE can be summarised as follows (which are described in detail in
235 Davis et al. 2006):

- 236 1) Both forecast and observation (or analysis) need to be on the same grid. Typically, this means
237 interpolating the observations to the model grid to avoid the model being expected to resolve
238 features which are sub-grid scale.
- 239 2) Depending on how noisy the fields are they should be smoothed. Gridded observations (not
240 analyses) can be noisy and usually need some smoothing. Models and model analyses are built
241 on numerical methods which come with discretisation effects. Depending on the method this
242 implies that any model's true resolution (i.e. the scales which the model is resolving) is between
243 2 and 4 times the horizontal grid (mesh) resolution. The number of objects identified will vary
244 inversely with the smoothing radius.
- 245 3) Define a threshold which captures the feature of interest and apply it to both the smoothed
246 forecast and observed fields to identify simple objects as shown in Figure 2.
- 247 4) Any smoothing is only for object identification purposes. The original intensity information
248 within the object boundaries is analysed.
- 249 5) Lastly, the object matching is accomplished using a fuzzy logic engine (low level artificial
250 intelligence), which is expressed as the so-called "interest" score as shown in Figure 2(b). The
251 higher the score the stronger the match. All objects are compared in both fields and interest
252 scores are computed for all combinations. A threshold is set on the interest score value (typically
253 0.7) to denote which are the best matches, and on the unique pairing with the highest score is
254 kept for analysis purposes. Some objects will remain unmatched (either because there is none or
255 because there are no interest values above the set threshold to provide a credible match) and
256 these can be analysed separately.

257 MODE is highly configurable. To gain an optimal combination of configurable parameters for each
258 application requires extensive sensitivity testing to gain sufficient understanding of the behaviour of the
259 data sets to be examined, and to achieve, on average, heuristically the right outcome. Initial tuning
260 requires user input to check whether the method is replicating what a human would do.

261 1) The sensitivity to threshold and smoothing radius should be explored. The threshold and
262 variability in the fields can affect the number of objects which are identified. The process of
263 exploring the relationship between threshold and smoothness helps to identify what would
264 heuristically be considered a reasonable number of objects.

265 2) The sensitivity to the merging option must also be investigated. In this instance the merging
266 option had very little impact.

267 3) The behaviour of the matching can also be configured, with a number of options ranging from
268 the simple to the more complicated, which added computational expense. There may be very
269 little difference in outcomes, but it is worth checking. Here the *merge_both* option was used but
270 it was not strictly necessary as there was little difference between the available options.

271

272 Note also that a minimum size (area) is set for object identification. This is often a somewhat pragmatic
273 choice. If the size is set too small, too many objects are identified, which end up being merged. If too
274 large, very few objects are identified. Here a minimum area of 10 grid squares ($\sim 70 \text{ km}^2$) was used for
275 an object to be included in the analysis. For this study the default settings were used for matching and
276 computing the interest score (as provided in the default configuration file (see example configuration
277 files in https://github.com/dtcenter/MET/tree/main_v8.1/met/scripts/config). The default threshold of
278 0.7 for the interest score was also used to identify acceptable matches.

279

280 Identical to MODE, identifying time-space objects in MTD uses smoothing and thresholding. Applying
281 a threshold yields a binary field where grid points exceeding the defined threshold are set to one. At this
282 stage each region of non-zero grid points in space and time is considered a separate object, and the grid
283 points within each object are assigned a unique object identifier. For MTD the search for contiguous
284 grid points not only means examining adjacent grid points in space, but also the grid points in the same
285 or similar location at adjacent times to define a space-time object. The same fuzzy logic-based
286 algorithms used for merging and matching in MODE apply to MTD as well. Similarly, to MODE a
287 minimum volume must be set. Here a volume threshold of 1000 grid squares (a summation of the daily
288 object areas identified to be part of the space-time object) was imposed for space-time object

289 identification to be included in the analysis. This represents the accumulated number of grid squares
290 associated with an object over consecutive time slices. Otherwise, the default settings were used for
291 object matching. For MTD a lower interest score of 0.5 was used for matching objects. Finally, it is
292 worth noting that the MODE and MTD tools, though similar, are completely independent of each other,
293 and were set up differently here. MODE is ideal for understanding the identified features in individual
294 daily fields in some detail. MTD, it was felt, would be best used to look at larger scales. Here it was set
295 up to capture the most significant (in size) and long-lasting blooms.

296

297 **3.2 Defining Chl- α concentration thresholds and other choices on tuneable parameters**

298 Chl- α can vary over several orders of magnitude. Often \log_{10} thresholds are used to match the fact that
299 Chl- α follows a lognormal distribution (e.g. Campbell 1995). Defining thresholds can be difficult: on
300 the one hand there is the desire to only capture events of interest, so the thresholds should not be too
301 low, whereas on the other hand if the thresholds are too high no events are captured and there is nothing
302 to analyse. From a regional (NW European Shelf) perspective the values of interest are typically in the
303 range of 3–5 mg m⁻³ (Schalles, 2006), though higher Chl- α concentrations can be measured *in-situ* or
304 diagnosed in satellite products. For this study, the data sets were not transformed but the thresholds
305 were selected in such a way that they would correspond to being equally spaced in logarithmic space,
306 staying true to the underlying distribution shape of Chl- α concentrations. Here the primary focus is on
307 the results for the 2.5 mg m⁻³ threshold, though some results for the 4 and 6.3 mg m⁻³ thresholds are also
308 presented.

309

310 In addition to the interpolation of the L4 ocean colour product onto the ~7 km AMM7v11 grid, it is
311 important to ensure that MODE and MTD use optimal settings for the fields under study. Results are
312 sensitive to characteristics of the fields (how smooth or noisy). Right at the start the emphasis was on
313 finding the right combination of Chl- α concentration threshold and smoothing, balancing the need for
314 identifying objects with keeping the number of objects manageable. The guiding principles in
315 identifying the right combination were to ensure that the daily object count remained low enough,
316 recalling that these methods were developed to mimic what a human would do. The human brain would

317 struggle to cope with as many as 30, but this was considered to be an acceptable upper limit after
318 considerable visual inspection of output. Furthermore, the smoothing applied needs to be reduced with
319 increasing concentration thresholds because objects become smaller and are less frequent. This is to
320 ensure that too much smoothing does not remove more intense objects from the analysis. However,
321 pushing the concentration threshold too high may also be detrimental; depending on the input fields,
322 identified objects may be spurious (due to e.g. a failure of quality control processes removing such).
323 Too few objects also make the compilation of robust aggregated statistics impossible.

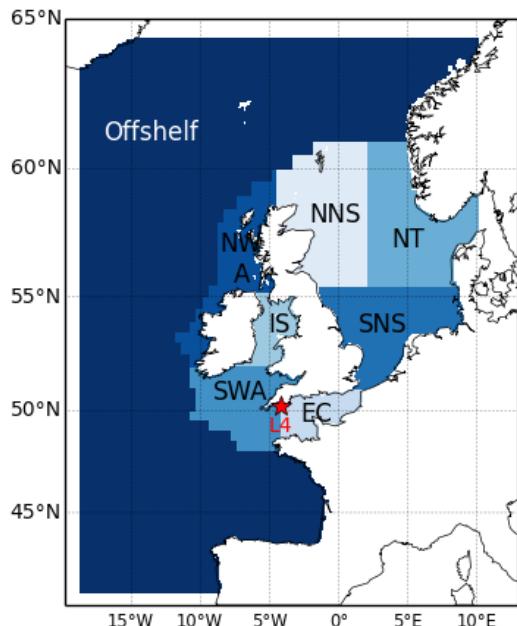
324

325 For the lowest thresholds including 2.5 and 4.0 mg m⁻³ a smoothing radius of 5 grid squares (~35 km)
326 was applied to both L4 and AMM7v11 fields, but for higher thresholds (e.g. 6.3 mg m⁻³) the smoothing
327 radius was reduced to 3 grid squares, to prevent the higher peak concentrations, which are often small in
328 spatial extent, from being lost due to the smoothing. Thresholds above 6.3 mg m⁻³ yielded too few
329 objects to be analysed with any rigour. The smoothing was particularly necessary for the L4 product
330 which, because of its native 1 km resolution is able to resolve very small (noisy) objects typically found
331 near the coast and which a 7 km resolution model cannot resolve. For the MTD analysis, objects in the
332 L4 ocean colour product and the AMM7v11 analyses were only defined using a Chl-*a* concentration
333 threshold of 2.5 mg m⁻³.

334

335 **4. Results**336 **4.1 Traditional statistics**

337 Traditional verification metrics are based on a set of observations and a set of model outputs matched in
 338 time and space. The statistics that are typically considered (McEwan et al., 2021) are the median error
 339 (bias), median absolute difference (MAD) and Spearman rank correlation coefficient. The median bias
 340 gives indication of consistent differences between the model and observations, with a positive bias
 341 indicating the model concentration is higher than observed. The MAD provides an absolute magnitude
 342 of the difference. The Spearman rank correlation coefficient is the Pearson correlation coefficient
 343 between the ranked values of the model and observation data so that if the model data increases when
 344 the observations do, they are positively correlated. It has the same interpretation as the more common
 345 Pearson correlation coefficient where a correlation of 1 shows perfect correlation and 0 shows no
 346 correlation. Figure 3 provides a map of the model domain and the subregions over which traditional
 347 metrics are computed. Table 1 shows results for $\log(\text{Chl-}a)$ assessed against the L4 ocean colour
 348 product.

**Regions:**

EC: English Channel

IS: Irish Sea

NNS: Northern North Sea

NT: Norwegian Trench

NWA: North Western Approaches

SNS: Southern North Sea

SWA: South Western Approaches

The Continental Shelf regions includes all the above, i.e. all regions except Off-shelf.

Observation stations:

L4: station L4 of the Western Channel Observatory

349

350

Figure 3 Map showing the sub-regions over which statistics are computed.

351

352 **Table 1** Statistics for matched pairs of daily model surface log-chlorophyll-*a* outputs and satellite ocean colour Chl-*a*
 353 for the full domain and sub-regions for the period March to July 2019. See Figure 3 for the location of the regions.

354 The Continental shelf includes all regions except Off-shelf (ICES, 2014)

Region	Median bias ($\log(\text{mg m}^{-3})$)	MAD ($\log(\text{mg m}^{-3})$)	Spearman correlation coefficient
Full Domain	<0.01 (0.004)	0.21	0.62
Continental shelf	-0.09	0.17	0.71
Off-shelf	0.06	0.23	0.51
Norwegian Trench	-0.04	0.18	0.61
Northern North Sea	-0.05	0.17	0.64
Southern North Sea	-0.17	0.19	0.82
English Channel	-0.13	0.16	0.68
Irish Sea	-0.13	0.19	0.49
South Western Approaches	-0.07	0.15	0.69
North Western Approaches	<0.01 (0.006)	0.18	0.51

355

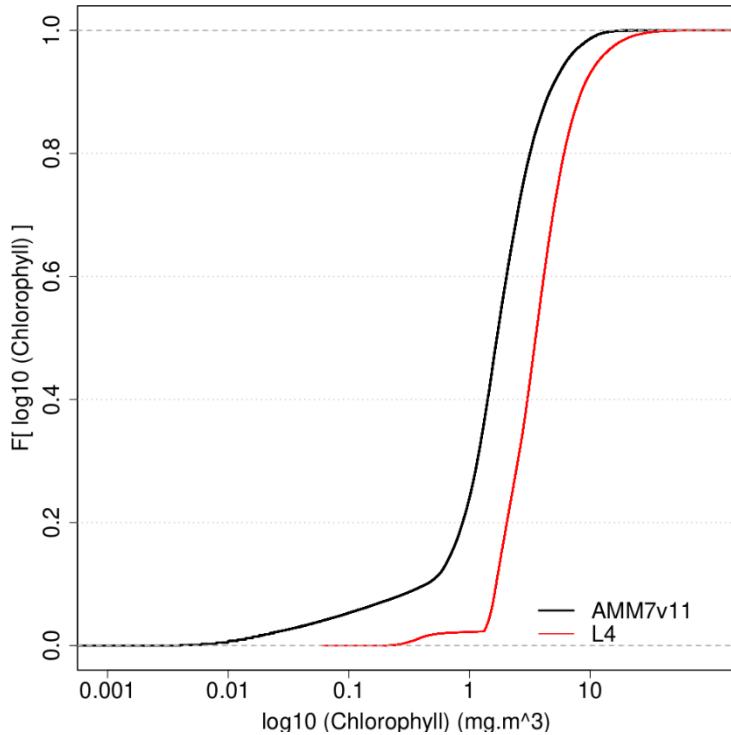
356 Compared with the L4 product, the AMM7v11 analysis slightly overestimates Chl-*a* off-shelf, and
 357 underestimates Chl-*a* in the on-shelf regions (Table 1). Regions show moderate to strong positive
 358 correlations, highest in the Southern North Sea and lowest in the Irish Sea. These statistics give useful
 359 insight into model skill but provide limited information about how model performance changes as the
 360 bloom season progresses (McEwan et al., 2021; Skákala et al., 2018, 2020). As will be shown, the
 361 output from MODE and MTD provides a very different perspective from these traditional verification
 362 metrics, allowing a more detailed understanding of model performance.

363

364 4.2 Chl-*a* distributions

365 It is important to understand the nature of the underlying L4 and AMM7v11 Chl-*a* distributions and any
 366 differences between them. This can be done by creating cumulative distribution functions (CDF) of the
 367 log₁₀ L4 and AMM7v11 Chl-*a* concentrations, by taking all grid points in the domain and all dates in
 368 the study period. These are plotted in Figure 4, showing that there is an offset between the distributions,

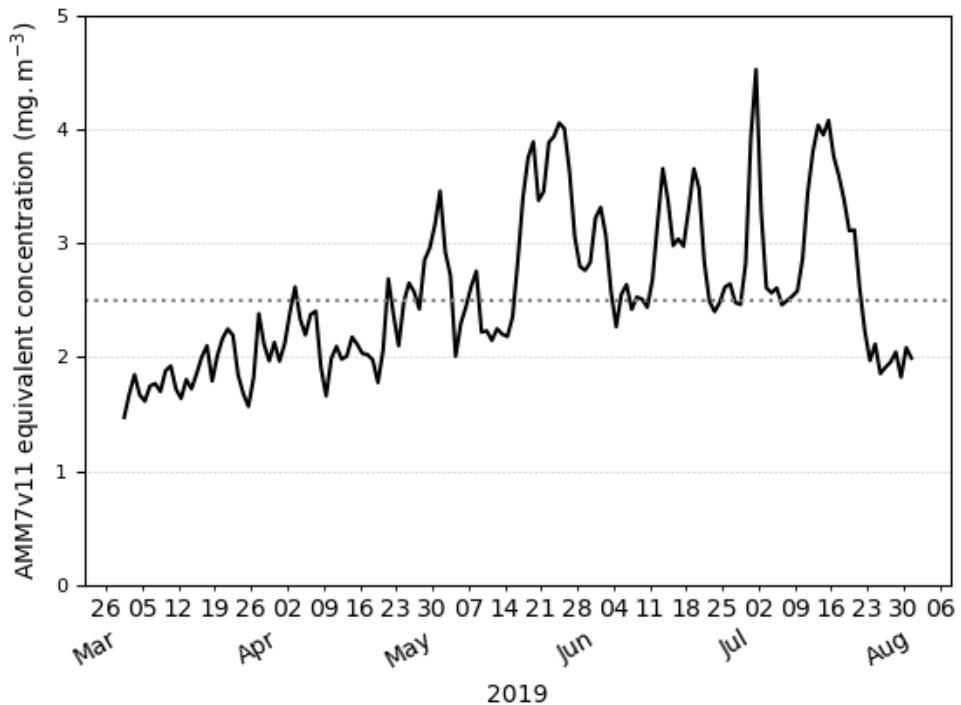
369 the AMM7v11 analysis having more low concentrations, though the distributions appear to be
370 converging in the upper tail.



371
372 **Figure 4 Empirical cumulative distribution functions of the \log_{10} Chl- a concentration for the L4 ocean colour
373 product and AMM7v11 analyses for the 2019 bloom season.**

374 Exploring this further the AMM7v11 and L4 Chl- a concentration CDFs can be derived for each
375 individual day, rather than for the season as a whole. From these the quantile where the L4 product is
376 less than or equal to 2.5 mg m^{-3} (29.7%) can be compared to the corresponding AMM7v11
377 concentration associated with the same quantile of 29.7%. From Figure 4 this gives an equivalent
378 concentration of 1.15 mg m^{-3} for the season. The daily matched quantile Chl- a values provide an
379 estimate of the daily bias. This is plotted in Figure 5 as a time series for the 2019 bloom season. It
380 shows that the daily AMM7v11 corresponding quantile values are mainly in the range of $\sim 1.5\text{--}4.5 \text{ mg}$
381 m^{-3} , averaging out to 2.9 mg m^{-3} over the season, which suggests a modest difference overall. The larger
382 day-to-day variations show some cyclical patterns. There are notable peaks at the end of May and the
383 beginning of July. An inspection of the fields (not shown) suggests that at these times the AMM7v11

384 appears to have higher Chl-*a* concentrations over large portions of the domain compared to the L4
385 product.



386
387 **Figure 5 The day-to-day AMM7v11 quantile Chl-*a* value corresponding to the L4 product quantile representing 2.5
388 mg m⁻³ derived from the L4 daily CDFs. The mean AMM7v11 Chl-*a* equivalent quantile value for the 2019 season is
389 2.9 mg m⁻³.**

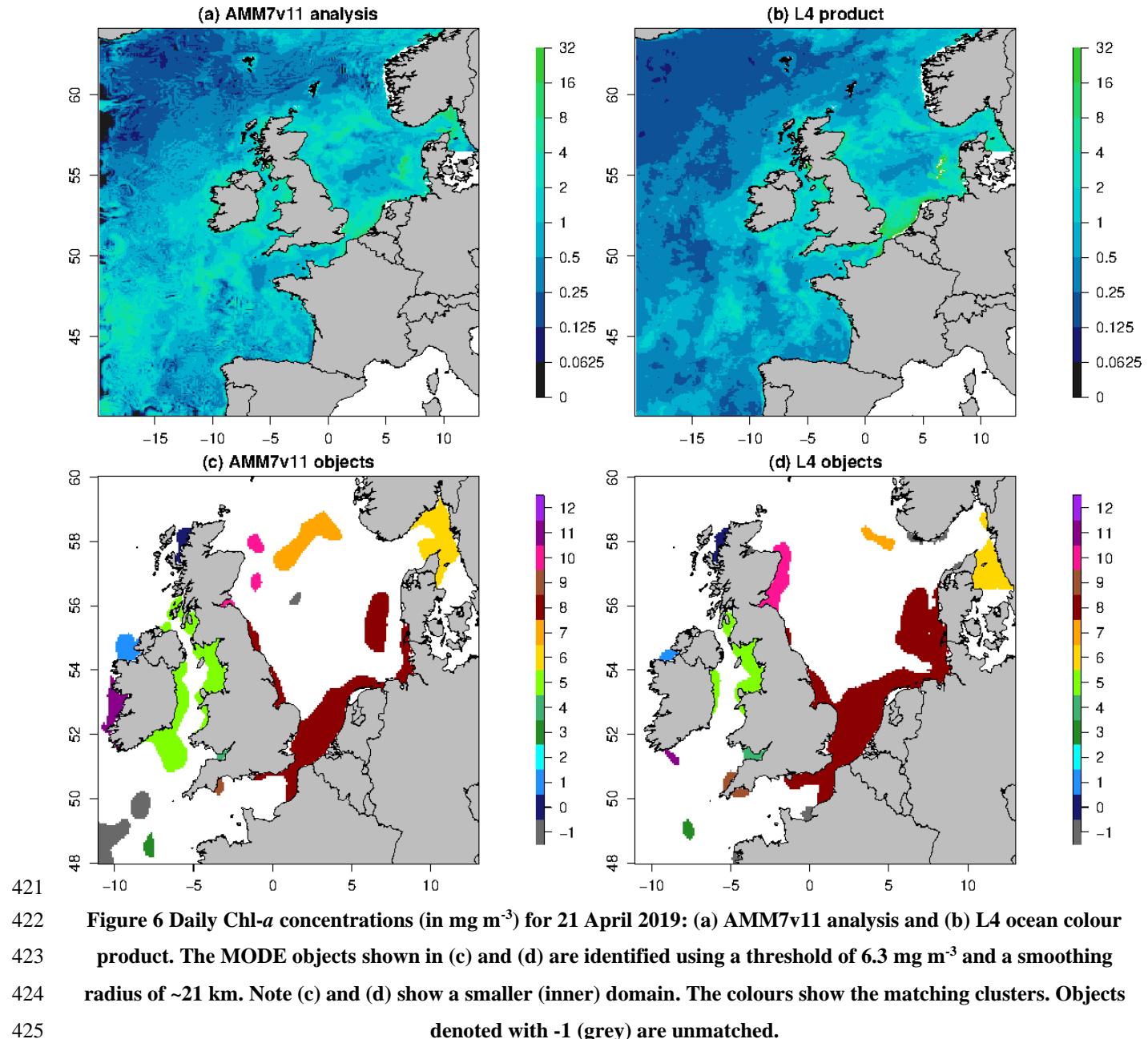
390 In employing a threshold-based approach, generally the same threshold is applied to both data sets. In
391 the presence of a bias this requires a little bit of thought. In extreme cases, it could mean the inability to
392 identify objects in one of the data sets, which would then mean objects cannot be matched and paired,
393 negating the purpose of a spatial method like MODE or MTD. Not being able to identify any objects
394 does provide some useful information, though arguably not enough context. The lack of objects does
395 suggest the presence of a bias but it does not provide any sense of whether the model is producing a
396 constant value of Chl-*a* for example, which would be of no use to the user, or whether it does capture
397 regions of enhanced Chl-*a*, albeit with an offset which means it does not exceed the set threshold.
398 Therefore, a more likely scenario is that a bias could partially mask relevant signals in the derived
399 object properties, which could lead to the potential misinterpretation of results. If there is a significant

400 risk of this occurring the bias could be addressed before features are identified to ensure that the
401 primary purpose of using a feature-based assessment can be achieved, i.e. identifying features of interest
402 in two sets of fields to assess their location, timing and other properties and assessing their skill. The
403 fact that there is an intensity offset should not prevent the method from providing information about the
404 skill of identified features. As is seen here, though there is bias (as seen in Figure 4Figure 5), it does not
405 prevent the method from successfully identifying objects using the same threshold for both datasets,
406 though it will be shown that the effect of the bias can affect some object attributes, e.g. object areas.
407 However, a more prohibitive bias could compromise the methods, e.g. being unable to identify objects
408 in a dataset. This would have a disproportionate effect on the statistics for the matched pairs in
409 particular. Under such circumstances the quantile mapping functionality within MODE (to remove the
410 effect of the bias) is strongly recommended.

411 **4.3 Visualising daily objects**

412 Figure 6 shows the daily Chl-*a* concentration fields as represented in the L4 ocean colour product and
413 the AMM7v11 analyses for 21 April 2019, which is near the peak of the bloom season. The respective
414 fields are plotted in (a) and (b), noting that the 1 km resolution L4 product has been interpolated onto
415 the ~7 km AMM7 grid. Applying a threshold of 6.3 mg m⁻³ to both with a smoothing radius of ~21 km
416 (3 grid lengths) yields 8 objects in the AMM7v11 analysis (7 visible in this zoomed region) and 11
417 objects in the L4 product. As discussed, the bias described in Section 4.1 does not appear to prevent the
418 identification of objects in the L4 product and the AMM7v11 analyses, and the process of finding
419 matches is possible.

420



426 4.4 Spatial characteristics

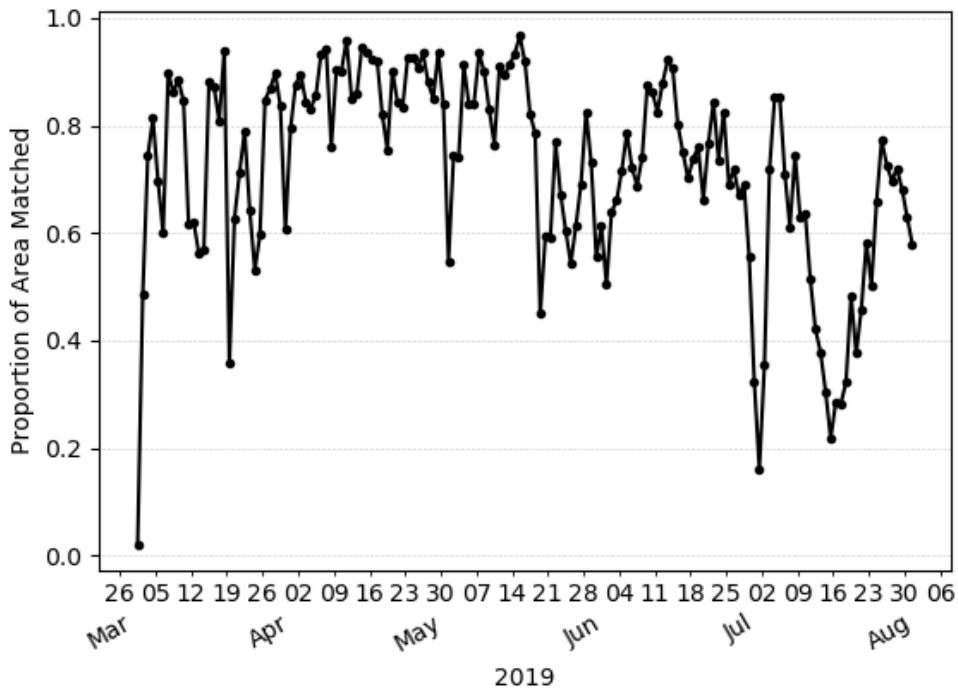
427 This section demonstrates the kinds of results that can be extracted from the two-dimensional MODE

428 objects. Aspects of the marginal (AMM7v11 or L4 product only) and joint (matched/paired)

429 distributions can be examined. This includes object size (as a proxy for area) but also the proportion of
430 areas that are matched or unmatched.

431

432 Firstly, how similar is the L4 ocean colour product and the AMM7v11 analysis in terms of the features
433 of most interest, i.e. the Chl-*a* blooms? Figure 7 shows the evolution of the proportion of matched
434 object areas (to total combined area) through the 2019 season, when using MODE to compare the L4
435 product and AMM7v11 analyses, to further explore the differences (and similarities) between them. A
436 value of one would suggest that all identified areas are matched. Values less than one suggest that some
437 objects remain unmatched. The relatively high values of matched object-to-total area during April are
438 due to the large numbers of well-matched, physically small coastal objects in addition to the larger Chl-
439 *a* bloom originating in the Dover Straits (not shown). There is a notable minimum at the beginning of
440 July. Inspecting the MODE graphical output reveals this is in part due to only a few small objects being
441 identified, and this is compounded by their complete mismatch; the L4 objects are all coastal, whilst the
442 AMM7v11 objects are either coastal (but not in the same location as L4 objects) or in the deep waters of
443 the North Atlantic, to the north-west of Scotland. The relatively high proportions either side of this time
444 arise from a better correspondence in placement of the coastal objects (noting that there is a distance
445 limit on how far objects can be apart for the matching process to have a positive contribution to the
446 interest score).



447

448 **Figure 7 Proportion of total object area which is matched.** Underlying matched and unmatched object areas (in units
 449 of numbers of grid squares) are taken from the MODE output. These areas are for the 2.5 mg m^{-3} concentration
 450 threshold objects.

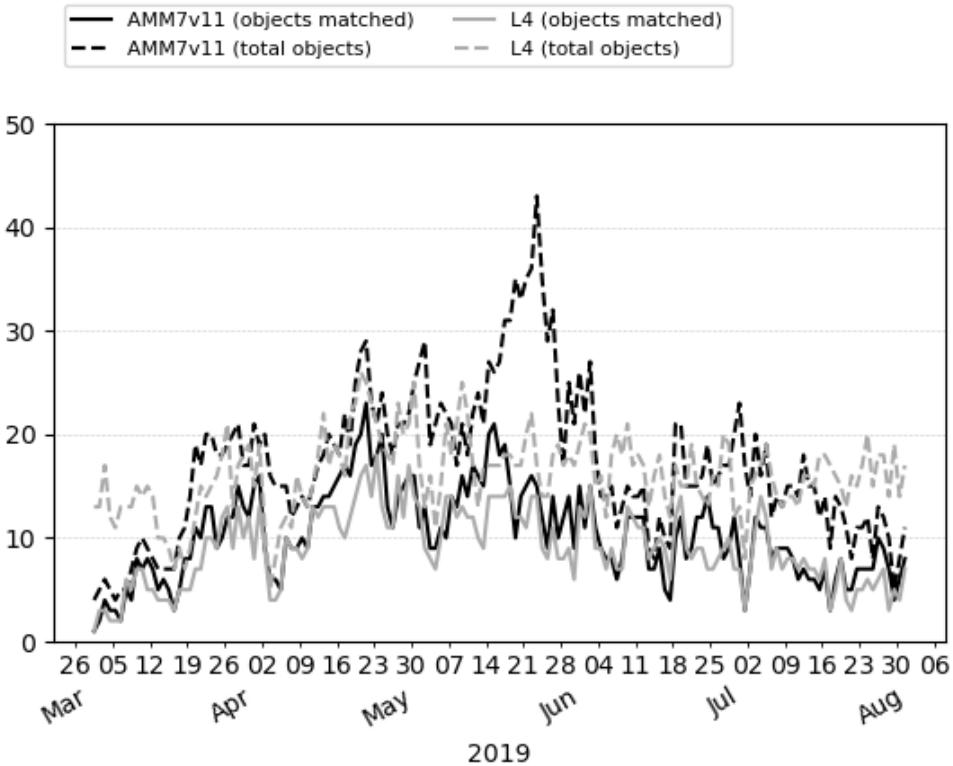
451 Overall, the AMM7v11 analysis is similar, but clearly not identical, to the L4 product. Best
 452 correspondence appears to be during the first half of the bloom season. Later in the season the model's
 453 determination to produce blooms in deep North Atlantic waters is a model deficiency that the
 454 assimilation is (at this stage) unable to fix. The AMM7v11 analyses could conceivably be used as a
 455 credible source for assessing the AMM7 Chl-*a* forecasts in the future. The major benefit of using a
 456 model analysis is that it is at the same spatial resolution, with the same ability to resolve Chl-*a* bloom
 457 objects, especially along the coast (i.e. the analysis limits the uncertainty due to whether an object could
 458 be missing due to the inability of the model to resolve the feature).

459

460 The day-to-day number of objects identified through the 2019 bloom season is shown in Figure 8⁶⁵,
 461 illustrating how elements of the marginal and joint distribution provided by MODE can be used
 462 together. Here, numbers of total and matched (joint) objects are shown. If the AMM7v11 analyses are

463 good (i.e. similar to the L4 product), there should be fewer unmatched (marginal) objects than matched
464 ones (indicated by the proximity of the solid and dashed lines); ideally there would be no unmatched
465 objects in either the L4 product or the AMM7v11 analysis. In Figure 8 the number of objects in
466 AMM7v11 starts off small and increases as the bloom develops. For the L4 product there are already
467 many objects identified at the start of the timeseries, leading to many unmatched L4 objects (these could
468 be considered misses in a more categorical analysis). A spike in the number of matched objects seen in
469 early April can be attributed to several coastal locations, which appear to be spatially well-matched. In
470 addition, a larger Chl-*a* bloom is seen in the Dover Straits region in the L4 product and although not
471 exactly spatially collocated, the objects are matched. There are a consistently large number of
472 unmatched objects seen in the AMM7v11 analysis and L4 ocean colour product from the end of May
473 onwards. In the AMM7v11 analysis this appears to be due to an increase in small objects identified,
474 mainly to the west, north and east of the United Kingdom. The increase in unmatched objects in the L4
475 ocean colour product is of a different origin, being due to an increase in localised coastal blooms.
476 Generally, the AMM7v11 analyses do not have the resolution to resolve these. Overall, there are 2632
477 AMM7v11 bloom objects identified in the season using the 2.5 mg m^{-3} threshold, and 2341 L4 bloom
478 objects, with 56% of AMM7v11 objects matched and 59% of L4 objects matched.

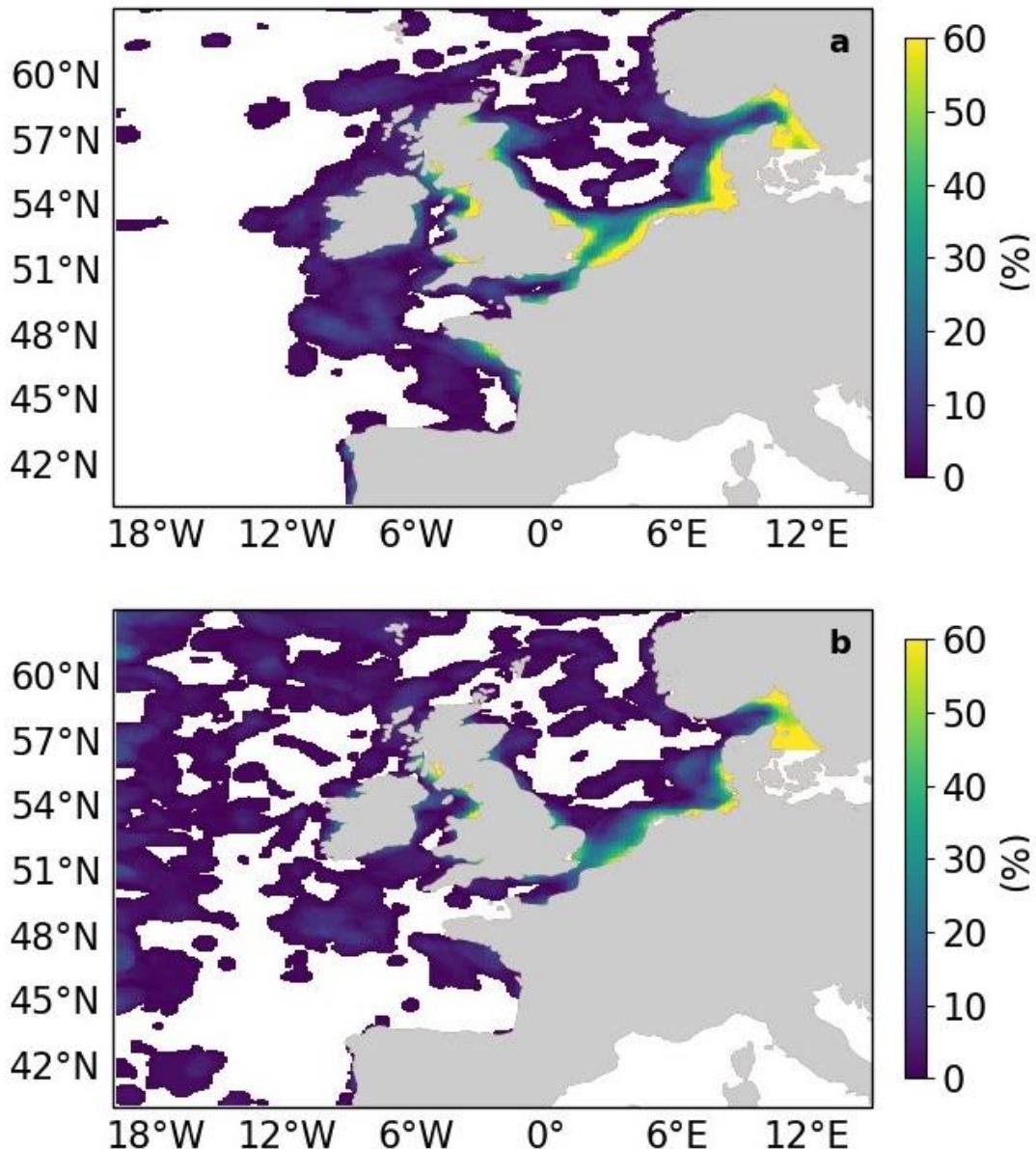
479 The identified objects in AMM7v11 and the L4 product can also be considered spatially over the season
480 by compositing the objects. This is done by counting the frequency with which a given grid square falls
481 within an identified object on any given day, essentially creating a binary map. These can be added up
482 over the entire season to produce a spatial composite object or temporal “frequency-of-occurrence” plot.



483

484 **Figure 8** Time series of the number of matched and total objects per day from MODE comparing AMM7v11 analyses
 485 (black) with L4 satellite product (grey). Objects are identified using a threshold of 2.5 mg m^{-3} . Total object numbers
 486 for the season are 2341 for L4 satellite product and 2632 for AMM7v11.

487 Figure 9 shows this spatial composite for the 2019 bloom season for the L4 ocean colour product
 488 objects (a) and the AMM7v11 objects (b). These are the composites based on the 2.5 mg m^{-3} threshold
 489 objects. There are areas, for example in the South West Approaches (SWA, see Figure 3), where there
 490 appears to be a good level of consistency. AMM7v11 analyses have elevated Chl-*a* values along the
 491 northern and western edges of the domain, for a low proportion of the time, which are not seen in the L4
 492 product. This is likely due to the way that nutrient and phytoplankton boundary conditions are specified
 493 in AMM7v11. Overall, the low temporal frequency extent of the AMM7v11 objects is greater than for
 494 the L4 product.

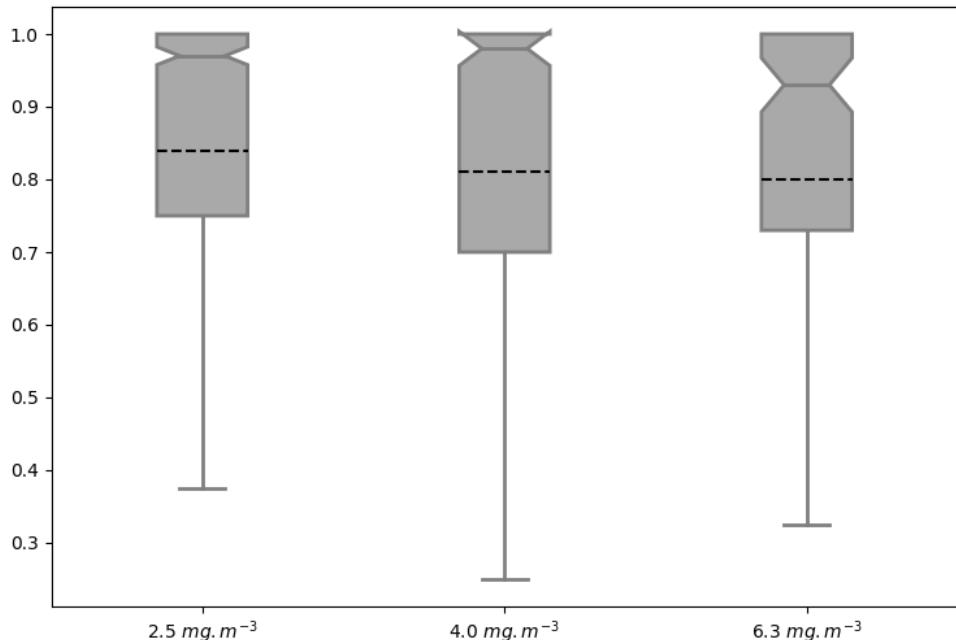


495

496 **Figure 9 Object composites (the proportion of time for which an object was present at the grid box throughout the**
 497 **2019 bloom season) for (a) the L4 ocean colour product objects and (b) the AMM7v11 analysis objects.**

498 Thus far all the attributes have been based on only the AMM7v11 or L4 objects. The distribution of
 499 object properties, derived for the season from the daily comparisons, can be summarised using box-and-
 500 whisker plots. Recall that the box encompasses the inter-quartile range (IQR, 25th to 75th quantile) and

501 the notch and line through the box denotes the median or 50th quantile. The dashed line represents the
502 mean, and the whiskers show ± 1.5 times the IQR. For clarity, values outside that range have been
503 filtered out of the plots shown here. Figure 10 shows the intersection-over-area paired object attribute
504 distribution as box-and-whisker plots for all object pairs during the 2019 bloom season, comparing the
505 AMM7v11 analyses to L4 for three of the thresholds: 2.5 and 4.0 and 6.3 mg m⁻³. The intersection-over-
506 area diagnostic gives a measure of how much the matched (paired) objects overlap in space. If the
507 objects do not intersect, this metric is 0. The ratio is bounded at 1 because any area of overlap is always
508 divided by the larger of the two object areas. The IQR for the 2.5 mg m⁻³ threshold is 0.25 with 50% of
509 paired objects having an intersection-over-area of 0.97 or greater. However, the lower whisker spans a
510 large range of values to as low as 0.375, suggesting that there is a proportion of object pairs with only
511 small overlaps. There is quite a difference between the median (notch) and the mean (dashed line) for
512 this metric, suggesting the distribution is skewed with the mean affected more by many small overlaps.
513 For the 4.0 mg m⁻³ threshold paired objects the intersection-over-area distribution is much broader,
514 though the difference between the mean and medians is similar. The proportion of paired objects with
515 smaller overlaps has also increased. This should not be surprising given that the objects generally get
516 smaller with increasing threshold such that the ability for object pairs to overlap actually decreases
517 unless they are very closely collocated. At the 6.3 mg m⁻³ threshold the median is lower (0.93) with a
518 similar difference from the mean, however the sample size is much smaller (only 130 paired objects
519 over the season).



520
521
522
523
524
525

Figure 10 Box-and-whisker plots of the paired object property “intersection area” ratio computed by dividing the spatially collocated area between the paired objects by the largest of either the AMM7v11 or L4 observed object areas (to keep the ratio to be bounded by 0 and 1). Three object thresholds are shown: 2.5 mg m^{-3} , 4.0 mg m^{-3} and 6.3 mg m^{-3} . Smoothing radii of 5, 5 and 3 grid lengths were applied for the three thresholds respectively. The sample sizes for each threshold were 1004, 401 and 130 paired objects respectively.

526

527 **4.5 Incorporating the time dimension**

528

529 Having information in space *and* time enables one to ask, and hopefully answer questions such as: “*did*
530 *the model predict the bloom to start in the observed location?*” or “*did the model predict the onset at*
531 *the right time?*” and “*did the model predict the peak (in terms of extent) and duration of the bloom*
532 *correctly?*”.

533

534 MTD identifies objects in space and time. As previously described, all MTD results are based on a 2.5
535 mg m^{-3} threshold applied to both the L4 ocean colour products and AMM7v11 analyses. A time
536 centroid is derived from a time series of the spatial (two-dimensional) centroids which are computed for
537 each (daily) time slice. In addition to this, each identified MTD object has a start and end time, and a

538 geographical location of the time centroid, which is the average of the two-dimensional locations. The
539 time component of the time centroid is weighted by volume.

540

541 The temporal progression of the 2019 bloom season along with spatial information as defined by the
542 MTD objects' is shown in Figure 11. The object start and end times as well as the date of their time
543 centroids in (a) provide a clear view of the onset and demise of each object (bloom episode). In total
544 there are 22 AMM7v11 and 11 L4 MTD objects. The x-axis in (a) represents elapsed time. The location
545 of the vertical lines along the x-axis on any given date indicates the date of the time centroid whilst the
546 duration of the space-time object can be gleaned from the y-axis based on the start and end of the
547 vertical line which defines the time the object was in existence. Solid lines represent the L4 product
548 objects whereas dashed lines represent the AMM7v11 objects. The colour palette is graduated from
549 grey and blue through green, yellow, red, and purple, denoting the relative time in the season. In (a) the
550 first Chl-*a* bloom object in the AMM7v11 analysis was identified on 29 March 2019 whereas in the L4
551 ocean colour product the first bloom object was identified on 3 March, 26 days earlier. The first time
552 the L4 product and AMM7v11 analyses have concurrent objects (blooms) is in late March. The L4
553 product also suggests that the season ends 30 June whereas the AMM7v11 analyses persists the bloom
554 season with objects identified until 23 July. Most AMM7v11 objects are of relatively short duration, but
555 overall, most groups of AMM7v11 objects have some temporal association with an L4 product object
556 around the same time. In this instance it is also illuminating to consider the daily object areas
557 associated with the MTD objects (which are used to compute the volume of MTD objects). These are
558 plotted in Figure 11(b) showing all daily L4 object areas in the filled circles, and the AMM7v11 object
559 areas (crosses), in the same colours as in (a). The main purpose is to highlight the relative size of the L4
560 and AMM7v11 objects on any given day, as well as how many objects there were. Recall that these are
561 the objects identified using a Chl-*a* concentration threshold of 2.5 mg m^{-3} . Some of the AMM7v11
562 objects are considerably larger than those in L4 in the mid- and latter part of the bloom season from
563 mid-May onwards, just not necessarily at exactly the same time or location. As seen in Figure 11(b), the
564 area time series also illustrates the offsets in the start and end of the bloom season. Some of the objects
565 detected in AMM7v11 beyond the end of the observed bloom season provided by L4, suggests that at

566 least three substantial areas are still diagnosed to exceed the threshold of 2.5 mg m^{-3} into July. Taking
567 the start of the earliest space-time object as the onset of the bloom season and the end of the last object
568 as the end, the 2019 season is 119 days long based on the L4 product, and 117 days in the AMM7v11
569 analysis. Therefore, the overall length of the season as defined by the space-time objects is comparable
570 in the AMM7v11 analysis, albeit with a substantial offset. Finally, even if (a) and (b) suggest that
571 AMM7v11 and L4 objects exist at the nearly the same time, this does not mean they are geographically
572 close to each other. This is illustrated in Figure 11(c) which provides the spatial context. The colours
573 and symbols are consistent across all panels and show that even when the MTD objects are identified at
574 the same time they may be geographically quite far apart, or more typically there is no L4 counterpart
575 (filled circle) to an AMM7v11 bloom object (cross). The north- and westward progression of the bloom
576 as the season unfolds can be seen through the use of the colours, with the AMM7v11 analysis producing
577 enhanced Chl-*a* concentrations in deeper waters to the north and west of the domain beyond the end of
578 the observed season.

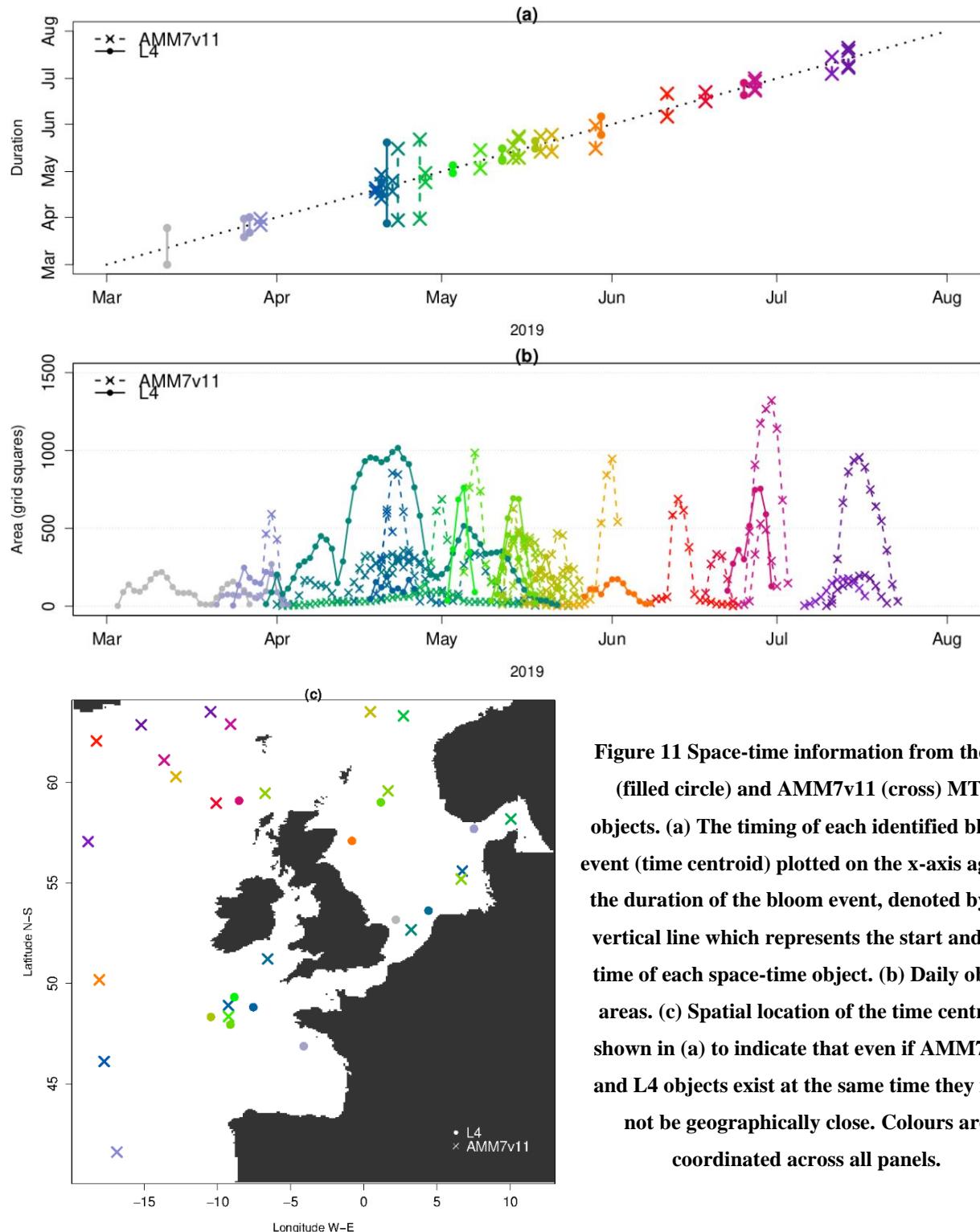


Figure 11 Space-time information from the L4 (filled circle) and AMM7v11 (cross) MTD objects. (a) The timing of each identified bloom event (time centroid) plotted on the x-axis against the duration of the bloom event, denoted by the vertical line which represents the start and end time of each space-time object. (b) Daily object areas. (c) Spatial location of the time centroid shown in (a) to indicate that even if AMM7v11 and L4 objects exist at the same time they may not be geographically close. Colours are coordinated across all panels.

579 With only 22 AMM7v11 and 11 L4 product MTD objects, which are temporally and geographically
580 well dispersed, three of the L4 objects remained unmatched, leaving only 8 matched MTD objects for
581 the 2019 bloom season with an overall interest score greater than 0.5. This represented an insufficient
582 sample for drawing any robust statistical conclusions. Nevertheless, some inspection of the paired MTD
583 object attributes are summarised below:

- 584 • The spatial centroid (centre of mass) differences can be extensive, but the majority are within 0 to
585 100 grid squares apart (i.e. up to ~700 km).
- 586 • The majority of paired objects have time centroid differences +/- 10 days.
- 587 • Considering the volumes of the space-time objects, half the paired objects have volume ratios of less
588 than 1, i.e. AMM7v11 objects tend to be smaller or similar in size. The other pairs have ratios as
589 high as 4.
- 590 • Overlaps between AMM7v11 and L4 MTD objects remain small and infrequent with only one pair
591 with a significant overlap in space and time.

592 **5. Discussion and conclusions**

593 MODE and MTD were used as two distinct but related feature-based diagnostic verification methods to
594 evaluate and compare the pre-operational AMM7v11 European North West Shelf Chl-*a* concentration
595 bloom objects to those identified in the satellite-based L4 ocean colour product. Nominally blooms were
596 said to occur when the concentration threshold exceeded 2.5 mg m^{-3} and two higher thresholds were
597 also considered. Sample sizes dwindle rapidly with increasing threshold. Of specific interest were the
598 similarities and differences in respective bloom object sizes, their geographical location and collocation
599 and timing. For the timing component the onset, duration, and demise of individual bloom objects
600 (events) could be considered. For the season all the identified space-time objects provided an estimate
601 of the onset, duration and end of the bloom season as a whole. The season was found to be of similar
602 length, but the onset was found to begin 26 days later in the AMM7v11 analyses than in the L4 product,
603 and the AMM7v11 analyses persist the season for almost a month beyond the diagnosed end identified
604 in the L4 product. Using traditional verification methods, data assimilation has been shown to

605 considerably reduce the delay in bloom onset in the model (Skákala et al., 2020). Using feature-based
606 verification methods, this study suggests that a substantial delay still remains.

607

608 There is a modest concentration bias in the AMM7v11 analyses compared to the L4 satellite ocean
609 colour product. In this study we chose not to mitigate against this bias as it was not considered to
610 impede the identification of bloom objects, which would prevent the ability of the methodology to
611 identify matches and create paired object statistics. Any concentration bias does affect the results and
612 this effect must be understood or at least kept in mind when interpreting results, in this case it will have
613 contributed to the result that the AMM7v11 bloom objects are generally larger. An alternative approach
614 would be to mitigate against the impact of the bias before using a threshold-based methodology such as
615 MODE or MTD. A quantile mapping approach is available within the MODE tool (not yet available in
616 MTD but should be available at some point) to remove the biases between two distributions as each
617 temporal data set is analysed. Using this method the one threshold is fixed and the other threshold varies
618 day-to-day (as shown in Figure 5). Another approach would be to analyse the bias for the whole season
619 (as shown in Figure 4) and deriving an equivalent threshold from this larger data set, thus applying a
620 fixed threshold to all the days in the season, though there would still be two different thresholds applied
621 to the two data sets.

622

623 MODE results suggest that the AMM7v11 bloom objects are larger than those in the L4 product.
624 AMM7v11 produces more objects (in number) than seen in the L4 ocean colour product, yet many of
625 the coastal objects seen in the L4 product are not as well resolved in AMM7v11 due to the coarseness of
626 the coastline in the 7 km model. The additional AMM7v11 objects are mainly found in deeper Atlantic
627 waters. The diagnosis of coastal blooms should improve if the model resolution were increased from
628 7 km to 1.5 km.

629

630 Using MODE and MTD clearly gives extra information not obtained from traditional verification
631 metrics that are more routinely used (McEwan et al., 2021). An alternative approach to assessing the
632 representation of phytoplankton blooms might be to use phenological indices (Siegel et al., 2002;

633 Soppa, et al., 2016), which measure the day of the year on which Chl- a concentration first crosses a
634 threshold based on the median concentration. Phenological indices have been used in observation
635 process studies (Racault et al., 2012), but very rarely for model verification, and then only in 1D
636 (Anugerahanti et al., 2018). One reason for this is that daily model Chl- a will frequently cross such a
637 threshold throughout the bloom season, meaning temporal smoothing and other processing (Cole et al.,
638 2012) would be required, which is not straightforward to apply consistently. Objective methods such as
639 MODE and MTD, which consider individual bloom objects throughout the season, rather than assuming
640 a single spring bloom will occur at each location, bypass these difficulties.

641

642 Other work that formed part of this study, but is not reported on here, showed that constraining the Chl-
643 a using assimilation of the satellite observations appears to benefit the model in terms of fewer
644 unmatched bloom regions. This should translate to an improvement in the forecasts generated from this
645 analysis compared with previous versions of the operational system and will be the subject of future
646 work.

647 **6. Code availability**

648 Model Evaluation Tools (MET) was initially developed at the National Center for Atmospheric
649 Research (NCAR) through grants from the National Science Foundation (NSF), the National Oceanic
650 and Atmospheric Administration (NOAA), the United States Air Force (USAF) and the United States
651 Department of Energy (DOE). The tool is now open source and available for download on github:
652 <https://github.com/dtcenter/MET>. For this study MET version 8.1 of the software was used. MET
653 allows for a variety of input file formats but some pre-processing of the CMEMS NetCDF files was
654 necessary before the MODE package could be applied. This includes regridding of the observations
655 onto the model grid, and addition of the forecast reference time variables to the NetCDF attributes. All
656 aspects on the use of MET are provided in in the MET software documentation available online at
657 <https://dtcenter.github.io/MET>.

658 **7. Data availability**

659 Data used in this paper was downloaded from the Copernicus Marine and Environment Monitoring
660 Service (CMEMS). The datasets used were:

661 • https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_csw&view=de
662 [OCEANCOLOUR ATL CHL L4 NRT OBSERVATIONS 009_037](#) (last
663 access: August 2019),
664 • https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWES
665 [TSHELF ANALYSIS FORECAST BIO 004 002_b](#) (last access: August 2019)

666

667 The AMM7v11 analyses were not operational at the time of this study and not yet available from the
668 CMEMS server.

669 **8. Author contribution**

670 All authors contributed to the introduction, data and methods, and conclusions. MM, RN, JM and CP
671 contributed to the scientific evaluation and analysis of the results. MM and RN designed and ran the
672 model assessments. CP supported the assessments through the provision and reformatting of the data
673 used. DF provided detail on the model configurations used.

674 **9. Competing interests**

675 The authors declare that they have no conflict of interest.

676

677 **10. Acknowledgements**

678 This study has been conducted using E.U. Copernicus Marine Service Information.

679

680 This work has been carried out as part of the Copernicus Marine Environment Monitoring Service
681 (CMEMS) HiVE project. CMEMS is implemented by Mercator Ocean International in the framework
682 of a delegation agreement with the European Union.

683

684 We would like to thank the National Center for Atmospheric Research (NCAR) Developmental Testbed
685 Center (DTC) for the help received via their met_help facility in getting MET to work with ocean data,
686 and Robert McEwan (Met Office) for his assistance with the production of the traditional metrics.

687 11. References

688 Allen, J. I. and Somerfield, P. J.: A multivariate approach to model skill assessment, *J. Mar. Syst.*,
689 76(1–2), doi:10.1016/j.jmarsys.2008.05.009, 2009.

690 Allen, J. I., Holt, J. T., Blackford, J. and Proctor, R.: Error quantification of a high-resolution coupled
691 hydrodynamic-ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM, *J. Mar. Syst.*,
692 68(3–4), doi:10.1016/j.jmarsys.2007.01.005, 2007a.

693 Allen, J. I., Somerfield, P. J. and Gilbert, F. J.: Quantifying uncertainty in high-resolution coupled
694 hydrodynamic-ecosystem models, *J. Mar. Syst.*, 64(1–4), doi:10.1016/j.jmarsys.2006.02.010, 2007b.

695 Antoine, D., Andrt, J. M. and Morel, A.: Oceanic primary production: 2. Estimation at global scale from
696 satellite (Coastal Zone Color Scanner) chlorophyll, *Global Biogeochem. Cycles*, 10(1),
697 doi:10.1029/95GB02832, 1996.

698 Anugerahanti, P., Roy, S. and Haines, K.: A perturbed biogeochemistry model ensemble evaluated
699 against in situ and satellite observations, *Biogeosciences Discuss.*, doi:10.5194/bg-2018-136, 2018.

700 Behrenfeld, M. J., Boss, E., Siegel, D. A. and Shea, D. M.: Carbon-based ocean productivity and
701 phytoplankton physiology from space, *Global Biogeochem. Cycles*, 19(1), doi:10.1029/2004GB002299,
702 2005.

703 Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, *Environ.*
704 *Model. Softw.*, 61, doi:10.1016/j.envsoft.2014.04.002, 2014.

705 Butenschön, M., Clark, J., Aldridge, J. N., Icarus Allen, J., Artioli, Y., Blackford, J., Bruggeman, J.,
706 Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., Van Leeuwen, S., Van Der Molen, J., De Mora, L.,

707 Polimene, L., Sailley, S., Stephens, N. and Torres, R.: ERSEM 15.06: A generic model for marine
708 biogeochemistry and the ecosystem dynamics of the lower trophic levels, *Geosci. Model Dev.*, 9(4),
709 doi:10.5194/gmd-9-1293-2016, 2016.

710 Chelton, D. B., Schlax, M. G. and Samelson, R. M.: Global observations of nonlinear mesoscale eddies,
711 *Prog. Oceanogr.*, 91(2), doi:10.1016/j.pocean.2011.01.002, 2011.

712 Chiswell, S. M.: Annual cycles and spring blooms in phytoplankton: Don't abandon Sverdrup
713 completely, *Mar. Ecol. Prog. Ser.*, 443, doi:10.3354/meps09453, 2011.

714 Clark, A. J., Bullock, R. G., Jensen, T. L., Xue, M. and Kong, F.: Application of object-based time-
715 domain diagnostics for tracking precipitation systems in convection-allowing models, *Weather
716 Forecast.*, 29(3), doi:10.1175/WAF-D-13-00098.1, 2014.

717 Cole, H., Henson, S., Martin, A., and Yool, A.: Mind the gap: The impact of missing data on the
718 calculation of phytoplankton phenology metrics, *J. Geophys. Res.*, 117(C08030),
719 doi:doi:10.1029/2012JC008249, 2012.

720 Crocker, R., Maksymczuk, J., Mittermaier, M., Tonani, M. and Pequignet, C.: An approach to the
721 verification of high-resolution ocean models using spatial methods, *Ocean Sci.*, 16(4), doi:10.5194/os-
722 16-831-2020, 2020.

723 Crocker, R. L. and Mittermaier, M. P.: Exploratory use of a satellite cloud mask to verify {NWP}
724 models, *Meteorol. Appl.*, 20, 197–205, 2013.

725 Davis, C., Brown, B. and Bullock, R.: Object-based verification of precipitation forecasts, Part {I}:
726 Methods and application to mesoscale rain areas, *Mon. Wea. Rev.*, 134, 1772–1784, 2006.

727 Dorninger, M., Gilleland, E., Casati, B., Mittermaier, M., Ebert, E., Brown, B. and Wilson, L.: The set-
728 up of the {M}esoscale {V}erification{I}nter-Comparison over {C}omplex {T}errain ({M}eso{VICT})
729 project, *Bull. Amer. Meteorol. Soc.*, 2018.

730 Dutkiewicz, S., Hickman, A. E. and Jahn, O.: Modelling ocean-colour-derived chlorophyll A,
731 *Biogeosciences*, 15(2), doi:10.5194/bg-15-613-2018, 2018.

732 Edwards, K. P., Barciela, R. and Butenschön, M.: Validation of the NEMO-ERSEM operational
733 ecosystem model for the North West European continental shelf, *Ocean Sci.*, 8(6), doi:10.5194/os-8-
734 983-2012, 2012.

735 Falkowski, P. G., Barber, R. T. and Smetacek, V.: Biogeochemical controls and feedbacks on ocean
736 primary production, *Science*, 281(5374), doi:10.1126/science.281.5374.200, 1998.

737 Ford, D. A., Van Der Molen, J., Hyder, K., Bacon, J., Barciela, R., Creach, V., McEwan, R., Ruardij, P.
738 and Forster, R.: Observing and modelling phytoplankton community structure in the North Sea,
739 *Biogeosciences*, 14(6), doi:10.5194/bg-14-1419-2017, 2017.

740 Gilleland, E., Ahijevych, D., Brown, B. and Ebert, E.: Intercomparison of Spatial Forecast Verification
741 Methods, *Wea. Forecast.*, 24, 2009.

742 Gilleland, E., Lindström, J. and Lindgren, F.: Analyzing the image warp forecast verification method on
743 precipitation fields from the {ICP}, *Weather Forecast.*, 25(4), 1249–1262, 2010.

744 Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. B., Evans, R. H. and Broenkow, W. W.:
745 Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations
746 and CZCS estimates, *Appl. Opt.*, 22(1), doi:10.1364/ao.22.000020, 1983.

747 Hausmann, U. and Czaja, A.: The observed signature of mesoscale eddies in sea surface temperature
748 and the associated heat transport, *Deep. Res. Part I Oceanogr. Res. Pap.*, 70,
749 doi:10.1016/j.dsr.2012.08.005, 2012.

750 Hipsey, M. R., Gal, G., Arhonditsis, G. B., Carey, C. C., Elliott, J. A., Frassl, M. A., Janse, J. H., de
751 Mora, L. and Robson, B. J.: A system of metrics for the assessment and improvement of aquatic
752 ecosystem models, *Environ. Model. Softw.*, 128, doi:10.1016/j.envsoft.2020.104697, 2020.

753 ICES: Dataset on Ocean Hydrography, [online] Available from: <http://ocean.ices.dk/HydChem/>, 2014.

754 Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A. M., Helber, R. and Arnone, R. A.:
755 Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, *J. Mar. Sys.*, 76, 64–
756 82, 2009.

757 King, R. R., While, J., Martin, M. J., Lea, D. J., Lemieux-Dudon, B., Waters, J. and O'Dea, E.:
758 Improving the initialisation of the Met Office operational shelf-seas model, *Ocean Model.*, 130,
759 doi:10.1016/j.ocemod.2018.07.004, 2018.

760 LORENZEN, C. J.: SURFACE CHLOROPHYLL AS AN INDEX OF THE DEPTH, CHLOROPHYLL
761 CONTENT, AND PRIMARY PRODUCTIVITY OF THE EUPHOTIC LAYER, *Limnol. Oceanogr.*,
762 15(3), doi:10.4319/lo.1970.15.3.0479, 1970.

763 Madec, G. and the N. team: Nemo Engine., 2016.

764 Mass, C. F., Ovens, D., Westrick, K. and Colle, B. A.: Does increasing horizontal resolution produce
765 more skillful forecasts? The results of two years of real-time numerical weather prediction over the
766 Pacific northwest, *Bull. Amer. Meteorol. Soc.*, 83(3), 407–430, 2002.

767 Mattern, J.P.; Fennel, K.; Dowd, M.: Introduction and Assessment of Measures for Quantitative Model-
768 Data Comparison Using Satellite Images.No Title, *Remote Sens.*, 2, 794–818 [online] Available from:
769 <https://doi.org/10.3390/rs2030794.>, 2010.

770 McEwan, Robert, Kay, Susan, & Ford, D.: CMEMS-NWS-QUID-004-002 (Version 4.2). [online]
771 Available from: <http://doi.org/10.5281/zenodo.4746438.>, 2021.

772 Mittermaier, M. and Bullock, R.: Using {MODE} to explore the spatial and temporal characteristics of
773 cloud cover forecasts from high-resolution {NWP} models, *Meteorol. Appl.*, 20, 187–196, 2013.

774 Mittermaier, M., North, R., Semple, A. and Bullock, R.: Feature-based diagnostic evaluation of global
775 NWP forecasts, *Mon. Wea. Rev.*, 144(10), Submitted, 2016.

776 Moore, T. S., Campbell, J. W. and Dowell, M. D.: A class-based approach to characterizing and
777 mapping the uncertainty of the MODIS ocean chlorophyll product, *Remote Sens. Environ.*, 113(11),
778 2424–2430, doi:<https://doi.org/10.1016/j.rse.2009.07.016>, 2009.

779 De Mora, L., Butenschön, M. and Allen, J. I.: The assessment of a global marine ecosystem model on
780 the basis of emergent properties and ecosystem function: A case study with ERSEM, *Geosci. Model
781 Dev.*, 9(1), doi:[10.5194/gmd-9-59-2016](https://doi.org/10.5194/gmd-9-59-2016), 2016.

782 Morrow, R. and Le Traon, P. Y.: Recent advances in observing mesoscale ocean dynamics with satellite
783 altimetry, *Adv. Sp. Res.*, 50(8), doi:[10.1016/j.asr.2011.09.033](https://doi.org/10.1016/j.asr.2011.09.033), 2012.

784 O'Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., Siddorn, J. R.,
785 Storkey, D., While, J., Holt, J. T. and Liu, H.: An operational ocean forecast system incorporating
786 NEMO and SST data assimilation for the tidally driven European North-West shelf, *J. Oper. Oceanogr.*,
787 5(1), doi:[10.1080/1755876X.2012.11020128](https://doi.org/10.1080/1755876X.2012.11020128), 2012.

788 O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J. and Hewitt, H.:
789 The CO5 configuration of the 7-km Atlantic Margin Model: Large scale biases and sensitivity to
790 forcing, physics options and vertical resolution, *Geosci. Model Dev. Discuss.*, doi:[10.5194/gmd-2017-](https://doi.org/10.5194/gmd-2017-)

791 15, 2017.

792 Racault, M. F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S., & Platt, T.: Phytoplankton phenology
793 in the global ocean, *Ecol. Indic.*, 14(1), 152–163, 2012.

794 Rossa, A. M., Nurmi, P. and Ebert, E. E.: Precipitation: Advances in Measurement, Estimation and
795 Prediction, pp. 418–450, Springer., 2008.

796 Saux Picart, S., Butenschén, M. and Shutler, J. D.: Wavelet-based spatial comparison technique for
797 analysing and evaluating two-dimensional geophysical model fields, *Geosci. Model Dev.*, 5(1),
798 doi:10.5194/gmd-5-223-2012, 2012.

799 Schalles, J. F.: Optical remote sensing techniques to estimate phytoplankton chlorophyll a
800 concentrations in coastal waters with varying suspended matter and cdom concentrations, in *Remote*
801 *Sensing and Digital Image Processing*, vol. 9., 2006.

802 Shutler, J. D., Smyth, T. J., Saux-Picart, S., Wakelin, S. L., Hyder, P., Orekhov, P., Grant, M. G.,
803 Tilstone, G. H. and Allen, J. I.: Evaluating the ability of a hydrodynamic ecosystem model to capture
804 inter- and intra-annual spatial characteristics of chlorophyll-a in the north east Atlantic, *J. Mar. Syst.*,
805 88(2), doi:10.1016/j.jmarsys.2011.03.013, 2011.

806 Siegel, D. A., Doney, S. C. and Yoder, J. A.: The North Atlantic Spring Phytoplankton Bloom and
807 Sverdrup's Critical Depth Hypothesis, *Science* (80-..), 296(5568), 730–733,
808 doi:10.1126/science.1069174, 2002.

809 Skákala, J., Ford, D., Brewin, R. J. W., McEwan, R., Kay, S., Taylor, B., de Mora, L. and Ciavatta, S.:
810 The Assimilation of Phytoplankton Functional Types for Operational Forecasting in the Northwest
811 European Shelf, *J. Geophys. Res. Ocean.*, 123(8), 5230–5247, doi:10.1029/2018JC014153, 2018.

812 Skákala, J., Bruggeman, J., Brewin, R. J. W., Ford, D. A. and Ciavatta, S.: Improved Representation of
813 Underwater Light Field and Its Impact on Ecosystem Dynamics: A Study in the North Sea, *J. Geophys.*
814 *Res. Ocean.*, 125(7), e2020JC016122, doi:10.1029/2020JC016122, 2020.

815 Smyth, T. J., Allen, I., Atkinson, A., Bruun, J. T., Harmer, R. A., Pingree, R. D., Widdicombe, C. E.
816 and Somerfield, P. J.: Ocean net heat flux influences seasonal to interannual patterns of plankton
817 abundance, *PLoS One*, 9(6), e98709, doi:10.1371/journal.pone.0098709, 2014.

818 Soppa, M.A.; Völker, C.; Bracher, A.: Diatom Phenology in the Southern Ocean: Mean Patterns, Trends

819 and the Role of Climate Oscillations, *Remote Sens.*, 8(420), doi:<https://doi.org/10.3390/rs8050420>,
820 2016.

821 Stow, C. A., Jolliff, J., McGillicuddy, D. J., Doney, S. C., Allen, J. I., Friedrichs, M. A. M., Rose, K. A.
822 and Wallhead, P.: Skill assessment for coupled biological/physical models of marine systems, *J. Mar.*
823 *Syst.*, 76(1–2), doi:10.1016/j.jmarsys.2008.03.011, 2009.

824 Sverdrup, H. U.: On conditions for the vernal blooming of phytoplankton, *ICES J. Mar. Sci.*, 18(3),
825 doi:10.1093/icesjms/18.3.287, 1953.

826 Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, *J. Geophys.*
827 *Res. Atmos.*, 106(D7), doi:10.1029/2000JD900719, 2001.

828 Le Traon, P. Y., Reppucci, A., Fanjul, E. A., Aouf, L., Behrens, A., Belmonte, M., Bentamy, A.,
829 Bertino, L., Brando, V. E., Kreiner, M. B., Benkiran, M., Carval, T., Ciliberti, S. A., Claustre, H.,
830 Clementi, E., Coppini, G., Cossarini, G., De Alfonso Alonso-Muñoyerro, M., Delamarche, A.,
831 Dibarboure, G., Dinessen, F., Drevillon, M., Drillet, Y., Faugere, Y., Fernández, V., Fleming, A.,
832 Garcia-Hermosa, M. I., Sotillo, M. G., Garric, G., Gasparin, F., Giordan, C., Gehlen, M., Gregoire, M.
833 L., Guinehut, S., Hamon, M., Harris, C., Hernandez, F., Hinkler, J. B., Hoyer, J., Karvonen, J., Kay, S.,
834 King, R., Lavergne, T., Lemieux-Dudon, B., Lima, L., Mao, C., Martin, M. J., Masina, S., Melet, A.,
835 Nardelli, B. B., Nolan, G., Pascual, A., Pistoia, J., Palazov, A., Piolle, J. F., Pujol, M. I., Pequignet, A.
836 C., Peneva, E., Gómez, B. P., de la Villeon, L. P., Pinardi, N., Pisano, A., Pouliquen, S., Reid, R.,
837 Remy, E., Santoleri, R., Siddorn, J., She, J., Staneva, J., Stoffelen, A., Tonani, M., Vandenbulcke, L.,
838 von Schuckmann, K., Volpe, G., Wettre, C. and Zacharioudaki, A.: From observation to information
839 and users: The Copernicus Marine Service Perspective, *Front. Mar. Sci.*, 6(May),
840 doi:10.3389/fmars.2019.234, 2019.

841 Vichi, M., Allen, J. I., Masina, S. and Hardman-Mountford, N. J.: The emergence of ocean
842 biogeochemical provinces: A quantitative assessment and a diagnostic for model evaluation, *Global*
843 *Biogeochem. Cycles*, 25(2), doi:10.1029/2010GB003867, 2011.

844 Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A. and While, J.: Implementing a variational
845 data assimilation system in an operational 1/4 degree global ocean model, *Q. J. R. Meteorol. Soc.*,
846 141(687), 333–349, doi:10.1002/qj.2388, 2015.

847 Winder, M. and Cloern, J. E.: The annual cycles of phytoplankton biomass, Philos. Trans. R. Soc. B
848 Biol. Sci., 365(1555), doi:10.1098/rstb.2010.0125, 2010.
849