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Abstract.   9 

Two feature-based verification methods, thus far only used for the diagnostic evaluation of atmospheric 10 

model applicationsmodels, have been applied to compare ~7 km resolution pre-operational analyses of 11 

Chlorophyll-a (Chl-a) concentrations from the Met Office Atlantic Margin Model at 7 km resolution 12 

(AMM7v11) for the North West European Shelf Seas withto a 1 km gridded  satellite-derived Chl-a 13 

concentrations product from the Copernicus Marine Environment Monitoring Service (CMEMS) 14 

catalogue.. The aim of this study was to assess the value of applying such methods to ocean models. 15 

Chl-a bloom objects were identified using a range of thresholdsin both datasets for the 2019 bloom 16 

season (March 1 to 31 July). These bloom objects were analysed as purelydiscrete (2D) spatial features 17 

and, but also as space-time objects, enabling the ability to define(3D) features, providing the means of 18 

defining the onset, duration, and demise of distinct bloom episodes. Overall, and the AMM7v11season 19 

as a whole. 20 

The model analyses were found to be similar to the satellite product. The AMM7v11 analyses were not 21 

always are not able to represent small coastal bloom objects, given the coastlinecoarser definition in a 22 

~7 km model and sub-grid scale processes. By contrastof the AMM7v11coastline. The analyses 23 

producesalso wrongly produce more bloom objects in deeper Atlantic waters, which are not detected by 24 

the satellite product.. Concentrations in the AMM7v11model analyses are somewhat higher overall. 25 

ThisThe bias manifests itself in the size of the AMM7v11model analysis bloom objects, which tend to 26 

be larger than the satellite-derived bloom objects identified in the satellite product. Based on this 27 
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analysis these feature-based methods the onset of the bloom season is delayed by 26 days in the 28 

AMM7v11model analyses, but the season also persists for another month beyond the diagnosed end. 29 

Overall, theThe season was diagnosed to be 119 days long, based on the AMM7v11 space-time objects, 30 

and  in the model analyses, compared to 117 days from the satellite product. Geographically the 31 

AMM7v11model analyses and satellite product-derived bloom objects do overlap at times, but further 32 

analysis shows they do not necessarily exist in thata specific location at the same time, and only overlap 33 

occasionally. 34 

1 Introduction 35 

The advancements in atmospheric numerical weather prediction (NWP) such as the improvements in 36 

model resolution began to expose the relative weaknesses in so-called traditional verification scores 37 

(such as the root-mean-squared-error for example), which rely on the precise matching in space and 38 

time of the forecast to a suitable observation. These metrics and measures no longer provided adequate 39 

information to quantify forecast performance (e.g. Mass et al. 2002). One key characteristic of high-40 

resolution forecasts is the apparent detail they provide, but this detail may not be in the right place at the 41 

right time, a phenomenon referred to as the “double penalty effect” (Rossa et al., 2008). Essentially it 42 

means that at any given time the error is counted twice because the forecast occurred where it was not 43 

observed, and it did not occur where it was observed. This realisation created the need within the 44 

atmospheric community for creating more informative yet robust verification methods. As a result, a 45 

multitude of so-called “spatial” verification methods were developed, which essentially provide a 46 

number of ways for accounting for the characteristics of high-resolution forecasts.  47 

 48 

In 2007 a spatial verification method inter-comparison (Gilleland et al., 2009, 2010) was established 49 

with the aim of providing a better collective understanding of what each of the new methods was 50 

designed for, and categorising what type of forecast errors each could quantify. A decade later 51 

Dorninger et al. (2018) revisited this inter-comparison, adding a fifth category so that all spatial 52 

methods fall into one of the following groupings: neighbourhood, scale separation, feature-based, 53 

distance metrics or field deformation. 54 
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 55 

The use of spatial verification methods has therefore become commonplace for atmospheric NWP (see 56 

Dorninger et al. (2018) and references within). Neighbourhood-based methods in particular have 57 

become popular due to the relative ease of computation and intuitive interpretation. Recently one such 58 

neighbourhood spatial method was demonstrated as an effective approach for exploring the benefit of 59 

higher resolution ocean forecasts (Crocker et al., 2020). Another class of methods focus on how well 60 

particular features of interest are being forecast. Forecasting specific features of interest is one of the 61 

main reasons for increasing horizontal resolution. Feature-based verification methods, such as the 62 

Method for Object-based Diagnostic Evaluation (MODE, Davis et al., 2006) and the time domain 63 

version MODE-TD (Clark et al., 2014) enable an assessment of such features, focusing on the physical 64 

attributes of the features (identified using a threshold) and how they behave at a given point in time, and 65 

evolve over time. These methods require a gridded truth to compare to. Whilst the initial inter-66 

comparison project was based on analysing precipitation forecasts, over recent years their use has 67 

extended to other variables, provided gridded data sets exist that can be used to compare against (e.g. 68 

Crocker & Mittermaier (2013) considered cloud masks and Mittermaier et al., (2016) considered more 69 

continuous fields in a global NWP model such as upper-level jet cores, surface lows and high pressure 70 

cells using model analyses.). Mittermaier & Bullock (2013) detailed the first study to use MODE-TD 71 

prototype tools to analyse the evolution of cloud breaks over the UK using satellite-derived cloud 72 

analyses. 73 

 74 

In the ocean, several processes have strong visual signatures that can be detected by satellite sensors. 75 

For example, mesoscale eddies can be detected from sea surface temperature or sea level anomaly (e.g. 76 

(Chelton et al., 2011, Morrow and Le Traon, 2012, Hausmann and Czaja, 2012). Phytoplankton blooms 77 

are seasonal events which see rapid phytoplankton growth as a result of changing ocean mixing, 78 

temperature and light conditions (Sverdrup, 1953, Winder and Cloern, 2010, Chiswell, 2011)).  Blooms 79 

represent an important contribution to the oceanic primary production that is, a key process for the 80 

oceanic carbon cycle (Falkowski et al., 1998). Their spatial extent and intensity in the upper ocean make 81 

them visible from space with ocean colour sensors (Gordon et al., 1983, Behrenfeld et al., 2005). 82 
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Biogeochemical models coupled to physical models of the ocean provide simulations for the various 83 

parameters that characterisecharacterize the evolution of a spring bloom. In particular, Chlorophyll-a 84 

(Chl-a) concentrations provide an index of phytoplankton biomass., such as Chl-a concentration which 85 

can also be estimated from spaceborne ocean colour sensors (Antoine et al., 1996).  86 

 87 

Validation of marine biogeochemical models has traditionally relied on simple statistical comparisons 88 

with observation products, often limited to visual inspections (Stow et al., 2009; Hipsey et al., 2020). In 89 

response to this, various papers have outlined and advocated using a hierarchy of statistical techniques 90 

(Allen et al., 2007a, 2007b; Stow et al., 2009; Hipsey et al., 2020), multivariate approaches (Allen and 91 

Somerfield, 2009), and novel diagrams (Jolliff et al., 2009). Many of these rely on matching to 92 

observations in space and time, but some studies have started applying feature-based verification 93 

methods. ((Mattern, et al.2010)). Emergent properties have been assessed in terms of geographical 94 

provinces (Vichi et al., 2011), phenological indices (Anugerahanti et al., 2018), and ecosystem 95 

functions (De Mora et al., 2016)(de Mora et al., 2016). In a previous application of spatial verification 96 

methods developed for NWP, Saux Picart et al., 2012)Saux Picart et al. (2012) used a wavelet-based 97 

method to compare Chl-a concentrations from a model of the European North West Shelf to an ocean 98 

colour product. 99 

 100 

For this paper, both MODE and MODE-TD (or MTD for short) were applied to the latest pre-101 

operational analysis (at the time) of the Met Office Atlantic Margin Model (AMM7) at 7 km resolution 102 

(O’Dea et al., 2012; Edwards et al., 2012; O'Dea et al., 2017; King et al., 2018)King et al., 2018; 103 

(McEwan  et al., 2021)) for the European North West Shelf (NWS), in order to evaluate the spatio-104 

temporal evolution of the bloom season in both model and observation fields. A traditional verification 105 

of the system (e.g. using root-mean-squared-error and similar metrics) is out of scope of this study and 106 

will be presented in a separate publication.A full traditional verification of the system (e.g. using root-107 

mean-squared-error and similar metrics) is out of scope of this study and will be presented in a separate 108 

publication. For comparison with the MODE and MTD results, a few traditional metrics are included 109 

here, based on the Copernicus Marine Environment Monitoring Service (CMEMS) Quality Information 110 



 

5 

 

Document for the model (McEwan et al., 2021). Traditional verification of a previous version, prior to 111 

the introduction of ocean colour data assimilation, was presented by Edwards et al. (2012), who used 112 

various metrics and Taylor diagrams (Taylor, 2001) to compare model analyses to satellite and in-situ 113 

observations. Ford et al. (2017) presented further validation, to understand the skill of the model at 114 

representing phytoplankton community structure in the North Sea. A similar version of the system used 115 

in this study, including ocean colour data assimilation, was assessed in Skákala et al. (2018), who 116 

validated both analysis and forecast skill using traditional methods. The assimilation improved analysis 117 

and forecast skill compared with the free-running model, but when assessed against satellite ocean 118 

colour the forecasts were not found to beat persistence. On the NWS the spring bloom usually begins 119 

between February and April, varying across the domain and interannually (Siegel et al., 2002; Smyth et 120 

al., 2014), and lasts until summer. Without data assimilation the spring bloom in the model typically 121 

occurs later than in observations (Skákala et al., 2018, 2020), a bias which is largely corrected by 122 

assimilating ocean colour data. 123 

 124 

In Section 2 the data sets used in the verification process are introduced. Section 3 describes MODE and 125 

MTD. Section 4 contains a selection of results, and their interpretation. Conclusions and 126 

recommendations follow in Section 5.  127 

2 Data sets for the 2019 Chl-a bloom  128 

As stated in Section 1, feature-based methods such as MODE and MTD require the fields to be 129 

compared to be on the same grid.  The model grid is used here. 130 

2.1 Satellite-derived gridded ocean colour products 131 

A cloud-free gridded (space-time interpolated, L4) daily product delivered through the Copernicus 132 

Marine Environment Monitoring Service (CMEMS, Le Traon et al., 2019) catalogue provides Chl-a 133 

concentration at ~1 km resolution over the Atlantic (46°W–13°E, 20°N–66°N). The L4 Chl-a product is 134 

derived from merging of data from multiple satellite-borne sensors: MODIS-Aqua, VIIRSN and OLCI-135 

S3A. The reprocessed (REP) products available nearly 6 months after the measurements 136 
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(OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_009_091098) are used here as it is the 137 

best-quality gridded product available for comparison. The satellite derived chlorophyllChl-a 138 

concentration estimate is an integrated value over optical depth.  139 

 140 

Errors in satellite-derived Chl-a can be more than 100% of the observed value (e.g. Moore et al., 2009). 141 

The errors in the L4 Chl-a values are often at their largest near the coast, especially near river outflows. 142 

However, in the rest of the domain, smaller values of Chl-a mean that even large percentage 143 

observation errors result in errors typically smaller than the difference between model and observations. 144 

As will be shown, the models at 7 km resolution cannot resolve the coasts in the same way as is seen in 145 

the satellite product as some of the coastal Chl-a dynamics are sub-grid scale for a 7 km resolution 146 

model. 147 

 148 

For this study the ~1 km resolution L4 satellite product was interpolated onto the AMM7 grid using 149 

standard two-dimensional horizontal cubic interpolation. This coarsening process retained some of the 150 

larger concentrations present in the L4 product. 151 

2.2 Model description 152 

Operational modelling of the NWS is performed using the Forecast Ocean Assimilation Model (FOAM) 153 

system. This consists of the NEMO (Nucleus for European Modelling of the Ocean) hydrodynamic 154 

model (Madec et al., 2016; O'Dea et al., 2017), the NEMOVAR data assimilation scheme (Waters et al., 155 

2015; King et al., 2018), and for the NWS region the European Regional Seas Ecosystem Model 156 

(ERSEM), which provides forecasts for the lower trophic levels of the marine food web (Butenschön et 157 

al., 2016).  The version of FOAM used in this study is AMM7v11, using the ~7 km horizontal 158 

resolution domain stretching from 40 °N, 20 °W to 65 °N, 13 °E. Operational forecasts of ocean physics 159 

and biogeochemistry for the NWS are delivered through CMEMS, for a summary of the principles 160 

underlying the service see e.g. Le Traon et al. (2019). 161 

 162 



 

7 

 

AMM7v11 uses the CO6 configuration of NEMO, which is configured for the shallow water of the 163 

shelf sea and is a development of the CO5 configuration described by O'Dea et al. (2017). The ERSEM 164 

version used is v19.04, coupled to NEMO using the Framework for Aquatic Biogeochemical Models 165 

(FABM, Bruggeman and Bolding, 2014). The NEMOVAR version is v6.0, with a 3D-Var method used 166 

to assimilate satellite and in situ sea surface temperature (SST) observations, in situ temperature and 167 

salinity profiles, and altimetry data into NEMO (King et al., 2018), and chlorophyll derived from 168 

satellite ocean colour into ERSEM (Skákala et al., 2018). The introduction of ocean colour assimilation 169 

in AMM7v11 is a major development for the biogeochemistry over previous versions of the system 170 

(Edwards et al., 2012). The satellite ocean colour observations assimilated are from a daily L3 multi-171 

sensor composite product based on MODIS and VIIRS with resolutions of 1 km for the Atlantic (for 172 

further information see OCEANCOLOUR_ATL_CHL_L3_NRT_OBSERVATIONS_009_036 on the 173 

CMEMS catalogue). The L3 product is based on two of the same three ocean colours sensors used in 174 

the L4 product described in Section 2.1, but with different processing and no gap-filling. 175 

 176 

In this study daily mean Chl-a concentrations for the period of 1 March-31 July 2019 from AMM7v11 177 

were used to illustrate the verification methodology. AMM7v11 entered operational use in December 178 

2020, and the data used here came from a pre-operational run of the system. Note only the analysis of 179 

AMM7v11 (i.e. no corresponding forecasts) was available at the time of the assessment, and the results 180 

presented in this paper show how close the data assimilation draws the model to the observed state. 181 

2.3 Visual inspection of data sets 182 

Ideally, Chl-a concentration from the model should be integrated over optical depth to be equivalent to 183 

the satellite derived value defined in Section 2.1 (Dutkiewicz et al., 2018). However, this is currently a 184 

non-trivial exercise, and cannot be accurately calculated from offline outputs. Therefore, the commonly 185 

accepted practice is to use the model surface Chl-a (Lorenzen, 1970, (Shutler et al., 2011). Here it is 186 

assumed that the difference between surface and optical depth-integrated Chl-a is likely to be small in 187 

comparison with the actual model errors. 188 
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 190 

Figure 1 (a) Daily mean L4 multi-sensor observations regridded on the 7 km resolution model grid and (b) AMM7v11 191 

Chl-a for 1 June 2019. (c) Error estimates on the multi-sensor L4 Chl-a and (d) difference between AMM7v11 and 192 

the L4 product. 193 

 194 

Figure 1 shows the L4 ocean colour product (a) and AMM7v11 analysis (b) for 1 June 2019 on the top 195 

row, using the same plotting ranges. The second row shows the difference field that is provided with the 196 

L4 ocean colour product (c), and the AMM7v11 minus L4 difference field (d). The mean error (bias) is 197 

generally positive with the AMM7v11 analysis containing higher Chl-a concentrations, especially in the 198 

deeper North Atlantic waters. The exceptions are along the coast where the AMM7v11 analysis is 199 

deficient, but it should be noted that these are also the zones where some of the largest satellite retrieval 200 

errors occur and where a 7-km resolution model, with a coarse representation of the coast, does not fully 201 

represent complex coastal and estuarine processes.   202 
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3 Method for Object-based Diagnostic Evaluation (MODE) and MODE Time-Domain (MTD) 203 

3.1. Description of the methods 204 

This section provides a brief description of the Method for Object-Based Diagnostic Evaluation 205 

(MODE), first described in Davis et al. (2006) and its extension MODE Time-Domain (MTD).  206 

 207 

MODE and MTD can be used on any temporal sequence of two gridded data sets which contain features 208 

that are of interest to a user (whoever that user may be, model developer or more applied). By extracting 209 

only the feature(s) of interest, the method allows one to mimic what humans do, but in an objective 210 

way. Once identified the features can then be mathematically analysed over many days or seasons to 211 

compute aggregate statistics of behaviour. MODE can be used in a very generalised way. The key 212 

requirements are to 1) have gridded fields to compare and 2) be able to set a threshold for identifying 213 

features of interest.  214 

 215 

In this instance the comparison will involve the AMM7v11 model data assimilation analysis and the 216 

gridded L4 satellite product. MODE identifies the features (called objects), as areas for which a 217 

specified threshold is exceeded, here it is a Chl-a concentration. Consider Figure 2 which shows a 218 

number of objects that have been identified after a threshold has been applied to two fields (blue and 219 

orange). The identified objects in the two fields are of different sizes and shapes and do not overlap in 220 

space, though they are not far apart. Object characteristics or attributes such as the area and mass-221 

weighted centroid are computed for each single object. Simple (also known as single) objects can be 222 

merged (to form clusters) within one field (illustrated here for the orange field). This may be useful to 223 

do if it is clear that there are many small objects close together which should really be treated as one. 224 

Furthermore, objects in one field can be matched to objects in the other field. To find the best match an 225 

interest score is computed for each possible pairing. between all identified objects. The components 226 

used for computing the interest score can be tuned to meet specific user needs. In (In Figure 2(a) it is 227 

based on the area ratio, intersection-area ratio, minimum boundary distance and centroid difference. 228 

Furthermore, the components can be weighted according to relative importance. Given a scenario where 229 

there are 2 identified objects in the blue field and 3 in the orange field (Figure 2(b) shows the interest 230 
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score for each possible pairing in this hypothetical example. Only the pairing with the highest score is 231 

analysed further, and only if it exceeds the set threshold for defining an acceptable match. The default 232 

value for this is 0.7. Once these matches are completed summary statistics describing theFor the 233 

example blue object 1 is best matched against orange object 1, and this match is used in the analysis. 234 

Note that there is another good match with orange object 2 as it is above the threshold of 0.7, but it, as 235 

well as the orange object 3 would not be used, with orange object 3 below the 0.7 threshold. In all 236 

likelihood a scenario such as shown in Figure 2(b) would be assessed as clusters with blue objects 1 and 237 

2 forming a cluster and orange objects 1 and 2 also forming a cluster. An interest score for the cluster 238 

pairing above 0.7 would then create a matched pair. Once these matches are completed summary 239 

statistics describing the individual objects (both matched and unmatched) and matched object pairs are 240 

produced. These statistics can be used to identify similarities and differences between the objects 241 

identified in two different data sets, which can provide diagnostic insights on the relative strengths and 242 

weaknesses of one compared to the other. 243 
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 244 

 245 

Figure 2 Schematic illustrating some of the key components of identifying objects using MODE. (a) Defining some of 246 

the terminology and key components for computing matched pairs. (b) Example of how the best matched pair is 247 

identified. 248 

 249 
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The important steps for applying MODE can be summarised as follows (which are described in detail in 250 

Davis et al. 2006):  251 

1) Both forecast and observation (or analysis) need to be on the same grid. Typically, this means 252 

interpolating the observations to the model grid to avoid the model being expected to resolve 253 

features which are sub-grid scale.  254 

2) Depending on how noisy the fields are they should be smoothed. It is worth remembering that 255 

the Gridded observations (not analyses) can be noisy and usually need some smoothing. Models 256 

and model analyses are built on numerical methods which come with discretisation effects. 257 

Depending on the method this implies that any model’s true resolution (i.e. the scales which the 258 

model is resolving) is between 2 and 4 times the horizontal grid (mesh) resolution. The number 259 

of objects identified will vary inversely with the smoothing radius.  260 

3) Define a threshold which captures the feature of interest and apply it to both the smoothed 261 

forecast and observed fields to identify simple objects as shown in Figure 2. 262 

4) Any smoothing is only for object identification purposes. The original intensity information 263 

within the object boundaries is analysed. 264 

5) Lastly, the object matching is accomplished using a fuzzy logic engine (low level artificial 265 

intelligence), which is expressed as the so-called “interest” score as shown in Figure 2(b). The 266 

higher the score the stronger the match. All objects are compared in both fields and interest 267 

scores are computed for all combinations. A threshold is set on the interest score value (typically 268 

0.7) to denote which are the best matches, and on the unique pairing with the highest score is 269 

kept for analysis purposes. Some objects will remain unmatched (either because there is none or 270 

because there are no interest values above the set threshold to provide a credible match) and 271 

these can be analysed separately.  272 

MODE is highly configurable. To gain an optimal combination of configurable parameters for each 273 

application requires extensive sensitivity testing to gain sufficient understanding of the behaviour of the 274 

data sets to be examined, and to achieve, on average, heuristically the right outcome. Initial tuning 275 

requires user input to check whether the method is replicating what a human would do.  276 
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1) The sensitivity to threshold and smoothing radius should be explored. The threshold and 277 

variability in the fields can affect the number of objects which are identified. The process of 278 

exploring the relationship between threshold and smoothness helps to identify what would 279 

heuristically be considered a reasonable number of objects.  280 

2) The sensitivity to the merging option must also be investigated. In this instance the merging 281 

option had very little impact. 282 

3) The behaviour of the matching can also be configured, with a number of options ranging from 283 

the simple to the more complicated, which added computational expense. There may be very 284 

little difference in outcomes, but it is worth checking. Here the merge_both option was used but 285 

it was not strictly necessary as there was little difference between the available options.  286 

 287 

Note also that a minimum size (area) is set for object identification. This is often a somewhat pragmatic 288 

choice. If the size is set too small, too many objects are identified, which end up being merged. If too 289 

large, very few objects are identified. Here a minimum area of 10 grid squares (~70 km2) was used for 290 

an object to be included in the analysis. For this study the default settings were used for matching and 291 

computing the interest score (as provided in the default configuration file (see example configuration 292 

files in https://github.com/dtcenter/MET/tree/main_v8.1/met/scripts/config). The default threshold of 293 

0.7 for the interest score was also used to identify acceptable matches. 294 

 295 

Identical to MODE, identifying time-space objects in MTD uses smoothing and thresholding. Applying 296 

a threshold yields a binary field where grid points exceeding the defined threshold are set to one. At this 297 

stage each region of non-zero grid points in space and time is considered a separate object, and the grid 298 

points within each object are assigned a unique object identifier. For MTD the search for contiguous 299 

grid points not only means examining adjacent grid points in space, but also the grid points in the same 300 

or similar location at adjacent times to define a space-time object. The same fuzzy logic-based 301 

algorithms used for merging and matching in MODE apply to MTD as well. Similarly, to MODE a 302 

minimum volume must be set. Here a volume threshold of 1000 grid squares (a summation of the daily 303 

object areas identified to be part of the space-time object) was imposed for space-time object 304 

https://github.com/dtcenter/MET/tree/main_v8.1/met/scripts/config
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identification to be included in the analysis. This represents the accumulated number of grid squares 305 

associated with an object over consecutive time slices. Otherwise, the default settings were used for 306 

object matching. For MTD a lower interest score of 0.5 was used for matching objects. Finally, it is 307 

worth noting that the MODE and MTD tools, though similar, are completely independent of each other, 308 

and were set up differently here. MODE is ideal for understanding the identified features in individual 309 

daily fields in some detail. MTD, it was felt, would be best used to look at larger scales. Here it was set 310 

up to capture the most significant (in size) and long-lasting blooms. 311 

 312 

3.2 Defining Chl-a concentration thresholds and other choices on tuneable parameters 313 

Chl-a can vary over several orders of magnitude. Often log10 thresholds are used to match the fact that 314 

Chl-a follows a lognormal distribution (e.g. Campbell 1995). Defining thresholds can be difficult: on 315 

the one hand there is the desire to only capture events of interest, so the thresholds should not be too 316 

low, whereas on the other hand if the thresholds are too high no events are captured and there is nothing 317 

to analyse. From a regional (NW European Shelf) perspective the values of interest are typically in the 318 

range of 3–5 mg m-3 (Schalles, 2006), though higher values are present.Chl-a concentrations can be 319 

measured in-situ or diagnosed in satellite products. For this study, the data sets were not transformed 320 

but the thresholds were selected in such a way that they would correspond to set ofbeing equally spaced 321 

in logarithmic thresholds, ranging between 0.2 and 1.4 log10mg m-3 were appliedspace, staying true to 322 

the Chl-a fields, corresponding tounderlying distribution shape of Chl-a concentrations between 1.62 323 

and 25 mg m-3. Doing this removed the need to transform the data. In the paper. Here the primary focus 324 

is on the results for the 2.5 mg m-3 threshold, though some results for the 4 and 6.3 mg m-3 thresholds 325 

are also presented. 326 

 327 

In addition to the interpolation of the L4 ocean colour product onto the AMM7~7 km AMM7v11 grid, it 328 

is important to ensure that MODE and MTD use optimal settings for the fields under study. Results are 329 

sensitive to characteristics of the fields (how smooth or noisy). Right at the start the emphasis was on 330 

finding the right combination of Chl-a concentration threshold and smoothing, balancing the need for 331 

identifying objects with keeping the number of objects manageable. The guiding principles in 332 
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identifying the right combination were to ensure that the daily object count remained less than 30.low 333 

enough, recalling that these methods were developed to mimic what a human would do. The human 334 

brain would struggle to cope with as many as 30, but this was considered to be an acceptable upper limit 335 

after considerable visual inspection of output. Furthermore, the smoothing applied needs to be reduced 336 

with increasing concentration thresholds because objects become smaller and are less frequent. This is 337 

to ensure that too much smoothing does not remove more intense objects from the analysis. However, 338 

pushing the concentration threshold too high may also be too detrimental; depending on the input fields, 339 

identified objects may be spurious and too(due to e.g. a failure of quality control processes removing 340 

such). Too few objects will mean meaningfulalso make the compilation of robust aggregated statistics 341 

cannot be compiled. AMM7v11 analyses are on a ~7 km grid.impossible.   342 

 343 

For the lowest thresholds including 2.5 and 4.0 mg m-3 a smoothing radius of 5 grid squares (~35 km) 344 

was applied to both L4 and AMM7v11 fields, but for higher thresholds (e.g. 6.3 mg m-3) the smoothing 345 

radius was reduced to 3 grid squares, to prevent the higher peak concentrations, which are often small in 346 

spatial extent, from being lost due to the smoothing. Thresholds above 6.3 mg m-3 yielded too few 347 

objects to be analysed with any rigour. The smoothing was particularly necessary for the L4 product 348 

which, because of its native 1 km resolution is able to resolve very small (noisy) objects typically found 349 

near the coast and which a 7 km resolution model cannot resolve.  For the MTD analysis, objects in the 350 

L4 ocean colour product and the AMM7v11 analyses were only defined using a Chl-a concentration 351 

threshold of 2.5 mg m-3.   352 

  353 
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4. Results 354 

4.14.1 Traditional statistics 355 

Traditional verification metrics are based on a set of observations and a set of model outputs matched in 356 

time and space. The statistics that are typically considered (McEwan  et al., 2021)  are the median error 357 

(bias), median absolute difference (MAD) and Spearman rank correlation coefficient. The median bias 358 

gives indication of consistent differences between the model and observations, with a positive bias 359 

indicating the model concentration is higher than observed. The MAD provides an absolute magnitude 360 

of the difference. The Spearman rank correlation coefficient is the Pearson correlation coefficient 361 

between the ranked values of the model and observation data so that if the model data increases when 362 

the observations do, they are positively correlated. It has the same interpretation as the more common 363 

Pearson correlation coefficient where a correlation of 1 shows perfect correlation and 0 shows no 364 

correlation. Error! Reference source not found. provides a map of the model domain and the 365 

subregions over which traditional metrics are computed. Table 1 shows results for log(Chl-a) assessed 366 

against the L4 ocean colour product. 367 

 368 

Figure 3 Map showing the sub-regions over which statistics are computed. 369 

Regions: 

EC: English Channel 

IS: Irish Sea 

NNS: Northern North Sea 

NT: Norwegian Trench 

NWA: North Western Approaches 

SNS: Southern North Sea 

SWA: South Western Approaches 

The Continental Shelf regions includes all the above, i.e. all 

regions except Off-shelf.  

Observation stations: 

L4: station L4 of the Western Channel Observatory 
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 370 

Table 1 Statistics for matched pairs of daily model surface log-chlorophyll-a outputs and satellite ocean colour Chl-a 371 

for the full domain and sub-regions for the period March to July 2019. See Error! Reference source not found. for the 372 

location of the regions. The Continental shelf includes all regions except Off-shelf (ICES, 2014) 373 

Region Median bias  

 (log(mg m-3)) 

MAD 

(log(mg m-3)) 

Spearman correlation 

coefficient 

Full Domain <0.01 (0.004) 0.21 0.62 

Continental shelf -0.09 0.17 0.71 

Off-shelf 0.06 0.23 0.51 

Norwegian Trench -0.04 0.18 0.61 

Northern North Sea -0.05 0.17 0.64 

Southern North Sea -0.17 0.19 0.82 

English Channel -0.13 0.16 0.68 

Irish Sea -0.13 0.19 0.49 

South Western 

Approaches 

-0.07 0.15 0.69 

North Western 

Approaches 

<0.01 (0.006) 0.18 0.51 

 374 

Compared with the L4 product, the AMM7v11 analysis slightly overestimates Chl-a off-shelf, and 375 

underestimates Chl-a in the on-shelf regions (Table 1). Regions show moderate to strong positive 376 

correlations, highest in the Southern North Sea and lowest in the Irish Sea. These statistics give useful 377 

insight into model skill but provide limited information about how model performance changes as the 378 

bloom season progresses (McEwan et al., 2021; Skákala et al., 2018, 2020). As will be shown, the 379 

output from MODE and MTD provides a very different perspective from these traditional verification 380 

metrics, allowing a more detailed understanding of model performance. 381 

 382 

4.2 Chl-a distributions 383 

It is important to understand the nature of the underlying L4 and AMM7v11 Chl-a distributions and any 384 

differences between them. This can be done by creating cumulative distribution functions (CDF) of the 385 

log10 L4 and AMM7v11 Chl-a concentrations, by taking all grid points in the domain and all dates in 386 

the study period. These are plotted in Figure 4, showing that there is an offset between the distributions, 387 
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the AMM7v11 analysis having more low concentrations, though the distributions appear to be 388 

converging in the upper tail. 389 
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 390 

 391 

Figure 4 Empirical cumulative distribution functions of the log10 Chl-a concentration for the L4 ocean colour 392 

product and AMM7v11 analyses for the 2019 bloom season. 393 
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Exploring this further the AMM7v11 and L4 Chl-a concentration CDFs can be derived for each 394 

individual day, rather than for the season as a whole. From these the centilequantile where the L4 395 

product is less than or equal to 2.5 mg m-3 (29.7%) can be compared to the corresponding AMM7v11 396 

centile value.concentration associated with the same quantile of 29.7%. From Figure 4 this gives an 397 

equivalent concentration of 1.15 mg m-3 for the season. The daily matched centilequantile Chl-a values 398 

provide an estimate of the daily bias.  This is plotted in Figure 5 as a time series for the 2019 bloom 399 

season. It shows that the daily AMM7v11 corresponding centilequantile values are mainly in the range 400 

of ~1.5—4.5 mg m-3, averaging out to 2.9 mg m-3 over the season, which suggests a modest difference 401 

overall. The larger day-to-day variations show some cyclical patterns. There are notable peaks at the 402 

end of May and the beginning of July. An inspection of the fields (not shown) suggests that at these 403 

times the AMM7v11 appears to have higher Chl-a concentrations over large portions of the domain 404 

compared to the L4 product. 405 
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 406 

 407 
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Figure 5 The day-to-day AMM7v11 centilequantile Chl-a value corresponding to the L4 product centilequantile 408 

representing 2.5 mg m-3 derived from the L4 daily CDFs. The mean AMM7v11 Chl-a equivalent centilequantile value 409 

for the 2019 season is 2.9 mg m-3. 410 

 411 
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In employing a threshold-based approach, generally the same threshold is applied to both data sets. In 412 

the presence of a bias this requires a little bit of thought. In extreme cases, it could mean the inability to 413 

identify objects in one of the data sets, which would then mean objects cannot be matched and paired, 414 

negating the purpose of a spatial method like MODE or MTD. Not being able to identify any objects 415 

does provide some useful information, though arguably not enough context. The lack of objects does 416 

suggest the presence of a bias but it does not provide any sense of whether the model is producing a 417 

constant value of Chl-a for example, which would be of no use to the user, or whether it does capture 418 

regions of enhanced Chl-a, albeit with an offset which means it does not exceed the set threshold. 419 

Therefore, a more likely scenario is that a bias could partially mask relevant signals in the derived 420 

object properties, which could lead to the potential misinterpretation of results. If there is a significant 421 

risk of this occurring the bias could be addressed before features are identified to ensure that the 422 

primary purpose of using a feature-based assessment can be achieved, i.e. identifying features of interest 423 

in two sets of fields to assess their location, timing and other properties and assessing their skill. The 424 

fact that there is an intensity offset should not prevent the method from providing information about the 425 

skill of identified features. In this instance, though there is bias, it did not prevent the identification of 426 

objects in either fields to the extent where the results did not reflect the potential for the analyses to 427 

provide features which could be matched, paired and comparedAs is seen here, though there is bias (as 428 

seen in Figure 4Figure 5), it does not prevent the method from successfully identifying objects using the 429 

same threshold for both datasets, though it will be shown that the effect of the bias can affect some 430 

object attributes, e.g. object areas. However, a more prohibitive bias could compromise the methods, 431 

e.g. being unable to identify objects in a dataset. This would have a disproportionate effect on the 432 

statistics for the matched pairs in particular. Under such circumstances the quantile mapping 433 

functionality within MODE (to remove the effect of the bias) is strongly recommended. 434 

 4.23 Visualising daily objects 435 

Figure 6 shows the daily Chl-a concentration fields as represented in the L4 ocean colour product and 436 

the AMM7v11 analyses for 21 April 2019, which is near the peak of the bloom season. The respective 437 

fields are plotted in (a) and (b), noting that the 1 km resolution L4 product has been interpolated onto 438 
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the ~7 km AMM7 grid. Applying a threshold of 6.3 mg m-3 to both with a smoothing radius of ~21 km 439 

(3 grid lengths) yields 8 objects in the AMM7v11 analysis (7 visible in this zoomed region) and 11 440 

objects in the L4 product. As discussed, the bias described in Section 4.1 does not appear to prevent the 441 

identification of objects in the L4 product and the AMM7v11 analyses, and the process of finding 442 

matches is possible. 443 

 444 
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 445 
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 446 

Figure 6 Daily Chl-a concentrations (in mg m-3) for 21 April 2019: (a) AMM7v11 analysis and (b) L4 ocean colour 447 

product. The MODE objects shown in (c) and (d) are identified using a threshold of 6.3 mg m-3 and a smoothing 448 

radius of ~21 km. The colour matches the object identification numberNote (c) and (d) show a smaller (inner) 449 

domain. The colours show the matching clusters. Objects denoted with -1 (grey) are unmatched.   450 

 451 

4.34 Spatial characteristics 452 

This section demonstrates the kinds of results that can be extracted from the two-dimensional MODE 453 

objects. Aspects of the marginal (AMM7v11 or L4 product only) and joint (matched/paired) 454 
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distributions can be examined. This includes object size (as a proxy for area) but also the proportion of 455 

areas that are matched or unmatched.  456 

 457 

Firstly, how similar is the L4 ocean colour product and the AMM7v11 analysis in terms of the features 458 

of most interest, i.e. the Chl-a blooms? Figure 7 shows the evolution of the proportion of matched 459 

object areas (to total combined area) through the 2019 season, when using MODE to compare the L4 460 

product and AMM7v11 analyses, to further explore the differences (and similarities) between them. A 461 

value of one would suggest that all identified areas are matched. Values less than one suggest that some 462 

objects remain unmatched. The relatively high values of matched object-to-total area during April are 463 

due to the large numbers of well-matched, physically small coastal objects in addition to the larger Chl-464 

a bloom originating in the Dover Straits (not shown). There is a notable minimum at the beginning of 465 

July. Inspecting the MODE graphical output reveals this is in part due to only a few small objects being 466 

identified, and this is compounded by their complete mismatch; the L4 objects are all coastal, whilst the 467 

AMM7v11 objects are either coastal (but not in the same location as L4 objects) or in the deep waters of 468 

the North Atlantic, to the north-west of Scotland. The relatively high proportions either side of this time 469 

arise from a better correspondence in placement of the coastal objects (noting that there is a distance 470 

limit on how far objects can be apart for the matching process to have a positive contribution to the 471 

interest score). 472 
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 473 

 474 

Figure 7 Proportion of total object area which is matched. Underlying matched and unmatched object areas (in units 475 

of numbers of grid squares) are taken from the MODE output. These areas are for the 2.5 mg m-3 concentration 476 

threshold objects. 477 
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 478 

Overall, the AMM7v11 analysis is similar, but clearly not identical, to the L4 product. Best 479 

correspondence appears to be during the first half of the bloom season. Later in the season the model’s 480 

determination to produce blooms in deep North Atlantic waters is a model deficiency that the 481 

assimilation is (at this stage) unable to fix. The AMM7v11 analyses could conceivably be used as a 482 

credible source for assessing the AMM7 Chl-a forecasts in the future. The major benefit of using a 483 

model analysis is that it is at the same spatial resolution, with the same ability to resolve Chl-a bloom 484 

objects, especially along the coast (i.e. the analysis limits the uncertainty due to whether an object could 485 

be missing due to the inability of the model to resolve the feature).   486 

 487 

The day-to-day number of objects identified through the 2019 bloom season is shown in Figure 8,￼, 488 

illustrating how elements of the marginal and joint distribution information provided by MODE can be 489 

used together. Here both , numbers of total and matched (joint) and unmatched (marginal) objects are 490 

shown. From an interpretation perspectiveIf the AMM7v11 analyses are good (i.e. similar to the L4 491 

product), there should be fewer unmatched (marginal) objects than matched ones (indicated by the 492 

proximity of the solid and dashed lines); ideally there would be no unmatched objects in either the 493 

forecastL4 product or the AMM7v11 analysis).. In Figure 8 the number of objects in AMM7v11 starts 494 

off small and increases as the bloom develops. For the L4 product there are already many objects 495 

identified at the start of the timeseries, leading to many unmatched L4 objects. (these could be 496 

considered misses in a more categorical analysis). A spike in the number of matched objects seen in 497 

early April can be attributed to several coastal locations, which appear to be spatially well-matched. In 498 

addition, a larger Chl-a bloom is seen in the Dover Straits region in the L4 product and although not 499 

exactly spatially collocated, the objects are matched. There are a consistently large number of 500 

unmatched objects seen in the AMM7v11 analysis and L4 ocean colour product from the end of May 501 

onwards. In the AMM7v11 analysis this appears to be due to an increase in small objects identified, 502 

mainly to the west, north and east of the United Kingdom. The increase in unmatched objects in the L4 503 

ocean colour product is of a different origin, being due to an increase in localised coastal blooms. 504 

Generally, the AMM7v11 analyses do not have the resolution to resolve these. Overall, there are 2632 505 
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AMM7v11 bloom objects identified in the season using the 2.5 mg m-3 threshold, and 2341 L4 bloom 506 

objects, with 56% of AMM7v11 objects matched and 59% of L4 objects matched. 507 

The identified objects in AMM7v11 and the L4 product can also be considered spatially over the season 508 

by compositing the objects. This is done by counting the frequency with which a given grid square falls 509 

within an identified object on any given day, essentially creating a binary map. These can be added up 510 

over the entire season to produce a spatial composite object or temporal “frequency-of-occurrence” plot. 511 
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 513 

Figure 8 Time series of the number of matched and unmatchedtotal objects per day from MODE comparing 514 

AMM7v11 analyses (black) with L4 satellite product (grey). Objects are identified using a threshold of 2.5 mg m-3. 515 

Total object numbers for the season are 2341 for L4 satellite product and 2632 for AMM7v11. 516 

Figure 9 shows this spatial composite for the 2019 bloom season for the L4 ocean colour product 517 

objects (a) and the AMM7v11 objects (b). These are the composites based on the 2.5 mg m-3 threshold 518 

objects. There are areas, for example in the South West Approaches, (SWA, see Error! Reference 519 

source not found.), where there appears to be a good level of consistency. AMM7v11 analyses have 520 

elevated Chl-a values along the northern and western edges of the domain, for a low proportion of the 521 

time, which are not seen in the L4 product. This is likely due to the way that nutrient and phytoplankton 522 

boundary conditions are specified in AMM7v11. Overall, the low temporal frequency extent of the 523 

AMM7v11 objects is greater than for the L4 product. 524 
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 525 

Figure 9 Object composites (the proportion of time for which an object was present at the grid box throughout the 526 

2019 bloom season) for (a) the L4 ocean colour product objects and (b) the AMM7v11 analysis objects. 527 

Thus far all the attributes have been based on only the AMM7v11 or L4 objects. The distribution of 528 

object properties, derived for the season from the daily comparisons, can be summarised using box-and-529 

whisker plots. Recall that the box encompasses the inter-quartile range (IQR, 25th to 75th 530 
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percentilequantile) and the notch and line through the box denotes the median or 50th percentilequantile. 531 

The dashed line represents the mean, and the whiskers show ±1.5 times the IQR. For clarity, values 532 

outside that range have been filtered out of the plots shown here. Figure 10 shows the intersection-over-533 

area paired object attribute distribution as box-and-whisker plots for all object pairs during the 2019 534 

bloom season, comparing the AMM7v11 analyses to L4 for three of the thresholds: 2.5 and 4.0 and 6.3 535 

mg m-3. The intersection-over-area diagnostic gives a measure of how much the matched (paired) 536 

objects overlap in space. If the objects do not intersect, this metric is 0. The ratio is bounded at 1 537 

because any area of overlap is always divided by the larger of the two object areas. The IQR for the 2.5 538 

mg m-3 threshold is 0.25 with 50% of paired objects having an intersection-over-area of 0.97 or greater. 539 

However, the lower whisker spans a large range of values to as low as 0.375, suggesting that there is a 540 

proportion of object pairs with only small overlaps. There is quite a difference between the median 541 

(notch) and the mean (dashed line) for this metric, suggesting the distribution is skewed with the mean 542 

affected more by many small overlaps. For the 4.0 mg m-3 threshold paired objects the intersection-543 

over-area distribution is much broader, though the difference between the mean and medians is similar. 544 

The proportion of paired objects with smaller overlaps has also increased. This should not be surprising 545 

given that the objects generally get smaller with increasing threshold such that the ability for object 546 

pairs to overlap actually decreases unless they are very closely collocated. At the 6.3 mg m-3 threshold 547 

the median is lower (0.93) with a similar difference from the mean, however the sample size is much 548 

smaller (only 130 paired objects over the season).  549 
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 550 

Figure 10 Box-and-whisker plots of the paired object property “intersection area” ratio computed by dividing the spatially 551 

collocated area between the paired objects by the largest of either the AMM7v11 or L4 observed object areas (to keep the ratio to 552 

be bounded by 0 and 1). Three object thresholds are shown: 2.5 mg m-3, 4.0 mg m-3 and 6.3 mg m-3. Smoothing radii of 5, 5 and 3 553 

grid lengths were applied for the three thresholds respectively. The sample sizes for each threshold were 1004, 401 and 130 paired 554 

objects respectively. 555 

 556 

4.45 Incorporating the time dimension 557 

 558 

Having information in space and time enables one to ask, and hopefully answer questions such as: “did 559 

the model predict the bloom to start in the observed location?” or “did the model predict the onset at 560 

the right time?” and “did the model predict the peak (in terms of extent) and duration of the bloom 561 

correctly?”.  562 

 563 

MTD identifies objects in space and time. As previously described, all MTD results are based on a 2.5 564 

mg m-3 threshold applied to both the L4 ocean colour products and AMM7v11 analyses. A time 565 

centroid is derived from a time series of the spatial (two-dimensional) centroids which are computed for 566 

each (daily) time slice. In addition to this, each identified MTD object has a start and end time, and a 567 
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geographical location of the time centroid, which is the average of the two-dimensional locations. The 568 

time component of the time centroid is weighted by volume.  569 

 570 

The temporal progression of the 2019 bloom season along with spatial information as defined by the 571 

MTD objects’ is shown in .  The object start and end times as well as the date of their time centroids is 572 

shown in Figure 10, providingin (a) provide a clear view of the onset and demise of each object (bloom 573 

episode). In total there are 22 AMM7v11 and 11 L4 MTD objects. The x-axis in (a) represents elapsed 574 

time. The location of the vertical lines along the x-axis on any given date indicates the date of the time 575 

centroid whilst the duration of the space-time object can be gleaned from the y-axis based on the start 576 

and end of the vertical line which defines the time the object was in existence. Solid lines represent the 577 

L4 product objects whereas dashed lines represent the AMM7v11 objects. The colour palette is 578 

graduated from grey and blue through green, yellow, red, and purple, denoting the relative time in the 579 

season. In (a) the first Chl-a bloom object in the AMM7v11 analysis was identified on 29 March 2019 580 

whereas in the L4 ocean colour product thisthe first bloom object was identified on 3 March, 26 days 581 

earlier. The first time the L4 product and AMM7v11 analyses have concurrent objects (blooms) is in 582 

late March. The L4 product also suggests that the season ends 30 June whereas the AMM7v11 analyses 583 

persists the bloom season with objects identified until 23 July. Most AMM7v11 objects are of relatively 584 

short duration, but overall, most groups of AMM7v11 objects have some temporal association with an 585 

L4 product object around the same time, though this does not mean they are geographically close to 586 

each other. This is illustrated in Figure 10(b) which provides the spatial context to (a). The colours and 587 

symbols are consistent for (a) and (b) and show that even when the MTD objects are identified at the 588 

same time they may be geographically quite far apart, or more typically there is no L4 counterpart 589 

(filled circle) to an AMM7v11 bloom object (cross). The north- and westward progression of the bloom 590 

as the season unfolds can be seen through the use of the colours, with the AMM7v11 analysis producing 591 

many more objects in deeper waters to the north and west of the domain.  592 
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593 

 594 

Figure 10 Space-time information from the L4 (filled circle) and AMM7v11 (cross) MTD objects. (a) The timing of 595 

each identified bloom event (time centroid) plotted on the x-axis against the duration of the bloom event, denoted by 596 

the vertical line which represents the start and end time of each space-time object. The colours provide the ability to 597 

track the relative location within the 2019 season. (b) Spatial location of the time centroid shown in (a) to indicate 598 

that even if AMM7v11 and L4 objects exist at the same time they may not be geographically close. Colours are 599 

coordinated between (a) and (b). 600 
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 601 

.  In this instance it is also illuminating to consider a time series of all identifiedthe daily object areas 602 

associated with the MTD objects (which are used to compute the volume of MTD objects). These are 603 

plotted in Figure 11(b) showing all daily L4 object areas in blackthe filled circles, and the AMM7v11 604 

object areas in grey (crosses.), in the same colours as in (a). The main purpose is to highlight the 605 

relative size of the L4 and AMM7v11 objects on any given day, as well as how many objects there 606 

were. Recall that these are the objects identified using a Chl-a concentration threshold of 2.5 mg m-3. 607 

Some of the AMM7v11 objects are considerably larger than those in L4 though in the middlemid- and 608 

latter part of the bloom season betweenfrom mid-May and end June there is reasonable correspondence 609 

in identifying the peak in terms of extent and activityonwards, just not necessarily at exactly the same 610 

time or location. Of course, the AMM7v11 areas may also be larger because of the difference in the 611 

distributions noted in Figure 3, one of the reasons an awareness of the presence of any biases is 612 

important when interpreting results. As seen in Figure 10((b), the area time series also illustrates the 613 

offsets in the start and end of the bloom season. Some of the objects detected in AMM7v11 beyond the 614 

end of the observed bloom season provided by L4, suggests that at least three substantial areas are still 615 

diagnosed to exceed the threshold of 2.5 mg m-3 into July. Taking the start of the earliest space-time 616 

object as the onset of the bloom season and the end of the last object as the end, the 2019 season is 119 617 

days long based on the L4 product, and 117 days in the AMM7v11 analysis. Therefore, the overall 618 

length of the season as defined by the space-time objects is comparable in the AMM7v11 analysis, 619 

albeit with a substantial offset. Finally, even if (a) and (b) suggest that AMM7v11 and L4 objects exist 620 

at the nearly the same time, this does not mean they are geographically close to each other. This is 621 

illustrated in (c) which provides the spatial context. The colours and symbols are consistent across all 622 

panels and show that even when the MTD objects are identified at the same time they may be 623 

geographically quite far apart, or more typically there is no L4 counterpart (filled circle) to an 624 

AMM7v11 bloom object (cross). The north- and westward progression of the bloom as the season 625 

unfolds can be seen through the use of the colours, with the AMM7v11 analysis producing enhanced 626 

Chl-a concentrations in deeper waters to the north and west of the domain beyond the end of the 627 

observed season. 628 
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 629 

Figure 11 Time series of all identified single simple MTD object areas in the AMM7v11 analysis and the L4 ocean 630 

colour product. 631 
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Figure 11 Space-time information from the L4 

(filled circle) and AMM7v11 (cross) MTD 

objects. (a) The timing of each identified bloom 

event (time centroid) plotted on the x-axis against 

the duration of the bloom event, denoted by the 

vertical line which represents the start and end 

time of each space-time object. (b) Daily object 

areas. (c) Spatial location of the time centroid 

shown in (a) to indicate that even if AMM7v11 

and L4 objects exist at the same time they may 

not be geographically close. Colours are 

coordinated across all panels. 
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With only 22 AMM7v11 and 11 L4 product MTD objects, which are temporally and geographically 632 

well dispersed, three of the L4 objects remained unmatched, leaving only 8 matched MTD objects for 633 

the 2019 bloom season with an overall interest score greater than 0.5. This represented an insufficient 634 

sample for drawing any robust statistical conclusions. Nevertheless, some inspection of the paired MTD 635 

object attributes are summarised below: 636 

• The spatial centroid (centre of mass) differences can be extensive, but the majority are within 0 to 637 

100 grid squares apart (i.e. up to ~700 km).   638 

• The majority of paired objects have time centroid differences +/- 10 days. 639 

• Considering the volumes of the space-time objects, half the paired objects have volume ratios of less 640 

than 1, i.e. AMM7v11 objects tend to be smaller or similar in size. The other pairs have ratios as 641 

high as 4. 642 

• Overlaps between AMM7v11 and L4 MTD objects remain small and infrequent with only one pair 643 

with a significant overlap in space and time. 644 

5. Discussion and conclusions 645 

MODE and MTD were used as two distinct but related feature-based diagnostic verification methods to 646 

evaluate and compare the pre-operational AMM7v11 European North West Shelf Chl-a concentration 647 

bloom objects to those identified in the satellite-based L4 ocean colour product. Nominally blooms were 648 

said to occur when the concentration threshold exceeded 2.5 mg m-3 and two higher thresholds were 649 

also considered. Sample sizes dwindle rapidly with increasing threshold. Of specific interest were the 650 

similarities and differences in respective bloom object sizes, their geographical location and collocation 651 

and timing. For the timing component the onset, duration, and demise of individual bloom objects 652 

(events) could be considered. For the season all the identified space-time objects provided an estimate 653 

of the onset, duration and end of the bloom season as a whole. The season was found to be of similar 654 

length, but the onset was found to begin 26 days later in the AMM7v11 analyses than in the L4 product, 655 

and the AMM7v11 analyses persist the season for almost a month beyond the diagnosed end identified 656 

in the L4 product. Using traditional verification methods, data assimilation has been shown to 657 
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considerably reduce the delay in bloom onset in the model (Skákala et al., 2020)(Skákala et al., 2020). 658 

Using feature-based verification methods, this study suggests that a substantial delay still remains. 659 

 660 

There is a modest concentration bias in the AMM7v11 analyses compared to the L4 satellite ocean 661 

colour product. In this study we chose not to mitigate against this bias as it was not considered to 662 

impede the identification of bloom objects, which would prevent the ability of the methodology to 663 

identify matches and create paired object statistics. Any concentration bias does affect the results and 664 

this effect must be understood or at least kept in mind when interpreting results, in this case it will have 665 

contributed to the result that the AMM7v11 bloom objects are generally larger. An alternative approach 666 

would be to mitigate against the impact of the bias before using a threshold-based methodology such as 667 

MODE or MTD. A quantile mapping approach is available within the MODE tool (not yet available in 668 

MTD but should be available at some point) to remove the biases between two distributions as each 669 

temporal data set is analysed. Using this method the one threshold is fixed and the other threshold varies 670 

day-to-day (as shown in Figure 5). Another approach would be to analyse the bias for the whole season 671 

(as shown in Figure 4) and deriving an equivalent threshold from this larger data set, thus applying a 672 

fixed threshold to all the days in the season, though there would still be two different thresholds applied 673 

to the two data sets.  674 

 675 

MODE results suggest that the AMM7v11 bloom objects are larger than those in the L4 product. 676 

AMM7v11 produces more objects (in number) than seen in the L4 ocean colour product, yet many of 677 

the coastal objects seen in the L4 product are not as well resolved in AMM7v11 due to the coarseness of 678 

the coastline in the 7 km model. The additional AMM7v11 objects are mainly found in deeper Atlantic 679 

waters. The diagnosis of coastal blooms should improve if the model resolution were increased from 680 

7 km to 1.5 km. 681 

 682 

Using MODE and MTD clearly gives extra information not obtained from traditional verification 683 

metrics that are more routinely used (McEwan et al., 2021). An alternative approach to assessing the 684 

representation of phytoplankton blooms might be to use phenological indices (Siegel et al., 2002; 685 
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Soppa,  et al., 2016), which measure the day of the year on which Chl-a concentration first crosses a 686 

threshold based on the median concentration. Phenological indices have been used in observation 687 

process studies (Racault et al., 2012), but very rarely for model verification, and then only in 1D 688 

(Anugerahanti et al., 2018). One reason for this is that daily model Chl-a will frequently cross such a 689 

threshold throughout the bloom season, meaning temporal smoothing and other processing (Cole et al., 690 

2012) would be required, which is not straightforward to apply consistently. Objective methods such as 691 

MODE and MTD, which consider individual bloom objects throughout the season, rather than assuming 692 

a single spring bloom will occur at each location, bypass these difficulties. 693 

 694 

Other work that formed part of this study, but is not reported on here, showed that constraining the Chl-695 

a using assimilation of the satellite observations appears to benefit the model in terms of fewer 696 

unmatched bloom regions. This should translate to an improvement in the forecasts generated from this 697 

analysis compared with previous versions of the operational system and will be the subject of future 698 

work. 699 

6. Code availability 700 

Model Evaluation Tools (MET) was initially developed at the National Center for Atmospheric 701 

Research (NCAR) through grants from the National Science Foundation (NSF), the National Oceanic 702 

and Atmospheric Administration (NOAA), the United States Air Force (USAF) and the United States 703 

Department of Energy (DOE). The tool is now open source and available for download on github: 704 

https://github.com/dtcenter/MET. For this study MET version 8.1 of the software was used. MET 705 

allows for a variety of input file formats but some pre-processing of the CMEMS NetCDF files was 706 

necessary before the MODE package could be applied. This includes regridding of the observations 707 

onto the model grid, and addition of the forecast reference time variables to the NetCDF attributes. All 708 

aspects on the use of MET are provided in in the MET software documentation available online at 709 

https://dtcenter.github.io/MET.  710 

https://github.com/dtcenter/MET
https://dtcenter.github.io/MET
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7. Data availability 711 

Data used in this paper was downloaded from the Copernicus Marine and Environment Monitoring 712 

Service (CMEMS). The datasets used were:  713 

• https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_csw&view=de714 

tails&product_id=OCEANCOLOUR_ATL_CHL_L4_NRT_OBSERVATIONS_009_037 (last 715 

access: August 2019),  716 

• https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWES717 

TSHELF_ANALYSIS_FORECAST_BIO_004_002_b (last access: August 2019) 718 

 719 

The AMM7v11 analyses were not operational at the time of this study and not yet available from the 720 

CMEMS server. 721 
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