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Abstract.

The Coastal-Ocean Carbon Exchange in the Canary Region Project (COCA) arises in order to analyse and get to understand

✿✿✿✿✿✿✿✿✿

circulation
✿✿✿✿✿✿✿

patterns
✿✿✿✿

and the impact of lateral export of nutrients and organic matter from the highly productive Coastal

Upwelling System off NW Africa in the biogeochemical cycles during two different seasons.

The circulation patterns off NW African Upwelling System are examined by applying an inverse model to two hydrographic5

datasets gathered in fall 2002 and spring 2003. The mass transports estimated by model are consistent with the thermal wind

equation and the conservation of mass in a closed volume. Besides, the Ekman transport and the freshwater flux are also

considered.

These estimates show significant changes in the circulation patterns at central levels
✿✿✿✿

from
✿✿✿✿

fall
✿✿

to
✿✿✿✿✿

spring, particularly in the

southern boundary of the domain , where
✿✿✿✿✿

related
✿✿

to
✿✿✿✿✿

zonal
✿✿✿✿✿

shifts
✿✿

of the Cape Verde Frontal Zoneis located, from fall to spring. In10

the beginning of fall, this circulation is deeper and northward with a net transport of 6± 3
✿

.
✿✿✿✿✿✿✿✿✿

Southward
✿✿✿✿✿✿✿✿

transports
✿✿

at
✿✿✿✿✿✿

surface
✿✿✿✿

and

✿✿✿✿✿

central
✿✿✿✿✿✿

levels
✿✿

at
✿✿✿✿✿

26◦N
✿✿✿

are
✿✿✿✿✿✿✿

5.6±1.9 Sv and, in the late spring, it is shallower and southward with a similar intensity
✿✿

in
✿✿✿

fall
✿✿✿✿

that

✿✿✿✿✿✿✿

increase
✿✿

to
✿✿✿✿✿✿✿

6.7±1.6Sv
✿

in
✿✿✿✿✿✿

spring;
✿✿✿✿✿✿✿✿

westward
✿✿✿✿✿✿✿✿✿

transports
✿✿

at
✿✿✿✿✿

26◦W
✿✿✿

are
✿✿✿✿✿✿✿

6.0±1.8
✿

Sv
✿

to
✿✿✿✿✿✿✿

weaken
✿✿

to
✿✿✿✿✿✿✿

4.0±1.8
✿

Sv
✿

in
✿✿✿✿✿✿

spring;
✿✿

at
✿✿✿✿✿

21◦N
✿✿

a

✿✿✿✿✿✿✿✿✿

remarkable
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

variability
✿✿

is
✿✿✿✿✿✿✿✿

obtained,
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

northward
✿✿✿✿

mass
✿✿✿✿✿✿✿✿

transport
✿✿

of
✿✿✿✿✿✿✿

4.4±1.5 Sv
✿✿

in
✿✿✿

fall
✿✿✿

and
✿

a
✿✿✿✿✿✿✿✿✿

southward
✿✿✿✿✿✿✿

5.2±1.6
✿

Sv

✿✿

in
✿✿✿✿✿

spring. At intermediate levels important
✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿

differences are also observedbetween the two seasons. In fall, the15

Antarctic Intermediate Waters reaches higher latitudes with 2± 2
✿

,
✿✿✿✿✿

where
✿

it
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿✿✿✿✿

highlighted
✿

a
✿✿✿✿✿✿✿✿✿

northward
✿✿✿

net
✿✿✿✿

mass
✿✿✿✿✿✿✿✿

transport

✿✿

of
✿✿✿✿✿✿✿

2.0±1.9 Sv flowing northward. During spring, there is no significant northward flow of AAIW. However, there is a moderate

westward mass transport which impacts both the lateral transports of inorganic nutrients and organic matter at intermediate

layers and also the shallowest lateral transports of organic matter.

Seasonal variability in circulation patterns are
✿✿✿✿✿✿✿

obtained
✿✿

in
✿✿✿

fall
✿✿

at
✿✿✿✿

both
✿✿✿✿

the
✿✿✿✿

south
✿✿✿✿

and
✿✿✿✿✿

north
✿✿✿✿✿✿✿✿

transects.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

variability
✿✿✿

in
✿✿✿

the20

✿✿✿✿✿✿✿✿✿

circulation
✿✿✿✿✿✿✿

patterns
✿✿

is also reflected in lateral transports of inorganic nutrients and dissolved organic carbon. Therefore, the

changes in the circulation patterns between both seasons have allowed us to assess the variability in the contributions of (SiO2,

NO3, PO4and )
✿✿✿✿

and
✿✿✿✿✿✿✿✿

dissolved
✿✿✿✿✿✿✿

organic
✿✿✿✿✿✿

carbon
✿

(DOCfrom the first to the second season. In fall, the transports are mainly
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northward from the south with −0.80± 0.34, −1.11± 0.47 and −0.07± 0.03 of , and , respectively. In spring , however,

lateral transports off-shore are favoured with 0.75± 0.37, 1.34± 0.66 and 0.08± 0.04 of , and , respectively. This westward25

transport stimulates in turn an intensified westward
✿

).
✿✿✿✿✿✿

Hence,
✿✿

in
✿✿✿

fall
✿✿✿

the
✿✿✿✿

area
✿✿✿✿

acts
✿✿

as
✿

a
✿✿✿✿

sink
✿✿

of
✿✿✿✿✿✿✿✿

inorganic
✿✿✿✿✿✿✿

nutrients
✿✿✿✿

and
✿

a
✿✿✿✿✿✿

source
✿✿

of

DOC,
✿✿✿✿✿

while
✿✿

in
✿✿✿✿✿✿

spring
✿

it
✿✿✿✿✿✿✿

reverses
✿✿

to
✿✿

a
✿✿✿✿✿✿

source
✿✿

of
✿✿✿✿✿✿✿✿

inorganic
✿✿✿✿✿✿✿

nutrients
✿✿✿✿

and
✿

a
✿✿✿✿

sink
✿✿

of
✿

DOCtransport at shallow layers, specifically

0.50± 0.25 .

1 INTRODUCTION

The North Atlantic Subtropical Gyre (NASG) is one of the most important components in the thermohaline circulation.30

It presents a well-known intensification in its western margin, the Gulf Stream, with maximum velocities up to 2 m s−1

(Halkin et al., 1985). The currents observed in this western margin of the gyre occupy a small horizontal extension as com-

pared to that of the currents in the eastern side, resulting in an asymmetric gyre (Stramma, 1984; Tomczak and Godfrey, 2003).

The low intensity of the currents at the eastern boundary made them very little studied until the 1970s, when CINECA program

focused on the productive African upwelling
✿✿✿✿✿

system
✿

(Ekman, 1923; Tomczak, 1979; Hughes and Barton, 1974; Hempel, 1982).35

Käse and Siedler (1982) found striking intense currents south of the Azores connected to the Gulf Stream and suggested that

part of the recirculation of the NASG occurs southward in the vicinity of the African coast. Later on, several surveys based on

both in situ and remote sensing observations contributed to define the general characteristics for the average flow of the region

(Käse and Siedler, 1982; Stramma, 1984; Käse et al., 1986; Stramma and Siedler, 1988; Mittelstaedt, 1991; Zenk et al., 1991;

Fiekas et al., 1992; Hernández-Guerra et al., 1993).40

Most of the eastward flow from the Gulf Stream is confined to a band between the Azores and Madeira Islands, recirculating

southward through the Canary Islands and north of the Cape Verde Islands to become into a southwestward flow (Stramma,

1984). This current system is composed by the Azores Current (AC), the Canary Current (CC), the Canary Upwelling Current

(CUC), the North Equatorial Current (NEC) and the Poleward Undercurrent (PUC). The AC divides into several branches

defining the boundary current system off Northwest Africa. It firstly feeds the Iberian Current (Haynes et al., 1993) while45

a second significant branch enters the Mediterranean Sea (Candela, 2001). Most of the AC recirculates southward splitting

into the main CC across the Canarian archipelago and the secondary CUC (Pelegrí et al., 2005, 2006). These currents extend

southward developing the Cape Verde Frontal Zone (CVFZ), a density-compensated front with North Atlantic Central Water

at its northern side and South Atlantic Central Water at its southern one (Zenk et al., 1991; Martínez-Marrero et al., 2008).

Finally, the PUC is located below the CUC flowing northward on the continental slope (Barton, 1989; Machín and Pelegrí,50

2009; Machín et al., 2010; Pelegrí and Peña-Izquierdo, 2015).

The mesoscale activity constitutes a second main feature in the area of interest, which might be even more energetic than

the average flow itself (Sangrà et al., 2009). Three mesoscale domains may be defined: the Canary Eddy Corridor (CEC,

Sangrà et al. (2009)), the CVFZ and the upwelling front. The CEC is located downstream of the Canary Islands where the

interaction between the southward flow and the archipelago generates long-lived eddies (Arístegui et al., 1994; Barton et al.,55

1998; Sangrà et al., 2007, 2009; Ruiz et al., 2014; Barceló-Llull et al., 2017a). The second mesoscale domain is the CVFZ,
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where several meanders and eddies produce strong interleaving between the water masses involved (Pérez-Rodríguez et al.,

2001; Martínez-Marrero et al., 2008). In this domain, the CC and the CUC separate from the African coast fueling the NEC,

giving rise to a shadow zone featured by poorly ventilated waters (Luyten et al., 1983). The third area is the front arising be-

tween the coastal upwelled waters and the stratified interior waters, defining the Eastern Boundary Upwelling System (EBUS)60

in the Northwest African region (Mittelstaedt, 1983; Pastor et al., 2008; Arístegui et al., 2009). This EBUS is actually located

off the African slope from the Gulf of Cadiz until Cape Blanc/Cape Verde in summer/winter with a high mesoscale variability

in the form of both filaments and eddies (Hagen, 2001; Sangrà et al., 2009; Ruiz et al., 2014). The upwelling process raises

nutrient-rich waters to the euphotic layer, developing a high primary production latitudinal band off Northwest Africa known

as the Coastal Transition Zone (CTZ) (Barton et al., 1998; Pelegrí et al., 2006). The mesoscale activity plays
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿

mesoscale65

✿✿✿✿✿✿

features
✿✿✿✿✿

play an essential role as a lateral source of nutrients and organic matter towards the oligotrophic waters of the

NASG (Barton et al., 1998; García-Muñoz et al., 2004; Pelegrí et al., 2006; Álvarez-Salgado et al., 2007; Sangrà et al., 2009)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Barton et al., 1998; García-Muñoz et al., 2004, 2005; Pelegrí et al., 2006; Álvarez-Salgado et al., 2007; Sangrà et al., 2009).

The distribution of inorganic nutrients and organic matter in the ocean responds to a combined effect of physical and biogeo-

chemical processes. Within the euphotic zone, primary production is solely limited by the availability of inorganic nutrients70

(IN) (Copin-Montegut and Copin-Montegut, 1983; Falkowski et al., 1998). Below the euphotic zone respiration generally ex-

ceeds primary production. As a result, the organic matter produced at the sea surface is remineralized in the subsurface layers

and hence the concentration of IN increases from the interplay between the local rate of remineralization and the rate of water

supply (Azam, 1998; Del Giorgio and Duarte, 2002; Pelegrí et al., 2006; Pelegrí and Benazzouz, 2015b).

The relevance of lateral advective
✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

study
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿✿

of
✿✿✿✿✿✿

lateral transports on the spatio-temporal distribution75

✿✿✿✿✿✿✿✿✿✿

distributions of biogeochemical variablesin the ocean has historically received little attention (Ganachaud, 1999; Ganachaud and Wunsch, 2002b

. Specifically in the EBUS off Northwest Africa, some recent manuscripts related to lateral advective transports of biogeochemical

variables have shed light on this topic (Álvarez and Álvarez-Salgado, 2009; Alonso-González et al., 2009; Santana-Falcón et al., 2017; Fernández-Castro

.

The ocean dynamics in the region between 20◦ and 26◦N off Northwest Africa during two different seasons is80

addressed in this manuscript. An ,
✿✿✿✿

the
✿✿✿✿

first
✿✿✿✿

step
✿✿✿

to
✿✿✿✿✿✿

follow
✿✿✿

is
✿✿✿

to
✿✿✿✿✿✿✿

analyze
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamic
✿✿✿

of
✿✿✿✿

the
✿✿✿✿

area
✿✿✿✿✿

with
✿✿✿

an
✿

inverse

box modelis applied to hydrographic observations to estimate mass transports. This method provides a velocity field

consistent with both mass and properties conservation within a closed volume and with the thermal wind equa-

tion (Wunsch, 1996). Several authors have already described the circulation patterns of the NASG by applying an

inverse model (Ganachaud and Wunsch, 2002a; Ganachaud, 2003b, a; Hernández-Guerra et al., 2005; Machín et al.,85

2006; Pérez-Hernández et al., 2013; Hernández-Guerra et al., 2017).
✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿✿

some
✿✿✿✿✿✿✿

recent
✿✿✿✿✿✿✿✿✿✿✿

manuscripts
✿✿✿✿✿✿✿✿✿✿

addressing

✿✿✿✿✿

lateral
✿✿✿✿✿✿✿✿✿

advective
✿✿✿✿✿✿✿✿✿

transports
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

biogeochemical
✿✿✿✿✿✿✿✿✿

variables
✿✿✿✿

have
✿✿✿✿✿

shed
✿✿✿✿✿

light
✿✿✿

on
✿✿✿✿

this
✿✿✿✿✿

topic
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

EBUS
✿✿✿

off
✿✿✿✿

NW
✿✿✿✿✿✿✿

Africa

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Álvarez and Álvarez-Salgado, 2009; Alonso-González et al., 2009; Santana-Falcón et al., 2017; Fernández-Castro et al., 2018)

✿

.

To sum up, the main goal of this manuscript is to present a high quality
✿✿

an
✿✿

in
✿✿✿

situ hydrographic database and to estimate mass,90

nutrient and organic matter
✿✿✿✿✿

lateral
✿✿✿✿✿

mass,
✿✿✿

IN
✿✿✿

and
✿

DOC transports during fall and spring seasons south of the Canary Islands in

3



the context of a highly variable environment as the
✿✿✿✿✿✿

featured
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

Canary
✿✿✿✿

Eddy
✿✿✿✿✿✿✿✿

Corridor,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

upwelling
✿✿

off
✿✿✿✿✿✿✿✿✿

Northwest
✿✿✿✿✿✿✿

African

✿✿✿

and
✿✿✿

the CVFZ. The remaining of this manuscript is 80 organized as follows: the dataset is presented in section 2; the seasonal

distribution of the water masses and their properties is displayed in section 3; the technical details of the inverse box model

are covered in section 4; the resulting velocity field and the corresponding mass, nutrient and organic matter transports are95

presented in section 5. Section 6 is devoted to the discussion to end up with some conclusions at section 7.

2 DATASET

COCA-I and COCA-II cruises were carried out in fall (10 September to 1 October 2002) and spring (21 May to 7 June 2003)

respectively, aboard the BIO Hesperides as part of the research project Coastal-Ocean Carbon Exchange in the Canary Region

(Hernández-León et al., 2019). The location of Conductivity-Temperature-Depth (CTD), inorganic nutrients (IN) and dissolved100

organic carbon (DOC) stations in COCA-I and COCA-II defines a closed box along three transects (Figure 1). The northern

transect (N) spans from station 1 to 32 at 26◦N (section from stations 1 to 11 is tilted some 30◦ with respect to the east). The

western transect (W) is located at 26◦W from station 32 to 42. Finally, the southern zonal transect (S) at 21◦N runs from station

42 to 63 (COCA-I) or 66 (COCA-II) over the continental slope (Table 1). The distance between neighbouring CTD stations

was some 50 km except for the stations over the continental slope where this distance was shortened. Adjacent DOC and IN105

stations were separated by a variable distance, with its lowest value being about 50 km at stations closer to the coast.

CTD data were collected from the sea surface down to 2000 m depth with a vertical resolution of 2 dbar. Temperature

was calibrated with 45 readings performed with a reversible digital thermometer, while salinity was calibrated by analysing 60

water samples with the Portasal salinometer. The residuals have an average value of 0.00013±0.00400 ◦C and 0.0005±0.005

in salinity.110

Total DOC
✿✿✿

was
✿✿✿✿✿✿✿✿

measured
✿✿✿✿

with
✿

a
✿✿✿✿

total
✿

organic carbon (TOC) was analyzed assuming that it is virtually
✿✿✿✿✿✿✿

analyzer
✿✿✿✿✿✿✿✿✿

(Shimadzu

✿✿✿✿✿✿✿✿✿✿

TOC-5000),
✿✿✿✿✿✿✿✿

assuming
✿✿✿

that
✿✿✿✿✿✿

almost
✿✿✿

all TOC
✿✿✿

was
✿

in dissolved form. Water samples (10 mL) were dispensed directly into glass

ampoules, previously combusted at 500 ◦C during 12 h. 50 µL of H3PO4 were added immediately to the sample, sealed

and stored at 4 ◦C until analyzed with a Shimadzu TOC-5000 (Sharp et al., 1993)
✿✿✿✿✿✿✿

analysed. Before the analysis, samples were

sparged with CO2-free air for several minutes to remove inorganic carbon. TOC concentrations were determined from standard115

curves (30 to 200 µM) of potassium hydrogen phthalate produced every day (Thomas et al., 1995). To check accuracy and

precision, reference material from Jonathan H. Sharp laboratory (University of Delaware) was analyzed daily. DOC
✿✿✿✿✿✿✿

analysed

✿✿✿✿

daily.
✿

DOC distribution up to 2000 m depth presented a more representative coverage in fall than in spring (Fig. 2, green dots),

despite in spring the number of stations was higher than in fall (Fig. 1, black circles; Tab. 1).

The three inorganic nutrient sampled were silicates (SiO2), nitrates plus nitrites (NOx), and phosphates (PO4). These sam-120

ples were frozen until measured with a Bran Luebe AA3 autoanalyser following the standard methodology established by

Hansen and Koroleff (1999). Nutrient data covered up to 2000 m, while in fall they concentrated in the shallowest layers

(< 200 m, Fig. 2, pink crosses).
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Wind data were selected from the QuikSCAT database made available by CERSAT (Centre ERS d’ Archivage et de Traite-

ment, http://www.ifremer.fr/cersat/). These wind fields were averaged weekly with a spatial resolution of 0.5◦ (shown in Fig. 1125

with half of the original spatial resolution). The Smith-Sandwell database with 1-minute horizontal resolution was used as the

source of bathymetry data (Smith and Sandwell, 1997).

Freshwater flux data were estimated from the rates of evaporation and precipitation extracted from the Surface Marine

Data 1994 of Da Silva (http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/). The climatological mean depths of

the neutral density field for the years 2002 and 2003 were calculated from the climatological temperature and salinity extracted130

from the World Ocean Atlas 2013 (WOA13, https://www.nodc.noaa.gov/OC5/woa13/woa13data.html).

GLORYS (GLOBAL_REANALYSIS_PHY_001_025 product) issued by Copernicus Marine Environment Monitoring Ser-

vice (CMEMS, http://marine.copernicus.eu) was used as a primary source of dynamic variables. Its horizontal resolution is

1/12◦ with 50 standard depths. Hydrological data from GLORYS were also employed to diagnose the average oceanographic

conditions during each cruise. This product assimilates field observations in real time.135

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 product provided surface geostrophic currents estimated

from sea level anomalies. These data capture the mesoscale structures and are helpful to validate the near-surface geostrophic

field estimated from the inverse model.

GLORYS-BIO (GLOBAL_REANALYSIS_BIO_001_029 product) produced daily mean 3D biogeochemical fields with

the same resolution as GLORYS. This reanalysis forces the biogeochemical model with the nutrient initial conditions from140

WOA13. IN concentrations from GLORYS-BIO (SiO2, NO3, and PO4) were used to assess nutrient transports by the model

(in section 5).

The data treatment, the graphical representations and the inverse model are coded in MATLAB (MATLAB, 2018). The ver-

tical sections are produced using the ‘nearest’ 2D interpolations, a method also employed in the estimates of the IN and

DOC transports. Ocean Data View using the DIVA gridding method is employed to produce DOC concentration charts145

(Schlitzer, Reiner, 2019).

3 HYDROGRAPHY AND WATER MASSES

Neutral density γn = γn(θ,S,p) is used as the density reference variable, being the isoneutrals the surfaces where value
✿✿✿

the

✿✿✿✿✿

values
✿

of γn is
✿✿✿

are constant (Jackett and McDougall, 1997). The γn vertical sections contain the surface (SW), central (CW),

intermediate (IW) and deep water (DW) masses according to Macdonald (1998) for the North Atlantic at 24◦N, represented150

with white dashed lines at 26.44, 27.38 and 27.82 kgm−3 (Figure 2). The x-axis direction is selected according to the path

followed by the vessel during both cruises, starting in the northeast and finishing in the southeast of the domain. The N/W and

W/S corners are indicated with two vertical grey dashed lines at stations 32 and 42, respectively.

The Θ−SA diagrams exhibit four regions delimited by potential density anomaly contours of 26.39, 27.30 and 27.72 kgm−3,

equivalent to the isoneutrals which separate the main water masses (Fig. 3). These three isoneutrals are approximately at155

132/123, 672/700 and 1294/1305 m depth (Fig. 2). The water masses sampled during both cruises are North Atlantic Central
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Water (NACW), South Atlantic Central Water (SACW), Antarctic Intermediate Water (AAIW), Mediterranean Water (MW),

and North Atlantic Deep Water (NADW) (Emery and Meincke, 1986; Macdonald, 1998; Emery, 2008). Their main hydrologi-

cal characteristics are summarized in Table 2. Below the mixing layer and above 700 m (26.44< γn < 27.38 kgm−3), NACW

and SACW are the dominant water masses. SACW is featured by a higher amount of nutrients, 1− 2 ◦C colder and 0.1− 0.4160

fresher than NACW (Fig. 3 and Tab. 2). Below, from 700 up to 1300 m (27.38< γn < 27.82 kgm−3), the intermediate waters

AAIW and MW are the dominant water masses (Hernández-Guerra et al., 2017). MW is a relatively warm and salty water

mass, while AAIW is colder and fresher (Tab. 2). Finally, below 1300 m (γn > 27.82 kgm−3) the predominant water mass is

NADW with in situ temperature and salinity values lower than 5.7 ◦C and 35.14 (Tab. 2).

A description about the seasonal
✿✿✿✿✿✿✿

temporal variability of the water masses is also performed with observations from the165

Θ−SA diagrams (Fig. 3). The distribution of water masses is quite similar for both cruises. There is a higher temperature

variability at surface waters during fall with maximum values 2-3 ºC higher than in spring. During spring, the variability

observed at central waters is associated to larger fluctuations in salinity affecting the whole water column. At DW there is a

higher contribution of NADW in the whole domain during fall. Finally, the surface layer is thicker in fall than in spring in all

the sections made with respect to γn.170

These seasonal
✿✿✿✿✿✿✿

temporal differences may also be described transect to transect. The northern transect (Fig. 2, stations 2 to

32; Fig. 3, margenta dots) is occupied by NACW, AAIW, MW and NADW in both seasons. At intermediate levels, a higher

contribution of MW is observed in spring while a slightly higher contribution of AAIW is obtained in fall. The western transect

(Fig. 2, stations 32 to 42; Fig. 3, dark grey dots) has a similar distribution as the northern one, with a lower variability in the

upper layers and a smaller influence of MW. In the southern transect (Fig. 2, stations 42 to 63−66; Fig. 3, blue dots), the highest175

spatio-temporal variability is observed. This variability at surface and central levels is associated to the position of the CVFZ

and, in turn, to the meso- and submesoscale structures associated to the front. The CVFZ is located where the isohaline of 36,

or equivalently SA = 36.15 g kg−1, intersects the 150 m isobath (Zenk et al., 1991) (Fig. 4). CVFZ is found in the southern

transect in its westernmost position in fall, at stations 46− 48. Hence, SACW with relatively low SA is observed above the

upper limit of CW east of the CVFZ location (Fig. 4). In spring, the CVFZ shifts to a position closer to the African coast at180

station 52, with a water incursion of higher salinity NACW centred at station 58 (Figs. 4 and 5). At intermediate levels, MW

is registered at the northern transect while in the southern one the predominant water mass is AAIW. Regarding the seasonal

variability, the contribution of MW in the northern transect is higher in spring while the contribution of AAIW in the southern

transect is higher in fall.

Although the IN have been extracted from the model and the distributions of Θ, SA and γn have been obtained from185

the hydrographic data
✿✿✿✿✿✿✿✿✿✿

observations, there is a good agreement between the structures described by both datasets. The in situ

concentrations of SiO2, NOX and PO4 up to 250 m depth (black dots in Fig. 6) are represented together with the time-averaged

concentrations of SiO2, NO3 and PO4 up to 2000 m depth selected from GLORYS-BIO. In this way the IN outputs from the

model are compared with in situ observations since their concentration in both cases present an acceptable match with the

exception of NOX and PO4 concentrations at the S transect. On the other hand, the IN model outputs look alike IN from190

historical in situ databases (not shown here).
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At central levels, high IN concentrations have been sampled near the continental slope in both the northern (stations 10 to

18) and southern (50 to 56) transects in fall. Values observed are 1-5 µmol kg−1 for NO3 and 0.1-0.4 µmol kg−1 for PO4

higher
✿✿✿✿✿

values than those recorded in spring at similar places (Fig. 7). This might be related to long-lived mesoscale eddies or

instabilities related to the CVFZ (Zenk et al., 1991; Sangrà et al., 2009). IN concentrations are notably high at intermediate195

and deep levels as compared to those at central levels (Fig. 6) and have the same order of magnitude as those documented

before in the domain (Pérez et al., 2001; Pérez-Hernández et al., 2013). The distributions of SiO2, NO3 and PO4 are similar in

both cruises and their concentrations increase with depth as a result of the remineralization of organic matter (Fig. 7). The area

where the least nutrients are found at depth throughout the domain is the northwest corner of the box (stations 24 to 32). With

respect to the IN seasonal variability at intermediate depths, the three concentrations do not present large differences between200

the values measured in fall and spring (Figs. 7 and 3). In both seasons the concentrations of SiO2, NO3 and PO4 are 4-6, 2-6

and 0.2-0.4 µmol kg−1 higher in AAIW than in MW (Tab. 2). The NADW is characterized by a moderate increase of SiO2 and

by a slight decrease of NO3 and PO4 with respect to the values documented here at intermediate levels. In both seasons, the

maximum concentrations of SiO2 are 28-29 µmol kg−1. Nevertheless, and specifically in spring, maximum concentrations of

NO3 and PO4, 28 µmol kg−1 and 1.8-1.9 µmol kg−1, are lower than those recorded at intermediate levels, providing a similar205

vertical variability as that reported by Machín et al. (2006) (Tab. 2).

DOC concentrations are higher and more widely distributed in the water column in fall than in spring, when the DOC

maximum values are more confined to surface and central waters (Figs. 8 and 6, Tab. 2). This fact is especially significant in

the southern transect occupied by SACW (Fig. 6). This last water mass
✿✿✿✿✿✿

SACW
✿

presents maximum concentrations of DOC

35− 40 µmol L−1 lower than those found for NACW (Tab. 2). This difference is more pronounced in spring season (Tab. 2).210

In addition, the fall DOC observations present a larger variability in central waters as previously seen for IN. Lower DOC

concentrations are observed for stations sampled in the western transect while the highest concentrations are recorded in the

stations next to the African slope with values above 100 µmol L−1 (Fig. 8). On the other hand, it is noteworthy the high

concentrations of DOC recorded at intermediate waters of the northern transect in both cruises (Figs. 8 and 6).

4 THE INVERSE MODEL215

An inverse box model is applied to the hydrographic data of the two COCA cruises to provide the absolute velocity field

across the three sections (Wunsch, 1978). This method has been widely applied in different areas of the Atlantic Ocean as an

efficient method to obtain absolute geostrophic flows (Martel and Wunsch, 1993; Paillet and Mercier, 1997; Ganachaud, 2003a;

Machín et al., 2006; Pérez-Hernández et al., 2013; Hernández-Guerra et al., 2017; Fu et al., 2018). Assuming geostrophy and

the conservation of mass and other properties in the ocean bounded by the African coast and the hydrological sections, the220

velocity fields are obtained allowing an adjustment of freshwater flux and Ekman transports.

7



4.1 Selection of layers

The closed ocean where the inverse model is applied is divided into nine layers by means of the neutral densities defined

by Macdonald (1998) and modified by Ganachaud (2003a) for the North Atlantic Ocean. This distribution is
✿✿✿

then
✿

slightly

modified to include two layers instead of one between 26.85 and 27.162 kgm−3 by adding the isoneutral 27.035 kgm−3 as225

others authors have done previously in this side of the NASG (Comas-Rodríguez et al., 2011; Pérez-Hernández et al., 2013).

The location of the isoneutrals are represented in Figure 2. The upper five layers group the surface and central waters, with

the first layer until the isoneutral 26.44 kgm−3 being
✿✿

is related to surface waters and
✿✿✿✿✿

while the 4 remaining layers between

26.44 kgm−3 and 27.38 kgm−3

✿✿

do
✿✿

so
✿

to central waters. The intermediate waters are found in the next two layers between

27.38 and 27.82 kgm−3 while the deepest two layers below 27.82 kgm−3 contain the upper deep waters.230

4.2 The system of equations

The inverse box model takes into account mass conservation per layer and also in the whole water column. The salinity is

actually introduced as a salinity anomaly, which is also conservative within individual layers and in the whole water column

(Ganachaud, 2003b). On the other hand, heat is introduced as a heat anomaly in the two deepest layers where it is also

considered conservative. The salinity and heat are added as anomalies to improve the conditioning of the inverse model and235

get a higher rank in the system of equations by reducing the linear dependency between equations (Ganachaud, 2003b).

Therefore, the model is composed of a set of 22 equations (10 for mass conservation, 10 for salt anomaly conservation and

2 for heat anomaly conservation). Those equations are solved for 32 and 34 unknowns, comprised of 28/30 reference level

velocities in fall/spring, 3 unknowns for the Ekman transport adjustments (one unknown per section), and 1 unknown for the

freshwater flux. The resulting system is undetermined and a Gauss-Markov estimator is used to select a solution by adding a240

priori information. This a priori information consists of the uncertainties for both the unknowns (Rxx) and the noise of the

equations (Rnn).

4.2.1 Uncertainties of unknowns (Rxx)

The geostrophic velocity field is calculated in the central position between two consecutive stations. The isoneutral selected

as the reference level is the deepest common γn for all the stations, 27.962 kgm−3 (Fig. 2).
✿✿✿✿✿✿✿

Initially,
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

level
✿✿

is245

✿✿✿✿✿✿✿✿✿

considered
✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿

motionless
✿✿✿✿✿

level
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

geostrophic
✿✿✿✿✿✿✿

velocity
✿✿

is
✿✿✿✿

taken
✿✿✿

as
✿✿✿

null
✿✿✿✿✿✿

before
✿✿✿✿✿✿✿

applying
✿✿✿

the
✿✿✿✿✿✿✿✿✿

inversion. The variance of

the velocity in the reference level at each location is used as a measure of the a priori information. These variances are calcu-

lated with an annual mean velocity extracted from the daily velocity provided by GLORYS. These velocities are interpolated

to the reference level depth. This reference level depth is estimated from the climatological mean depth of 27.962 kgm−3

extracted from WOA13. The stations closer to the coast in the northern and southern transects have the highest variability in250

the velocity field.

The initial Ekman transports are estimated from the wind stress for both cruises. The uncertainty associated to these Ekman

transports is related to the error in their measurements and to the variability of the wind stress. A 50% uncertainty is assigned to
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the initial estimate of Ekman transports. The initial freshwater flux is a climatological mean of 0.0171 Sv, which is also assigned

an uncertainty of 50 % as reported in similar approaches (Ganachaud, 1999; Hernández-Guerra et al., 2005; Machín et al.,255

2006).

Both the Ekman transports and freshwater flux with their uncertainties are added to the model in the conservation equations

corresponding to the shallowest layer of the mass transport and salt anomaly and also in
✿✿

to the conservation equations of total

mass transport and total salt anomaly.

4.2.2 Uncertainties in the noise of equations (Rnn)260

The noise of each equation depends on the density field, on the layer thickness and on the uncertainties of the unknowns

(Ganachaud, 1999, 2003b; Machín et al., 2006). In fact, Ganachaud (2003b) established that the largest source of uncertainty

in conservation equations arises from the deviation of the baroclinic mass transport from their mean value at the time of the

cruise. Thus, an analysis of the annual variability in the velocity field for the nine layers is performed. The velocity variability

is examined in the mean depth between two successive isoneutral surfaces whose climatological mean depths are defined by265

WOA13. These variabilities are
✿✿✿

This
✿✿✿✿✿✿✿✿✿

variability
✿✿

is included in the inverse model as the uncertainties of the a priori
✿✿✿✿✿✿✿✿✿

uncertainty

✿✿

or
✿✿✿

the noise of equations in terms of variances of mass, salt anomaly and heat anomaly transports. The velocity variance from

the annual mean velocity for each layer are
✿✿

is estimated with GLORYS and transformed into transport values by multiplying

times density and the vertical area of the section involved. These a priori transport uncertainties are presented in Table 3.

Furthermore, the uncertainty assigned to the conservation equation in the total mass is the sum of the uncertainties from the270

rest of the nine conservative mass equations.

The equations for salt and heat anomaly conservation depend on both the uncertainty of the mass transport and the variance

of these properties (Ganachaud, 1999). In these cases, the a priori noise of each equation will not depend strictly on the water

mass but on the layer considered, as shown in the following equation (Ganachaud, 1999; Machín, 2003):

Rnn(Cq) = a ∗ var(Cq) ∗Rnn(mass(q)) (1)275

where Rnn(Cq) is the uncertainty in the anomaly equation of the property (salt or heat anomaly); var(Cq) is the variance

of this property; a is a weighting factor of 4 in the heat anomaly, 1000 in the salt anomaly and 106 in the total salt anomaly; q

is a given equation corresponding to a given layer.

✿✿

As
✿✿✿✿✿✿✿✿✿✿✿

documented
✿✿✿✿

north
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Canary
✿✿✿✿✿✿✿

Islands,
✿✿✿✿✿✿✿✿

dianeutral
✿✿✿✿✿✿✿✿

velocities
✿✿✿✿

are
✿✿

of
✿✿✿

the
✿✿✿✿✿

order
✿✿

of
✿✿✿

108
✿✿

m
✿✿✿✿

s−1,
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿✿

dianeutral
✿✿✿✿✿✿✿✿

diffusion

✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

are
✿✿

of
✿✿✿

the
✿✿✿✿✿

order
✿✿

of
✿✿✿

106
✿✿✿

m2

✿✿✿✿

s−1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Machín et al., 2006).
✿✿✿✿

The
✿✿✿✿✿

model
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿

much
✿✿✿

less
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿✿

these
✿✿✿✿✿✿

values
✿✿✿✿

than280

✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿✿

velocities:
✿

a
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿

dianeutral
✿✿✿✿✿✿✿

velocity
✿✿

of
✿✿✿✿

108
✿✿

m
✿✿✿✿

s−1

✿✿✿✿✿

would
✿✿✿✿✿✿✿✿✿

contribute
✿✿✿✿

with
✿✿✿✿

only
✿✿✿✿

0.01
✿

Sv
✿

,
✿

a
✿✿✿✿✿

value
✿✿✿✿✿

much
✿✿✿✿

less

✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿

lateral
✿✿✿✿✿✿✿✿✿

transports
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿✿

model.
✿✿✿

On
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

only

✿✿✿✿

from
✿✿✿

the
✿✿✿

box
✿✿✿✿✿✿✿✿✿

boundaries
✿✿✿✿

and
✿✿✿✿✿✿

cannot
✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿

infer
✿✿✿✿

any
✿✿✿✿✿✿

detailed
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿✿

dianeutral
✿✿✿✿✿

fluxes
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿

box.
✿✿✿✿✿✿

Hence,

✿✿✿✿

mass
✿✿✿✿✿✿✿✿

transports
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿

layers
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿

dianeutral
✿✿✿✿✿✿✿

transfers
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

negligible
✿✿

as
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

other
✿✿✿✿✿✿✿

sources
✿✿

of

✿✿✿✿✿

lateral
✿✿✿✿✿✿✿✿

transports
✿✿✿✿

and
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

inversion.
✿

285
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5 RESULTS

5.1 Velocity fields and mass transports

Figure 9 shows the reference level velocities obtained after the inversionis performed. The variance of these velocities are

✿

is
✿

also estimated by the model. The uncertainties are much higher than the values themselves and around ± (0.5-1) cm s−1.

During fall all non-zero values are positive, while in spring they are negative. This difference is important mainly in the290

western and southern transects where the module of the velocity increases reaching values of 0.3 and −0.16 cm s−1 in fall

and spring, respectively. Furthermore, the estimated reference level velocity values in the northern transect in spring are too

small, O(10−4
−10−5), while they take positive and significant values between 0.13 and 0.25 cm s−1 in some locations of this

transect in fall.

Once the geostrophic velocities at the reference level are estimated, they are integrated into the entire water column ob-295

taining the absolute geostrophic velocities (Fig. 10). These results are validated by comparison with the surface geostrophic

velocity and the sea level anomaly(SLA) ,
✿✿✿✿✿

SLA,
✿

derived from altimetry during both cruises
✿✿

the
✿✿✿✿✿

time
✿✿✿✿✿

period
✿✿✿✿

that
✿✿✿✿

each
✿✿✿✿✿✿

cruise

✿✿✿

was
✿✿✿✿✿✿✿✿✿

performed
✿

(Fig. 11). To do this, the average fields of SLA and geostrophic velocity at the sea surface are calculated dur-

ing each cruise and shown as a representation of the synoptic situation
✿✿✿✿✿✿✿

synoptic
✿✿✿✿✿

result during both surveys. Furthermore, the

mass transports at the shallowest layer (red bars in Fig. 11), are superimposed with the aim of comparing these transports with300

the average velocity field from altimetry. A remarkable mesoscale activity can be identified at both the absolute geostrophic

velocity sections (Fig. 10) and at the temporal average of SLA and the geostrophic velocity (Fig. 11). In this last case, the

structures are
✿✿✿✿✿✿✿

position
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

structures
✿✿

at
✿✿✿

the
✿✿✿✿

SLA
✿✿✿✿✿

field
✿

is
✿

somewhat displaced with respect to their positions in the in situ ve-

locity sections. For instance, an anticyclonic eddy is located between stations 10 and 16 in the N transect in both seasons. This

eddy, observed in autumn with high velocities at intermediate layers, weakens in spring. This mesoscale structure could be part305

of the CEC (Sangrà et al., 2009). Furthermore, it coincides with the position of an anticyclonic eddy previously documented

(Barceló-Llull et al., 2017a; Barceló-Llull et al., 2017b; Estrada-Allis et al., 2019).

In fall, two eddies are linked in the S transect, an anticyclonic one between stations 48 and 52 and a cyclonic one between

stations 52 and 60, both associated with the CVFZ. In spring, two anticyclonic eddies are observed, one centred at station

36 and the other one at station 56 also associated with CVFZ. In both seasons, mesoscale structures present a large vertical310

extension (Figure
✿✿✿

Fig. 10). In fall, these structures have higher velocities at IW and DW levels and they also affect a higher

extension along each transect. In spring instead, these structures are vertically shortened (Fig. 10). The SLA also shows a high

variability region with more intense structures in fall than in spring (Fig. 11).

Mesoscale structures are also visible in the vertical sections of NO3 and PO4 in fall, when their concentrations are higher

than those observed in spring at similar locations (Fig. 7). Furthermore, high concentrations of DOC in fall at CW levels are315

recorded in the same area where the deep anticyclonic eddy is located, between stations 8 and 18 (Fig. 8). In spring, mesoscale

structures in the vertical sections of IN and DOC at CW levels are less intense than in fall (Fig. 10). Nonetheless, DOC

concentrations below the two anticyclonic structures at CW levels in spring are higher than at their surroundings.
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The accumulated geostrophic mass transport is integrated to group the variability at different levels, having the first shallow-

est layer for SW, the next four layers for CW, then two layers for IW and the deepest two layers for DW (Figure 12). The total320

accumulated geostrophic mass transport, integrated for all the nine layers, is also represented. The horizontal axis has the same

direction as the rest of the vertical sections and the three transects are separated by two vertical dashed grey lines. Sv is used

here as equivalent to 109 kg s−1. The positive/negative transport values indicate outward/inward transports from/to the box.

The accumulated mass transports show a significant horizontal spatial variability, especially marked in the southern transect in

accordance to the geostrophic velocity distribution (Fig. 10). The presence of significant mesoscale structures might be one of325

the sources for the total imbalances in the accumulated mass transport. In fall, the total imbalance is -1.43 Sv and in spring

3.55 Sv (Tab. 4).

On the other hand, the geostrophic mass transport can be integrated per layer and transect together with the total imbalance

inside the box and the total mass transport uncertainty per layer (black line and horizontal black bars in Fig. 13). Moreover, Ta-

ble 4 compiles these transports integrated for the different water levels,
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿

also
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿✿✿✿✿✿✿✿✿✿

geographically
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

14.330

More than 65% of the mass transport is given at SW and CW levels (Tab. 4). In fall, these water masses mostly get into the

box across the northern and southern transects with transports of −5.61±1.86 Sv and −4.35±1.48 Sv, respectively; the mass

leaves the box by flowing westward with a value of 5.96±1.75 Sv. In spring, water masses also get in the box mostly through

the northern transect with −6.69± 1.63 Sv but they set off
✿✿✿✿

leave
✿

along the western and southern transects with transports of

4.05± 1.75 Sv and 5.20± 1.55 Sv, respectively. It is remarkable how the inward transport in fall across the southern transect335

is reversed to an
✿

a
✿✿✿

net
✿

outward flow in spring at the southern transect (Fig. 13).

The position of CVFZ in both seasons could partly explain that seasonal variability in the mass transports at central levels

(Fig. 15). In fall, the CVFZ is located further from the African coast, so SACW is present at almost all stations of the south

transect. This location of the CVFZ prevents a latitudinal mass transport from north to south. However, in spring the CVFZ is

closer to the African slope allowing an important mass transport from north to south.340

Between 5 and 30% of the mass transport is given in intermediate levels (Tab. 4). In fall, the intermediate water transport

directs northward in the southern transect with −1.93± 1.69 Sv and it leaves the box with 1.94± 1.85 Sv and 0.48± 1.71 Sv

across the northern and western transects, respectively. During spring, this transport weakens and changes its direction in the

northern and southern transects with transports of −0.48± 1.65 Sv and 0.39± 1.73 Sv, respectively, increasing its westward

transport to 1.21± 1.68 Sv.345

The mass transport in deep water layers barely exceeds 3% (Tab. 4). An exception is the 8% given in the northern transect

during fall where the estimated transport is 0.73± 1.71 Sv. In both cruises the transport at deep levels is nearly balanced.

5.2 Nutrient and DOC transports

DOC and IN transports are obtained by multiplying their concentration times mass transports. DOC, IN and geostrophic

velocities are obtained at different grids
✿✿✿✿✿✿✿

locations, so they need to be interpolated to the same
✿

a
✿✿✿✿✿✿✿✿

common grid. In the case of350

DOC, the velocities are
✿✿✿✿✿✿✿✿✿✿

horizontally interpolated to the points
✿✿✿✿✿✿✿

locations
✿

where the concentrations of DOC are taken and, in

a second step, the concentrations of DOC are linearly interpolated to the depths of the geostrophic velocities. On the other
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hand, the in situ measurements of IN are scarce at IW and DW where their concentrations become important
✿✿✿✿✿✿

higher. Therefore,

instead of using the observational data, the average outputs of GLORYS-BIO are used to estimate the IN transports. SiO2,

NO3, and PO4 mean concentrations are interpolated to the grid nodes where the geostrophic velocities are estimated by the355

inverse model.

DOC transports are obtained by subtracting a refractory concentration of 40 µmol L−1 from the measured DOC as other

authors do (e.g., Santana-Falcón et al., 2017). This is done because the refractory fraction renewal is thousands of years, a pe-

riod much longer than the time required in the processes we are focused on (Hansell, 2002). On the other hand, it should be em-

phasized that DOC transports may be underestimated due to the scarcity of measurements performed
✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿✿✿✿

measurements.360

The IN transport values are being presented in the text always ordered as SiO2, NO3 and PO4 (Figures 16 and 17). Tables 5,

6 and 7 summarize those transports integrated per water level and transect. The errors are relative to the mass transport errors

and are calculated as the standard deviations of IN transports. On the other hand, the DOC transport estimates per layer and

transect are also shown in Figure 17 and summarized per water level and transect with their relative error (calculated as in the

IN transports) in Table 8. In order to be able to compare our transport values of IN and DOC with those reported by other365

authors, units of kmol s−1 and ×108 molCday−1 are employed for IN and DOC transports, respectively, being both units

equivalent.

IN enter the domain both from north and south at CW in fall. At the northern transect the transports are relatively low while at

the southern one transports double the amount coming from north, with −0.41±0.11, −0.78±0.21 and −0.05±0.01 kmol s−1.

In spring, instead, the IN transports change their direction in the southern transect and only enter from the north with values370

which double those during fall, −0.40± 0.09, −0.90± 0.21, −0.06± 0.01 kmol s−1. On the other hand, IN transports at CW

layers are overall westward with low values in fall while in spring IN transports are southward and westward.

At IW levels, during fall the IN transports are inward through the southern transect with −0.27± 0.24, −0.36± 0.32, and

−0.02±0.02 kmol s−1, and to a lesser extent through the western transect. Outward transports are observed through the north-

ern transect with 0.23±0.22, 0.30±0.28 and 0.02±0.02 kmol s−1. In spring, the IN enter weakly through the northern transect375

and leave the box crossing the western and southern transects with significant values of 0.19± 0.27 and 0.12± 0.55 kmol s−1

for SiO2; 0.25± 0.35 and 0.17± 0.75 kmol s−1 for NO3; and 0.02± 0.02 and 0.01± 0.05 kmol s−1 for PO4. In summary,

while in fall the main IN transports are in the south to north direction, in spring they are mainly southwestward like the mass

transport behaviour at these levels during this season (Tab. 4).

Finally, at DW during both seasons, the net transports of the three nutrients are similar to those at IW but with smaller values380

due to the low velocities at these depths, despite their high nutrient concentrations (Figs. 16 and 17). Furthermore, the relative

error in these layers is always larger than the IN transport values.

In spring, DOC transports at SW and CW levels are the same order of magnitude and one order of magnitude higher than

those at IW levels. In turn, these transports at IW levels are one order of magnitude higher than those at DW levels during this

season. In contrast, during fall at the northern transect DOC transports have the same magnitude in both SW, CW and IW and385

they are one order of magnitude smaller than those at CW levels during spring (Tab. 8). In this season, DOC transports at SW

and CW of the western transect have unrealistic small values likely related to the low amount of measurements made in this
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transect during fall. DOC transports through the northern transect could also be somewhat underestimated for the same reason.

However, at the southern transect during fall, the result is of the same order of magnitude as in spring.

In spring, DOC transports behave in a similar way in all the water column. At SW and CW levels, −2.33±0.57×108 molCday−1390

enter through the northern transect, of which 0.89±0.25×108 molCday−1 leave the box through the southern transect and ap-

proximately a half of it through the western transect. During fall, there is an important outward DOC transport at SW, CW and

IW levels, specially southward through the southern transect at SW and CW levels with a total of 1.48±0.66×108 molCday−1

(Tab. 8).

Two opposite trends can be observed when both cruises are compared. In fall the IN net transports are −0.34±0.20, −0.67±395

0.40 and −0.04± 0.02 kmol s−1 at CW levels; −0.17± 1.07, −0.23± 1.39 and −0.01± 0.09 kmol s−1 at IW levels, and

−0.12± 0.25, −0.10± 0.21 and −0.01± 0.01 kmol s−1 at DW levels. The amount of nutrients entering the box is larger than

those leaving the box with the exception at the shallowest level where the IN leave the box (Tabs. 5, 6 and 7 and Figs. 16 and 17).

On the other hand, the net DOC transports are outward for both SW, CW and IW levels with 0.10± 0.13 ×108 molCday−1

at SW level, 1.34± 0.80 ×108 molCday−1 at CW levels, and 0.12± 0.72 ×108 molCday−1 at IW (Tab. 8 and Fig. 17).400

In contrast, during spring a net outward transport is obtained for the three IN with 0.28± 0.61, 0.57± 1.22 and 0.04±

0.08 kmol s−1 at CW, 0.28± 0.72, 0.36± 0.94 and 0.02± 0.06 kmol s−1 at IW, and 0.13± 6.79, 0.12± 6.26 and 0.01±

0.42 kmol s−1 at DW (Tabs. 5, 6 and 7, and Figs. 16 and 17). On the other hand, the DOC net transports are inward with

−0.14±0.08×108 molCday−1 at SW level; −0.80±1.72×108 molCday−1 at CW levels; and −0.01±0.02×108 molCday−1

at IW levels (Tab. 8 and Fig. 17).405

6 DISCUSSION

The circulation patterns in the studied area of the Canary Basin change significantly showing a seasonal
✿✿✿✿✿✿✿

temporal
✿

variability

from fall to spring. The differences between the two seasons are reflected in the estimated mass transports for both cruises

(Fig
✿✿✿✿

Figs. 13 and
✿✿

14
✿✿✿

and
✿

Tab. 4).

Trade Winds are intense all year long between the Canary Islands and Cape Blanc (26◦ N to 21◦ N), and generate a quasi-410

permanent upwelling in this region north of Cape Blanc. In contrast, the developed EBUS intensity and its off-shore develop-

ment change from fall to spring (Benazzouz et al., 2014). In the beginning of spring there is a strong heating that generates a

sharp water stratification particularly in the interior ocean of the NASG and a very intense upwelling which makes the EBUS

to develop strongly far off-shore. In early fall, the EBUS weakens and becomes a shallower front which approaches towards

the coast (Pelegrí and Benazzouz, 2015a). In fact, the variability related to its location and intensity may be the cause that the415

estimated mass transports in the north-south direction are distributed between levels of central waters and intermediate waters

in fall, and that in spring these mass transports parallel to the coast are confined to the shallowest layers at central waters. On

the other hand, these changes in the EBUS and in the water stratification may also be related to the westward mass transports

which in fall are accentuated and confined to the levels of SW and CW, as a shallow Ekman transport, while in spring the lateral

westward transport is distributed from the sea surface down to IW levels (Tab. 4 and Fig. 13).420
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SW transports through the N and W transects show similar patterns but in fall they are significantly more intense than in

spring. In addition, CW level transports through these two transects show also similar patterns with a low variability between

both seasons. The largest differences are observed in the estimated transports through the S transect which changes from fall to

spring, where the transport is northward during fall and southward during spring. This observed variability in the transports in

SW and CW levels in the southern part of the domain is likely related to the seasonal changes in the position of CVFZ which in425

turn is related to the seasonal changes in the North Atlantic Tropical Gyre (NATG), south of the domain (Pelegrí et al., 2017).

The fact that the Intertropical Convergence Zone moves southward in winter and northward in summer affects the circulation

patterns south and north of Cape Blanc (Lázaro et al., 2005; Stramma et al., 2008; Peña-Izquierdo et al., 2012). While in fall

the CVFZ crosses the S transect in its westernmost position, in spring it moves closer to the African coast. The output of the

GLORYS model matches the observations during both seasons (Fig. 15). In addition, the dynamics described by the geostrophic430

field of GLORYS also agree with the velocity field and the mass transports at CW levels estimated by the inverse model in the

S transect for both seasons.

GLORYS velocity outputs also reproduces the meso and submesocale
✿✿✿✿✿✿✿✿

reproduce
✿✿✿✿✿

meso
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

submesoscale
✿✿✿✿✿✿✿

features
✿

associated

with the CVFZ (Pérez-Rodríguez et al., 2001; Martínez-Marrero et al., 2008) which are observed directly in the S transect of

the velocity sections (Fig. 10) and in the accumulative mass transport (black line in Fig. 13). Specifically during fall, the435

reported eddies boost a significant transport at SW and CW levels from south to north. All these results at CW levels are

consistent with the late-summer and fall growth of the Mauritania Current and of the PUC and also with the decrease of

the NATG currents and the weakening of the Guinea Dome in winter and spring seasons (Siedler et al., 1992; Lázaro et al.,

2005; Peña-Izquierdo et al., 2012; Pelegrí and Peña-Izquierdo, 2015; Pelegrí and Benazzouz, 2015a). The estimated transports

at IW also show seasonal changes between fall and spring. This region is featured by a late summer northward progression of440

AAIW observed in fall, and by a weak southward flow of MW in spring (Machín et al., 2010).
✿✿✿

The
✿✿✿✿✿✿✿✿

northward
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿

mass

✿✿✿✿✿✿✿✿

transports
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

fall
✿✿

at
✿✿✿

the
✿✿✿✿✿

north
✿✿✿

and
✿✿✿✿✿

south
✿✿✿✿✿✿✿✿

transects
✿✿

is
✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

northward
✿✿✿✿✿✿✿✿✿

spreading
✿✿✿✿✿✿✿✿✿✿

documented
✿✿✿

for
✿✿✿✿✿✿

AAIW

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Machín and Pelegrí, 2009; Machín et al., 2010).
✿

In general, the estimated transports
✿✿✿✿✿✿✿✿

transport of the three IN show similar pattern
✿✿✿✿

shows
✿✿✿✿✿✿✿

similar
✿✿✿✿✿✿

patterns, very marked by the

mass transport variability during both seasons. The level with the highest transport in all the nutrients at both seasons is the445

deepest CW layer. This is quite in agreement with the local maximum of remineralization found for all tracers in the upper

intermediate layer Fernández-Castro et al. (2018).

CW levels are featured by a relatively high biological production and therefore a nutrient deficit, and also by large geostrophic

velocities. During fall the amount of IN that enters the box through N and S transects is larger than the IN quantity that leaves

the box through the W transect. In spring, on the other hand, the amount of IN transported outward through the W and S450

transects is larger than the IN which enters from the north.

At IW levels the concentrations of IN are high and stable related to the dominant remineralization process. During spring,

the spatial distribution of the three IN transports are the same as at CW levels with smaller values. In this season the transports

of IN are directed westward through the W transect towards the oligotrophic open ocean. In fall, the IN transports at IW levels

have a behaviour different than at CW levels being the main transport in the south-north direction.455
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The most significant differences between the DOC transports in fall and spring are obtained in the first and second shallowest

layers where there are high lateral velocities and where the euphotic layer is located. During fall, the DOC quantity that enters

by the north transect is a third of the amount that leaves the region by the south. In the spring, however, the large amount of

DOC that enters the domain from the north doubles the quantity that leaves it by the S transect while a quarter does by the

western transect.460

In spring, when the stratification is less marked, the most significant and deepest transports of IN are observed toward

the open ocean in central and intermediate water levels. However, in fall, when the water column is more stratified and the

upwelling process is the main physical forcing for nutrient supply at CW levels (Pastor et al., 2013), the IN transports toward

oligotrophic interior ocean is less than in spring. In fact, while in the western transect during spring the IN transports increase

with depth to their maximum values at the deepest central layer, in fall the opposite occurs, since the westward IN transports465

decrease with depth until cancelling at the last central layer; these transports reverse towards the coast at the two intermediate

layers (green line in Figs. 16 and 17).

On the other hand, DOC transports are deeper and more intensified toward the open ocean during spring than in fall. Nonethe-

less, in fall there is an important and deeper transport of IN in a direction parallel to the coast. In fact, at IW DOC concentrations

accumulate next to the African coast in the upwelling region. Furthermore, inside the upwelling region at the N and S transects470

in fall, the two observed mesoscale anticyclonic eddies could accentuate
✿✿✿✿✿✿✿

enhance this process.

The variability in intensity of the stratification, strength of upwelling and the position of the boundary between the upwelling

and the oligotrophic interior ocean together with important meso and submesocale structures control the nutrients availability

at CW and IW waters. It is also deduced from DOC transport estimates that the upwelling drives the changes in the size

of the high production domain and equivalently, the position for the eastern boundary of the oligotrophic region in this area475

(Pastor et al., 2013).

The estimated transports of IN and DOC tell us that in fall there is a pronounced import of IN into the domain (with the

exception of the SW layer) and a moderate export of DOC, especially at CW and IW levels. On the other hand, during spring

there is a pronounced export of IN from the domain at CW and IW levels and a slight import of DOC at the shallowest CW

levels and at the SW layer.480

7 CONCLUSIONS

In summary, the net masstransports across the 3 transects are shown in Figure 14 for the different water layers and for both

seasons. In this figure, the main changes of the net mass transports from fall to spring are observed
✿✿✿

An
✿✿✿✿✿✿

inverse
✿✿✿✿

box
✿✿✿✿✿✿

model

✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿

applied
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

eastern
✿✿✿✿✿

North
✿✿✿✿✿✿✿

Atlantic
✿✿

to
✿✿✿✿✿✿✿✿

estimate
✿✿✿✿✿

mass,
✿✿✿✿✿✿

nutrient
✿✿✿✿

and
✿✿✿✿✿✿

organic
✿✿✿✿✿✿

matter
✿✿✿✿✿✿✿✿✿

transports
✿✿✿✿✿

during
✿✿✿✿✿✿

spring
✿✿✿

and
✿✿✿✿

fall

✿✿✿✿✿✿✿

seasons.
✿✿✿

The
✿✿✿✿✿✿✿✿

currents
✿✿✿✿✿✿✿✿

estimated
✿✿✿

are
✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿✿✿✿✿✿✿

mesoscale
✿✿✿✿✿✿✿

features
✿✿✿✿✿✿

related
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

Canary
✿✿✿✿✿

Eddy
✿✿✿✿✿✿✿✿

Corridor
✿✿✿

and
✿✿✿

to
✿✿✿

the485

✿✿✿✿

Cape
✿✿✿✿✿

Verde
✿✿✿✿✿✿✿

Frontal
✿✿✿✿✿

Zone. The net mass transport at CW layers
✿✿✿✿✿✿✿✿

SW+CW
✿✿✿✿✿

levels
✿

coincides in both seasons in the N transect

with a southward flow of −2.94± 1.26
✿✿✿✿✿✿✿✿✿

5.61± 1.86 Sv in fall that increases in spring to −4.89± 1.14
✿✿✿✿✿✿✿✿✿

6.69± 1.63 Sv. In the

W transect the net westward mass transport at
✿✿✿✿

SW+CW levels weakens from a value of 3.50± 1.09
✿✿✿✿✿✿✿✿✿

5.96± 1.75 Sv in fall
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to 2.96± 1.06
✿✿✿✿✿✿✿✿✿

4.05± 1.75 Sv in spring. The most remarkable change in the net mass transport at
✿✿✿✿

SW+CW layers occurs in

the southern transect where in fall the net mass transport is northward with a value of −3.85± 1.03
✿✿✿✿✿✿✿✿✿

4.35± 1.48 Sv, while in490

spring it is southward with a value of 2.80± 1.02
✿✿✿✿✿✿✿✿✿✿

5.20± 1.55 Sv. In the shallowest layer, the SW transports follow a pattern

similar to those at CW levels across the 3 transects. However, in fall higher SW transports through the N and W transects are

obtained, −2.67± 0.60 and 2.46± 0.66 , respectively, and in spring there is a higher SW transport through the S transect with

2.40± 0.53 .

At IW layers, the net transport in the south-north direction is intense and northward in fall, 1.94±1.85 Sv, while it weakens495

and reverses southward in spring, −0.48± 1.65
✿✿✿✿✿✿✿✿✿

0.48± 1.65 Sv. In the W transect, the net westward mass transport at IW layers

is less intense in fall, 0.48± 1.71 Sv, than in spring, 1.21± 1.68 Sv. Last
✿✿✿✿✿✿

Finally, the net mass transport at DW levels is small

as compared to the other water levels, with the exception of the 0.73± 1.71 Sv estimated in the N transect during fall.

From a physical perspective, it has been analysed how these transports influence the transports of IN and in
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

geographical

✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿

transports
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

south-westward
✿✿✿✿✿

flow
✿✿✿✿✿✿

mainly
✿✿✿✿

fed
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

Canary
✿✿✿✿✿✿✿

Current.
✿✿✿

On
✿✿✿✿

the500

✿✿✿✿

other
✿✿✿✿✿

hand,
✿

the study area. It has also been observed how other non-physical factors determine the distribution of
✿✿✿✿✿✿✿

temporal

✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿

transports
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

southern
✿✿✿✿✿✿

section
✿✿

is
✿✿✿✿✿

likely
✿✿✿✿✿✿

related
✿✿

to
✿✿

a
✿✿✿✿✿

zonal
✿✿✿✿

shift
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

CVFZ,
✿✿✿✿✿

which
✿✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿

located

✿✿

in
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿

westernmost
✿✿✿✿✿✿✿

position
✿✿

in
✿✿✿✿

fall,
✿✿✿✿✿✿✿✿✿

bolstering
✿✿✿

the
✿✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿✿✿✿

waters
✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿

South
✿✿✿✿✿✿✿

Atlantic
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

domain
✿✿✿✿✿✿✿✿✿✿

considered.
✿✿✿

At

✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿

levels
✿✿

it
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿✿✿✿✿

highlighted
✿✿✿

the
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿

northward
✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿

observed
✿✿

at
✿✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿

north
✿✿✿

and
✿✿✿✿✿

south
✿✿✿✿✿✿✿✿

transects

✿✿✿✿✿

during
✿✿✿✿

fall.505

✿✿✿✿

With
✿✿✿✿✿✿

regards
✿✿

to
✿✿✿

the
✿

IN and DOC in the area of interest due to their link within the biogeochemical cycles. It is noted how in

fall ,
✿✿✿

net
✿✿✿✿✿✿✿✿✿

transports,
✿✿

in
✿✿✿

fall
✿

the domain works as a nutrient sink with
✿

a
✿

total IN net import of −0.61± 1.97, −0.74± 2.40 and

−0.05± 0.15
✿✿✿✿✿✿✿✿✿✿

0.61± 1.97,
✿✿✿✿✿✿✿✿✿✿

0.74± 2.40
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

0.05± 0.15 kmol s−1 of
✿✿

for
✿

SiO2, NO3 and PO4, respectively, and how
✿✿✿✿✿

while in

spring it works as a source of nutrients with a total nutrient net export of 0.73±0.91, 1.21±1.51 and 0.08±0.1 kmol s−1. And

it
✿

It
✿

is also observed how
✿✿✿

that
✿

the net DOC outward transport is of 1.55± 5.01 ×108 molCday−1 in fall makes the domain510

act
✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿

domain
✿✿✿

acts
✿

as a source of DOC in this season and how the significant negative value of −0.95± 1.19
✿✿✿✿✿

while
✿✿✿

the

✿✿

net
✿✿✿✿✿✿

inward
✿✿✿✿✿

value
✿✿

of
✿✿✿✿✿✿✿✿✿✿

0.95± 1.19 ×108 molCday−1 describes it as a DOC sink in spring.

However, what is really interesting here is to analyse
✿✿✿✿

With
✿✿✿✿✿✿

respect
✿✿

to the lateral transports of both IN and DOC towards the

oligotrophic ocean and their seasonal variability. During
✿✿

to
✿✿✿

the
✿✿✿✿

open
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿

W
✿✿✿✿✿✿✿

transect,
✿✿✿✿✿✿

during spring there is a con-

tinuous westward IN transport, 0.75±0.37, 1.34±0.66 and 0.08±0.04 kmol s−1 of SiO2, NO3 and PO4, respectively, toward515

the open ocean through the W transect in all the water columnthat
✿

.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿

transports
✿

coincide with an important
✿✿✿✿✿✿✿✿

westward
✿

trans-

port of DOC, 0.50± 0.25
✿✿✿✿✿✿✿✿✿

0.52± 0.25 ×108 molCday−1, mainly at SW and CW
✿✿✿✿✿

levels. In fall, these transports are weakened

✿✿✿✿✿✿

weaken
✿

at CW and reverse at IW, which means that the net westward transport of IN is smaller than in spring, with values of

0.03±0.01, 0.35±0.13 and 0.02±0.01 kmol s−1 for SiO2, NO3 and PO4towards oligotrophic waters. Westward transport of

DOC is not observed even at the shallowest layer
✿✿✿✿✿

during
✿✿✿

fall
✿✿✿

are
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿

in
✿✿✿✿✿✿

spring,
✿✿✿✿

with
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿✿

0.06± 0.02×108 molCday−1.520

It is still necessary to continue with the understanding of the physical and biogeochemical processes and the interactions

between the productive EBUS and the interior ocean in its vicinity, especially in dynamically complex regions as this area
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where the EBUS interacts with the CVFZ
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿

CVFZ
✿✿✿

and
✿✿✿✿✿✿✿✿✿

mesoscale
✿✿✿✿✿✿✿

features. Larger and more robust hydrological and

biogeochemical databases would help to achieve this goal.
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Figure 1. Hydrological (red dots), inorganic nutrients (pink circles) and DOC (black circles) sampling stations during cruises COCA-I (top)

and COCA-II (bottom)
✿✿✿✿✿

cruises. Time-averaged wind stress during each cruise is also represented with the inset arrow denoting the scale

(shown with half of the original spatial resolution).
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Figure 2. γn vertical sections during fall (top) and spring (bottom) cruises. White dashed isoneutrals limit the different water type layers.

The direction chosen for the representation of the transects is the course of the vessel. Distance is calculated with respect to the first station

(2). The section is divided into three transects: northern transect from east to west (from station 2 to 32), western transect from north to south

(from station 32 to 42) and southern transect from west to east (from stations 42 to 63/66). The 3 transects are separated by two vertical grey

dashed lines located at stations number 32 and 42. The sampling points of IN and DOC used in this work are also represented in pink crosses

and green dots, respectively.
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Figure 3. Θ−SA diagrams of the hydrological measurements in fall (top) and spring (bottom) cruises. The different water masses at north

(N, magenta dots), west (W, dark grey dots) and south (S, blue dots) transects are SW, NACW, SACW, AAIW, MW and NADW. Potential

density anomaly contours equivalent to 26.44, 27.38 and 27.82 kgm−3 isoneutrals delimit the surface, central, intermediate and deep water

levels.
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Figure 4. Sections of absolute salinity (SA) with respect to depth (top) and γn (bottom) during fall and spring. In depth section (top), the

isoneutrals which delimit the transports at surface, central, intermediate and deep water are represented by white dashed contours. In γn

section (bottom), the depths of 150, 672/700 and 1204
✿✿✿✿

1294/1305 m are also shown.
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Figure 5. Sections of conservative temperature (Θ) with respect to depth (top) and γn (bottom) during fall and spring. In depth section (top),

the isoneutrals which delimit the transports at surface, central, intermediate and deep water in the water column are represented by white

dashed contours. In γn section (bottom), the depths of 150, 672/700 and 1204
✿✿✿✿

1294/1305 m are indicated.
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Figure 6. Scatter plots for SiO2, NO3 and PO4 nutrients (µmol kg−1 extracted from GLORYS-BIO), and for DOC (observational data

in µmol L−1) with respect to SA and γn at the north (left), west (middle) and south transects (right) in fall (top) and spring (bottom). The

isoneutrals 26.44, 27.38 and 27.82 kgm−3 that limit the waters layers are indicated with white dashed lines in the colorbar. The measured

IN concentrations (µmol kg−1) for SiO2, NOX and PO4 until 250 m depth are included as black dots.
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Figure 7. Sections for SiO2 (top), NO3 (middle) and PO4 (bottom) concentrations with respect to γn during fall (top) and spring (bottom)

extracted from GLORYS-BIO. The white isolines as in the γn sections of Figs. 4 and 5.
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Figure 8. Sections of DOC concentration with respect to γn during fall (top) and spring (bottom) cruises with the white isolines as in the γn

sections of Figs. 4 and 5.
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Figure 9. Reference level velocity at 27.962 kgm−3 and its standard deviation estimated by the inverse model during fall (top) and spring

(bottom). The direction chosen for the representation is the same as in Fig. 2. The signs of the velocity are according to the geographical

criterion, i.e., the velocities are positive/negative toward north/south, in the northern and southern transects and they are positive/negative

toward east/west in the western transect.
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Figure 10. Sections of the absolute geostrophic velocity with respect to γn during fall (top) and spring (bottom). The horizontal axis has

the same direction as Figure 2 and the criterion of the velocity signs is as in Figure 9. The depths 150, 672/700 and 1204
✿✿✿✿

1294/1305 m are

highlighted by grey isolines as in the γn sections of Figures 4 and 5.
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Figure 11. Average derived geostrophic velocity and SLA during fall (top),
✿✿

in
✿✿✿

the
✿✿✿✿✿

course
✿✿

of
✿✿

the
✿✿✿

fist
✿✿✿✿✿

cruise, and spring (bottom),
✿✿

in
✿✿✿

the
✿✿✿✿✿

course

✿

of
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿

cruise, extracted from AVISO+. The red bars represent the mass transports in the shallowest layer as estimated by the inverse

model.
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Figure 12. Accumulated mass transport along the fall (top) and spring (bottom) cruises at surface waters (SW, in red and dashed line),

central waters (CW, in red line), intermediate waters (IW, in green line) and deep waters (DW, in blue line). The accumulated mass transport

integrated for all the nine layers is also represented. The horizontal axis has the same direction as Fig. 2. Negative/positive values of transports

along the three transects indicate inward/outward transports of box delimited by the three transects and the African coast.
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Figure 13. Accumulated mass transports per transect at north (N, magenta line), west (W, dark grey line) and south (S, blue line) transects

during fall (top) and spring (bottom). SW transport corresponds to transports between surface and the isoneutral 26.44
✿✿

See
✿✿✿✿✿

Table , CW

transport between the isoneutrals 26.44 and 27.38 , IW transport between the isoneutrals 27.38 and 27.82 and DW transport between the

isoneutrals 27.82 and 27.962
✿

2
✿

to
✿✿✿✿✿

check
✿✿✿

γn
✿✿✿✿✿

values
✿✿✿✿✿✿✿

bounding
✿✿✿✿

every
✿✿✿✿✿

water
✿✿✿✿

layer. Negative/positive values indicate inward/outward transports

as in Fig. 12. Mass conservation in the whole domain is shown by the black line. The horizontal bars represent the uncertainties estimated by

the model.
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Figure 14.
✿✿✿✿

Mass
✿✿✿✿✿✿✿

transports
✿✿✿✿

with
✿✿✿✿

their
✿✿✿✿✿

errors
✿✿

(Sv)
✿✿

at
✿✿✿✿✿✿

surface
✿✿✿✿

and
✿✿✿✿✿

central
✿✿✿✿✿✿

waters
✿✿✿✿✿✿✿✿

(SW+CW,
✿✿✿

red
✿✿✿✿✿✿

arrow),
✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿

waters
✿✿✿✿

(IW,
✿✿✿✿✿

green

✿✿✿✿✿

arrow)
✿✿✿

and
✿✿✿✿

deep
✿✿✿✿✿

waters
✿✿✿✿✿

(DW,
✿✿✿✿

blue
✿✿✿✿✿

arrow)
✿✿✿✿✿

across
✿✿✿✿✿

every
✿✿✿✿✿✿

transect
✿✿✿✿✿✿

during
✿✿✿

fall
✿✿✿✿

(top)
✿✿✿

and
✿✿✿✿✿

spring
✿✿✿✿✿✿✿✿

(bottom).
✿✿✿✿✿✿✿✿✿✿✿✿✿

Negative/positive
✿✿✿✿✿

values
✿✿✿✿✿✿✿

indicate

✿✿✿✿✿✿✿✿✿✿✿

inward/outward
✿✿✿✿✿✿✿✿

transports
✿✿

as
✿✿

in
✿✿✿

Fig.
✿✿✿

12.
✿✿✿

The
✿✿✿✿✿

arrows
✿✿

in
✿✿✿✿

each
✿✿✿✿✿✿

transect
✿✿✿

are
✿✿✿✿✿

located
✿✿

in
✿✿✿✿✿✿✿

positions
✿✿✿✿✿

which
✿✿✿✿✿✿✿

optimize
✿✿✿✿

their
✿✿✿✿✿✿✿

visibility,
✿✿✿✿✿✿✿✿✿

representing
✿✿✿

the

✿✿✿✿✿✿✿

integrated
✿✿✿✿✿✿✿✿

transports
✿✿✿✿

along
✿✿✿✿

each
✿✿✿✿✿✿✿

transect.
✿✿✿

The
✿✿✿✿✿

values
✿✿

of
✿✿✿✿✿✿✿✿

transports
✿✿

at
✿✿✿

SW
✿✿✿✿

(dark
✿✿✿✿

red)
✿✿✿

are
✿✿✿✿

given
✿✿✿✿

next
✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿

integrated
✿✿✿✿✿

values
✿✿

of
✿✿✿✿✿✿✿✿

transports
✿✿

at

✿✿✿

CW
✿✿✿✿

levels
✿✿✿

(in
✿✿✿✿

red).
✿✿✿

The
✿✿✿

red
✿✿✿✿✿

arrows
✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿✿✿

integrated
✿✿✿✿✿✿✿✿

transports
✿✿

for
✿✿✿✿

SW
✿✿✿

plus
✿✿✿

CW
✿✿✿✿✿✿

layers.
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Figure 15. Mean salinity and mean geostrophic velocity at 156 m extracted from GLORYS during fall (top) and spring (bottom). The

hydrological sampling stations are represented in white dots and the black line indicates the position of the isohaline of 36 at this depth, used

to identify the CVFZ.
✿✿✿

The
✿✿✿

red
✿✿✿

bars
✿✿✿✿✿✿✿

represent
✿✿✿✿

mass
✿✿✿✿✿✿✿✿

transports
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿

shallowest
✿✿✿✿

layer
✿✿

as
✿✿✿✿✿✿✿✿

estimated
✿✿

by
✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿

model.
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Figure 16. Accumulated SiO2 and PO4 transports (kmol s−1) at transects north (N, magenta line), west (W, dark grey line) and south (S,

blue line) during fall (top) and spring (bottom). SW transport corresponds to transports between surface and the isoneutral 26.44
✿✿✿

See
✿✿✿✿

Table ,

CW transport between the isoneutrals 26.44 and 27.38 , IW transport between the isoneutrals 27.38 and 27.82 and DW transport between the

isoneutrals 27.82 and 27.962
✿

2
✿

to
✿✿✿✿✿

check
✿✿✿

γn
✿✿✿✿✿

values
✿✿✿✿✿✿✿

bounding
✿✿✿✿

every
✿✿✿✿✿

water
✿✿✿✿

layer. Negative/positive values indicate inward/outward transports

as in Fig. 12. The net transport in the whole box is shown by the black line.
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Figure 17. Accumulated NO3 transports (kmol s−1) and accumulated DOC transports (108 molCd−1) at transects north (N, magenta line),

west (W, dark grey line) and south (S, blue line) during fall (top) and spring (bottom). SW transport corresponds to transports between surface

and the isoneutral 26.44
✿✿✿

See
✿✿✿✿

Table , CW transport between the isoneutrals 26.44 and 27.38 , IW transport between the isoneutrals 27.38 and

27.82 and DW transport between the isoneutrals 27.82 and 27.962
✿

2
✿✿

to
✿✿✿✿

check
✿✿✿

γn
✿✿✿✿✿

values
✿✿✿✿✿✿✿

bounding
✿✿✿✿

every
✿✿✿✿

water
✿✿✿✿

layer. Negative/positive values

indicate inward/outward transports as in Fig. 12. The net transport in the whole box is shown by the black line.
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Mass transports with their errors () at surface and central waters (SW+CW, red arrow), intermediate waters (IW, green arrow)710

and deep waters (DW, blue arrow) across every transect during fall (top) and spring (bottom). Negative/positive values indicate

inward/outward transports as in Fig. 12. The arrows in each transect are located in positions which optimize their visibility,

representing the integrated transports along each transect. The values of transports at SW (dark red) are given next to the

integrated values of transports at CW levels (in red). The red arrows represent the integrated transports for SW plus CW layers.
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Table 1. Summary of the number and type of measurement in stations per transect and season.

SEASON

[Cruise]

Type of

measurement

Number of stations

North West South Total

FALL

[COCA-I]

CTD 14 6 11 29

IN 8 2 6 14

DOC 8 2 6 15

SPRING

[COCA-II]

CTD 15 6 12 31

IN 9 3 8 18

DOC 10 3 7 18
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Table 2. Summary of water levels (CW, IW, and DW) with their isoneutral limits and their water masses properties for both seasons from

the sea surface to 2000 m. The properties extracted from observations are in situ temperature (T), potential temperature (θ), conservative

temperature (Θ), practical salinity (SP ), absolute salinity (SA), and dissolved organic carbon (DOC). IN extracted from GLORYS-BIO are

silicates (SiO2), nitrates (NO3) and phosphates (PO4).

WATER LEVELS CW IW DW

γn

[kgm−3]

MIN. MAX. MIN. MAX. MIN. MAX.

26.44 27.38 27.38 27.82 27.82 27.962

WATER MASSES NACW SACW MW AAIW NADW

PROPERTIES SEASON MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.

T

[ ºC ]

FALL 9.12 19.13 8.22 17.18 6.03 10.02 5.25 9.12 3.63 5.66

SPRING 5.90 19.76 8.35 17.14 6.01 10.04 5.16 9.41 3.63 5.57

θ

[ ºC ]

FALL 9.04 19.11 8.14 17.16 5.90 9.94 5.13 9.05 3.46 5.53

SPRING 5.77 19.74 8.27 17.13 5.88 9.96 5.06 9.34 3.47 5.45

Θ

[ ºC ]

FALL 9.03 19.05 8.13 17.12 5.89 9.92 5.12 9.03 3.46 5.53

SPRING 5.77 19.67 8.26 17.09 5.88 9.94 5.05 9.32 3.47 5.44

SP

FALL 35.23 36.83 35.04 36.19 35.13 35.44 34.92 35.24 34.99 35.13

SPRING 33.85 37.06 35.07 36.16 34.55 35.53 34.96 35.30 34.99 35.12

SA

[g kg−1]

FALL 35.40 37.00 35.21 36.36 35.30 35.61 35.09 35.40 35.16 35.30

SPRING 34.02 37.23 35.24 36.33 34.72 35.70 35.13 35.47 35.16 35.30

SiO2

[µmol kg−1]

FALL 1.24 18.46 6.39 22.14 13.23 21.73 17.50 25.78 18.94 28.44

SPRING 1.22 21.99 6.99 23.95 13.97 21.99 17.97 28.06 19.04 28.73

NO3

[µmol kg−1]

FALL 0.00 30.27 22.03 36.15 23.13 30.92 25.82 36.36 20.55 28.26

SPRING 0.00 30.36 25.21 36.75 23.78 31.18 25.70 36.81 21.06 27.97

PO4

[µmol kg−1]

FALL 0.03 1.90 1.46 2.29 1.43 1.98 1.69 2.33 1.37 1.85

SPRING 0.03 1.90 1.69 2.36 1.49 1.98 1.69 2.39 1.42 1.83

DOC

[µM]

FALL 47.85 108.65 49.05 74.13 46.25 66.09 41.83 59.30 41.82 58.72

SPRING 41.66 105.62 40.86 63.45 40.44 65.15 40.44 50.17 40.44 50.81
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Table 3. A priori noise of equations corresponding to SW, CW,
✿✿

IW
✿

and DW levels where the different water masses are transported.

WATER LEVELS UNCERTAINTIES (Sv2)

SW and CW (1.6− 4.7)2

IW (6.3− 9.3)2

DW (4.0− 7.9)2
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Table 4. Mass transports with their errors (Sv) for SW, CW, IW, and DW across north, west, and south transects for both seasons. Posi-

tive/negative values indicate outward/inward transports. The last row is the integrated transport for all the water column in each transect

while the fourth column summarizes the imbalances in mass transport for both seasons.

WATER

LEVELS
SEASON NORTH WEST SOUTH IMBALANCE

SW
Fall −2.67± 0.60 2.46± 0.66 −0.50± 0.45 −0.71± 1.00

Spring −1.80± 0.49 1.09± 0.69 2.40± 0.53 1.70± 0.99

CW
Fall −2.94± 1.26 3.50± 1.09 −3.85± 1.03 −3.29± 1.95

Spring −4.89± 1.14 2.96± 1.06 2.80± 1.02 0.87± 1.86

IW
Fall 1.94± 1.85 0.48± 1.71 −1.93± 1.69 0.49± 3.03

Spring −0.48± 1.65 1.21± 1.68 0.39± 1.73 1.1± 2.92

DW
Fall 0.73± 1.71 0.32± 1.56 0.19± 1.37 1.24± 2.69

Spring −0.04± 1.54 0.09± 1.53 0.00± 1.42 0.05± 2.59

TOTAL
Fall −2.59± 2.88 6.99± 2.64 −5.82± 2.45 −1.43± 4.61

Spring −7.24± 2.57 5.27± 2.60 5.53± 2.52 3.55± 4.44
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Table 5. SiO2 transports and their errors (kmol s−1) for CW, IW, and DW for north, west and south transects. Positive/negative values

indicate outward/inward transports. The last row is the integrated transport in all the water column in each transect and the last column

represents the net transport for this variable inside the box.

WATER

LEVELS
SEASON NORTH WEST SOUTH IMBALANCE

SW
Fall −0.06± 0.01 0.06± 0.02 0.02± 0.02 0.02± 0.02

Spring −0.06± 0.02 0.04± 0.02 0.06± 0.01 0.04± 0.02

CW
Fall −0.14± 0.06 0.21± 0.06 −0.41± 0.11 −0.34± 0.20

Spring −0.40± 0.09 0.45± 0.16 0.23± 0.08 0.28± 0.61

IW
Fall 0.23± 0.22 −0.13± 0.45 −0.27± 0.24 −0.17± 1.07

Spring −0.04± 0.15 0.19± 0.27 0.12± 0.55 0.28± 0.72

DW
Fall 0.13± 0.31 −0.11± 0.52 −0.14± 1.00 −0.12± 0.25

Spring −0.01± 0.51 0.06± 1.15 0.08± 13.38 0.13± 6.79

TOTAL
Fall 0.16± 0.17 0.03± 0.01 −0.80± 0.34 −0.61± 1.97

Spring −0.51± 0.18 0.75± 0.37 0.49± 0.22 0.73± 0.91
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Table 6. NO3 transports and their errors (kmol s−1) for CW, IW, and DW for north, west and south transects. Positive/negative values

indicate outward/inward transports. The last row is the integrated transport in all the water column in each transect and the last column

represents the net transport of this variable inside the box.

WATER

LEVELS
SEASON NORTH WEST SOUTH IMBALANCE

SW
Fall −0.05± 0.01 0.13± 0.04 0.17± 0.15 0.25± 0.35

Spring −0.03± 0.01 0.12± 0.07 0.07± 0.02 0.16± 0.09

CW
Fall −0.36± 0.15 0.47± 0.15 −0.78± 0.21 −0.67± 0.40

Spring −0.90± 0.21 0.91± 0.33 0.56± 0.20 0.57± 1.22

IW
Fall 0.30± 0.28 −0.16± 0.57 −0.36± 0.32 −0.23± 1.39

Spring −0.06± 0.20 0.25± 0.35 0.17± 0.75 0.36± 0.94

DW
Fall 0.13± 0.30 −0.10± 0.48 −0.13± 0.91 −0.10± 0.21

Spring −0.01± 0.52 0.06± 1.05 0.08± 12.63 0.12± 6.26

TOTAL
Fall 0.02± 0.02 0.35± 0.13 −1.11± 0.47 −0.74± 2.40

Spring −1.01± 0.36 1.34± 0.66 0.88± 0.40 1.21± 1.51
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Table 7. PO4 transports and their errors (kmol s−1) for CW, IW, and DW for north, west and south transects. Positive/negative values

indicate outward/inward transports. The last row is the integrated transport in all the water column in each transect and the last column

represents the net transport of this variable inside the box.

WATER

LEVELS
SEASON NORTH WEST SOUTH IMBALANCE

SW
Fall −0.00± 0.00 0.01± 0.00 0.01± 0.01 0.02± 0.02

Spring −0.00± 0.00 0.01± 0.01 0.01± 0.00 0.01± 0.01

CW
Fall −0.02± 0.01 0.03± 0.01 −0.05± 0.01 −0.04± 0.02

Spring −0.06± 0.01 0.06± 0.02 0.04± 0.01 0.04± 0.08

IW
Fall 0.02± 0.02 −0.01± 0.04 −0.02± 0.02 −0.01± 0.09

Spring −0.00± 0.01 0.02± 0.02 0.01± 0.05 0.02± 0.06

DW
Fall 0.01± 0.02 −0.01± 0.03 −0.01± 0.06 −0.01± 0.01

Spring −0.00± 0.04 0.00± 0.07 0.01± 0.85 0.01± 0.42

TOTAL
Fall 0.00± 0.00 0.02± 0.01 −0.07± 0.03 −0.05± 0.15

Spring −0.06± 0.02 0.08± 0.04 0.06± 0.03 0.08± 0.10
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Table 8. DOC transports and their errors (108 molCd−1) for CW, IW, and DW for north, west and south transects. Positive/negative

values indicate outward/inward transports. The last row is the integrated transport in all the water column in each transect and the last

column represents the net transport for this variable inside the box. These values are transports of non-refractory DOC which is obtained by

subtracting an amount of 40 µmol L−1 from the measured DOC.

WATER

LEVELS
SEASON NORTH WEST SOUTH IMBALANCE

SW
Fall −0.37± 0.08 0.04± 0.01 0.42± 0.38 0.10± 0.13

Spring −0.90± 0.24 0.25± 0.16 0.51± 0.11 −0.14± 0.08

CW
Fall 0.24± 0.10 0.04± 0.01 1.06± 0.28 1.34± 0.80

Spring −1.43± 0.33 0.25± 0.09 0.38± 0.14 −0.80± 1.72

IW
Fall 0.10± 0.10 −0.03± 0.09 0.04± 0.04 0.12± 0.72

Spring −0.02± 0.08 0.02± 0.02 −0.00± 0.00 −0.01± 0.02

DW
Fall 0.00± 0.01 −0.00± 0.02 −0.00± 0.00 0.00± 0.00

Spring −0.00± 0.06 0.00± 0.04 0.00± 0.58 0.00± 0.23

TOTAL
Fall −0.03± 0.03 0.06± 0.02 1.53± 0.64 1.55± 5.01

Spring −2.35± 0.84 0.52± 0.25 0.89± 0.40 −0.95± 1.19
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