
Evaluation of non-identical versus identical twin approaches for observation impact 1 

assessments: An EnKF-based ocean assimilation application for the Gulf of Mexico 2 

Liuqian Yu1,2, Katja Fennel1, Bin Wang1, Arnaud Laurent1, Keith R. Thompson1 and Lynn 3 

K. Shay3 4 

1Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada 5 

2Department of Mathematics, The Hong Kong University of Science and Technology, 6 

Hong Kong 7 

3Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, 8 

Florida, USA 9 

E-mail: liuqianyu@ust.hk  10 



	 2	

Abstract 11 

Assessments of ocean data assimilation (DA) systems and observing system design 12 

experiments typically rely on identical or non-identical twin experiments. The identical 13 

twin approach has been recognized as yielding biased impact assessments in atmospheric 14 

predictions but these shortcomings are not sufficiently appreciated for oceanic DA 15 

applications. Here we present the first direct comparison of the non-identical and identical 16 

twin approach in an ocean DA application. We assess the assimilation impact for both 17 

approaches in a DA system for the Gulf of Mexico that uses the Ensemble Kalman Filter. 18 

Our comparisons show that, despite a reasonable error growth rate in both approaches, the 19 

identical twin produces a biased skill assessment overestimating the improvement from 20 

assimilating sea surface height and sea surface temperature observations while 21 

underestimating the value of assimilating temperature and salinity profiles. Such biases can 22 

lead to an undervaluation of some observing assets (in this case profilers) and thus 23 

misguided distribution of observing system investments.   24 



	 3	

1. Introduction 25 

Ocean data assimilation (DA), i.e. the incorporation of observations into ocean 26 

models to obtain the best possible estimate of the ocean state, has become standard practice 27 

for improving the accuracy of model predictions and reanalyses. Benefiting from the rapid 28 

expansion of ocean observing platforms and advances in computing power, various ocean 29 

DA applications at both regional and global scales have been developed in support of ocean 30 

hindcasts, nowcasts and forecasts (e.g., see recent reviews in Moore et al. 2019 and Fennel 31 

et al. 2019). Necessarily the credibility of a DA system demands rigorous validation. It is 32 

straightforward to assess the assimilation impact (i.e. the differences between ocean state 33 

estimates from a model run with and without assimilation), where a better fit of the model 34 

state to observations following assimilation might be considered as positive. But in practice, 35 

the value of such an assessment is limited because it either does not consider independent 36 

observations (i.e., observations that have not been assimilated into the system) or has to 37 

reduce the quantity of data used for assimilation when reserving some for independent 38 

assessment. 39 

An alternative assessment approach is to conduct twin experiments (e.g., Anderson 40 

et al., 1996; Halliwell et al., 2014). The essential steps of a twin experiment are to 1) 41 

predefine a simulation as the “truth”, 2) sample synthetic observations from this “truth”, 3) 42 

assimilate these observations into a different simulation referred to as the forecast run, and 43 

4) assess the skill of this assimilative run against a non-assimilative (“free”) run using 44 

independent observations sampled from the “truth”. If the chosen “truth” and forecast runs 45 

are from same model implementation but with perturbed initial, forcing or boundary 46 

conditions, the method is referred to as ‘identical twin’ approach. If two different model 47 
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types are used, we refer to the method as the ‘non-identical twin’ approach. We note that 48 

the intermediate approach where the same model type is employed but with sufficiently 49 

different configurations (e.g., different physical parameterizations and/or spatial resolution) 50 

is conventionally termed fraternal twin (Halliwell et al., 2014). In addition to validating DA 51 

systems, twin experiments are used for Observing System Simulation Experiments (OSSEs) 52 

that evaluate the impact of different ocean observing system designs on predictive skill (e.g., 53 

Oke and O’Kane 2011; Halliwell et al. 2015, 2017). Ideally, the “truth” and forecast 54 

simulations in the twin system used for the OSSE should be from two different models, i.e. 55 

they should be non-identical twins.  56 

The identical twin approach has been more commonly used in oceanic DA 57 

applications (e.g., Counillon and Bertino, 2009b; Simon and Bertino, 2009; Srinivasan et 58 

al., 2011; Song et al, 2016a; Yu et al., 2018) although it is well known from atmospheric 59 

OSSEs that this approach provides biased impact assessments when the error growth rate 60 

between the “truth” and forecast runs is insufficient (e.g., Arnold and Dey 1986; Atlas 1997; 61 

Hoffman and Atlas 2016). This fact is not yet sufficiently recognized in applications of 62 

ocean OSSEs and skill assessments of oceanic DA systems (Halliwell et al., 2014). To 63 

avoid the potential bias in impact assesments associated with identical twin experiments, 64 

Halliwell et al. (2014) proposed to apply a criterion that has long been used in realistic 65 

atmospheric OSSEs. They suggested that the model for the forecast run should be 66 

configured differently enough from that for the “truth” run so that the rate of error growth 67 

between them has the same magnitude as that between state-of-the-art ocean models and 68 

the true ocean. They also suggested comparing the assimilation impact in the twin 69 

framework with that in a realistic configuration; if a similar impact is obtained in both twin 70 
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and realistic configurations, the twin DA framework can be considered appropriate for 71 

assessing assimilation impact and conducting OSSEs. Fraternal OSSEs have proven 72 

instructive for evaluating the assimilation impact of different observing platforms in the 73 

Gulf of Mexico (Halliwell et al., 2015) and North Atlantic (Halliwell et al., 2017).  74 

However, a direct comparison of fraternal or non-identical and identical twin 75 

approaches has not yet been conducted for an ocean application, to the best of our 76 

knowledge. Motivated by this, we use an ocean DA system for the Gulf of Mexico (GOM) 77 

to compare and contrast the non-identical and identical twin approaches in an assimilation 78 

impact assessment. The rationale for choosing the GOM as our testbed is that the non-79 

deterministic aspects of the circulation in the GOM, including the northward penetration of 80 

Loop Current (LC) intrusions and the associated eddy shedding, require DA for accurately 81 

hindcasting/forecasting the circulation. The need for accurate nowcasts and predictions was 82 

particularily acute during the 2010 Deepwater Horizon (DwH) oil spill. Previous data 83 

assimilation applications in the GOM have focussed primarily on improvements of the 84 

surface current fields observeable from satellite or drifters but did not examine the 85 

assimilation impact on subsurface flow fields. As the DwH oil spill has shown, knowledge 86 

of model skill in simulating the subsurface circulation is also important. Utilizing twin 87 

experiments, we aim to examine the assimilation impact on the subsurface circulation.  88 

Toward this objective we implement an advanced ensemble DA technique, the 89 

Ensemble Kalman Filter (EnKF), for a high-resolution (horizontal resolution of 5 km) 90 

model covering the entire GOM. The EnKF utilizes flow-dependent background error 91 

covariances in contrast to the time-invariant covariance in optimal interpolation (OI-) or 92 

variational-based DA systems that have previously been used in GOM (e.g., Counillon and 93 
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Bertino 2009a, 2009b; Jacobs et al. 2014). By rigorously assessing the skill of the EnKF-94 

based assimilative model (with an emphasis on the subsurface fields) through non-identical 95 

and identical twin experiments and OSSEs, we demonstrate how the identical twin 96 

approach yields misleading conclusions in this practical application. We also address 97 

whether an improved skill in reproducing the surface dynamics of the LC and associated 98 

eddies translates into improved skill in simulating the subsurface circulation. 99 

 100 

2. Model description and experimental setup 101 

2.1 The physical model  102 

The model is configured using the Regional Ocean Modelling System (Haidvogel 103 

et al., 2008; ROMS, http://myroms.org) for the GOM (Fig. 1a). It has a horizontal resolution 104 

of 5 km and 36 terrain-following vertical layers with higher resolution near the surface and 105 

bottom. Vertical turbulent mixing is parameterized using the Mellor and Yamada (1982) 106 

Level 2.5 closure scheme, and bottom friction is specified using a quadratic drag 107 

formulation. The model utilizes a third-order accurate, non-oscillatory advection scheme 108 

for tracers (HSIMT, Wu and Zhu, 2010), which is mass-conservative and positive-definite 109 

with low dissipation and no overshooting, and is forced with the atmospheric forcing fields 110 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) 111 

(http://apps.ecmwf.int/datasets/).  River input is prescribed as in Xue et al. (2013), with 112 

daily runoff from US Geological Survey for rivers inside the US and long-term 113 

climatological estimates for rivers in Mexico and Cuba. The model is one-way nested inside 114 

the 1/12° data-assimilative global Hybrid Coordinate Ocean Model (HYCOM) (Chassignet 115 

et al., 2009). Tidal forcing is neglected because tides are small in the GOM.  116 
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Previous studies have highlighted two important aspects for model skill in the GOM, 117 

a sufficiently high horizontal resolution for representing the mesoscale dynamics (e.g., 118 

Chassignet et al., 2005) and an accurate representation of the LC inflow through the 119 

Yucatan Strait (e.g., Oey, 2003). Our model meets the two requirements. The 5-km 120 

horizontal resolution is sufficient to resolve mesoscale processes (the baroclinic Rossby 121 

radius is 30 to 40 km in the central GOM, see, Oey et al., 2005). And our ROMS model is 122 

nested in a data-assimilative HYCOM model which simulates an accurate structure of the 123 

LC and its eddies. Initial model-data comparisons showed that the model has skill in 124 

statistically simulating the main features of the LC intrusion with a slight overestimation of 125 

its northward penetration during the simulation period (Yu, 2018). 126 

2.2 Experimental framework 127 

The deterministic formulation of the EnKF (DEnKF), first introduced by Sakov and 128 

Oke (2008), was implemented in the GOM model. The DEnKF has been successfully used 129 

in previous ocean assimilation applications (e.g., Simon et al., 2015; Jones et al., 2016; Yu 130 

et al., 2018). The algorithm consists of sequential forecast and analysis steps, where the 131 

model ensemble is propagated forward in time during the forecast step and updated with 132 

available observations using the Kalman Filter analysis equation during the analysis step. 133 

The analysis equation is given as: 134 

𝒙# = 	𝒙& + 𝑲(𝒅 − 𝑯𝒙&),                                                          (2)       135 

where 𝒙 is the 𝑛 × 1 model state estimate vector (n is the number of model state variables 136 

at all grid points), the superscripts 𝑎 and 𝑓 represent the analysis and the forecast estimates, 137 

respectively, 𝒅  is the 𝑚 × 1  vector of observations (m is the number of available 138 
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observations), 𝑯 is the linear	𝑚 × 𝑛 measurement operator mapping the model state onto 139 

the observations, and 𝑲 is the 𝑛 × 𝑚 Kalman gain matrix, given as 140 

𝑲 =	𝑷&𝑯5(𝑯𝑷&𝑯5 + 𝑹)7𝟏,                           (3) 141 

where 𝑷&  is the 𝑛 × 𝑛  forecast error covariance matrix (approximated by the forecast 142 

ensemble), 𝑹	 is the 𝑚 ×𝑚  observation error covariance, and 𝑇  denotes the matrix 143 

transpose. Different from the traditional EnKF (Burgers et al., 1998) which requires 144 

perturbing observations to obtain an analysis error covariance consistent with that given by 145 

the Kalman Filter, the DEnKF updates the ensemble mean using the analysis equation (2) 146 

and ensemble anomalies with the same equation but half the Kalman gain 𝑲  without 147 

perturbing observations, and is hence termed ‘deterministic’. Details on the DEnKF 148 

derivation and implementation can be found in Sakov and Oke (2008). 149 

2.2.1 Non-identical twin experiments  150 

In non-identical twin experiments, the “truth” is generated by interpolating the daily 151 

outputs of the 1/12° data-assimilative global HYCOM (Chassignet et al., 2009) onto the 152 

ROMS model grid. Synthetic observations are sampled from the “truth”, including SSH, 153 

SST, and temperature and salinity profiles. Typical Gaussian observation errors of N(0, 2 154 

cm) for SSH, N(0, 0.3 °C) for temperature (both SST and temperature profiles), and N(0, 155 

0.01) for salinity are added to the sampled data. SSH and SST are sampled weekly at every 156 

fifth horizontal grid point to yield a spatial resolution of ~1/4° as such assimilation time 157 

window or spatial resolution has been adopted in previous realistic DA applications (e.g., 158 

weekly gridded product of SSH used in Moore et al., 2011, Song et al., 2016b, and weekly 159 

gridded product of SST in Hoteit et al. 2013). SSH in regions shallower than 300 m is not 160 

used for assimilation because dynamics in shelf areas where wind and buoyancy forcing 161 
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dominate could substantially deviate from the geostrophic state weakening the correlation 162 

between SSH and subsurface temperature and salinity fields. For SST, only those in regions 163 

shallower than 10 m are excluded. Importantly when preparing the synthetic SSH 164 

observations, the mean dynamic topography (MDT) of the HYCOM “truth” run had to be 165 

removed from the sampled SSH data and the MDT of the ROMS model had to be added. 166 

The MDTs of the HYCOM and ROMS models were obtained by averaging their respective 167 

daily SSH outputs from 2010 to 2016.  168 

Temperature and salinity profiles were sampled with two different sampling 169 

schemes (see locations in Fig. 1a, b). The first scheme adopts the sampling dates and 170 

locations used in the survey described in Shay et al. (2011). The key features of this scheme 171 

are that the sampling is centered on the LC region, the majority (363 out of 472) of 172 

temperature profiles are limited to the upper 400 m, and very few (34) salinity profiles were 173 

collected. In the second scheme, coverage was extended such that temperature and salinity 174 

profiles are sampled simultaneously over the entire central GOM down to 1000 m depth on 175 

23 instead of 9 dates.   176 

A non-assimilative run, subsequently referred to as the free run, is initialized on 1 177 

April 2010 from the global HYCOM and compared with the data-assimilative runs to 178 

evaluate the impact of the assimilation.  179 

In the DA experiments, 20-member ensembles are started from different initial 180 

conditions and forced by perturbed boundary conditions and wind fields. The initial 181 

conditions were created by using three-dimensional (3D) fields from daily HYCOM outputs 182 

within a 20-day window centered on the initialization date of 1 April 2010. The boundary 183 

conditions were generated by applying a time lag of up to +/-10 days to the boundary 184 
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condition (i.e., the first member’s boundary conditions are 10 days ahead) following 185 

Counillon and Bertino (2009b). The perturbed wind fields were created by first conducting 186 

an empirical orthogonal function (EOF) decomposition of the wind field and then adding 187 

perturbations from the mixture of the first 4 EOF modes to the wind field, where the four 188 

perturbation modes were multiplied with zero-mean unit-variance random numbers and a 189 

scale factor of 0.5 similar to Thacker et al. (2012) and Li et al. (2016).  190 

We used an ensemble of 20 as it was the largest size feasible given the computing 191 

resources available to us and found this to work well in our application. The same ensemble 192 

size has also been used in previous studies (e.g., Hu et al., 2012; Mattern et al., 2013). 193 

Distance-based localization with an influence radius of 50 km was applied as described in 194 

Evensen (2003) to prevent the potential negative effects of spurious correlations between 195 

distant grid points. An inflation factor of 1.05 was applied to the ensemble anomalies 196 

inflating the ensemble spread around its mean at every assimilation step as introduced by 197 

Anderson and Anderson (1999). This accounts for the potential underestimation of the 198 

forecast error covariance due to the small ensemble size. The choice of localization radius 199 

and inflation factor are based on initial tests and takes into account that the baroclinic 200 

Rossby radius in the central GOM is 30 to 40 km (Oey et al., 2005) to avoid choosing a too 201 

small localization radius value. 202 

Observations are assimilated weekly from 2 April to 3 September 2010 updating the 203 

3D temperature and salinity fields. On each assimilation date, the observations (regardless 204 

of observation types) are assimilated simultaneously in one single step. After the last 205 

assimilation step on 3 September 2010, the ensemble is run without any data assimilation 206 

for 4 more weeks. Three assimilation experiments (referred to as N1, N2 and N3) are 207 
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conducted. N1 assimilates weekly SSH and SST, while N2 and N3 assimilate the 208 

temperature and salinity profiles following the two sampling schemes described earlier (Fig. 209 

1a, b) in addition to SSH and SST. Model-data misfit is quantified by computing the Mean 210 

Absolute Deviations (MAD), i.e., the average of the absolute deviations, of model 211 

simulations from the “truth” for the open Gulf (defined as regions deeper than 300 m). That 212 

is, MAD = :
;
∑ |𝑚𝑜𝑑𝑒𝑙B − 𝑡𝑟𝑢𝑡ℎB|;
BG: , where i=1,…,N and N is the number of data pairs. 213 

For ensemble assimilation runs, the forecast ensemble mean at assimilation steps is used 214 

for calculating the MAD.  215 

2.2.2 Identical twin experiments 216 

The identical twin experiments have a similar setup as the non-identical twin 217 

experiments except that the “truth” is not taken from HYCOM but generated from a ROMS 218 

simulation that differs from the free run only in its initial and boundary conditions and wind 219 

forcing. The “truth” run is started on 1 April 2010 from an initial state from an earlier 220 

ROMS simulation, and is forced with boundary conditions that are lagging behind those of 221 

the free run by 14 days and wind fields reconstructed from the first 10 EOFs of the realistic 222 

ECMWF wind. Since the same model architecture is used in free and reference runs for the 223 

identical twin, there is no need to correct MDT when sampling SSH observations.  224 

Similar to the non-identical twin setup, three assimilation experiments are 225 

conducted in the identical twin framework (I1, I2 and I3) that assimilate the same 226 

combinations of observations as in N1, N2 and N3.  227 

 228 

3. Results  229 

3.1. Assessment of the non-identical and identical twin experiment setup  230 



	 12	

We first examine the credibility of the non-identical and identical twin setups by 231 

comparing the error growth rates in SSH between the free run and the “truth” for both twins 232 

(Fig. 2). The non-identical twin has a slightly higher error growth rate (0.048 cm/day) than 233 

the identical twin (0.040 cm/day), but both are of similar magnitude to that between the free 234 

run and real observations (0.042 cm/day). This meets the requirement suggested by 235 

Halliwell et al. (2014) that the errors between the free run and the “truth” should grow at a 236 

similar rate as errors that develop between state-of-the-art ocean models and the true ocean.  237 

The comparison in Fig. 3 also shows that differences between the “truth” and free runs in 238 

SSH and subsurface salinity fields are obvious and qualitatively comparable between the 239 

non-identical and identical twin experiments. This satisfies the other requirements 240 

suggested in Halliwell et al. (2014), namely that the free run is able to reproduce the main 241 

features of the simulated phenomenon (i.e. the LC intrusion) with some realism, and that 242 

there are sufficient differences between the free and “truth” runs for the assimilation method 243 

to correct. 244 

3.2. Impact of assimilation in non-identical twin experiments 245 

Temporally and spatially averaged MADs between the non-identical twin 246 

assimilation runs and the free run are summarized in Table 1 (temporal evolution is shown 247 

in Fig. 4).  Assimilating SSH and SST in N1 significantly reduces the MADs of SSH (by 248 

51%), temperature (by 29%) and velocity fields (by 25%), and slightly reduces MADs in 249 

salinity (by 11%) (Table 1). After the last assimilation step, MADs remain low for at least 250 

4 weeks (Fig. 4). Assimilating additional temperature and salinity profiles (in N2 and N3) 251 

further benefits temperature and especially salinity fields, in particular in N3, where the 252 

salinity MAD are reduced by 23%, but has almost no effect on SSH and velocity MAD. 253 
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In N1 the MAD in SSH, temperature, and velocity components is reduced for almost 254 

the entire domain, with the most significant reductions in the LC region (Fig. 5).  The 255 

reduction in salinity MAD is relatively small in N1 but larger in N3 where additional 256 

temperature and salinity profiles are assimilated (Fig. 6). In contrast to SSH, temperature, 257 

and velocity, the biggest impact of assimilation on the salinity field is on the shelf where 258 

salinity is more variable than in the open Gulf because of river inputs.  259 

Vertically, the reductions of spatially and temporally averaged MAD extend to 260 

nearly 900 m depth for temperature and velocity, and 500 m for salinity (Fig. 7). The 261 

maximum reductions in MAD amount to 0.6 ℃ for temperature at 200 m, 0.12 for surface 262 

salinity, and 0.07 m/s for surface velocity (Fig. 7).  Assimilating temperature and salinity 263 

profiles in N3 leads to greater reductions of temperature and salinity MAD primarily in the 264 

upper 300 m compared to N1. 265 

Next, we assess the impact of assimilation on subsurface temperature and salinity 266 

fields (Fig. 8). The “true” spatial distribution of mean temperature and salinity at 400 m 267 

depth in August shows only a weak northward intrusion of warm and salty LC water and a 268 

detached anticyclonic eddy. Compared to the “truth”, the free run overestimates the 269 

northward extension of the LC (depicted by the 12 ℃ isotherm and 35.5 isohaline), and the 270 

detached eddy is misaligned. Assimilation corrects the extension and angle of the LC and 271 

the position of the eddy, significantly reducing the averaged MAD error by 47% and 31% 272 

for temperature and salinity, respectively in the N1 run, and 52% and 46% for those in the 273 

N3 run.  274 

Lastly, we examine the assimilation impact on subsurface circulation in a 275 

comparison of August mean circulation at 400 m depth of the non-identical twin runs (Fig. 276 
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9). The “truth” shows a limited northeastward extension of the LC with two eddies shedding 277 

(Fig. 9d). As mentioned already above, the free run overestimates the northward extension 278 

and simulates a more energetic detached anticyclonic eddy that has propagated further west 279 

(Fig. 9e). Assimilation in N1 brings the simulated shape, strength and location of the LC 280 

and LC eddies closer to the “truth” with an overall MAD reduction of ~45% compared to 281 

the free run (Fig. 9f). A closer look at the LC intrusion region (Fig. 9g, h, i) and the western 282 

(Fig. 9a, b, c) and northern shelf breaks (Fig. 9j, k, l) shows that the greatest improvement 283 

in subsurface circulation is in the open Gulf and LC region where mesoscale processes 284 

dominate (MAD reduction of ~57%), whereas the improvement in circulation is weaker 285 

along the shelf regions where submesoscale processes are important and influences of the 286 

open ocean, bathymetry and local wind and river forcing coexist (MAD reductions of ~25% 287 

and ~42% on the western and northern shelf, respectively). Specifically, the small-scale 288 

currents surrounding the spill site observed in the “truth” (i.e., the strong anticyclonic eddy 289 

to the east of the spill site and cyclonic eddy to its southwest) are not satisfactorily 290 

represented in either the free run or N1. The results of N2 and N3 are very similar to N1. 291 

3.3. Assimilation impact in identical versus non-identical twins  292 

Assimilating SSH and SST in identical twin I1 leads to even larger error reductions 293 

than in the non-identical twin N1 with domain-averaged MAD reductions in temperature 294 

of 45%, salinity of 21% and velocity fields of 46%, relative to 29%, 11%, and 25%, 295 

respectively, in the non-identical twin N1 (Table 1). However, the benefit of assimilating 296 

additional temperature and salinity profiles in I2 and I3 on temperature and salinity fields 297 

in the identical twin framework is much smaller than in the non-identical twin (Table 1).  298 
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With respect to the simulated subsurface circulation, the improvement by 299 

assimilating SSH and SST is also much greater in identical twin I1 (Fig. 10) than in non-300 

identical twin N1 with a MAD reduction of ~67% versus ~45%. In addition, a remarkable 301 

improvement in subsurface circulation following assimilation in I1 is observed not only in 302 

the LC intrusion region (MAD reduction of ~69%) but also on the shelves (~55% and ~63%, 303 

respectively, on the western and northern shelves), including the region near the DwH spill 304 

site (Fig. 10). 305 

 306 

4. Discussion  307 

We implemented the EnKF technique in a high-resolution regional model for the 308 

GOM. The skill of this data-assimilative system was assessed through a series of non-309 

identical and identical twin experiments assimilating data from different observing system 310 

configurations. The differences between the two approaches have important implications 311 

for observing system design studies. 312 

Consistent with previous assimilation studies in the GOM (e.g., Wang et al., 2003; 313 

Counillon and Bertino 2009b; Hoteit et al., 2013), our non-identical and identical twin 314 

experiments both show that assimilating altimetry data can constrain a range of large-scale 315 

to mesoscale features such as the LC and associated eddies. The warmer and more saline 316 

LC and its eddies have a temperature and salinity signature that is distinct from the so-317 

called Gulf Common Water and have a clear signal of elevated SSH. Assimilation of SSH 318 

using the multivariate EnKF therefore can adjust temperature and salinity profiles based on 319 

the SSH information. Assimilation of SSH and SST substantially corrects the subsurface 320 
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temperature, salinity and velocity fields from the surface to depths of up to 900 m, with 321 

clear improvements in location and intensity of the LC and LC eddies. 322 

The non-identical twin experiments show that salinity is less constrained than 323 

temperature when assimilating only SSH and SST. Assimilation of additional temperature 324 

profiles (experiment N2) only slightly improves salinity; inclusion of salinity profiles 325 

(experiment N3) is more effective in improving salinity. This highlights the value of 326 

assimilating salinity profiles to constrain model salinity fields. The importance of salinity 327 

measurements has also been reported in the realistic DA configuration by Halliwell et al. 328 

(2015). However, such additional benefits of assimilating temperature and salinity profiles 329 

on model-simulated temperature and salinity fields are not observed in the identical twin 330 

experiments, which already yield much greater improvements when assimilating SSH and 331 

SST alone. It follows that, the additional information content in the subsurface observations 332 

(i.e., profiles) within the identical twin system is much smaller than that for the non-333 

identical twin. We attribute this to the lack of intrinsic difference in the identical twin (e.g., 334 

physical model parameterizations, spatial resolution) between the ‘truth’ and forecast 335 

model runs making it easier to correct the subsurface model fields by assimilating SSH and 336 

SST alone. This close agreement of subsurface fields between the forecast model and ‘truth’ 337 

necessarily reduces the additional information content of subsurface observations during 338 

assimilation. 339 

Another major difference between the non-identical and identical twin approaches 340 

lies in the assimilation impact on subsurface circulation. In the non-identical twin 341 

experiments, assimilating satellite altimetry effectively constrains the large to mesoscale 342 

structures on the order of 100 km that dominate the deep GOM. The improved circulation 343 
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in deep GOM  has a positive but relatively limited impact on the circulation near the DwH 344 

spill site, which is located in the transition zone between the open Gulf (where the 345 

circulation is dominated by the mesoscale LC and its eddies) and the shelf (where currents 346 

are largely driven by wind and density forcing). The assimilation of SSH, SST and 347 

additional temperature and salinity profiles (spatial distance between profiles in experiment 348 

N3 is ~70km) in our non-identical twin experiments provides limited constraints on the 349 

small-scale circulation features in this region. This is consistent with Wang et al. (2003) 350 

who found that assimilating SSH and SST could not accurately resolve smaller-scale eddies 351 

in the DeSoto Canyon region near the DwH site. It has been suggested previously that 352 

higher-resolution localized observations (Lin et al., 2007; Jacobs et al., 2014; Carrier et al., 353 

2014; Berta et al., 2015; Muscarella et al., 2015) and even finer model resolution (< 5 km, 354 

Ledwell et al., 2016) are needed to better constrain these submesoscale features. In contrast 355 

to the non-identical twin, the identical twin I1, which assimilates only SSH and SST, yields 356 

remarkable improvements not only in the mesoscale circulation dominating the open GOM 357 

but also the smaller-scale processes prevailing along the shelf breaks, including the DeSoto 358 

Canyon region where the spill site is located. This is largely because in the identical twin 359 

setup, the intrinsic model structures (e.g., subgrid-scale parameterizations, horizontal and 360 

vertical resolution) for the “truth” and forecast model runs are identical so that an 361 

improvement in large-scale processes due to assimilation of SSH and SST can readily 362 

translate to an improvement in the simulated subgrid-scale processes. 363 

These results provide two examples of how the identical twin approach yields 364 

misleading impact assessments: 1) the improvement in subsurface fields resulting from 365 

assimilating SSH and SST is overestimated, and 2) the value of additional profiles is 366 
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underestimated. Undervaluing the information provided by a class of observational assets 367 

is particularly troublesome in the context of OSSEs. While this issue is well known in the 368 

context of atmospheric OSSEs (e.g., Arnold and Dey 1986; Atlas 1997; Hoffman and Atlas 369 

2016), it is not yet sufficiently recognized for ocean OSSEs and skill assessments of oceanic 370 

DA systems. Halliwell et al. (2014)’s set of design criteria and evaluation procedures for 371 

ocean OSSEs serves as guidance for designing twin experiments for a data-assimilative 372 

system. Their main criteria include 1) that the rate of error growth between simulated and 373 

observed states must be similar between the twin framework and reality, and 2) that the 374 

assimilation impact in the twin framework should be comparable to that of a realistic 375 

configuration assimilating actual observations. We found a similar rate of error growth in 376 

SSH in both twin experiments and in reality, and the impact of assimilation in the non-377 

identical twin experiment is found to be very similar to that in a realistic assimilation 378 

configuration presented in Yu ( 2018).  Thus our direct comparisons of identical versus 379 

non-identical twin not only lend support to the recommendation of using the non-identical 380 

over the identical twin approach, but also hint that assessing error growth in just one ocean 381 

property is insufficient. Additional criteria, such as a comparative assessment of skill 382 

between twin and realistic assimilation configurations as described in Halliwell et al (2014), 383 

are needed to obtain a more credible impact assessment from the twin framework. 384 

 385 

5. Conclusions 386 

We presented a direct comparison of non-identical and identical twin approaches 387 

for assessing data assimilation impact in an EnKF-based ocean DA system for Gulf of 388 

Mexico. To the best of our knowledge, this is the first direct comparison of non-identical 389 
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and identical twin approaches for an oceanic DA system and first demonstration of how the 390 

identical twin approach can yield misleading assessments in practice. Our comparisons 391 

show that the identical twin approach overestimates the improvement in model skill 392 

resulting from assimilating SSH and SST, including for the subsurface circulation, while 393 

underestimating the value of additional information from temperature and salinity profiles. 394 

In the context of observing system design, such biased assessments are problematic and can 395 

lead to misguided decisions on balancing investments between different observing assets. 396 

We conclude that skill assessments and OSSEs from identical twin experiments should be 397 

avoided or, at least, regarded with caution. While the non-identical twin approach is more 398 

robust, questions remain about how to best choose a credible framework. In our case, the 399 

rate of error growth in SSH alone appears to have been an insufficient criterion.  400 
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Code and data availability. The ROMS model code can be accessed at 401 
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outputs are publicly available through the Gulf of Mexico Research Initiative Information 403 

& Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org/ 404 

data/R5.x275.000:0009. HYCOM data can be downloaded at 405 
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Table 1. Mean Absolute Deviation (MAD) from the “truth” of physical variables for free 607 

and data assimilation runs in non-identical twin and identical experiments. The MAD were 608 

averaged over all grid cells excluding the shelves (defined by water depths < 300 m) and 609 

daily snapshots from 1 April to 1 October 2010.  At assimilation steps the forecast ensemble 610 

mean was used for the calculation. The percentage change relative to the free run is 611 

presented in parentheses.  612 

 613 
 SSH (cm) T (℃) S  U (m/s) 
Non-identical twin 
Free 11 0.72 0.15  0.21 
N1 (satellite only) 5.3 (-51%) 0.51 (-29%) 0.13 (-11%) 0.16 (-25%) 
N2 (satellite and scheme 1) 5.3 (-52%) 0.50 (-30%) 0.13 (-13%) 0.16 (-25%) 
N3 (satellite and scheme 2) 5.4 (-51%) 0.48 (-33%) 0.11 (-23%) 0.16 (-26%) 
Identical twin 
Free 10 0.58 0.093 0.20 
I1 (satellite only) 4.2 (-59%) 0.32 (-45%) 0.073 (-21%) 0.11 (-46%) 
I2 (satellite and scheme 1) 4.1 (-60%) 0.31 (-47%) 0.072 (-23%) 0.11 (-47%) 
I3 (satellite and scheme 2) 4.4 (-57%) 0.29 (-50%) 0.068 (-27%) 0.11 (-46%) 

  614 
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615 

Fig. 1. Model domain and bathymetry. The red star denotes the location of the DwH oil rig. 616 

(a) Sampling scheme for twin experiments N2 and I2. The symbols represent stations where 617 

temperature (circles) and salinity (magenta diamonds) profiles were collected by Shay et al. 618 

(2011), with deep temperature or salinity profiles (down to 1000 m) marked as filled circles 619 

or magenta diamonds and shallow temperature profiles (down to 400 m) as open circles. (b) 620 

Sampling scheme for N3 and I3. The dots represent stations where temperature and salinity 621 

profiles extending to 1000 m depth were sampled from the “truth” run. 622 



 623 

Fig. 2. Time series of MAD error (cm) averaged over the open Gulf (excluding shelf regions 624 

shallower than 300 m) for free run’s SSH in relative to the SSH from the satellite 625 

observation (black dashed line), the “truth” in the non-identical (red) and identical (blue) 626 

twin experiments, respectively. The corresponding colored solid lines are linear regressions 627 

of the time series, where the slope values represent the respective MAD error growth rate 628 

in unit of cm/day.  629 
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 630 

Fig. 3. Sea surface height (SSH, cm) and transect of salinity (S) on 28 May 2010. Panels 631 

(a) and (d) are from HYCOM and used as the “truth” in the non-identical twin experiments. 632 

Panels (b) and (e) are from ROMS and used as “truth” in identical twin experiments. Panels 633 

(c) and (f) are from the free ROMS run. The gray contour in the SSH maps marks the 634 

bathymetric depth of 300 m, and the red dashed line shows the position of the transect in 635 

panels (d-f). 636 
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 637 

Fig. 4. Time series of MAD averaged over the open Gulf (excluding shelf regions shallower 638 

than 300 m) for (a) SSH (cm), (b) temperature (T, ℃), (c) salinity (S), and (d) velocity (U, 639 

m/s) from the free run and non-identical twin runs. MAD of all physical variables except 640 

SSH were averaged over the entire water column. Black dashed lines in (a, b) denote the 641 

values of observation errors. Gray vertical lines indicate the assimilation steps. The gray 642 

area marks the 4-week period without data assimilation. 643 
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 644 

Fig. 5. The difference of physical variables’ time-averaged (daily snapshots from 1 April 645 

to 1 October) MAD between non-identical twin N1 and the free run. MAD of temperature 646 

and velocity were averaged over the entire water column. Negative values (cold colors) 647 

correspond to a decrease in MAD compared to free run, whereas positive values (warm 648 

colors) correspond to an increase. The gray contour marks the bathymetric depth of 300 m.  649 
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 650 

Fig. 6. The difference of physical variables’ time- and water-column-averaged (daily 651 

snapshots from 1 April to 1 October) MAD between non-identical twin N3 and the free run. 652 

Negative values (cold colors) correspond to a decrease in MAD compared to free run, 653 

whereas positive values (warm colors) correspond to an increase. The gray contour marks 654 

the bathymetric depth of 300 m. 655 

 656 

Fig. 7. Profiles of MAD averaged over the open Gulf (excluding shelf regions shallower 657 

than 300 m) and daily snapshots from 1 April to 1 October 2010 for (a) temperature (T, ℃), 658 

(b) salinity (S), and (c) velocity (U, m/s) from the free run and the non-identical twin runs.  659 
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Fig. 8. August-mean (a, b, c, c) temperature (T, ℃) and (e, f, g, h) salinity (S) at 400 m 661 

from the “Truth”, Free, N1 and N3 run in non-identical twin experiments. The white dot 662 

denotes the location of the Deepwater Horizon oil rig. The contours mark the 12 ℃ 663 

isotherm and 35.5 isohaline, respectively, where the black contours denote the isotherm or 664 

isohaline for the “truth” while red contours denote those for the actual simulation in each 665 

panel. The horizontal domain averaged MAD and Bias values at 400 m for each experiment 666 

in relative to the “truth” are also presented in respective panel.667 
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Fig. 9. August-mean velocity at 400 m in the (a, d, g, j) “truth”, (b, e, h, k) free and (c, f, I, 669 

l) N1 run in non-identical twin experiments. Panels in the 1st, 3rd and 4th columns are zoomed 670 

into the western shelf, central Gulf, and norther shelf, respectively. The white dot denotes 671 

the location of the DwH oil rig, and gray contours mark the bathymetric depths of 300, 672 

1000, 2000 and 3000 m, respectively.   673 
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Fig. 10. August-mean velocity at 400 m in the (a, d, g, j) “truth”, (b, e, h, k) free and (c, f, 675 

I, l) I1 run in identical twin experiments. Panels in the 1st, 3rd and 4th columns are zoomed 676 

into the western shelf, central Gulf, and norther shelf, respectively. The white dot denotes 677 

the location of the DwH oil rig, and gray contours mark the bathymetric depths of 300, 678 

1000, 2000 and 3000 m, respectively.   679 


