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Abstract. An improved understanding of the effects of floating solar platforms on the ecosystem is necessary to define ac-

ceptable and responsible real-world field implementations of this new marine technology. This study examines a number of

potential effects of offshore floating solar photovoltaic (PV) platforms on the hydrodynamics and net primary production in

a coastal sea for the first time. Three contrasting locations within the North Sea (a shallow and deeper location with well-

mixed conditions and a seasonally stratifying location) have been analysed using a water column physical-biogeochemical5

model (GOTM-ERSEM-BFM). The results show strong dependence on the characteristics of the location (e.g. mixing and

stratification) and on the density of coverage with floating platforms. The overall response of the system was separated into

contributions by platform-induced light deficit, shielding by the platforms of the sea surface from wind, and friction induced

by the platforms on the currents. For all three locations, light deficit was the dominant effect on the net primary production. For

the two well-mixed locations, the other effects of the platforms resulted in partial compensation for the impact of light deficit,10

while for the stratified location, they enhanced the effects of light deficit. For up to 20% coverage of the model surface with

platforms, the spread in the results between locations was relatively small, and the changes in net primary production were

less than 10%. For higher percentages of coverage, primary production decreased substantially, with an increased spread in

response between the sites. The water-column model assumes horizontal homogeneity in all forcings and simulated variables,

also for coverage with floating platforms, and hence the results are applicable to very large-scale implementations of offshore15

floating platforms that are evenly distributed over areas of at least several hundreds of square kilometers, such that phytoplank-

ton remain underneath a farm throughout several tidal cycles. To confirm these results, and to investigate more realistic cases of

floating platforms distributed unevenly over much smaller areas with horizontally varying hydrodynamic conditions, in which

phytoplankton can be expected to spend only part of the time underneath a farm and effects are likely to be smaller, spatial

detail and additional processes need to be included. To do so, further work is required to advance the water-column model20

towards a three-dimensional modelling approach.
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1 Introduction

With a growing world population and growing global energy demand, new options need to be explored to generate energy.

While traditional fossil fuels emit carbon dioxide and other harmful gases which cause global temperature to rise, renewable

forms of energy offer a sustainable alternative that can remediate climate change. Two of the most promising sources of re-

newable energy are the sun and the wind. Wind farms are built both onshore and offshore, but utility scale photovoltaic (PV)5

solar farms are until now installed only on land. Growing space constraints, higher land costs, increased public resistance and

competition with other functions will ultimately set a limit to the potential of onshore solar development, especially in densely

populated areas. Such constraints may be less relevant at sea, and offshore solar energy generation has huge potential.

Large scale floating solar farms, reaching up to 1.4 km2 (70 Mw) already exist inshore (https://www.pv-tech.org/news/worl10

ds-largest-floating-solar-plant-connected-in-china) and are rapidly being developed all around the world (da Silva and Branco,

2018). The effects of these structures on the ecosystem have been discussed mainly for standing water environments (Santafe

et al., 2014; Sahu et al., 2016; da Silva and Branco, 2018). These studies argue that (inshore) floating platforms decrease the

evaporation rate and increase water quality by reducing primary production due to the light deficit introduced by the platforms.

However, these studies did not investigate these effects in detail. The potential of offshore solar energy has recently been high-15

lighted in several policy roadmaps in The Netherlands, and the world’s first demonstration of an offshore solar farm of 50 Kw

is expected to be operational by the beginning of 2020 (https://www.reuters.com/article/netherlands-solar-offshore/dutch-plan-

to-build-giant-offshore-solar-power-farm-idUSL8N1Q46M0), stressing the need to investigate potential environmental effects.

At sea only a few small scale tests have been carried out with floating PV concepts (Trapani and Millar, 2012; Grech et al.,20

2016; swimsol.com/#lagoon, oceansun.no). There are substantial differences between offshore and inshore environments

caused by stronger winds, higher waves, and the presence of tides which causes the water column underneath the floating plat-

forms to be constantly replaced. Moreover, the water motion induced by wave and tidal processes suspend sediments, which

affect the under-water light climate and consequently net primary production (Wetsteyn and Kromkamp, 1994). Offshore float-

ing platforms have the potential to influence these processes. Hence, the effects of such platforms on marine ecosystems are25

expected to be different from those in standing (fresh) water, and require separate investigation. As of yet, there are no studies

that consider the possible environmental effects of offshore floating platforms on the marine ecosystem.

This study investigates the potential effects of large-scale arrays of offshore floating platforms on the ecosystem of coastal

seas such as the North Sea, adjacent to The Netherlands.
::::::::
Although

:::
the

:::::
study

:::::::
focussed

:::
on

:::::::
floating

:::
PV

:::::::::
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:::
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::::::
results30

:::
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:::::
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::
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:::::

other
:::::::
offshore

:::::::::
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:::
that

::::::
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:::::
wind

::::::
forcing

::::::
and/or
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light

:::::::::
penetration

::::::
and/or

::::::::
introduce

:::::::::
additional

:::::::
friction,

::::
such

::
as

:::
for

:::::::
instance

:::::::
seaweed

::::::
farms.

:
The North Sea is a relatively shallow marginal sea (average depth 74 m) of the Atlantic

Ocean. It is located between the continent of western Europe and the United Kingdom, and covers an area of about 570,000

km2 (Otto et al., 1990). The hydrodynamics of the North Sea are controlled by tides, winds and buoyancy gradients. In the shal-
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lower regions of the southern bight of the North Sea, tidal currents are strong and wind waves can cause substantial near-bed

wave-orbital velocities, resulting in well mixed conditions during the whole year (Sündermann and Pohlmann, 2011; Pickering

et al., 2012). In deeper areas further to the north, tidal currents are weaker and wave effects rarely reach the sea bed, allowing

temperature stratification during summer (van Leeuwen et al., 2015). Such stratification limits vertical exchange of nutrients

and determines the timing of the spring bloom (Sverdrup, 1953; Ruardij et al., 1997). We hypothesise that offshore floating5

platforms will modify currents, waves and stratification, and primary production. The platforms will induce light deficit un-

der water, reducing heat input and likely affecting temperature stratification. We also expect reductions in under-water light

intensity to affect phytoplankton growth. The friction of the rigid platforms with the tidal currents and shielding of the water

surface from the wind are expected to result in weaker currents. The platforms can also be expected to have an impact on

waves. Changes due to these forcings will affect turbulence and the resulting vertical mixing, suspended sediment and nutrient10

concentrations, and phytoplankton growth.

Here, we assess three contrasting locations in the North Sea for which time-series observations of hydrographic and biologi-

cal quantities are available: a shallow and a deeper well-mixed site, and a seasonally stratified site. We focus on changes in net

primary production induced by the effects of floating platforms on the physical environment. In absence of field observations15

with floating platforms present, we used a water-column model to obtain first estimates of the potential effects of covering part

of the sea-surface area on hydrodynamics and net primary production. We have made the necessary assumptions such that these

estimates are near the upper limits of the effects. This model allowed for easy development and testing of the implementation

of the effects of the floating structures on light (light deficit), wind forcing (shielding) and currents (platform friction). For

more detailed, spatially resolved results, and to include additional processes, substantial further work is needed.20

The following research questions are addressed in this paper:

1) What is the overall potential effect of floating platforms on the net primary production at different locations in the North

Sea as a function of coverage density?25

2) What is the relative importance of the individual effects of platform-induced light deficit, wind shielding and platform

friction?

3) For which percentages of coverage does the model suggest noticeable changes in the response of primary production?30
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2 Material and Methods

2.1 Study sites and observations

Three study sites were selected for which time-series observations of hydrographical and biogeochemical variables were

available, with contrasting hydrographic conditions: Oyster Grounds (54.41° N, 4.02° E), Noordwijk-10 (52.301° N, 4.303° E)

and West Gabbard (51.9895° N, 2.08983° E) (figure 1). Oyster Grounds is located at 45 m depth, and stratifies every summer5

between April and October (Tijssen and Wetsteyn, 1984). It is characterized by relatively low tidal current velocities, low sus-

pended sediment concentrations and low primary production. The sites West Gabbard and Noordwijk-10 are located at 32 m

and 18 m depth respectively. Both locations are characterized by relatively strong tidal currents, high suspended sediment con-

centration and high primary production (van der Molen et al., 2016; https://data.gov.uk). The West Gabbard location remains

well mixed during the entire year. The Noordwijk-10 location can stratify by combined temperature and salinity effects when10

river outflow is high (de Kok et al. , 2001). For the purpose of this study, we ignore salinity effects at Noordwijk-10, which

may lead to an under-estimation of the occasional stratification.

At the three study sites, time-series observations were collected using SmartBuoys deployed by the Center for Environ-

mental Fisheries and Aquaculture Science (Cefas) (www.cefas.co.uk/publications-data/smartbuoys). SmartBuoys are moored,15

automated, multi-parameter recording platforms which are used to collect marine environmental data. They measure, at 1 m

below the sea surface, salinity, temperature, turbidity, oxygen saturation, chlorophyll fluorescence and nitrate and silicate con-

centration. Data were collected in 10-minute bursts; here we have used daily averages. The buoys also collected and preserved

water samples which were used to calibrate the sensor data. For this study, we used observations from the following years:

from 2006 to 2008 for Oyster Grounds and West Gabbard, and from 2001 to 2002 for Noordwijk-10.20

2.2 Model description

For the purpose of this work the coupled physical-biogeochemical model GOTM-ERSEM-BFM was used. The General

Ocean Turbulence Model (GOTM; Burchard et al. (2006); www.gotm.net) is a public domain, one-dimensional Finite Differ-

ences water column model that includes the most important hydrodynamic and thermodynamic processes related to vertical25

mixing in natural waters. The model solves the one-dimensional vertical (1DV) Reynolds-averaged Navier Stokes equations

and the Reynolds-averaged transport equations of temperature and salinity, under the Boussinesq and hydrostatic approxima-

tions. In this offshore application of GOTM, salinity was considered constant. The model was forced with meteorological

hindcast data obtained from the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-40 (datasets/data/e

ra40-daily/levtype=sfc/). Moreover, it was forced with time series of depth-averaged tidal velocities reconstructed from the30

harmonic analysis of a 3D model (van der Molen et al., 2017). The model uses these depth-averaged velocities to set up spatial

gradients of external pressure that it uses as forcing. GOTM uses all these forcings, including bed-shear stress, to calculate the

time-evolution of vertical distributions of turbulence and currents (Burchard et al., 2006). It is also possible to explicitly force
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Figure 1. Map with the Smartbuoy stations of Oyster Grounds (OG), West Gabbard (WG) and Noordwijk-10 (NW)

.

GOTM with spatial gradients, e.g. to simulate salinity stratification (Simpson et al., 2002), but this was not used here.

Coupled with GOTM, the European Regional Seas Ecosystem Model-Biogeochemical Flux Model (ERSEM-BFM) was

used. ERSEM-BFM is a development of the model ERSEM III (Baretta et al., 1995; Ruardij et al., 1997; Vichi et al., 2007;

van der Molen et al., 2018; www.nioz.nl/en/about/cos/ecosystemmodelling). It is a pelagic-benthic ecosystem model describ-5

ing the biogeochemical fluxes in the lower trophic levels of the marine food web. The model simulates the cycles of carbon,

nitrogen, phosphorus, silicate and oxygen, allowing for variable internal nutrient ratios within the different groups. Within

the 1D model context, nitrogen, phosphorus and silicate are fully conserved. N2 gas produced by denitrification processes

is fed back immediately as nitrate in the form of atmospheric deposition. Carbon and oxygen are exchanged with unlimited

atmospheric pools at constant concentration. The model applies a functional group approach and contains six pelagic phy-10

toplankton groups (diatoms, flagellates, picophytoplankton, resuspended benthic diatoms, dinoflagellates and phaeocystis),

four zooplankton groups and five benthic faunal groups (four macro-fauna and one meio-fauna groups). Pelagic and benthic

aerobic and anaerobic bacteria are also included. The model also simulates suspended particulate matter (SPM) concentra-

tions in response to waves and currents, which influence the under-water light conditions and net primary production (van der

Molen et al., 2017). A simple wave model (based on the Sverdrup-Munk-Bretschneider method, U.S. Army Corps of Engi-15

neers (1984), see van der Molen et al., 2014) is used to calculate significant wave height, period and direction. Resuspension

of detritus is coupled to the resuspension of sediment. As inclusion of phaeocystis without a riverine nutrient source led to

spurious interannual variations, it was excluded from the calculations.

The model calculates light attenuation in the vertical, accounting for absorption by 1) clear water, 2) colored dissolved20

organic matter (CDOM) 3) suspended mineral sediment, 4) chlorophyll, and 5) suspended organic matter (detritus). For a
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mathematical description of light attenuation in the model, see Appendix B.

2.3 Implementation of platforms

GOTM-ERSEM-BFM was modified to allow representation of the spatially-averaged effects of the floating platforms on the

hydrodynamics and ecosystem dynamics of the water column. The model accounted for the platforms through the introduction5

of three individual effects that can be activated separately or together: the light deficit due to the platforms, shielding of the

water surface from the wind and the friction of the platforms acting on the currents. The implementation allowed for variable

platform coverage as a fraction of the model surface. As the model represents averaged conditions over a unit surface area at

each depth interval, it can not distinguish between different ways of distributing this coverage over the unit surface area, nor

include details of platform dimensions or design, and for the purpose of this study we assume the coverage to be distributed10

uniformly in space, in an area-averaged sense. The platform-induced light deficit and the wind shielding effects were expressed

by a linear reduction of surface irradiance and surface wind stress with coverage. The frictional effects of the platforms on the

currents was represented, in similarity to the bottom friction, by an additional surface shear stress that was calculated with the

logarithmic law of the wall, applied as a linear function of coverage. For mathematical expressions of the implementation of

the floating structures, see Appendix A. In absence of design details of operational systems, the roughness of the platforms is15

as yet not known, and may also vary during deployment due to biofouling. As a first approximation, the roughness height of the

floating structures was assumed equal to that of the sea bed (h0s = 0.05 m). A series of experiments with varying values of h0s

between 0.0125 and 0.4 m was carried out to provide insight into sensitivity of the model results to this parameter. Apart from

coverage, this was the only parameter associated with the addition of floating platforms to the model. A sensitivity analysis of

other parameters is beyond the scope of this paper, and the reader is referred to section 3.1 for a comparison with observations.20

2.4 Model setup and initial conditions

For each site, a water-column model was set up with 40 vertical levels with increased resolution near the surface and bottom.

Time steps were 300 s for the hydrodynamics, and 3600 s for the biology. Site-specific values for the porosity of the sea bed

and salinity were defined based on observations (table 1). The light-extinction factor for suspended sediment (the contribution25

to the light-extinction coefficient by suspended sediment is this factor multiplied by the suspended sediment concentration)

was kept at the standard value for West Gabbard and Noordwijk-10, but twice the standard value for Oyster Grounds as that

gave better results. As the water-column model is a closed system that conserves nitrogen, phosphorus and silicon, it can only

reproduce observations if the total amount for each nutrient integrated across all ecosystem components reflects the average

amount present in the vicinity of the site. In absence of direct observations of the amounts of nutrients in all ecosystem com-30

partments, we tuned the initial concentrations of nitrate, silicate, phosphate and benthic detritus in such a way that the model

results, after a spin-up period of 26 years, matched the observed biogeochemical data as well as possible for each site. Benthic

detritus is by far the largest pool of carbon and nutrients in the model, so using it to set the nutrient content of the 1D model
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Table 1. Site-specific constants.

Site-specific constants
Oyster

Grounds
Noordwijk-10

West

Gabbard

Porosity of

sea bed
0.423 0.45 0.45

Light-extinction

factor SPM (m2kg−1)
1.1 ×10−4 0.55 ×10−4 0.55 ×10−4

Salinity (psu) 35 30 35

in combination with a long spin-up of more than twice the response time of the benthic system to re-distribute this content

appropriately within the ecosystem is a simple and effective tuning approach. Because for two of the three sites only a few

years of observations were available, and differences between years had to be accounted for in the tuning process, we did not

have enough data for an independent validation of the model. The tuning of the initial conditions of the model was done by

minimising the value of the root mean square (RMS) error and maximising the value of the correlation coefficient between5

the modeled and observed time series for chlorophyll-a, nitrate and silicate. The model setup with initial values that gave the

minimum RMS error and maximum correlation was chosen for the simulations.

2.5 Model experiments

The resulting model was run for the period 1972-2008 for each site, providing daily outputs. The first 26 years were con-10

sidered as spin-up and only the years 1998-2008 were taken into account for the results. A reference run without platforms

was carried out first. Subsequently, four scenarios were defined to investigate the separate effects of 1) platform-induced light

deficit, 2) wind shielding, 3) platform friction, and 4) to simulate the combined overall effect. For each effect, model runs

were conducted for different values of coverage fraction (0.1-1.0 in steps of 0.1). The high end of this range may never be

reached in practical applications, but was included here for completeness. The sensitivity of the time-averaged (over the whole15

run period), depth-integrated values of modeled net primary production to platform coverage was evaluated for the different

effects and the different locations, and the relative change was calculated compared to the reference run without platforms. To

investigate the model response in more detail, climatological depth-integrated yearly time series and vertical profiles averaged

over the 1998-2008 period were also calculated and compared. Finally, for each site, and for the combined overall effect of the

platforms, the sensitivity of the modeled net primary production to the roughness of the platforms was investigated by setting20

the values of the roughness height of the platforms to h0s= 0.0125, 0.025, 0.05, 0.1, 0.2 and 0.4 m.

7



Table 2. Final values of model’s tuning parameters.

Tuning parameters
Oyster

Grounds
Noordwijk-10

West

Gabbard

Initial nitrate

concentration (mmol/m3)
6 21 21

Initial silicate

concentration (mmol/m3)
5 40 7.5

Initial phosphate

concentration (mmol/m3)
0.15 1.2 0.15

Initial benthic detritus

concentration (mmol/m2)
1.5 ×105 6 ×105 1.8 ×105

3 Results

3.1 Tuning initial conditions

The resulting values of the tuning parameters, the initial concentrations of nitrate, silicate, phosphate and benthic detritus, are

given in table 2. The values of the minimum RMS error and maximum correlation coefficient between modeled and observed

time series are given in table 3. The results of the model with tuned initial conditions were compared with the observations for5

chlorophyll-a (figure 2, panels a,d,g), nitrate (panels b,e,h) and silicate (panels c,f,i).

Over all, the model reproduced the seasonality of the three locations well. For silicate and nitrate the agreement between model

and observations was better for the locations of Oyster Ground and West Gabbard than for Noordwijk-10 (see also Table 3).

For chlorophyll-a, the model reproduced the seasonal cycle at the three sites, but underestimated the high concentrations dur-

ing the spring bloom at West Gabbard and Noordwijk-10 (figure 2). These locations are characterised by frequent blooms of10

phaeocystis (Blauw et al., 2010) (excluded from the model because inclusion led to spurious interannual variability within the

1D model context, see Section 2.2).
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Figure 2. Assessment of the model’s performance (blue line) for the three locations through comparison with observations from the Smart-

buoys (red crosses). The variables of chlorophyll a (panels a,d,g), nitrate (panels b,e,h) and silicate (panels c,f,i) are presented.

3.2 Sensitivity of net primary production to coverage

3.2.1 Comparison between locations

To compare the effect of floating platforms between the three locations (research question 1), the relative change in net

primary production was plotted as a function of coverage (Figure 3). The response was different at each of the three loca-

tions, but all sites showed, with increasing coverage, a limited reduction in net primary production followed by an accelerated5

reduction leading to a strong decline of net primary productivity. Taking all sites together, three ranges of coverage can be

distinguished. From 0% to approximately 20% coverage the difference in response between the three locations was relatively

small. Also, the impact of the floating platforms on net primary production was relatively small (less than 10% reduction),

while for West Gabbard even a small increase was simulated because of a reduction in suspended sediment concentrations (see
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Table 3. The RMS error and correlation coefficient, after tuning, between the modeled and observed time series for chlorophyll-a, nitrate and

silicate.

Oyster

Grounds
Noordwijk-10

West

Gabbard

RMS error

chlorophyll-a (mg/m3)
1.22 4.26 4.44

RMS error

nitrate (mmol/m3)
1.30 7.57 3.55

RMS error

silicate (mmol/m3)
1.51 6.55 1.97

correlation coeff.

chlorophyll-a
0.36 0.39 0.51

correlation coeff.

nitrate
0.79 0.59 0.72

correlation coeff.

silicate
0.70 0.59 0.81

below for more detail). Within this range of coverage, the two well-mixed locations appeared more resilient to the effects of

the platforms than the stratified location of Oyster Grounds. From roughly 20% to approximately 40% coverage an increased

spread in the results occurred between the three sites. Beyond approximately 40% of coverage, the net primary production at

the two well-mixed locations sloped down rapidly. A similar decline at the Oyster Grounds occurred later, at 60-80% coverage.

These results suggest a different response for the stratified than for the two well-mixed locations. The two well-mixed loca-5

tions appeared more resilient to small percentages of coverage, while they experienced an earlier decline of primary production.

The resilience of the well-mixed locations for small percentages of coverage with floating platforms can be explained by the

migration of their spring bloom towards the sunnier summer months (Figure 4) and by the compensating effect of decreased

surface suspended sediment (Figure 5 b) on irradiance (Figure 5 a). In contrast, the timing of the spring bloom at the stratified10

location of Oyster Grounds, which is known to coincide with the onset of stratification (Ruardij et al., 1997), did not change

substantially for coverage up to at least 60% (Figure 4c).

Considering irradiance near the surface (Figure 5a), for small percentages of coverage, a weaker reduction of subsurface

irradiance occurred at the two well-mixed locations in response to a stronger reduction of suspended sediment at the surface15
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Figure 3. Relative change against the reference of net primary production with increasing coverage under the overall effect of floating

platforms for the three locations of the experiment.

(figure 5b), which allowed more light to penetrate the water column. The change in surface suspended sediment concentration

with coverage followed the behavior of subsurface eddy diffusivity (figure 5c) in accordance with theory, as lower values of

eddy diffusivity result in less upward mixing of suspended sediment (Burchard et al., 1999). For the two well mixed locations,

the change in eddy diffusivity, and subsequently in suspended sediment near the surface, was caused mainly by the effect of

friction of the platforms on the currents (figure 6 a,b). Figure 6 and 7 illustrate the above for West Gabbard, while the response5

of Noordwijk was similar. For 10% of coverage eddy diffusivity decreased strongly due to platform friction (figure 6 a). This

led to a decrease of suspended sediment in the upper water column (figure 6 b). Platform friction reduced velocity near the

surface (figure 7 a). However, the effect near the bottom was minor, leading to no significant effect on suspension of sediment.

On the other hand, the change in the shape of the velocity profile resulted in small (or zero) vertical gradients of velocity at mid

depths and large vertical gradients of velocity near the surface (figure 7 a). This led to an increase of shear production (and thus10

turbulent kinetic energy) near the surface and a decrease at mid depths (figure 7 b), affecting eddy diffusivity and suspended

sediment concentration (eddy diffusivity is proportional to the the second power of turbulent kinetic energy). According to

figure 7 b, the depth of the layer of increasing turbulence increased with coverage. Thus, the subsurface layers experienced a

strong decrease in eddy diffusivity for low percentages of coverage while further increase of coverage led to increasing values

of eddy diffusivity (figure 5c). For the Oyster Grounds location, where tidal currents are weaker, the effect of wind shielding15

was more important. There, the reduction of wind forcing resulted in a gradual decrease of turbulence and eddy diffusivity over

the whole water column.

The later strong decline of primary production for high percentages of coverage at the Oyster Grounds location can be

explained by the effect of the platforms on stratification. Figure 8 shows the time-averaged vertical profile of net primary20

production (a) and the yearly time series of surface mixed layer depth (the depth where turbulent kinetic energy is becoming

lower than 10−5 m2/s2) (b), for different percentages of coverage. The reduction of the depth of the surface mixed layer

with coverage (figure 8b) that followed the reduced mixing due to wind shielding, resulted in upward displacement of the net

11



Figure 4. Depth-integrated yearly time series (averaged over 1998-2008) of net primary production for the three locations of the experiment.

The results are presented for different scenarios of coverage under the overall effect of floating platforms.

primary production maximum that is located below the surface mixed layer (figure 8a). Due to its shift towards the surface

and hence towards the light, the subsurface maximum of time-averaged net primary production increased, as the effect of the

upwards shift outweighed the light deficit induced by the platforms. A reduction of time-averaged net primary production

occurred within the surface mixed layer (figure 8a), as a thinner layer holds less nutrients. Above 60% of coverage, insufficient

light reached the thermocline in summer, and the net primary production maximum observed at the stratified location of Oyster5

Grounds disappeared. The collapse of the net primary production maximum was accompanied by an increase of net primary

12



Figure 5. Relative change against the reference of (a) irradiance at 3 meters depth, (b) suspended sediment at the surface and (c) eddy

diffusivity at 3 meters depth. The results are presented for increasing values of coverage under the overall effect of floating platforms for the

three locations of the experiment.

production within the surface mixed layer, observed even for 90% of coverage with floating platforms. This explains the later

strong decline in primary production for this location.

13



Figure 6. Vertical profiles of (a) eddy diffusivity and (b) suspended sediment concentration (averaged over 1998-2008) for the location of

West Gabbard. The results are presented for the reference scenario (coverage=0%), and for 10% coverage under the overall effect and the

overall effect excluding platform friction.

3.2.2 Contributions to changes in net primary production by separate processes

To compare the importance of the individual effects of the floating platforms (platform-induced light deficit, wind shielding,

platform friction) (research question 2) the response of net primary production to the different effects is presented in figure 9.

The light deficit was the dominant factor for all three locations. For the two well-mixed locations (figure 9 a and b) platform

friction increased primary productivity, resulting in an overall effect that was smaller than the individual effect of the light5

deficit. In contrast, for Oyster Grounds, the impact of the light deficit effect was enhanced in particular by wind shielding

(figure 9c). Reduced mixing resulting from wind shieldingprevented a later
:
,
:::::
which

:::
by

::::
itself

::::::
would

:::::
result

::
in

::
an

::::::
earlier onset of

stratificationand spring bloom that would otherwise be caused by ,
::::::::
balanced the effect of the light deficit (decreased buoyancy

input)
:::::
which

:::
by

::::
itself

::::::
would

:::::
result

::
in

:
a
::::
later

:::::
onset

::
of

::::::::::
stratification

::::
and

:::::
spring

::::::
bloom. It thus prevented the partly compensating

effect of a later spring bloom on net primary production that occurred at the well-mixed sites
:::::
where

:::::::::::
stratification

:::
did

:::
not

:::::
occur10
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Figure 7. (a) Vertical profiles of velocity and (b) turbulent kinetic energy (averaged over 1998-2008) for the location of West Gabbard. The

results are presented for different scenarios of coverage under the overall effect of floating platforms.

:::
and

:::::
where

::::::::
therefore

::::
wind

::::::::
shielding

:::::
could

:::
not

:::::
have

::::
much

:::::
effect

:::
on

:::
the

::::::
timing

::
of

:::
the

:::::
spring

::::::
bloom.

3.2.3 Roughness of the platforms

To assess the uncertainty introduced by the assumed value of the roughness height of the platforms (h0s=0.05 m), and to

evaluate the potential importance of the platform design and maintainance, model runs were conducted for different values5

of h0s. For coverage up to 20%, the difference was small for all sites (Figure 10). At the well-mixed sites (panels a,b), for

higher levels of coverage (>40%), the range of values of platform roughness showed a spread in the impact of the floating

platforms on the net primary production equivalent to a difference of approximately 10% in coverage, by modifying the eddy

diffusivity, and thus the suspended sediment concentration near the surface. For the Oyster Grounds location (panel c) and

coverage levels higher than 60%, the increase in roughness height compensated the impact of the installations on net primary10

production to some extent. This compensating effect for high values of the roughness height on net primary production is not

15



Figure 8. Vertical profiles of (a) net primary production and (b) yearly time series of top mixed layer depth (averaged over 1998-2008) for

the location of Oyster Grounds. The results are presented for different scenarios of coverage under the overall effect of floating platforms.

fully understood, but may be related with the deeper surface-mixed layer under higher values of roughness height.

4 Discussion and conclusions

The direct and indirect effects of floating platforms on net primary production have been analysed for three contrasting

locations in the North Sea using a water-column model, showing overall reductions for increasing levels of coverage. Three5

response regimes were identified. In regime 1 (less than approximately 20% coverage), the three locations were relatively re-

silient to the presence of the platforms, and the reduction of net primary production was relatively small (less then 10%). This

seems to be a relatively robust response, that can possibly be extrapolated to other sites in the North Sea. In regime 2 (approx-

imately 20-40% coverage), a substantial spread in the results occurred between the sites. Thus, no general site-independent

conclusions can be drawn. In regime 3 (more than approximately 40% coverage), all three curves sloped down rapidly, albeit10

at different levels of coverage. This again is a similar and robust response indicating serious disruption of the ecosystem, ulti-
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Figure 9. Relative change against the reference of net primary production with coverage, for the three locations of the experiment under the

different effects as a function of coverage with floating platforms.

mately leading to a full collapse.

The water-column model assumes a ’unit’ horizontal extent and spatial homogeneity, not only in terms of the oceanographic

and biogeochemical properties but also in terms of coverage with floating platforms. As the spatial homogeneity assumption

implies having the same conditions into infinity, it is not immediately clear how the water-column model results can be related5

to solar PV farms of a finite extent. We can, however, provide a rough estimate of a minimum spatial scale needed to start to

17



Figure 10. Relative change against the reference of net primary production with coverage, for the three locations of the experiment and

different values of roughness height of the platforms (h0s)

approximate spatial homogeneity. To obtain equivalent (changes in) primary production conditions as simulated by the water-

column model, phytoplankton, which are transported by the tides, would need to spend a significant amount of time underneath

a farm of a certain size (longer than they can chemically buffer solar energy photosynthesized before they were advected into

or out of the farm area). Hence, as tides generate the dominant currents in the North Sea, we could take the tidal excursion

length as a measure of minimum horizontal size corresponding to the conditions simulated by the water-column model: if a5

farm is smaller, it does not conform to the spatial homogeneity assumption of the model because individual phytoplankton cells

18



would be advected into and out of the farm on a time scale of hours. Considering the M2 harmonic constituent as the dominant

tidal component, taking the tidal current amplitudes at the three locations from a three-dimensional model, and integrating over

half a tidal cycle (6.25 hrs), the estimated tidal excursion lengths are 3.3 km for Oyster Grounds, 7.3 km for Noordwijk-10

and 12.5 km for West Gabbard (Table 4). For solar PV farms smaller than this length scale, the modelled reductions in net

primary production presented here may be over-estimates, and simulations with spatially resolved models are needed to obtain5

more accurate results. A similar argument holds if substantial residual currents are present in addition to tides. We also note

that the results presented here are based on the assumption that platforms are distributed homogeneously in space. Estimates

of potential modulations of the current results that may be induced by inhomogeneous distributions of platforms in space can

only be made with spatially resolved models.

10

Table 4. M2 tidal velocity amplitudes, Estimated tidal excursion length as the Minimum length scale of farms with floating platforms for

which the water-column model results are valid.

Location M2 tidal velocity

amplitude

Estimated tidal

excursion length

Oyster Grounds 0.23 m/s 3.3 km

West Gabbard 0.87 m/s 12.5 km

Noordwijk-10 0.51 m/s 7.3 km

These first model simulations have ignored a number of physical and biological processes that should be considered in fur-

ther work. The implementation of PV-coverage with a 1DV model does not allow for a realistic representation of the spatial

configuration of a solar power plant, the characteristics of which (e.g., the distance between platforms, service lanes) could

result in a different response of the ecosystem, as they would influence the horizontal light diffusion below the platforms and

the development of the surface boundary layer from friction with the platforms. Moreover, wave-platform interactions and their15

effects on the mixing of the water column and the resuspension of sediment have been ignored in this study and may well de-

pend on platform dimensions. To account for these processes in further work, simulations with three-dimensional (3D) models

are needed. Also, additional ecosystem components could be considered in a three-dimensional model, such as phaeocystis in

areas with high nutrient loads, and growth of hard-substrate flora and fauna on the platforms. It may also be possible that there

are effects on atmospheric properties (effect of platforms on the wind) and air-sea gas exchange.20

We used three contrasting and relatively data-rich locations in the North Sea for this first study to illustrate the effects of

floating platforms on net primary production. The differences in the response between the sites indicate that studying new loca-

tions will add valuable information. The study focused on the response of the marine (eco)system to floating platforms in terms

of water-column structure and net primary production, but other quantities with indicator qualities should also be considered25
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in further work, such as changes in sediment transport, disturbance of the balance of organisms, and the integrity of the sea bed

in terms of biomass, species composition and biogeochemical functioning. A good next step would be an examination of the

effects of floating platforms with a local high-resolution 3D model. The water-column model as presented here can, despite its

limitations, be used as a test bed to support further work.

5

This first study was carried out as an exploratory investigation of potential effects and mechanisms, and has elucidated the

principle response of the ecosystem. Extreme care should however be taken to use the results for specific planning purposes,

and in principle further investigations should be carried out for specific cases. However, as a rough rule of thumb, in absence

of better data/models/knowledge, adopting the precautionary principle, and disregarding other effects and criteria that were

not considered here (e.g., ecosystem variables other than net primary production, impact on waves, impact of biofouling on10

the biogeochemistry, specific spatial distribution of floating structures within a farm, acceptable levels of impact, political and

planning considerations, etc.), we recommend that real-world field implementations of floating infrastructure in the marine

environment should not enter regimes 2 (too uncertain) and 3 (significant disturbance). This implies that, according to our

results, coverage density should not exceed approximately 20% for farms of a size in the order of magnitude of the local tidal

excursion length or larger. We also advise that for general and individual cases ’acceptable’ levels of impact are defined and15

motivated, and further work is carried out to improve understanding of environmental effects of floating (solar PV) platforms,

or any other large floating infrastructure in the marine environment such as large-scale seaweed farming, in general and for

specific cases.

Appendix A: Mathematical implementation of the floating structures20

The incident radiation with floating structures is given by

I ′0 = (1−C)I0 (A1)

with I0 the incident radiation without platforms, and C the coverage fraction a number between 0 and 1. The surface wind

stress with floating structures , assuming that the platforms do not affect the wind speed, is given by

τ ′w = (1−C)τw (A2)25

with τw the surface wind stress vector without platforms.
::::
This

::::
wind

:::::
stress

::
is

::::::
applied

::
as

::
a
:::
flux

::::::::
boundary

:::::::::
condition. The surface

shear stress
:::::::::
(normalised

:::::
with

:::::::
density) by floating structures, according to the logarithmic law of wall, and assuming that the

platforms are large compared with the development distance of the platform boundary layer, is given by

τ ′s =−rsu||u||C (A3)
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Here, u is the velocity vector in the surface cell given by

u=
u∗s

κ
ln

(
z0s +h/2

z0s

)
,

withu∗s :
at

:::
h/2

:::::
below

:::
the

:::::::
surface,

:::::::
resulting

::::
from

:::
the

:::::::::
numerical

:::::::::
integration

::
in

::::::
GOTM

:::
and

::
rs::

is
:::
the

::::::
surface

::::
drag

:::::::::
coefficient

::
of

:::
the

::::::
floating

:::::::::
structures.

::::
This

::::::
friction

::::::::::
shear-stress

::
is

::::::
applied

:::
as

:
a
::::
sink

::::
term

::
in

:::
the

::::::::::
momentum

::::::::
equations.

:::
To

::::::
include

:::
the

:::::::::::
contribution

::
by

:::::::::
molecular

:::::::
viscosity

::
to
:::

the
:::::::

surface
:::::::::
roughness

::
of

:::
the

:::::::::
structures,

:::
the

::::
drag

::::::::
coefficent

:::
rs ::

is
::::::::
calculated

::::::::
assuming

::
a
::::::::::
logarithmic5

::::::
velocity

::::::
profile

::
in

:::::::
analogy

::
to

:::
the

:::::::::::::
implementation

:::
of

::::::
bottom

::::::
friction

::
in

:::::::
GOTM.

::::
This

::
is

:::
by

::::::::
iteratively

:::::::
solving

:::
the

::::::::
equations

:::
for

::
rs,

:
the frictional velocity at the underside of the floating structures

:::
u∗s,

::::
and

:::
the

::::::
surface

::::::::
roughness

::::::
length

:::
z0s,

:::::
given

:::
the

:::::::
velocity

:::::
vector

::
in

:::
the

::::::
surface

::::
grid

::::
cell

::
u.

::::
The

::::::::
equations

:::
for

::
rs,

:::
u∗s:and rs the surface drag coefficient of the floating structures given

by
::
z0s::::

are:

rs =

(
κ

ln( z0s+h/2
z0s

)

)2

, (A4)10

where κ is the Von Kármán constant ,
:::
and h the height of the surface cell, and z0s the surface roughness length of the floating

structures, defined by

u∗s = u
√
rs

::::::::::
(A5)

:::
and

z0s = 0.1
ν

u∗s
+0.03h0s. (A6)15

Here
:::::
where, ν = 1.3E-6 (m2/s) is the molecular (kinematic) viscosity, h0s the mean height of the roughness elements at the

bottom of the platform ,
:::
and

:
u∗s the magnitude of the friction velocityand the

:::::::
frictional

:::::::
velocity.

::::
The

:
scalar factors are from

(Burchard et al., 1999).

Appendix B: Mathematical description of light attenuation20

The radiation at different depths of the water column is given by

I ′(z) = I ′0 e
−kd(h−z) (B1)

where I ′0 is the incident radiation, h the water depth, z the height above bed and kd is the total extinction coeficient, due to

scattering and absorption processes, and is given by

kd = kd,w + kd,cdom + kd,spm + kd,chl + kd,det (B2)25

with kd,w, kd,cdom, kd,spm, kd,chl and kd,det the extinction coefficients due to clear water, colored dissolved organic matter,

(mineral) suspended sediment, chlorophyll and detritus, respectively.
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