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Abstract. The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile 

and vulnerable to ocean warming. Several studies have analysed the spatiotemporal evolution of the 

temperature in the Red Sea using satellite data, thus focusing only on the surface layer and covering the 

last ~30 years. To better understand the long-term variability and trends of the temperature in the whole 15 

water column, we produce a 3D gridded temperature product (TEMPERSEA) for the period 1958-2017, 

based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden. After a 

specific quality control, a mapping algorithm based on optimal interpolation has been applied to 

homogenize the data. Also, an estimate of the uncertainties of the product has been generated. The 

calibration of the algorithm and the uncertainty computation has been done through sensitivity 20 

experiments based on synthetic data from a realistic numerical simulation.  

TEMPERSEA has been compared to satellite observations of sea surface temperature for the period 1981-

2017, showing good agreement specially in those periods with a reasonable number of observations were 

available. Also, very good agreement has been found between air temperatures and reconstructed sea 

temperatures in the upper 100 m for the whole period 1958-2017 enhancing the confidence on the quality 25 

of the product.  

The product has been used to characterize the spatio-temporal variability of the temperature field in the 

Red Sea and the Gulf of Aden at different time scales (seasonal, interannual and multidecadal). Clear 

differences have been found between the two regions suggesting that the Red Sea variability is mainly 

driven by air-sea interactions, while in the Gulf of Aden, the lateral advection of water also plays a 30 

relevant role. Regarding long term evolution, our results show only positive trends above 40 m depth, 

with maximum trends of 0.045 + 0.016 ºC decade-1 at 15 m, and the largest negative trends at 125 m (-

0.072 + 0.011 ºC decade-1). Multidecadal variations have a strong impact on the trend computation, and 

restricting them to the last 30-40 years of data can bias high the trend estimates. 
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1 Introduction 

The Red Sea is a narrow basin, meridionally elongated (2250 Km), lying between the African and the 40 

Asian continental shelves, and extending from 12.5 °N to 30 °N with an average width of 220 Km (Figure 

1). It is a semi-enclosed basin connected to the Indian Ocean through the Bab-al-Mandeb Strait at the 

south and to the Mediterranean Sea through the Suez Canal at the north. The bathymetry is highly 

irregular along the basin, with a relatively shallow mean depth (524 m; (Patzert, 1974), but with 

maximum recorded depths of almost 3.000 m. At its northern end, it bifurcates into two gulfs, the Gulf of 45 

Suez on the West with an average depth of 40 m and the Gulf of Aqaba on the East with depths exceeding 

1.800 m (Neumann and McGill, 1961). 

The transport through the Suez Canal, which connects the Mediterranean Sea with the Gulf of Suez and 

the Red Sea, is relatively small, and therefore, the only significant connection between the Red Sea and 

the global ocean is the Strait of Bab-al-Mandeb (Sofianos et al., 2015). Due to its arid setting, the Red Sea 50 

experiences one of the largest evaporation rates in the world, which in combination with its semi-enclosed 

nature leads to high salinities across the whole basin (Sofianos et al., 2015). The hydrodynamic 

characteristics are strongly influenced by the wind forcing with different seasonality. The seasonal winds 

blow south-eastwards in the northern part of the basin through the whole year, but in the southern region, 

the winds reverse form north-westerly in summer to south-easterly in winter under the influence of the 55 

two distinct phases of the Arabian monsoon, (Patzert, 1974; Sofianos, 2015).  

The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and 

vulnerable to ocean warming (Thorne et al., 2010). Water temperature plays a key role in ecosystems 

evolution, which are usually adapted to the environmental thermal range. Marine species respond to 

ocean warming by shifting their distribution poleward and advancing their phenology (Poloczanska et al., 60 

2016). While parts of the ocean may be warming gradually, others may experience rapid fluctuations, 

inducing more significant impacts on biodiversity. Impacts of warming are likely to be greatest in semi-

enclosed seas, which tend to support warming rates higher than the global ones (Lima and Wethey, 2012), 

as documented for the Red Sea (Chaidez et al., 2017). 

Several recent studies have analysed the spatiotemporal evolution of the temperature in the Red Sea using 65 

satellite data from AVHRR (Advanced Very High-Resolution Radiometer), thus focusing only on the 

surface layer and covering from early 1980's onwards. Those studies have identified a warming trend with 

values ranging from 0.17 ºC decade-1 to 0.45 ºC decade-1  across the basin for the period 1982-2015  

(Chaidez et al., 2017). Also, sea surface temperature exhibits a strong interannual variability (Eladawy et 

al., 2017) which is mainly driven by the air temperature (Raitsos et al., 2011).  However, these studies are 70 

limited to ~30 years due to the observational period of remote data. Also, although the evolution of 

surface conditions is very relevant, the temperature variability in the whole water column has effects on 

marine biota (Bongaerts et al., 2010), so products based on depth-resolving in situ observations better 

reflect the thermal regime across the ecosystem than sea surface trends alone.  

Global hydrographic products like EN4 (Good et al., 2013) or ISHII (Ishii and Kimoto, 2009) that 75 

interpolate in-situ observations to create a monthly 3D product for the last decades are available. 

However, those products have low spatial resolution (~1º) and the quality controls applied are not region 

specific, which cast doubts on their accuracy in the narrow Red Sea. In order to overcome the limitations 
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satellite products and global hydrographic products have, and to be able to characterize the spatiotemporal 

variability of the 3D temperature field to inform research on the thermal ecology and variability of Red 80 

Sea ecosystems, a dedicated regional observational product is required.  

Here we produce a gridded temperature product for the period 1958-2017 at monthly resolution as a 

resource to describe the evolution of the Red Sea temperature during the last six decades and underpin 

research on the impacts of ocean warming across the Red Sea. The product covers the Red Sea and the 

Gulf of Aden with a spatial resolution of 0.25°x 0.25°. This product is based on the assimilation and 85 

reanalysis of a large number of in situ observations collected in the region. After a specific quality 

control, a mapping algorithm has been applied to homogenize the data. Also, an estimate of the accuracy 

of the product has been generated to accurately define the uncertainties of the product. We then use the 

product to characterize the seasonal, interannual and multidecadal variability of the 3D temperature field 

in the Red Sea and the Gulf of Aden. 90 

 

Figure 1: Domain and bathymetry of the region included in the TEMPERSEA product. The three zones used 

in the presentation of results (North, South and Outer) are identified by grey lines. (data source: 

https://www.gebco.net/data_and_products/gridded_bathymetry_data). 

2 Data and Methods 95 

2.1 In situ data 

In situ temperature observations were obtained from two databases. The first one is CORA (Cabanes et 

al., 2013), a delayed mode product designed to feed global reanalyses. CORA covers the global ocean 

from 1950 to 2016 and integrates quality controlled historical profiles from several data collections 

(Argo, GOSUD, OceanSITES and World Ocean Database). The details of this database can be found in 100 

http://www.coriolis.eu.org/Science2/Global-Ocean/CORA and it  is freely delivered by the Copernicus 

https://doi.org/10.5194/os-2019-66
Preprint. Discussion started: 11 July 2019
c© Author(s) 2019. CC BY 4.0 License.



4 

 

Marine Service (http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=INSITU_GLO_TS_REP_OBSERVATIONS_01

3_001_b). 

The second source of data is the database collected by King Abdullah University of Science and 105 

Technology (KAUST), from 2010 to 2018. It includes all the data collected by KAUST in the Red Sea 

through different platforms (floats, ships, gliders, Argo). The data has been quality controlled with 

specific criteria for the Red Sea and will be used here as the reference dataset, (Karnauskas and Jones, 

2018). 

2.2 Satellite data 110 

Two sources of remote sensed sea surface temperature (SST) data are used. The first dataset is obtained 

from the National Ocean and Atmosphere Agency (NOAA) and is based on AVHRR (Advanced Very 

High-Resolution Radiometer) over the period 1981 -2017. These data have a spatial resolution of 

0.25°x0.25°, and can be obtained at monthly temporal resolution from the National Center for 

Environmental Information (NCDC-NOAA, ftp://ftp.ncdc.noaa.gov/pub/data/).  115 

The second source of data is OSTIA, a global product generated by UK Met Office (Roberts-Jones et al., 

2012). OSTIA merges in situ data from the ICOADS dataset with satellite data from infra-red radiometers 

over the period of 1985 to 2007. The dataset has a spatial resolution of 0.25°x0.25° and monthly temporal 

resolution, (http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_0120 

10_011). To complete the data from 2007 to 2018 another L4 OSTIA product is used, (Bell et al., 2000). 

Both OSTIA products are merged after a cross validation is performed. The data is available at 

(http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_0

10_001).The main difference between NOAA and OSTIA products is that the later uses the in situ data to 125 

correct the satellite data, (Roberts-Jones et al., 2012). 

2.3 Model data 

The outputs from a realistic numerical model are used to perform synthetic observational experiments that 

help to calibrate the mapping algorithm. The model chosen has been the GLORYS.S2V4 global 

reanalysis. It is performed with NEMOv3.1 ocean model with a horizontal resolution of 0.25º and 75 130 

vertical z-levels. It is forced by ERA-Interim atmospheric fields (Dee et al., 2011) for the period 1993 to 

2015. GLORYS assimilates along track satellite observations of sea level anomaly, sea ice concentration, 

SST and in situ profiles of temperature and salinity from CORA data base. More details can be found in  

(Garric and Parent, 2018) and the data is available at (http://marine.copernicus.eu/services-

portfolio/access-to-135 

products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025). 
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2.4 Data quality control 

Prior to the generation of the gridded product it is important to be sure that individual profiles are reliable. 

In situ profiles in CORA have been quality controlled using an objective procedure and a visual quality 

control (Cabanes et al., 2013). However, the objective quality control process was originally tuned for the 140 

global ocean, therefore requiring an additional review of the profiles inside the region of interest by a 

visual quality control.  

First, we have reviewed all the profiles to remove spikes, out layers and density inversions. In a second 

step, we have checked the consistency between the CORA profiles and the profiles collected by KAUST, 

which are considered to be more reliable as they have been thoroughly analysed by the KAUST data 145 

centre with specific criteria adapted to the region. That assessment has been performed separating the Red 

Sea profiles (North and South regions in Figure 1) from the profiles obtained south of the Bab-al-Mandeb 

strait, (Outer region, see Figure 1). 

All the profiles in both regions are shown in (Figure 2), along with the 1st and 99th quantiles of the 

KAUST profiles (only inside the Red Sea, black lines). It can be seen that two different regimes appear 150 

inside the Red Sea and are clearly identifiable by the temperatures below 500 m. Those profiles with 

temperatures colder than 20ºC below 500 m show a behaviour which is typical of the outside region, 

while such pronounced cooling with depth is absent from the KAUST profiles. Thus, those profiles are 

probably misplaced inside the Red Sea, which coldest temperatures at depth exceeds 20 ºC, were rejected.  

For the rest of the profiles, those lying outside a range defined by three times the standard deviation (blue 155 

lines in Figure 2) are also rejected.  

 

 

Figure 2: CORA profiles inside the Red Sea (left) and in the outer region (right). The 1st and 99th quantiles of 

the KAUST profiles are shown in black. The range defined by 3 times the STD of the CORA profiles is shown 160 
in blue.   

After applying the quality control, 11191 profiles are kept inside the Red Sea (82 % of initial profiles) and 

30522 are kept in the outer zone (88 % of initial profiles). The number of observations per year and per 

zone is shown in Figure 3. For the outer zone, there is a large number of observations reaching more than 
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1500 profiles in some years except during the period 1990-2000 in which the number of observations 165 

decreased. Regarding the Red Sea, the number of profiles per year in both zones is usually around 200, 

although in some periods there is a noticeable lack of data (e.g. during the 70s and between 2004 and 

2010). In 2001, in the North zone, there is a peak of observations due to an intensive campaign carried out 

during the summer of that year. 

Considering the number of observations per month (Figure 3), we can see that it remained almost constant 170 

through the year in the Southern zone. In contrast, the Northern region is more density sampled in 

summer, reaching up to more than 1000 observations in July, with roughly 500 observations on average 

per month during the rest of the year. Regarding the outer zone, the number of observations per month are 

between 2000 and 3000, with more samples obtained during the first half of the year. 

 175 

 

Figure 3: Number of observations per year (top). Number of observations per month (bottom). North zone in 

yellow, South zone in grey and Outer zone in blue. 

2.5 Mapping Algorithm 

In situ observations provide a basis for many oceanographic and meteorological applications. However, 180 

the number of observations is limited in space and time and statistical methods must be often applied to 

homogenize the dataset to be fitted for climate studies and/or model validation (Larsen et al., 2007). We 

used a classical optimal interpolation algorithm (henceforward OI) to generate 3D gridded monthly 

temperature maps from individual in situ profiles (henceforward called TEMPERSEA product).  

OI is an algorithm that estimates the optimal value of the field as a linear combination of available 185 

observations and a background (i.e. first guess) field, with weights determined from the statistics of 
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observational and background errors.  The weights are obtained minimizing the variance of the analysis 

error (e.g. Jordà & Gomis, 2010). Assuming we have N observations to be mapped into M grid points, the 

analysed field at a given position r  can be written in matrix form as: 

Ʋ̂(𝑟) = 𝐵𝐾 + 𝑆𝑇 ∗ 𝐷−1 ∗ 𝑑 
             (1) 

 190 

Where 𝐵𝐾 is a M-vector with the background field, S is a NxM matrix containing the covariances of the 

field between the observation and grid locations, D is a NxN matrix containing the covariances between, 

and d is the N-vector of observed anomalies with respect to the background field: 

𝑑 =  𝑦𝑜𝑏𝑠 − 𝐵𝐾(𝑟𝑜𝑏𝑠) 
            (2) 

 

The observations are not perfect, and assuming that observational errors are not correlated with the true 195 

field, the covariance matrix D can be split into the sum of two matrices;  

𝐷 = (𝐵 + 𝑅) 
            (3) 

 

where the elements of 𝐵 describe the covariance of the true field between pairs of observation points 

(𝐵𝑖𝑗 = Ʋ̃(𝑟𝑖)Ʋ̃(𝑟𝑗)) and R contains the observational error covariances (𝑅𝑖𝑗 = Ɛ𝑖Ɛ𝑗). In our case we 

assume observational errors are decorrelated, so R becomes a diagonal matrix with observational error 200 

variances in the diagonal. To sum up, the value of the analysis field at point r is given by  

Ʋ̂(𝑟) = 𝐵𝐾 + 𝑆 ∗ (𝐵 + 𝑅)−1 ∗ 𝑑 
(4) 

 

For convenience, covariance matrices can be transformed to correlation matrices dividing by the field 

variance σ̃2 This implies that the diagonal elements in 𝑅 are now defined as𝛾2 =  
ε2

σ2 , the noise-to-signal 

ratio. The correlations of the field between different locations and times is modelled using a Gaussian 205 

function for the spatial component and an exponential por the temporal component:  

𝜌 =  𝑒
−𝑑𝑖𝑗

2

2∗𝐿2 ∗ 𝑒
𝑡𝑖𝑗

2

𝑇  

(5) 

 

Where 𝑑𝑖𝑗  is the distance between points 𝑖, 𝑗 , and 𝑡𝑖𝑗 is the time lag.𝐿 is the spatial correlation length 

scale, and 𝑇 is the time correlation scale. 

The parameters,  𝐿, 𝑇 and γ , have been determined from sensitivity experiments using synthetic data. In 210 

particular, GLORYS fields are considered as the “truth”. Temperature profiles are extracted from 

GLORYS outputs at the same time and location than the actual profiles were obtained. Then, the mapping 

algorithm is applied to those synthetic profiles and the outputs from the analysis are compared to the 

original GLORYS fields. Thus, we can estimate the optimal value for L and γ parameters that minimizes 
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the error of the mapping algorithm provided the characteristics of the observational network and the field 215 

variability. The parameter 𝑇 has been estimated computing the autocorrelation time scale from the 

GLORYS fields. The analysis is performed over a grid with a spatial resolution of 0.25°x0.25° and 23 

vertical depth levels unevenly distributed (Figure 4). 

 

Figure 4: (Left) Analysis grid used in the generation of TEMPERSEA product. (Right) Depth levels. 220 

The background (BK) used in TEMPERSEA is a 12-month climatology. This climatology is computed 

merging all available observations for each month and then applying the OI algorithm to them. However, 

the number of profiles is often large and the inversion of the 𝐷 matrix in (1) can be ill-conditioned when 

profiles are too close (i.e. at a distance much lower than the correlation length scale). Thus, before the OI 

algorithm is applied, a data thinning is performed using a K-means algorithm. This clustering technique 225 

divides the whole set observations into a predefined number of clusters (Camus et al., 2011). In this case, 

each cluster represents the mean value of all the observations close to a centroid location. An example is 

presented in Figure 5. for the month of January. Once we have defined the reduced set of observations 

grouped per months, the OI algorithm (1) is applied using 𝐿𝑏𝑎𝑐𝑘 = 150 Km and ϒ𝑏𝑎𝑐𝑘  = 0,1. No time 

correlation is considered for the computation of the climatology. Those parameters have been obtained 230 

from sensitivity experiments as explained before, which also have shown that the data thinning does not 

degrade the quality of the background field. 
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Figure 5: (Left) distribution of all the available observations for January (n=2705). (Right) distribution of 

observations after applying the K-means algorithm (n=135). 235 

Once the climatology is computed, the analysis is performed on the anomalies with respect to it. Thus, the 

total temperature is computed as the combination of the background and the analysed anomaly field (see 

(4)). For months or locations lacking observations the analysis will tend to the deliver background field 

(i.e. second term in the right-hand side of equation (4) is zero). The parameters used for the analysis are 

L= 200 km, T= 2 months and γ= 0,1. An example of the results of the analysed temperature anomalies for 240 

two consecutive months is shown in Figure 6. 

 

Figure 6: Analysed temperature anomaly field for October 1958 (left) and November 1958 (right). The dots 

represent the location and value of the observations used in the analysis of each month. 

2.6 Product error 245 

One of the advantages of the OI formulation is that it also provides an estimate of the error covariances 

(or correlations) associated to the analysis. The MxM analysis error covariance matrix ∑̂ is given by  

∑̂ =  𝐺 − (𝑆𝑇(𝐵 + 𝑅)−1𝑆) ∗ σ̃2 (6) 

 

Where the entries of the 𝑀𝑥𝑀 matrix 𝐺 are the correlations of the background error between pairs of 

analysis points, 𝑆, 𝐵 and 𝑅 have been defined above and σ̃2 is the variance of the field. The latter is 250 

estimated from the outputs of GLORYS model. We are particularly interested in the diagonal terms of  ∑̂, 

which give the analysis error variance (Ɛ̂2) at each of the 𝑀analysis points. 
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The formal estimate of the analysis error variance given by (6) depends on the number and distribution of 

observations as well as on the parameters chosen, but not on the observations themselves. Therefore, it is 

useful to have a first-order estimate of the accuracy of the formal error estimates. To do so we perform a 255 

test using synthetic data from GLORYS outputs. That is, we extract pseudo-observations from GLORYS 

temperature fields, apply the mapping algorithm as defined above and compare the outputs with the 

original model fields to obtain the "true" errors. Figure 7a shows the time evolution of the RMS 

difference between the GLORYS outputs and the background (√σ̃2) averaged per vertical levels, where 

the std of the errors in the background field was used as an estimate of the error in the temperature field.  260 

This is an important quantity as it defines the baseline error that our product has in places/times when no 

observations are available. Error estimates are largest at 125 m depth, with a clear seasonality in the upper 

layers. Below 300 m the background errors decrease well below 1ºC, except in some periods at 1000 m in 

which GLORYS data show strong deep anomalies. Concerning the spatial distribution of the background 

errors (Figure 8a), values average 0.57ºC at 7 m, with higher values along the Arabian coasts and in the 265 

Gulf of Aden, where background errors reach 1ºC. At 125 m the averaged background error is 1.12 ºC, 

with minimum values in the central Red Sea (0.5ºC) and maximum values in the Gulf of Aden (~1.5ºC), 

where interannual variability is more important and the climatological background is less representative 

of the temperature field. Figure 7b shows the time evolution of the RMS error of the analysed temperature 

field is presented. Although the main features seen in the background errors are present, it is clear to that 270 

using OI improves the estimate of the temperature field compared with the use of climatology, with a 

reduction rate ranging from 1.3 to 1.6 (i.e. errors reduced between 30% and 60%). The RMS error maps 

at 7 m show the averaged value to be reduced to 0.44 ºC, and in most areas the reduction rate is larger 

than 1.5. At 125 m the RMS error is larger again in the Gulf of Aden but the reduction rate ranges 

between 1.2 and 1.5. Finally, the formal error estimates are slightly lower (about 20% lower) than the 275 

"true" error (Figure 7c and Figure 8 right). However, it is able to capture the seasonality, the maximum at 

125 m, and the higher values around 1200 m. The error decreased between 1975 and 1990, due to the 

higher number of observations distributed in space and time during that period (Figure 7), as also 

reflected in the "true" error. The formal error replicates the same spatial structure as the "true" error does, 

both at the surface layer and at 125 m. The magnitude of the formal error is slightly lower than the "true" 280 

error (basin averages are 0.31ºC and 0.44ºC, respectively, at the surface, and 0.71ºC and 0.88ºC, at 125 

m). 
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Figure 7: (a) Standard deviation (√𝝈̃𝟐)of the background errors (in ºC). (b) RMSE (in ºC) of the analysis fields 

obtained using synthetic data from GLORYS. (c) Formal error (√Ɛ̂𝟐, in ºC). 285 

 

Figure 8: Horizontal distribution of the RMSE (in ºC) of the background (left) and OI (centre), and formal 

error (right). The results are shown for 7 m depth (top) and 125 m depth (bottom). 

Computing the formal error using (6) allows us to derive the formal estimate of the errors when 

computing regional averages. The formal estimate of the regional average can be computed as:  290 
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Ɛ𝑎𝑣
2 =

1

𝑀2
∑ 𝑒𝑖𝑒𝑗

𝑖𝑗

 
(8) 

Where Ɛ𝑎𝑣
2  represents the error of the average, 𝑀 is the length of analysis points and ∑ 𝑒𝑖𝑒𝑗𝑖𝑗  is the sum of 

the error covariances between all the pairs of points included in the averaging. Figure 9 shows the time 

evolution of the formal estimate of the average temperature in the north zone (in grey) with the "true" 

error obtained from synthetic observations (in blue). Obviously, the formal error cannot capture the actual 

error at each month (i.e. is a statistical approximation), but it can be seen that it fits the std of the "true" 295 

errors. Also, it is able to identify the periods in which the errors decrease (between 1975-2000) due to the 

larger density of observations. Therefore, the formal estimate seems to be a reasonable estimate of the 

analysis error.  

 

 300 

Figure 9: Comparison of the formal error of the temperature average in the North area with the "true" error 

when the algorithm is applied to synthetic data. Results shown for (a) 7m depth and (b) 125 m depth. 

3. Results 

3.1 Comparison with satellite results 

We compared the first level fields with satellite data from AVHRR and OSTIA as an independent 305 

evaluation of the TEMPERSEA product. The monthly variability of regionally averaged temperature 

anomalies from TEMPERSEA shows good agreement with the satellite estimates (Figure 10). Monthly 

variations of ~1ºC are captured by all the products as well as variations at lower frequencies. During the 

periods with few observations the analysis anomalies tend to zero, so the discrepancies with the satellite 

products increase. The correlation with AVHHR ranges between 0.42 and 0.61 and between 0.39 and 310 

0.51 with OSTIA (Table 1).  Discarding the periods with few in situ observations (i.e. with formal error > 

0.15ºC) the monthly correlations reach 0.67 and 0.61, respectively. Regarding the RMSE the values range 

between 0.43 and 0.48 ºC for AVHRR and 0.38 and 0.49 ºC for OSTIA. It must be noted that the SST 
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value of TEMPERSEA corresponds to the first level of the product, 2 meters. This level represents the 

mean value of the profile temperature from the surface to 4 meters of depth. In contrast, the satellite 315 

products take the value of the temperature on the first mm of the water column, and consequently the 

variability of the satellite data is larger than TEMPERSEA. Finally, both satellite estimates, although 

highly correlated (0.86-0.91) show important discrepancies, with RMS differences of 0.21-0.24ºC (Fig. 

10, Table 1).  

 320 

 

Figure 10: Monthly anomalies of regionally averaged SST in the three zones, north (top), south (middle) and 

outer (bottom). The three datasets are shown for the common period: Tempersea (yellow line), AVHRR (blue 

line), OSTIA (red line). The grey patch represents the uncertainties estimated for the TEMPERSEA product. 

  North zone South zone Outer zone 

  
Correlation RMSE (ºC) Correlation RMSE (ºC) Correlation RMSE (ºC) 

TEMPERSEA -

SAT(AVHRR) 0.61(0.67) 0.48(0.47) 0.42(0.48) 0.43(0.48) 0.47(0.58) 0.43(0.44) 

TEMPERSEA -

SAT(OSTIA) 0.51(0.61) 0.49(0.50) 0.39(0.47) 0.38(0.44) 0.43(0.47) 0.41(0.43) 

SAT(AVHRR) - 

SAT (OSTIA) 0.91 0.24 0.86 0.23 0.87 0.21 

Table 1: Statistics of the comparison of regionally averaged SST monthly anomalies between TEMPERSEA, 325 
AVHRR and OSTIA. In brackets the values when only periods with enough in-situ observations (i.e. formal 

error <0.15ºC) are considered. 

3.2 Monthly Climatology 

We used TEMPERSEA to characterize the thermal regime of the Red Sea. The averaged field at the 

surface is characterized by temperatures ranging from 25.5°C in the northern part of the Red Sea to 29ºC 330 
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in the southern part, with a strong gradient at around 20°N (Figure 11a). In the outer region SST's are 

lower ranging from 26.5°C in the Indian Ocean to 28°C in the Gulf of Aden. Temperatures > 23.5°C are 

found until a depth of 125 m inside the Red Sea, while only above 50 m in the Gulf of Aden (Figure 11b, 

c). Below those depths there is a contrasting difference between the two regions, with temperatures in the 

Red Sea being relatively stable (~22-24°C) through the water column, while temperature decrease almost 335 

linearly with depth in the Gulf of Aden, reach 5ºC at 1500 m depth, due to the oceanic influence 

(Sofianos et al, 2015).  

 

Figure 11: Average temperature from TEMPERSEA computed for the period 1958-2017. (a) Averaged SST. 

Dots indicate the location of the vertical section shown in the following figures. (b) Vertical section (c) zoom of 340 
the vertical section for the upper 300 m. The black line indicates the isotherm of 23.5 °C. 

The seasonal thermal evolution in the Red Sea, characterized as the anomaly of the monthly climatology 

relative to the annual mean, is characterized by negative anomalies in surface temperatures relative to the 

annual mean reaching  -4 ºC in February across the whole basin (Figure 12). Maximum positive 

anomalies are found in July-August, reaching ~4ºC in the northern part and ~+2-3ºC in the southern part. 345 

This implies that the amplitude of the seasonal cycle is larger in the northern than in the southern Red 

Sea. Minimum negative anomalies with respect to the annual mean in the outer region were found in 

August (~-2ºC) and maximum anomalies (~+3ºC) are found in May, with both these anomalies being 

larger in the open ocean than in the Gulf of Aden. 
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 350 

Figure 12: Monthly climatological anomalies of the surface temperatures with respect to the annual mean (in 

ºC).   

A seasonal thermal regime is only detected above 80-100 m in the Red Sea, being larger in the shallowest 

layers. In the Red Sea (Gulf of Aden) the larger negative anomalies are found in February (August) and 

the larger positive anomalies are found in August (May). The Gulf of Aden presents large seasonal 355 

variations between 50 and 200 m, with departures from the annual mean range from -4ºC to +4ºC from 

August/September to April/May. 
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 360 

Figure 13: Monthly climatology of temperature anomalies along the section depicted in Figure 11a, with a 

zoom in the 0-300 m layer. 

The seasonal evolution of the depth of the thermocline, defined here as the depth showing the maximum 

vertical temperature gradient, was computed for each grid point and then averaged regionally (Figure 14). 

In the Red Sea the thermocline was deeper in February and shallower in the summer months, as expected. 365 

However, a clear difference is found between the northern and southern regions. In the northern part the 

thermocline is deeper, reaching 80 m in February, while in the southern part it is rather constant with 

monthly-averaged values ranging from 35 m to 50 m. In the outer region, the thermocline is deeper with 

maximum values of 100 m in March-May and minimum values of 70 m in September-October.  

 370 

Figure 14: Seasonal evolution of the regionally averaged depth of the thermocline. 
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3.3 Interannual variability 

In the Red Sea, the std of interannual variations of the basin averaged temperature at the sea surface and 

the upper layer (0-100 m) are 0.33 ºC and 0.34 ºC respectively (Figure 15), an order of magnitude lower 375 

than the seasonal changes. At the intermediate and bottom layers interannual changes are smaller (0.08 ºC 

and 0.04ºC, respectively), but in those layers the seasonal variations are negligible, so the relative 

importance of low frequency changes is larger. In the outer region, interannual changes are larger in all 

layers (Figure16) with a yearly std of 0.38 ºC and 0.45 ºC in the sea surface and the upper layer (0-100m), 

respectively. In the intermediate layer the interannual std is 0.21 ºC, more than twice larger than in the 380 

Red Sea, probably associated to lateral advection of water masses from the Indian Ocean. In the bottom 

layer, the yearly std is lower, 0.05 ºC, but still larger than in the Red Sea.  

To characterize if the interannual variability of the temperature field is the same along the year, we have 

computed the standard deviation of the time series per months (i.e. 60 values per month; Figure 14). In 

the Red Sea, the interannual variations are relatively small, with a std ranging from 0.20°C in January to 385 

0.70ºC in November, being quite homogeneous along the basin. In the Gulf of Aden, the interannual 

variations are larger, particularly from May to November, when std exceeds 1ºC. The rest of the year the 

std of the interannual variations are smaller (< 0.5ºC). 

 

 390 
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Figure 15: Time series of yearly averaged temperature (in ºC) in different layers (a) SST, (b) 0-100 m, (c) 100-

500 m and (d) 500 m - bottom, in the Red Sea. Black dots indicate the monthly values with formal error below 

0.2ºC. Note the different vertical axis in each subplot. 
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 395 

Figure16: Time series of yearly averaged temperature (in ºC) in different layers (a) SST, (b) 0-100 m, (c) 100-

500 m and (d) 500 m - bottom, in the outer region. Black dots indicate the monthly values with formal error 

below 0.2ºC. Note the different vertical axis in each subplot. 
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Figure 17: Std of the interannual variations of surface temperature por months (in °C). 400 

In the water column, the largest interannual variations are found in the Gulf of Aden, at the same location 

where the monthly anomalies were the largest, between 50 and 150 m (Figure 18). The std there even 

exceeds the values in the surface layer, ranging from 1°C in February to up to 2ºC in September. Inside 

the Red Sea, the interannual variability decreases with depth, with a std < 0.1ºC below 200 m (Figure 18).  
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 405 

Figure 18 Vertical section along the Red Sea and Gulf of Aden of the std of interannual variations per months 

(in ºC). 

3.4 Multidecadal changes 

The assessment of the long-term changes of the temperature field is of paramount relevance as they can 

shape the characteristics of the local ecosystems and may help characterize the impacts of global warming 410 

in the region. Careful examination of the interannual time series suggests that multidecadal changes are 

over imposed to the interannual variability. To highlight this, we extract the multidecadal variability 

applying a moving average with a 10-year window to the monthly time series (Figure 19). In the Red Sea, 

the low frequency component of the temperature time series in the upper layer show a monotonous 

decrease from the 1960's reaching a minimum in mid 1980's increasing monotonically since then. In the 415 

late 1960's, the temperatures were similar to those in the present decade, both being ~0.4ºC above the 

minimum.  A similar pattern applies to the intermediate layer, but the minimum was reached a decade 

later, in the mid 1990's. In this case, the difference between the maximum and the minimum was 0.2ºC, 

with present temperatures ~0.05ºC below those in the 1960's. In the bottom layer the maximum was 

found in the early 1980's, while a minimum was found at the end of the 1990's. The shift in the 420 

multidecadal minima may be reflect heat transfer between layers, but available information is insufficient 

to assess this possibility.  

In the outer region, the low frequency component of the temperature in the upper layer shows an almost 

regular warming since the 1960's, with a relative minimum in the mid 2000's. In the intermediate layer a 

more complex behaviour is observed, with two relative minima (in early 1980's and mid 2000's), a 425 

relative maximum in the mid 1990's and a clear warming since mid 2000's. The evolution in the deeper 

layer is similar to the intermediate layer except that no clear warming is observed since the 2000's.  
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Figure 19: Low-pass filtered temperature time series (in ºC) at different layers in the Red Sea and the Outer 430 
Region. A 10-year moving average has been applied to the monthly time series. Note the different vertical axis 

in each subplot. 

Finally, we computed the long-term trends in the Red Sea and the outer region at different depths. To do 

so, we considered that in some months there were few observations, and therefore analysed temperature 

anomalies were close to 0. So, in order to avoid biases in the trend estimates, months in which the formal 435 

error is greater than 0.15ºC are not considered in the computation.  

Trends computed for the whole TEMPERSEA time series (1958-2017; Figure 20a), show only positive 

trends above 40 m depth, with maximum trends of 0.045 + 0.016 ºC per dec at 15 m, and the largest 

negative trends at 125 m (-0.072 + 0.011 ºC per dec). In the outer region trends are positive in the whole 

water column, except between 100 m and 250 m. Maximum trends were found at 15 m (0.12 + 0.01 ºC 440 

per dec) and the largest negative trends at 175 m (-0.035 + 0.013ºC per dec). For completeness, we also 

computed the linear trends for the satellite period (1985-2017; Figure 20b). As the period cover by 

satellite observations includes the recent period of monotonous warming, trends are positive above 250 

m, with maximum values found at 50 m depth (0.27 + 0.04 ºC per dec). The largest negative trends are 

observed at 400 m (-0.04 + 0.01 ºC per dec). In the outer regions, trends are positive above 800 m, with 445 

maximum values at 15 m (0.16 + 0.03ºC per dec). 
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Figure 20: Vertical distribution of temperature trends (in ºC/decade) for the Red Sea (in blue) and the Outer 

Region (in red). The linear trends have been computed for the period (a) 1958-2017 and (b) 1985-2017. Note 

the different horizontal axis in each subplot. 450 

4 Discussion 

The TEMPERSEA product provides a homogeneous gridded record of temperature in the whole water 

column based on quality-controlled in situ observations over the last 60 years. Therefore, it is a valuable 

complement to the more accurate, but limited on time and depth, satellite-based products. As usual in 

gridded products, the accuracy of TEMPERSEA is directly linked to the density of in situ profiles, which 455 

is rather heterogeneous in space and time. Therefore, us of the TEMPERSEA product should take into 

account the uncertainty estimates. Our comparison of the formal error estimates and direct estimates 

based on synthetic experiments suggest that the uncertainty estimates, both at grid point level and for the 

basin averages, are accurate and are a good indicator of the reliability of the product at a given 

time/location.  460 

This is especially relevant when long term trends are to be computed. The mapping procedure is a 

combination of the information provided by the background and by the observations. In cases 

when/where no observations are available the analysis tends to the background information, which is a 

monthly climatology that does not change from year to year. This fact artificially damps the estimates of 

long-term trends (e.g. Llasses, Jordà, & Gomis, 2015), so a careful treatment is needed. Our approach has 465 

been to compute trends using only those months that have enough observations (i.e. identified as those 

with formal error below a certain threshold). Alternatively, (Good et al., 2013), use the analysis of the 

precedent month as the background field. This allows the propagation of long-term changes and may 

produce a better estimate of the long-term trends. However, it also may induce spurious trends if 

sustained periods without observations exist (i.e. several years), so this approach should be careful 470 

explored in future analyses of TEMPERSEA. 

Another interesting feature of the uncertainty estimate is that it allows identification of sampling 

strategies that have led in the past to high accuracies, and thus that could be used to guide future 

monitoring efforts of Red Sea temperatures. The formal error decreases with the number of observations, 

but the spatial distribution of the observations also plays an important role. In TEMPERSEA more than 475 
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70 months in which the error is as low as 0.1ºC with less than 10 observations have been identified 

(Figure 21). Conversely, in some months with intensive campaigns more than 500 profiles have been 

collected, but the formal error did not decrease further. The reason for this is that observations separated 

less than the typical correlation length scale (i.e. the spatial scale of the process dominating the 

temperature variability) provide redundant information. On the other hand, we have identified months in 480 

which, surprisingly, no observations were gathered in the Red Sea. As mentioned before this represents a 

serious limitation to accurately quantify long term changes. Therefore, if the goal is to characterize the 

climatic evolution of the Red Sea temperature an optimized sampling should be designed to minimize the 

number of required profiles, with approximately less than 10 profiles needed per month. However, this 

should be repeated monthly, or at least seasonally, to ensure the continuity of the record and to reduce the 485 

noise in the long-term change estimates. 

 

Figure 21: Scatter plot of the formal error vs log of the number of observations per month used to compute the 

maps. 

TEMPERSEA has allowed to characterize the 3D variability of the temperature field in the Red Sea and 490 

the adjacent Arabian Sea, which show a different behavior. In the Red Sea most variability is induced by 

surface processes with little variability at intermediate or deep layers. Conversely, in the Gulf of Aden 

and the Arabian Sea the influence of lateral advection seems to play an important role in inducing a shift 

in the seasonal cycle and large interannual variations in subsurface layers. In order to get a deeper insight 

in the role of the atmosphere in the sea temperature variations, we analysed air temperatures at 1000 495 

mbars (representative of air in contact with sea surface) and 850 mbars (representative of air masses not 

directly affected by air-sea interactions). In particular we used the output from the JRA55 atmospheric 

reanalysis for the period 1958-2014 (HARADA et al., 2015), and extend it with the output from the 

NCEP reanalysis (Kanamitsu et al., 2002) for the period 2014-2017. Before merging both datasets we 

ensured homogeneity in terms of mean and variance during the common period. The air temperatures 500 

have been averaged over the Red Sea and the outer region and compared with the sea temperatures at 

different layers. In order to isolate the interannual variations we have removed the multidecadal variations 

using a 10-year moving average high-pass filter.  

In the Red Sea the results show a very good correlation between air temperature at 1000 mbar and 

temperatures at the sea surface and in the 0-100 m layer (correlations of 0.78 and 0.81, respectively; see 505 

Figure 22 and Table 2). When air temperature at 850 mbar is used, the correlations decrease but are still 

high (0.68 and 0.69, respectively). This means that most interannual variations in the upper layer of the 

Red Sea can be explained by large scale changes in air temperature. A non-negligible part (~15% of the 

variance) can be attributed to air-sea interactions. The effects of atmosphere variability are also detected 

in the intermediate layer, where the correlation is 0.45. no statistically significant correlations were found 510 

in the deeper layers. Concerning the Gulf of Aden, the correlation between air and sea temperatures is 

lower and restricted to the upper layer (see Table 2). This reinforces the hypothesis that lateral advection 

plays an important role in driving the interannual variations of temperature in the Gulf of Aden and the 

Arabian Sea. 

 515 
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 Red Sea Outer Zone 

 
T air 1000 

mbar 
T air 850 mbar 

T air 1000 

mbar 
T air 850 mbar 

Sea Surface 0.78 0.68 0.57 0.47 

Sea 0-100m 0.81 0.69 0.43 N/S 

Sea 100-500m 0.45 0.37 N/S N/S 

Sea 500 - 1000m N/S N/S N/S N/S 

Table 2: Correlation between air and sea temperatures in the Red Sea and the Outer region. Only years with 

averaged formal error below 0.15ºC are considered. All values are significant at the 95% level (N/S indicated 

otherwise). 

 

Figure 22: Normalized air temperature at 1000 mbars (green) and 0-100m sea temperature (blue) in the Red 520 
Sea. A high-pass filter has been applied to remove multidecadal variations. Solid dots indicate an averaged 

formal error below 0.15ºC. 

Finally, multidecadal changes have been assessed with the TEMPERSEA product showing a non-

negligible contribution to temperature variability. This is an important result for the interpretation of long 

term trends. Linear trends are often computed as an indicator of potential influence of global warming. 525 

However, the trends can be masked by low frequency variations when their period is comparable to the 

length of the record (Jordà, 2014). This is clear for the temperature records in the Red Sea derived from 

the TEMPERSEA product. For instance, our results suggest that sea temperature in the upper layer, in the 

1960's was similar to the present values, so a very small positive trend is obtained when the period 1958-

2017 is used, consistent with recent evidence of long-term thermal oscillations in the Red Sea (Krokos et 530 

al., 2019). For the intermediate layer the sign of the trend is even reversed, as the temperatures in the 

1960's were higher than those recorded in the recent years. Conversely, if only the last 30 years are 

considered, which is also the period covered by the satellite record, trends are strong and positive, and 
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therefore easily misinterpreted as linked to global warming. Hence, the conclusions, based on satellite 

records, that the Red Sea is warming at rates faster than the global ocean (Chaidez et al., 2017; Raitsos et 535 

al., 2011), based on the satellite record, need be reconsidered, as warming rates retrieved for 1958-2017 

with the TEMPERSEA product are 10 fold lower than those retrieved from satellite records covering the 

past 30 years. 

5 Conclusions 

An observational based high resolution and homogeneous 3D temperature product has been developed for 540 

the Red Sea for the period 1958-2017 (TEMPERSEA product). For that, two databases of in-situ 

observations (CORA and KAUST) were merged and quality-controlled, resulting in a dataset of 41713 

profiles (11191 in the Red Sea and 30522 in the Gulf of Aden). A mapping procedure based on optimal 

interpolation has been applied to those profiles to compute two gridded products: a 12-month climatology 

and a 60-year monthly product. In order to calibrate the algorithm, synthetic data from a realistic 545 

numerical model have been used. Furthermore, the formal error from optimal interpolation have been 

computed and has proven to be a good approximation to actual uncertainty. The TEMPERSEA product is 

available from the open data repository Pangea (Agulles et al. 20191). 

The product has been compared to satellite observations for the period 1981-2017 showing reasonable 

agreement in terms of spatial and temporal variability at monthly, seasonal and interannual scales. Also, 550 

very good agreement has been found between air temperatures from the atmospheric reanalyses and 

reconstructed sea temperatures for the whole period 1958-2017, enhancing the confidence on the quality 

of the product. 

The TEMPERSEA product allowed us to characterize the climatology of the temperature in the region. In 

the Red Sea, the maximum temperatures are found south of 20°N, while the minimum is found in the 555 

northern part. Regarding to the seasonal cycle, it peaks in August and is minimum in February. The 

seasonal cycle is larger in the northern part while in the southern part is smaller in terms of the thermal 

range in surface waters. In the Gulf of Aden, the phase and shape of the seasonal cycle is different with 

maximum values in May and minimum values in August. Related to the vertical structure of the 

temperature field, our results show a large difference between the Red Sea and the Gulf of Aden, 560 

specially below the depth of the Bab-El-Mandeb Strait. The Strait isolates the Red Sea allowing it to have 

temperatures above 20ºC in the whole water column, while the Gulf of Aden, influenced by the open 

ocean variability show a vertical structure typical of the Indian Ocean, with temperatures reaching 5ºC at 

1000 m depth. Furthermore, the length of the product has allowed to characterize multidecadal variability 

at different layers. Our results show that multidecadal variations have been important in the past and can 565 

bias high the trends computed from 30-40 years of data.  

TEMPERSEA provides a reference product to describe the temporal evolution of the 3D temperature 

field in the Red Sea and to calibrate/validate numerical models. This will allow to improve forecasting 

models and formulate more reliable predictions and climate projections. It has also been shown that the 

quality of the product is critically linked to the existence of in situ observations. Periods with few 570 

observations degrade the quality of the product, so it is important to keep a regular monitoring of the 

region in order to identify new changes and to remove uncertainties in the climate studies. TEMPERSEA 

provides a basis to design an optimal sampling program to track the thermal dynamics of the Red Sea.   

Our results suggest that an effective monitoring can be achieved with few, strategically located, 

observations. 575 

 

 

                                                      
1 The data set will be published in Pangea.de upon acceptance of the manuscript 
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