

1 Effect of Caribbean Water Incursion into the Gulf of Mexico derived from Absolute Dynamic  
2 Topography, Satellite Data, and Remotely - sensed Chlorophyll-*a*

4 **Authors:**

5 **Juan A. Delgado<sup>1,2,5</sup>; Joël Sudre<sup>3</sup>, Sorayda Tanahara<sup>1</sup>; Ivonne Montes<sup>4</sup>,**

6 **J. Martín Hernández-Ayón<sup>5</sup>, Alberto Zirino<sup>6</sup>**

7 Author affiliations:

9 <sup>1</sup>*Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Transpeninsular*  
10 *Tijuana-Ensenada, no. 3917, Fraccionamiento Playitas, CP 22860. Ensenada, Baja California,*  
11 *México.*

12 <sup>2</sup>*Instituto Tecnológico de Guaymas/ Tec. Nacional de México, Guaymas, Sonora, México.*

13 <sup>3</sup>*LEGOS, CNRS/IRD/UPS/CNES UMR 5566, 18 av. Ed Belin, 31401 Toulouse Cedex 9, France*

14 <sup>4</sup>*Instituto Geofísico del Perú. Lima, Perú.*

15 <sup>5</sup>*Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California,*  
16 *Transpeninsular Tijuana-Ensenada, no. 3917, Fraccionamiento Playitas, CP 22860. Ensenada,*  
17 *Baja California, México.*

18 <sup>6</sup>*Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive,*  
19 *La Jolla, California 92093, USA.*

20 Corresponding author: Sorayda Tanahara (stanahara@uabc.edu.mx)

21 *Facultad de Ciencias Marinas*

22 *Universidad Autónoma de Baja California.*

25 **Key points:**

27 Twenty-five years of satellite observations of absolute dynamic topography confirm the patterns  
28 of Caribbean water intrusion in the Gulf of Mexico.

30 Larger volumes of oligotrophic waters from Caribbean Sea are entering the western Gulf of  
31 Mexico and lowering the surface and near surface *Chl-a* concentration.

32

33

34

35 **Abstract**

36 The dynamics of the Loop Current (LC) and the detached Loop Current eddies (LCEs) dominate  
37 the surface circulation of the Gulf of Mexico (GoM) and transport Caribbean water (CW) into the  
38 gulf. In this work, 25-years (1993-2017) of daily satellite data are used to investigate the variability  
39 of these physical processes and their effect on chlorophyll-a (Chl-a) concentrations from 1998-  
40 2017 including temporal changes, mean differences, and regional concentration tendencies.  
41 Physical variables analyzed are absolute dynamic topography (ADT), oceanic currents, and wind  
42 stress. From the ADT and oceanic current monthly climatologies, it is shown that there is an annual  
43 intrusion of the CW with an inward incursion that starts in spring, peaks in the summer, reaches to  
44 28°N and 90.45°W, and then retreats in winter to 26.5 °N and 88.3 °W, approximately. Minimum  
45 surface Chl-a concentrations ( $<0.08 \text{ mg m}^{-3}$ ) are found during the summer-autumn period inside  
46 the region of maximum incursion of the CW; the opposite is observed during the winter period  
47 when Chl-a concentrations were at a maximum, e.g.,  $>0.14 \text{ mg m}^{-3}$ . The three-year running  
48 averages of the ADT 40-cm isoline reproduce qualitatively the climatological pattern of 25 years  
49 showing that before 2002 the CW was less intrusive. This suggests that from 2003 onward, larger  
50 volumes of oligotrophic waters from Caribbean Sea have invaded the western GoM and reduced  
51 mean surface Chl-a concentrations. A direct comparison between the 1998-2002 and 2009-2014  
52 periods indicates that in the latter time interval, Chl-a concentration above waters deeper than 250  
53  $m$  has decreased significantly.

54 **1. Introduction**

55 The effects of global warming on the circulation of the world's oceans and its concomitant  
56 consequences on the oceans' biological productivity are some of the most important scientific and  
57 economic issues of our times. Forecasting of the effects of global warming on the oceans' resources

58 depends on having a clear understanding of the manner in which physical processes (e.g., solar  
59 radiation, winds, circulation and vertical mixing) affect primary production. This understanding is  
60 aided by the availability of remote sensing observations, unparalleled in their spatial and temporal  
61 coverage of the earth's surface. Since 1990, satellite data of absolute dynamic heights (ADT),  
62 Chlorophyll-a (Chl-a) concentration, and derived products (eddy kinetic energy (EKE),  
63 geostrophic and Ekman currents) have been available to study the Gulf of Mexico (GoM), an  
64 important socio-economic region for fisheries, petroleum, natural gas, and tourism. We have  
65 availed ourselves of a 25-year time series of satellite data to study the relationship between the  
66 physical dynamics of the GoM and its effect on primary production in the context of a global  
67 warming scenario. Unlike previous studies, this work entails the analysis of the Loop Current (LC)  
68 and the LC eddies (LCEs) path footprint, and of the dominant features of the surface circulation  
69 that transport Caribbean Water (CW) into the GoM (Nowlin and McLellan, 1967; Morrison et al.,  
70 1983). The LC in the eastern GoM is part of the North Atlantic Ocean Subtropical Gyre, an  
71 essential contributor to the inter-hemispheric Meridional Overturning Cell (Schmitz and  
72 McCartney, 1993; Candela et al., 2003; Schmitz et al., 2005). This current carries warm waters  
73 from the gulf to the North Atlantic through the Florida Straits via the Gulf Stream (Hurlburt and  
74 Thompson, 1980), thereby also being an important contributor to the upper ocean heat budget of  
75 GoM (Liu et al., 2012). Based on a detailed analysis in the central and western GoM by Portela et  
76 al. (2018), within the Gulf are seven water masses in order of increasing mean density: remnants  
77 of the Caribbean Surface Water (CSWr: also referred to as CW), North Atlantic Subtropical  
78 Underwater (NASUW), Gulf Common Water (GCW), Tropical Atlantic Central Water (TACW),  
79 the nucleus of the (TACWn), Atlantic Intermediate Water (AAIW) and North Atlantic Depth  
80 Water (NADW). Here, we are principally concerned with surface effects.

81 CW enters in the GoM via the LC with specific biological (i.e., low Chl-a) and physical  
82 characteristics (warmer and more saline waters). The current penetrates into the gulf, reaching  
83 28°N, near the Mississippi Delta. As it extends to the north, it forms a loop (Austin, 1955) that  
84 turns southeast to ultimately exit into the Atlantic Ocean.

85 Knowledge of how the thrust of the LC affects the intrusion of CW is based on  
86 hydrographic data (Leipper, 1970; Niler 1976; Behringer et al., 1977; Molinari et al., 1977; Huh  
87 et al., 1981; Palusziewicz et al., 1983), remote sensing observations (Vukovich et al. 1979;  
88 Vukovich, 1988; Leben and Born, 1993; Leben, 2005), and, in the last twenty years, by numerical  
89 modeling (Hurlburt and Thompson, 1980; Candela et al., 2003; Oey et al., 2005; Sturges and Lugo-  
90 Fernandez, 2005; Counillon and Bertino, 2009; Cardona and Bracco, 2016; Wei et al., 2016). More  
91 recently, novel developments based on artificial neural networks and empirical orthogonal  
92 function analysis have also been applied to predict LC variation (Zeng et al., 2015), effecting  
93 reliable forecasts for up to 5 to 6 weeks. Knowledge of how the primary forcing mechanism affects  
94 the loop current is important to the circulation of the GoM both as a direct and indirect generator  
95 of surface-layer eddies and as a source of lower-layer flows (Hamilton et al., 2016). Based on  
96 satellite altimetry observations and the dynamic height gradient from 1993 to 2009, Lindo-Atichati  
97 et al. (2013) observed northward seasonal penetration of the LC, peaking in summer. LC extension  
98 and anticyclonic eddy separation are the result of the momentum imbalance (Pichevin and Nof,  
99 1997) and form the shape of future LCEs. Chang and Oey (2010) using a numerical model,  
100 proposed that the wind stress could be the primary forcing that releases LCEs. In a second paper,  
101 supported by satellite observations, they proposed that the LC intrusion and the shedding of the  
102 LCEs followed a biannual cycle (Chang and Oey, 2013). A reanalysis of archived data also  
103 detected statistically significant LCEs separation seasonality (Hall and Leben, 2016). Recently,

104 Candela et al. (2019) analyzed four years of water current data and reported a seasonal cycle in the  
105 transport through the Yucatan channel with the annual cycle as the main harmonic peak in July.

106 Interacting seasonal and stochastic processes could trigger the separation of the LCEs  
107 (Fratantoni et al., 1998; Zavala-Hidalgo et al., 2003; Zavala-Hidalgo et al., 2006) as well as  
108 forming Caribbean eddies and other topographic features (Garcia-Jove et al., 2016). In this context,  
109 the LC system has some similarities with the North Brazil Current retroflection (Pichevin et al.,  
110 1999; Goni and Johns, 2001; Zharkov and Nof, 2010), the Agulhas retroflection (de Ruijter et al.,  
111 1999; Baker-Yeboah et al., 2010) and with the Gulf Stream, where large meanders pinch off as  
112 warm rings (Brown et al., 1983; Richardson, 1983; Savidge and Bane, 1999).

113 Despite extensive research, after more than a half-century we are still struggling to  
114 completely understand LC variability, the processes controlling the loop current extension, and the  
115 mechanism of detachment of anticyclones from the loop. Because positive time trends have been  
116 reported in temperature, winds, sea level and the greater number of detached eddies separated from  
117 the LC, it can be expected that these phenomena would affect primary productivity and, indirectly,  
118 surface Chl-a concentration (Polovina, et al., 2008; Laffoley and Baxter., 2016). In this work, 25-  
119 years (1993-2017) of daily ADT data combined with monthly radiance data from 1998-2017 are  
120 used to investigate the variability of the transport of Caribbean surface water into the gulf and its  
121 effect on Chl-a concentration. We examined temporal changes, mean differences, and regional  
122 concentration tendencies.

123

## 124 **2. Data and Methods**

125 Three independent data sets were used to provide evidence of temporal variability in the extension  
126 of CW into the GoM. We used ADT and surface velocity fields (geostrophy and Ekman) from the

127 GEKCO (Geostrophic Ekman Current Observatory, Sudre et al., 2013) product from 1993 - 2017  
128 with a resolution of  $0.25^{\circ} \times 0.25^{\circ}$ , in conjunction with *Chl-a* ocean color data derived from the  
129 reprocessing R2014.0 product suite from Aqua MODIS (Moderate Resolution Imaging  
130 Spectroradiometer) and from SeaWiFS (Sea-Viewing Wide Field of view Sensor), using the OCx  
131 Algorithm with a spatial resolution of 9X9 km (<https://oceancolor.gsfc.nasa.gov/cgi/13>). The 2003-  
132 2017 monthly *Chl-a* ocean color product was derived from Aqua MODIS and the 1998-2002  
133 monthly *Chl-a* ocean color product was derived from SeaWiFS.

134 Climatology was created from maps of ADT that result from the elevation of the sea surface  
135 height referenced to the geoid using the product from DUACS (Data Unification and Altimeter  
136 Combination System) available on the AVISO (Archiving, Validation and Interpretation of  
137 Satellite Oceanographic data) website <https://www.aviso.altimetry.fr/en/data>. The ADT  
138 climatology was constructed using the 25 years of daily satellite maps, from 1993 to 2017,  
139 averaging all the Januaries, Februaries ... and Decembers. We considered LCEs in any stage of  
140 formation, detaching and reattaching to the LC as evidence of the incursion of the CW. After the  
141 ADT climatology was obtained, the predominant boundary contour of CW was extracted from  
142 each climatological month. It was observed that the  $40 \pm 2.2$  cm ADT contour was well matched  
143 to the climatological maxima of its respective EKE. For this reason, the ADT 40 cm contour is  
144 taken as the main ADT reference that tracks the Caribbean Water Front (CWF).

145 Specifically, monthly CWF positions were obtained from short-term running averages of  
146 daily satellite observations in three-year periods. Each running average was moved rearward by  
147 one year, e.g. 1993-1995, 1994-1996 ... 2014-2016, 2015-2017. For each three-year period, a set  
148 of 12 monthly maps was obtained resulting in a total of 23 sets of monthly CWF maps: 10 sets  
149 from 1993 to 2002 and 13 sets from 2003 to 2017. We used the 40 cm contour of each set of three-

150 year averages because this was the contour with the highest EKE observed in the 25-year data set.  
151 To retrieve the CWF contours, we first determined the initial latitudinal position of the CWF to be  
152 at 80.7°W with the respective corresponding longitudinal positions between Cuba and Florida. The  
153 CWF contour lines that run from east to west and finish close to the tip of the Yucatan peninsula  
154 were separated by  $0.2 \pm 0.1$  degrees. However, some ADT contour "islands" appeared next to the  
155 CWF with a typical distance of  $> 0.3$  degrees from the CWF contour. Additionally, a spectral  
156 analysis was done using a daily time series of 25 years of ADT data to build a spatially averaged  
157 region influenced by the LC between 91.25°W, 23.125°N and 83.5°W, 28.12°N.

158 When ADT island distances were  $> 0.3$  degrees from the front, we used a Matlab code  
159 procedure to eliminate them from the CWF contours. Once the CWF's contours were retrieved, the  
160 next step was to visually corroborate the quality and coherence of each CWF contour over the  
161 monthly field maps of ADT, sea surface currents, and *Chl-a* distribution. In this way,  
162 inconsistencies were detected and corrected. The Matlab code procedure satisfactorily corrected  
163 91.3% of the contours. The remaining sets were corrected by hand via visual analysis.

164 Main mesoscale instabilities were obtained from calculations of the climatological monthly  
165 EKE maps of geostrophic and Ekman currents obtained from 25 years of daily satellite  
166 observations of GEKCO using following equation:

167 
$$u = u' + U; \quad u' = u - U$$

168 
$$v = v' + V; \quad v' = v - V$$

169 
$$EKE = \frac{1}{2} (u'^2 + v'^2)$$

170  
171 Where  $(u, v)$  is the total current ( $u = u_E + u_g$  and  $v = v_E + v_g$ ;  $(u_E, v_E)$  is the Ekman and  $(u_g, v_g)$  is the  
172 geostrophic current,  $U$  and  $V$  are the means of the oceanic currents and  $(u'$  and  $v')$  are the anomalies

173 of the current. To find the relationship between ADT and EKE patterns, the  $40\text{ cm}$  ADT isoline  
174 was overlaid on the monthly EKE maps. This made the EKE means representative of the energy  
175 of the mesoscale eddy field (Jouanno et al., 2012).

176 For consistency between the different satellite datasets, all monthly climatological spatial  
177 fields were standardized at  $0.25^\circ \times 0.25^\circ$  spatial resolution by bilinear interpolation.

178

### 179 **3. Results and discussion**

#### 180 **3.1. Tracking the Intrusion of Caribbean Water**

181 The LC enters the gulf through the Yucatan Channel and exits through the Straits of Florida,  
182 penetrating northward into the GoM until instabilities form in the current and a ring-like LCEs  
183 pinches off. There are two ways of tracking the LC: 1) tracking the thermal signal (not possible in  
184 summer due to weak thermal contrast in the GoM), and 2) tracking the sea surface height trough  
185 the satellite altimetry. In 2005, Leben, using the  $17\text{ cm}$  contour in the daily sea surface topography  
186 maps (this contour closely follows the edge of the high-velocity core of the LCEs and LC), tracked  
187 the LC thermal fronts in the sea surface temperature images during good thermal contrast. In a  
188 different way, Lindo-Atichati et al. (2013) calculated the maximum horizontal gradient of the sea  
189 surface height (SSH) to track only the contours of the LCF. In this work, we used the ADT to track  
190 both the LC and the LCEs formed by the influence of the CW. Monthly mean surface oceanic  
191 currents from GEKCO overplotted on the ADT data are shown in Fig. 1. Maximum satellite  
192 surface current velocities in the Caribbean Sea and the GoM, as well as in the Yucatan current on  
193 the continental coast, were  $> 50\text{ cm s}^{-1}$ , coinciding with *in situ* estimates of  $\sim 60\text{ cm s}^{-1}$  (Badan et  
194 al., 2005). The monthly GoM total current fields show the variability of the primary forcing that

195 coincides with the mean ADT edge; the vectors of maximum velocity are tangent to the edge of  
196 the maximum slope change. To locate the CW, the 40 *cm* mean ADT's isoline was chosen. The  
197 ADT reference corresponds to regions of maximum gradients of ADT and maximum EKE. Fig. 1  
198 shows that (mostly) in autumn (October, November and December) and winter (January, February  
199 and March), the CW retracts to its most southeasterly location. In contrast, in spring (April, May,  
200 June) and summer (July, August, September), CW penetration moves towards the northwest. In  
201 fact, the extension begins in May and reaches maximum penetration in August, showing an annual  
202 pattern. This movement is similar to that observed by Chang and Oey (2013). They found that in  
203 summer, the maximum LC intrusion was forced by the trade winds. Their and our observations  
204 are also consistent with the work of Candela et al. (2019) who reported that water transport into  
205 the GoM in July through the Yucatan channel was at a maximum.

206 It is accepted that the LCEs occur in a geographical control zone that is based on  
207 momentum imbalance (Pichevin and Nof, 1997; Nof, 2005) rather than instability. Also, we should  
208 not abandon the idea that the formation of instabilities such as meanders and cyclonic eddies are  
209 due to high EKE produced by upstream conditions that influence the circulation within the GoM  
210 (Oey et al., 2003) and produce changes in the fluxes in the Yucatan Channel (Candela et al., 2002),  
211 transport variations in the LC (Maul and Vukovich, 1993), variations in the deep outflow (Bunge  
212 et al., 2002), and cyclonic eddies in Campeche Bank and Tortugas (Fratantoni et al., 1998; Zavala-  
213 Hidalgo et al., 2003). The areas of large EKE are related to the intrusion and retreat of CW (Garcia-  
214 Jove et al., 2016) via baroclinic and barotropic instabilities (e.g. Jouanno et al., 2009).

215 Fig. 2 shows that the 40 *cm* isoline encloses the maximum EKE area of the LC-LCEs during  
216 each climatological month, demonstrating that its distribution is mainly centered in the LC region;  
217 consequently, the maximum EKE borders the CW front just where the abrupt horizontal gradients

218 of ADT exist and changes of current speed occur. It is clear that the 40 *cm* isoline of ADT matches  
219 very well both the maximum EKE values and the maximum ADT gradient and is a good tracker  
220 of the contours of LC-LCEs. Lindo-Atichati et al. (2013) proposed a methodology using the SSH  
221 maximum horizontal gradient, which is the addition of sea height anomaly and mean dynamic  
222 topography, to obtain the contours of LCF and the LCEs. In our analysis, we chose the 40 *cm*  
223 isoline as a general reference to track both LCF and LCEs, and CW transport.

224 The enhanced monthly EKE signals respond in the same way as the LCF, repeating the  
225 mean monthly pattern as well as the total currents; the CW intrusion starts in spring and peaks in  
226 summer to retract in autumn and winter, and there are no relevant mesoscale EKE's structures in  
227 the western GoM. These results confirm an annual pattern of CW intrusion in summer months and  
228 retraction in winter.

229 **3.2 West and Northward Caribbean water extension**

230 The monthly intrusions of the CWF were tracked by taking as a reference the northernmost  
231 latitudes and westernmost longitudes of the 40 *cm* ADT isoline representing 1993-2017 monthly  
232 average values of the ADT (not spatially averaged). The climatological position of the CWF for  
233 each month of the year is shown in Figure 3. These results confirm the annual intrusion of the CW  
234 as follows: 1) Analysis of the maximum north and westward penetration of the front over 25 years  
235 shows that from January to February, it is retracted southeast to  $\sim 26.55^{\circ}\text{N}$  and  $\sim 88.32^{\circ}\text{W}$  (Fig. 3a  
236 and 3b, respectively), and intrudes to  $28^{\circ}\text{N}$ ,  $90.45^{\circ}\text{W}$  in August; 2) an ADT spectral analysis  
237 derived from 25 years of daily data from the CWF region shows a strong annual signal that  
238 originates from the back and forth of the ADT signal (Fig. 3c). In this work, the ADT signal also  
239 includes the seasonal steric effect. Based on Hall and Leben (2016), a steric signal appears as an

240 annual sine wave with 5.8 cm amplitude. When the estimated seasonal steric influence is removed,  
241 the high energy peak diminishes by 74%.

242 In winter, the "tongue" of the CWF moves slowly to the north without westward advance;  
243 in spring it lengthens and travels slightly towards the west. From January to March, the northward  
244 CWF position shifts slowly, tracing a gently sloping line, that starts at 26.5°N, reaches its  
245 maximum northern position of 28°N in August, and then decreases in December to 26.28°N  
246 (maximum travel of the CWF was 1.72° or 191 km). In summer, the CWF intrudes further into the  
247 interior of the GoM both in the north and west: its maximum northern and westward advance  
248 occurs in August to 28°N and 90.45°W, but then the CWF retracts in the last month of summer.  
249 Regarding CWF's westerly movement (Fig. 3b), the CWF traveled little from January to April; in  
250 May however, it extended quickly and in July, August, and September reached approximately  
251 90.2°W, and peaked in October at 90.76 °W (maximum range was 2.56° or 253 km, calculated at  
252 27.5°N latitude). In December, the CWF retracted abruptly to 88.24°W.

253 Another aspect of the CWF is the rate of intrusion and retraction. From March to August,  
254 the CWF moves to the north with a penetration speed on the order of  $\sim 1.02 \text{ km day}^{-1}$ , covering a  
255 distance of 153 km or 1.37°. On the other hand, the rate of retraction from August to November is  
256  $\sim 1.86 \text{ km day}^{-1}$ , equivalent to 168 km (1.51°). The entire process of northerly intrusion occurred  
257 in three stages: first, from January to April, the front moved slowly northward, increasing its speed  
258 while maintaining its westward position. Between May and July the front moved northwest; then  
259 was quasi-stationary in July and August, near 90.45°W; finally, in September, it moved from  
260 90.13°W to 90.76°W, equivalent to 63 km at a rate of  $2.1 \text{ km day}^{-1}$ . The retraction to the west  
261 occurred relatively quickly as the front retracted 193 km towards the east in a single month  
262 (October) at the rate of  $6.3 \text{ km day}^{-1}$ , and in November traveled 41 km at a rate of  $1.4 \text{ km day}^{-1}$ ,

263 also towards the east.

264 Fig. 4 shows the calculated climatological areas of standard deviation (STD) of the CWF  
265 contours  $> 15$  cm (dotted line) and CWF contours  $> 40$  cm (heavy black line). From these areas  
266 we calculated ratios between the two (15cm/40cm). The STD contour of 15 cm was selected  
267 because this value was three times greater than the annual steric signal reported by Hall and Leben  
268 (2016). Ratio values greater than 1 were found in February (1.62) and April (1.60). From May to  
269 August, the monthly ratio descended to 1.36, , and increased in September back to 1.60, peaking  
270 in October to 1.68, then decreasing in November to 1.60 and finally settling to 1.62 in December.  
271 The average winter months (Dec., Jan., and Feb.) had an average ratio of 1.56. From March to  
272 July, The average ratio was 1.40. However, in August the ratio increased abruptly to 1.60. Fall  
273 (Sept., Oct., and Nov.) had high ratios, averaging 1.62. Chang and Oey (2012, 2013) proposed that  
274 the LC intrusion and the shedding of the LCEs followed a biannual cycle. The biannual cycle can  
275 also be related to the annual lowest and highest ratio values.

276 **3.3 Monthly Spatial Variability of the Caribbean Water Front**

277 It was found that where penetration-retraction of the CWF occurs, STD variability varies from 15  
278 to 35 cm, extending west to  $90.8^{\circ}\text{W}$  in winter and  $93.5^{\circ}\text{W}$  in summer (Fig. 4). West of the CWF,  
279 in the deep zone of the GoM, the observed variability was close to 10 cm distributed in the band  
280 of latitude between  $23^{\circ}\text{N}$  and  $28.5^{\circ}\text{N}$ . The regions of maximum variability (STD  $> 15$  cm) occur  
281 in the CWF zone and extend outside the irregular area of reference (isoline of the 40 cm ADT).  
282 The effect of CWF penetration and regions of anticyclonic circulation was determined from the  
283 area of the variability of ADT, with maximum values close to  $\sim 35$  cm in the central region of the  
284 CWF, at  $86.67^{\circ}\text{W}$  and  $25.6^{\circ}\text{N}$ . The percentage of the area of influence of STD  $> 15$  cm in relation  
285 to the area of the gulf ( $1.56 \times 10^6 \text{ km}^2$ ) is presented in Fig. 5, where a gradual monthly increase is

286 observed from January to October, followed by a decrease in November and December. In January,  
287 the direct influence of the CWF on the gulf by area was 12.4%, rising to 21.5% for October, to  
288 subsequently decrease in December to 15.4%. We suppose that the greater percentage area of the  
289 STD may be attributed to a greater influence of Caribbean Sea water.

290 **3.4 Changes in the Caribbean Water Incursion from 2003 to the Present**

291 Using the 40 *cm* reference, a 3-year running average of the ADT data was calculated to extract the  
292 minimum number of years that would produce a similar pattern over a quarter century of the CWF.  
293 The results indicate a difference in CWF path and westward penetration before and after 2002. It  
294 is observed that before 2002 the CWF was less intrusive in the west (Fig. 6), after 2002 it extended  
295 towards the west in both summer and autumn (Fig. 7). It is important to note that the intrusion of  
296 the CWF is due to the influence of LCEs that have a strong presence in the western GoM. This  
297 fact is supported by a statistical analysis of the lifetimes of the LCEs during two time periods  
298 (1993-2002 and 2003-2015) (<http://www.horizonmarine.com/loop-current-eddies.html>). The data  
299 shows that the LCEs in the 1993-2002 period had a mean life of 6.8 months while the average life  
300 in 2003-2015 was 11.7 months. To prove that there is significant difference between these periods,  
301 a student-*t* test was applied with the result that the difference between them is significant (*t* = -  
302 3.098, *p* = 0.005). The LCE mean life difference is clear evidence that the incoming volume of  
303 water from Caribbean Sea (with oligotrophic features, Aguirre –Gómez and Salmerón-García,  
304 2015) has reached farther in the western GoM after 2002. These observations also agree with the  
305 results of Lindo-Atichati et al. (2013), confirming that, on average, the LC northward intrusion  
306 starts to increase in 2002. These authors also report an increase in number/year of LC rings over  
307 the same period that also coincided with a significant increase in sea height residuals ( $2.78 \pm 0.26$   
308 cm/decade from 1993–2009). This supports the finding that from 2003 onward, larger volumes of

309 oligotrophic waters from Caribbean Sea have invaded the western GoM.

310 **3.5 Chlorophyll-a Satellite Imagery, Climatology, and Changes in the Last Decade**

311 Another product that tracks the effect of CW inside the western GoM is the *Chl-a* satellite imagery,  
312 being an index of primary productivity (Boyer et al., 2009). Physical processes that affect the  
313 distribution and abundance of *Chl-a* include estuarine influxes, depth of the nutricline, wind stress,  
314 thermal stratification and eddy advection. However, over deep waters of the GoM, it is the wind  
315 stress and the thermal stratification that principally affect the *Chl-a* concentration (Martínez-López  
316 and Zavala-Hidalgo, 2009; Müller-Karger et al., 2015, Damien et al., 2018). It was found that the  
317 oligotrophic CW contrasts seasonally with the gulf waters and allows the observation of two levels  
318 of *Chl-a* (high and low, Müller-Karger et al., 1989). Here, the temporal relationship between the  
319 CWF and *Chl-a* concentration was constructed from SeaWifs and MODIS monthly climatological  
320 images (Fig. 8). The highest concentrations of *Chl-a* in the interior of the GoM are observed during  
321 autumn and winter months when high concentrations are triggered by vertical mixing (Pasqueron  
322 de Fommervault et al., 2017; Damien et al., 2018) when values were  $> 0.14 \text{ mg m}^{-3}$  in agreement  
323 with Dandonneau et al. (2004), whereas in spring-summer they decreased to  $0.08 - 0.09 \text{ mg m}^{-3}$ .  
324 During spring-summer, when the maximum CW penetration occurs, our data confirms that the  
325 "footprint" of the CWF water (delineated by the 40 cm isoline of ADT) is in general oligotrophic  
326 indicating that Caribbean water has indeed entered the GoM. During this period, the *Chl-a* surface  
327 concentration remains low as the increase in surface temperature strengthens stratification.  
328 Additionally, the winds from the southeast are weak, thereby reducing the mixing of nutrients to  
329 the surface. In contrast, during the autumn-winter months, the northerly winds are stronger,  
330 increasing vertical mixing, deepening the mixed layer, and carrying cold, nutrient-rich subsurface  
331 water into the euphotic layer (Müller-Karger et al., 1991; Müller-Karger et al., 2015; Pasqueron

332 de Fommervault et al., 2017).

333 In seeking relationships between the spatial-seasonal distribution of the *Chl-a*  
334 concentration and the incursion signaled by the ADT-generated data, three spatial-temporal  
335 periods were selected, each was averaged pixel by pixel, and the three were labeled: "early" (1998-  
336 2002), "middle" (2003-2008), and "contemporary" (2009-2014) epochs. The 5-year averages of  
337 the "early" and "contemporary" periods of two separate areas were compared: 1) an area located in  
338 the western GoM at 95.5°W, 22.12°N and 91.5°W, 25.87°N, and 2) a smaller area located in the  
339 center of the LC at 86°W, 22.12°N and 84.75°W, 23.37°N (Fig. 9). The differences in the means  
340 were tested for significance with a 2-tailed z test at the 95% confidence level (Fowler et al., 2013).  
341 The results are shown in Table 1 and may be summarized as follows:

342 **A. Temporal differences:** 1) Western GoM differences between early and contemporary *Chl-a*  
343 concentrations are significantly different in all seasons; 2) Loop Current differences between Early  
344 and Contemporary *Chl-a* concentrations are significantly different during winter, spring, and  
345 autumn, but not in summer;

346 **B. Spatial differences:** 1) In winter, the Western GoM is significantly higher in *Chl-a* than the LC  
347 during both early and contemporary periods; 2) In the spring, the Western GoM is significantly  
348 higher than the LC during the early period, but not in contemporary period; 3) In summer, the LC  
349 is significantly higher than Western GoM during both early and contemporary periods; 4) In  
350 autumn, the Western GoM is significantly higher than LC during the "early" period but not  
351 significantly different from the LC in the contemporary period.

352 **C. Seasonal Differences.** In the Western GoM and the LC in both the early and contemporary  
353 periods, *Chl-a* decreases from winter to spring and from spring to summer, and increases from

354 autumn to winter, but autumn concentrations do not exceed winter (See also Fig.9). All differences  
355 are significant.

356 Examination of Table 1 indicates that at both areas, the winter season is most productive,  
357 followed by autumn, with the lowest *Chl-a* concentrations occurring in summer (see also Fig. 9).  
358 There is also a time-dependent trend, with contemporary values that are, in general, lower than the  
359 values in the early and middle epochs. Both areas exhibit identical climatic trends over time and  
360 during each season, indicating that these effects are applicable outside of the continental shelf. The  
361 early spring epoch is more eutrophic than the middle and contemporary epochs, indicating a  
362 decline in nutrient concentrations over time. This effect is also evident in the LC core, where *Chl-*  
363 *a* concentrations decreased with time and signals the entrance to the gulf of more oligotrophic  
364 water during the middle and contemporary epochs. Perhaps the most notable seasonal scenario  
365 occurs in the summer to early October period, when the CWF "tongue" extends in the interior of  
366 the GoM. Although the concentration of *Chl-a* in the Western GoM declines gradually with time  
367 to from  $\sim 0.09$  to  $\sim 0.08 \text{ mg m}^{-3}$ , the interesting fact is that the area of oligotrophic water expands  
368 and become larger in the contemporary period. On the other hand, in the LC core, the *Chl-a*  
369 concentrations in the three epochs do not significantly differ, suggesting that the water entering  
370 the GoM is from a single source, namely, the Caribbean Sea. In general, the extensive penetration  
371 of the LC within the GoM, as well as the increase in the life periods and sizes of LCEs coincide  
372 with the intrusion of nutrient-poor CW.

373 Two points summarize the result of the seasonal analysis of the three epochs: First, the  
374 extent of the CW intrusion confirms the north-west migration of eddies during each epoch, second,  
375 the *Chl-a* concentration declines over time.

376 The second point was confirmed by calculating the average *Chl-a* concentrations outside

377 the continental shelf over two time periods, considering only the concentrations above waters  
378 deeper than 250 m. Using data from 1998 to 2002 (SeaWIFS), and from 2009 to 2014 (MODIS)  
379 we conducted a student-t test for difference in the means (Fig. 10). The latter period was  
380 significantly lower with  $t = 4.75$  and  $p < 0.001$  ( $n_1 = 1,825$ ;  $n_2 = 2,190$ ). This analysis confirms that  
381 the *Chl-a* concentration of the GoM decreases over time and appears to disagree with the results  
382 of Müller-Karger et al. (2015) who did not indicate a time trend in *Chl-a* concentration in the GoM.  
383 As the data were taken with different sensors and to eliminate the uncertainty that this difference  
384 is not caused by a systematic difference between the SeaWIFS and MODIS data sets used in our  
385 analysis, we calculated least square regressions to the SeaWIFS and MODIS time series at four  
386 stations corresponding to the northwest, northeast, southwest and southeast regions of Müller-  
387 Karger et al. (2015) (Fig. 11). For each data set, inner slopes as well as overall slopes were  
388 calculated. For all four stations, the SeaWIFS (1998-2002) and the MODIS (2003-2017) data series  
389 merged exactly and all stations show negative trends; equivalently, the combined time series  
390 (1998-2017) also show a negative tendency, supporting the conclusion that the *Chl-a*  
391 concentrations over the deep GoM has decreased over time.

392 The difference between our results and those obtained by Müller-Karger et al. (2015) may  
393 be attributed to the different way in which in this work and treated the data. Müller-Karger et al.  
394 (2015) divided the GoM into 4 quadrants with depths of over 1000 m: Region 1-North East (RO1),  
395 Region 2 (RO2 -Northwest), Region 3 (RO3-Southeast), and Region 4 (RO4 Southwest) and  
396 calculated the spatial average in each quadrant to build four-time series, from 1993 to 2012. In  
397 their words, "Time series of anomalies of wind speed, SST, SSHA and *Chl-a* concentration were  
398 obtained by subtracting the monthly mean (climatology) from the monthly field for that variable".  
399 Time series of wind speed, sea surface temperature (SST), sea-surface height (SSH), and *Chl-a*

400 data obtained at these stations from satellite products was analyzed statistically, and plotted. Other  
401 variables plotted by Müller-Karger et al. (2015) were mixed layer depth (MLD) as calculated from  
402 a hydrodynamic model, and net primary production (NPP) calculated from MODIS data using the  
403 vertically generalized productivity model (VGPM) of Behrenfeld and Falkowski (1997).

404 On the other hand, we calculated the average of the *Chl-a* concentration pixel by pixel in  
405 waters over 250 m depth, for two time periods (1998-2002 and 2009-2014), and subtracted the  
406 respective monthly (climatological) means to find the difference (Fig. 10). From 2009 onward, the  
407 difference indicated a small reduction of *Chl-a* in the first optical depth (1-20 or 40 meters of  
408 depth) that is increasing with time. A student-t test was used to conclude that the reduction was  
409 significant. We also treated the data exactly as did Müller-Karger et al. (2015) obtained slightly  
410 negative slopes Müller-Karger et al. (2015) over the entire 1998 to 2013 period.

411 We suggest that Müller-Karger et al. (2015) did not detect the small negative trend in their  
412 *Chl-a* plots because their calculated slopes indicated no time-dependent change. We surmise that  
413 they were also influenced by the lack of slope in the modeled MLD plot, despite clear, positive,  
414 trends for SST, SSHA, and wind force. Actually, although close to zero, the slopes, as indicated  
415 in Müller-Karger et al. (2015) were not zero, but -0.03 for RO1, -0.01 for RO2, and simply given  
416 in as -0.0 for RO3 and 0.0 for RO4 (see their Table 1). Müller-Karger et al. (2015) also ignored  
417 the fact that the time-*Chl-a* correlation coefficients (R) for all four regions was negative.

418 To confirm our findings, we chose 4 stations, each one centrally located in each quadrant  
419 (Müller-Karger et al., 2015), and conducted regression analyses of the logarithmic transform of  
420 the SeaWifs and MODIS *Chl-a* concentrations. All four regions showed a negative slope, a  
421 negative R, and the negative slopes in the southern gulf (RO3 and RO4) were significantly different  
422 from 0 ( $p < 0.05$ ). This is shown in Fig. 11.

423 The observed small, but persistent decline in *Chl-a* from 1993 to 2017 may be attributed  
424 to the AMOC's over-all effect of warming the surface water and thereby promoting stratification.  
425 However, we wish to make clear that our conclusion about the recent time-dependent lowering of  
426 the *Chl-a* pertains only to the near surface, and may not indicate a decrease in the primary  
427 productivity integrated over the entire water column. In the GoM, the chlorophyll maximum as  
428 measured by fluorescence occurs at about 75 m, e.g., below one optical depth, and is greater in  
429 summer than in winter (Pasqueron de Fommervault et al., 2017), indicating that the relationship  
430 between water column productivity and near surface *Chl-a* concentration in the GoM requires  
431 further study. Our own results and conclusions are based on SeaWifs and AquaMODIS chlorophyll  
432 data, which in Type One water, correlate very well with chlorophyll measured with standard  
433 laboratory methods (Mati Kahru, personal communication). In our work we can only say that  
434 according to these satellite products, we find a time-dependent diminution of the Chl-a signal. This  
435 diminution has been widely observed by others although in other waters (Behrenfeld et al., 2006,  
436 Polovina et al., 2008; Irwin and Oliver, 2009, Laffoley and Baxter., 2016).

437

#### 438 **4. Summary and conclusions**

439 The availability of a large spatial extension of satellite observations of ADT, sea surface currents,  
440 wind stress over a quarter of century and Chl-a over 20 years has enabled us to confirm the LC  
441 and CW dynamics observed in the 60's and 70's with more recent *in situ* observations. The  
442 verification of the CWF climatologies developed in this work is important as a reference baseline  
443 for further numerical modeling, and it impacts assessments of the gulf's biogeochemistry, energy,  
444 heat transport, and Chl-a concentration. A recent committee of the National Academic of Sciences,  
445 (2018) suggested three main study topics to advance the knowledge of the processes that

446 characterize the GoM: 1) the LC system active area, 2) the variation of the inflows of the LC  
447 system, and 3) the dynamic interactions of the LC system in the west. Following these suggestions,  
448 we have confirmed that the maximum influence of the CW into the GoM (e,g., its maximum  
449 extension into the gulf or intrusion) has a temporal variability, being stronger in summer and  
450 weaker in the late fall and winter. This is supported by the fact that the generated monthly EKE  
451 maps have the maximum gradient at the periphery of the CWF and have a similar monthly pattern  
452 of extension and retraction as the CWF.

453 We noted that in the summer months the wind stress from the southeast is weak, thereby  
454 minimizing the flow of nutrients to the surface and causing Chl-a to be low, specifically for three  
455 reasons: 1) The increase in the surface temperature of the water column strengthens stratification  
456 2) The intrusion of the CW to the western gulf's surface thickens the surface layer, and 3) The  
457 eddy-driven anticyclonic circulation deepens the nutricline. This contrasts with the cold seasons,  
458 when the surface temperature of the water is lower and the northerly winds are stronger, favoring  
459 the flow of nutrients to the surface.

460 The three-year running averages of ADT 40 cm isoline reproduce qualitatively the  
461 climatological pattern of a quarter of a century showing that before 2002 the CWF was less  
462 intrusive and the LCEs sizes were smaller. In the 1993-2002 period, we calculated that the mean  
463 life cycle of the eddies was 6.8 months and that in the 2003-2015 period the mean life cycle was  
464 11.7 months. This difference suggests that after 2003, larger volumes of oligotrophic waters from  
465 Caribbean Sea have invaded the western GoM and reduced mean surface Chl-a concentrations.  
466 This work shows that

467 • The intrusion of the CW by LC-LCEs extends further into the western GoM than was

468 previously known.

469 • *Chl-a* concentrations respond to the dynamics inside the GoM and are influenced by  
470 the CWF and the LC anticyclonic and cyclonic eddies.

471 • Since 2002, near surface *Chl-a* concentrations over bathymetry deeper than 250 m  
472 have decreased, and GoM surface waters may be turning more oligotrophic than in the  
473 previous decade.

474 This work, based on 25 years of remotely sensed data, emphasizes the role of climatology  
475 in determining GoM circulation and its productivity and suggests that further climatologically-  
476 induced changes are probably imminent.

477

## 478 **5. Acknowledgements**

479 This study was carried out as part of the PhD thesis research conducted by the lead author at the  
480 Faculty of Marine Science and the Oceanographic Research Institute (FCM-IIO / UABC),  
481 Postgraduate Coastal Oceanography Program, and it was supported by the Graduate Professional  
482 Development Mexican Program grants (PRODEP: DSA/103.5/16/5801), the National Institute of  
483 Technology of Mexico (TecNM) and the Mexican Energy Bureau and Hydrocarbons Mexican  
484 Trust, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM).

485

## 486 **6. References**

487 Aguirre-Gómez, R. and Salmerón-García, O.: Characterization of the western Caribbean Sea  
488 waters through *in vivo* chlorophyll fluorescence, Rev. Mar. Cost., 7, 9–26,

489 <https://doi.org/10.15359/revmar.7.1>, 2015.

490

491 Austin, G. B.: Some recent oceanographic surveys of the Gulf of Mexico, EOS, Transactions

492 American Geophysical Union, 36(5), 885-892, <https://doi.org/10.1029/TR036i005p00885>, 1955.

493

494 Badan, A., Candela, J., Sheinbaum, J., and Ochoa, J.: Upper-layer circulation in the approaches to

495 Yucatan Channel. In: W. Sturges and A. Lugo-Fernandez (Eds.), New Developments in the

496 Circulation of the Gulf of Mexico, Geophysical Monograph Series, 161, 57-69, 2005.

497

498 Baker-Yeboah, S., Byrne, D. A., and Watts, D. R.: Observations of mesoscale eddies in the South

499 Atlantic Cape Basin: Baroclinic and deep barotropic eddy variability, Journal of Geophysical

500 Research, 115, C12069, <https://doi.org/10.1029/2010JC006236>, 2010.

501

502 Behrenfeld, M. J., and Falkowski, P. G.: Photosynthetic rates derived from satellite-based

503 chlorophyll concentration, Limnology and Oceanography, 42(1), 1-20, 1997.

504

505 Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G.

506 C., ... Boss, E. S.: Climate-driven trends in contemporary ocean productivity. Nature, 444(7120),

507 752–755. <https://doi.org/10.1038/nature05317>, 2006.

508

509 Behringer, D. W., Molinari, R. L., and Festa, J. F.: The Variability of Anticyclonic Current Patterns

510 in the Gulf of Mexico, Journal of Geophysical Research, 82(34), 5469-5476,

511 <https://doi.org/10.1029/JC082i034p05469>, 1977.

512

513 Boyer, J. N., Kelble, C. R., Ortner, P. B., and Rudnick, D. T.: Phytoplankton bloom status:  
514 Chlorophyll- a biomass as an indicator of water quality condition in the southern estuaries of  
515 Florida, USA, Ecological Indicators, 9(6), S56–S67,  
516 <https://doi.org/10.1016/j.ecolind.2008.11.013>, 2009.

517

518 Brown, O. B., Olson, D. B., Brown, J. W., and Evans, R. H.: Satellite infrared observations of the  
519 kinematics of a warm-core ring, Marine and Freshwater Research, 34(4), 535-545,  
520 <https://doi.org/10.1071/MF9830535>, 1983.

521

522 Bunge, L., Ochoa, J., Badan, A., Candela, J., and Sheinbaum J.: Deep flows in the Yucatan  
523 Channel and their relation to changes in the Loop Current extension, Journal of Geophysical  
524 Research, 107(C12), 1–7, <https://doi.org/10.1029/2001JC001256>, 2002.

525

526 Candela, J., Ochoa, J., Sheinbaum, J., López, M., Pérez-Brunius, P., Tenreiro, M., ... Arriaza-  
527 Oliveros, L.: The Flow through the Gulf of Mexico. Journal of Physical Oceanography, 49(6),  
528 1381–1401. <https://doi.org/10.1175/JPO-D-18-0189.1>, 2019.

529

530 Candela, J., Sheinbaum, J., Ochoa, J., Badan, A., and Leben, R.: The potential vorticity flux  
531 through the Yucatan Channel and the Loop Current in the Gulf of Mexico, Geophysical Research  
532 Letters, 29(22), 2059, <https://doi.org/10.1029/2002GL015587>, 2002.

533

534 Candela, J., Tanahara, S., Crepon, M., Barnier, B., and Sheinbaum, J.: Yucatan Channel flow:

535 Observations versus CLIPPER ATL6 and MERCATOR PAM models, *Journal of Geophysical*  
536 *Research: Oceans*, 108(C12), 3385, <https://doi.org/10.1029/2003JC001961>, 2003.

537

538 Cardona, Y., and Bracco, A.: Predictability of mesoscale circulation throughout the water column  
539 in the Gulf of Mexico, *Deep Sea Research Part II: Topical Studies in Oceanography*, 129, 332-  
540 349, <https://doi.org/10.1016/j.dsr2.2014.01.008>, 2016.

541

542 Chang, Y. L., and Oey, L. Y.: Why does the Loop Current tend to shed more eddies in summer  
543 and winter? *Geophysical Research Letters*, 39(5), 1-7. <https://doi.org/10.1029/2011GL050773>,  
544 2012.

545

546 Chang, Y.-L., and Oey, L.-Y.: Eddy and Wind-Forced Heat Transports in the Gulf of Mexico.  
547 *Journal of Physical Oceanography*, 40(12), 2728-2742. <https://doi.org/10.1175/2010JPO4474.1>,  
548 2010.

549

550 Chang, Y.-L., and Oey, L.-Y.: Loop Current Growth and Eddy Shedding Using Models and  
551 Observations: Numerical Process Experiments and Satellite Altimetry Data. *Journal of Physical*  
552 *Oceanography*, 43(3), 669-689. <https://doi.org/10.1175/JPO-D-12-0139.1>, 2013.

553

554 Counillon, F., and Bertino, L.: High-resolution ensemble forecasting for the Gulf of Mexico eddies  
555 and fronts, *Ocean Dynamics*, 59(1), 83-95, <https://doi.org/10.1007/s10236-008-0167-0>, 2009.

556

557 Damien, P., Pasqueron de Fommervault, O., Sheinbaum, J., Jouanno, J., Camacho-Ibar, V. F., and

558 Duteil, O.: Partitioning of the Open Waters of the Gulf of Mexico Based on the Seasonal and  
559 Interannual Variability of Chlorophyll Concentration, *Journal of Geophysical Research: Oceans*  
560 (March), 1–23, <https://doi.org/10.1002/2017JC013456>, 2018.

561

562 Dandonneau, Y., Deschamps, P. Y., Nicolas, J. M., Loisel, H., Blanchot, J., Montel, Y., Thieuleux,  
563 F., and Bécu, G.: Seasonal and interannual variability of ocean color and composition of  
564 phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific, *Deep Sea*  
565 *Research Part II: Tropical Studies in Oceanography*, 51(1–3), 303–318,  
566 <https://doi:10.1016/j.dsr2.2003.07.018>, 2004.

567

568 de Ruijter, W. P.M., Biastoch, A., Drijfhout, S. S., Lutjeharms, J. R. E., Matano, R. P., Pichevin,  
569 T., van Leeuwen, P. J., and Weijer, W.: Indian-Atlantic interocean exchange: Dynamics,  
570 estimation and impact, *Journal of Geophysical Research: Oceans*, 104(C9), 20885–20910,  
571 <https://doi.org/10.1029/1998jc900099>, 1999.

572

573 Fowler, J., Cohen, L., and Jarvis, P.: *Practical statistics for field biology*, John Wiley & Sons, 2013.

574

575 Fratantoni, P. S., Lee, T. N., Podesta, G. P., and Müller-Karger, F.: The influence of Loop Current  
576 perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida,  
577 *Journal of Geophysical Research: Oceans*, 103(C11), 24759–24779,  
578 <https://doi.org/10.1029/98JC02147>, 1998.

579

580 Garcia-Jove, M., Sheinbaum, J., and Jouanno J.: Sensitivity of Loop Current metrics and eddy

581 detachments to different model configurations: The impact of topography and Caribbean  
582 perturbations, *Atmosfera*, 29(3), 235–265, <https://doi.org/10.20937/ATM.2016.29.03.05>, 2016.

583

584 Goni, G. J., and Johns, W. E.: A census of North Brazil Current rings observed from  
585 TOPEX/POSEIDON altimetry: 1992–1998, *Geophysical Research Letters*, 28(1), 1-4,  
586 <https://doi.org/10.1029/2000GL011717>, 2001.

587

588 Hall, C. A., and Leben, R. R.: Observational evidence of seasonality in the timing of loop current  
589 eddy separation. *Dynamics of Atmospheres and Oceans*, 76, 240–267.  
590 <https://doi.org/10.1016/j.dynatmoce.2016.06.002>, 2016.

591

592 Hamilton, P., Lugo-Fernández, A., and Sheinbaum, J.: A Loop Current experiment: Field and  
593 remote measurements, *Dynamics of Atmospheres and Oceans*, 76, 156-173,  
594 <https://doi.org/10.1016/j.dynatmoce.2016.01.005>, 2016.

595

596 Huh, O. K., Wiseman, W. J. J., and Rouse, L. J.: Intrusion of loop current waters onto the West  
597 Florida continental shelf, *Journal of Geophysical Research*, 86(C5), 4186–4192,  
598 <https://doi.org/10.1029/JC086iC05p04186>, 1981.

599

600 Hall, C. R. and Leben, R.R., 2016. Observational Evidence of Seasonality in the timing of Loop  
601 Current eddy separation, *Dynamics of Atmosphere and Oceans* 76,240-367.

602

603 Hurlburt, H. E., and Thompson, J. D.: A numerical study of loop current intrusions and eddy

604 shedding, *Journal Physical Oceanography*, 10(10), 1611–1651, [https://doi.org/10.1175/1520-0485\(1980\)010<1611:ansolc>2.0.co;2](https://doi.org/10.1175/1520-0485(1980)010<1611:ansolc>2.0.co;2), 1980.

606

607 Irwin, A. J., and Oliver, M. J.: Are ocean deserts getting larger? *Geophysical Research Letters*,  
608 36(18), L18609. <https://doi.org/10.1029/2009GL039883>, 2009.

609

610 Jouanno, J., Sheinbaum Pardo, J., Barnier, B., Molines, J. M., and Candela Pérez, J.: Seasonal and  
611 interannual modulation of the Eddy Kinetic Energy in the Caribbean Sea, *Journal of Physical  
612 Oceanography*, 42(11), 2041-2055. doi: 10.1175/JPO-D-12-048.1, 2012.

613

614 Jouanno, J., Sheinbaum, J., Barnier B., and Molines, J. M.: The mesoscale variability in the  
615 Caribbean Sea. Part II: Energy sources, *Ocean Modelling.*, 26(3–4), 226–239,  
616 <https://doi.org/10.1016/j.ocemod.2008.10.006>, 2009.

617

618 Laffoley, D., and Baxter, J. M.: Explaining Ocean Warming: Causes, scale, effects and  
619 consequences, Full Report. Gland, Switzerland: IUCN, 27,  
620 <https://doi.org/10.2305/IUCN.CH.2016.08.en>, 2016.

621

622 Leben, R. R.: Altimetry-derived Loop Current metrics, In *Circulation of the Gulf of Mexico: Observations and Models*, Geophysical Monograph Series, 161, edited by W. Sturges, and A.  
623 Lugo-Fernandes, pp. 181–201, AGU, Washington, D. C., 2005.

625

626 Leben, R. R., and Born, G. H.: Tracking Loop Current eddies with satellite altimetry, *Advances in*

627 Space Research, 13(11), 325-333, [https://doi.org/10.1016/0273-1177\(93\)90235-4](https://doi.org/10.1016/0273-1177(93)90235-4), 1993.

628 Leipper, D. F.: A sequence of current patterns in the Gulf of Mexico, Journal of Geophysical  
629 Research, 75(3), 637-657, <https://doi.org/10.1029/JC075i003p00637>, 1970.

630

631 Lindo-Atichati, D., Bringas, F., and Goni, G.: Loop Current excursions and ring detachments  
632 during 1993-2009, International Journal of Remote Sensing, 34(14), 5042–5053,  
633 <https://doi.org/10.1080/01431161.2013.787504>, 2013.

634

635 Liu, Y., Lee, S.-K., Muhling, B. A., Lamkin, J. T., and Enfield, D. B.: Significant reduction of the  
636 Loop Current in the 21st century and its impact on the Gulf of Mexico, Journal of Geophysical  
637 Research, 117, C05039, <https://doi.org/10.1029/2011JC007555>, 2012.

638

639 Martínez-López, B., and Zavala-Hidalgo, J.: Seasonal and interannual variability of cross-shelf  
640 transports of chlorophyll in the Gulf of Mexico, Journal of Marine Systems, 77(1–2), 1–20,  
641 <https://doi.org/10.1016/j.jmarsys.2008.10.002>, 2009.

642

643 Maul, G. A., and Vukovich, F. M.: The relationship between variations in the Gulf of Mexico Loop  
644 Current and Straits of Florida Volume Transport, Journal of Physical Oceanography, 23(5), 785–  
645 796, [https://doi.org/10.1175/1520-0485\(1993\)023<0785:TRBVIT>2.0.CO;2](https://doi.org/10.1175/1520-0485(1993)023<0785:TRBVIT>2.0.CO;2), 1993.

646

647 Molinari, R. L., Baig, S., Behringer, D. W., Maul, G. A., and Legeckis, R.: Winter intrusions of  
648 the Loop Current, Science, 198(4316), 505-507, <https://doi.org/10.1126/science.198.4316.505>,  
649 1977.

650 Morrison, J. M., Merrell Jr, W. J., Key, R. M., and Key, T. C.: Property distributions and deep  
651 chemical measurements within the western Gulf of Mexico. *Journal of Geophysical Research: Oceans*, 88(C4), 2601-2608. <https://doi.org/10.1029/JC088iC04p02601>, 1983.

653

654 Müller-Karger, F. E., McClain, C. R., Fisher, T. R., Esaias, W. E., and Varela, R.: Pigment  
655 distribution in the Caribbean Sea: Observations from space, *Progress in Oceanography*, 23(1), 23-  
656 64, [https://doi.org/10.1016/0079-6611\(89\)90024-4](https://doi.org/10.1016/0079-6611(89)90024-4), 1989.

657

658 Müller-Karger, F. E., Smith, J. P., Werner, S., Chen, R., Roffer, M., Liu, Y., Muhling, B., Lindo-  
659 Atichati, D., Lamkin, J., Cerdeira-Estrada, S., and Enfield, D.B.: Natural variability of surface  
660 oceanographic conditions in the offshore Gulf of Mexico, *Progress in Oceanography* 134:54-76,  
661 <https://doi.org/10.1016/j.pocean.2014.12.007>, 2015.

662

663 Müller-Karger, F. E., Walsh, J. J., Evans, R. H., and Meyers, M. B.: On the seasonal phytoplankton  
664 concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites,  
665 *Journal of Geophysical Research*, 96(C7), 12645, <https://doi.org/10.1029/91JC00787>, 1991.

666

667 National Academies of Sciences, Engineering, and Medicine: *Understanding and Predicting the  
668 Gulf of Mexico Loop Current: Critical Gaps and Recommendations*, Washington, DC: The  
669 National Academies Press, <https://doi.org/10.17226/24823>, 2018.

670

671 Niiler, P. P.: Observations of low-frequency currents on the West Florida continental shelf,  
672 *Memoires Societé Royale des Sciences de Liege*, 6, 331-358, 1976.

673 Nof, D.: The momentum imbalance paradox revisited, *Journal of Physical Oceanography*, 35(10),  
674 1928-1939, <https://doi.org/10.1175/JPO2772.1>, 2005.

675

676 Nowlin, W. D., and McLellan, H. J.: A characterization of Gulf of Mexico waters in winter, *Journal*  
677 *of Marine Research*, 25(1), 29-59, 1967.

678

679 Oey, L.-Y.: Effects of winds and Caribbean eddies on the frequency of Loop Current eddy  
680 shedding: A numerical model study, *Journal of Geophysical Research*, 108(C10), 1-25,  
681 <https://doi.org/10.1029/2002JC001698>, 2003.

682

683 Oey, L.-Y., Ezer, T., Forristall, G., Cooper, C., DiMarco, S., and Fan, S.: An exercise in forecasting  
684 loop current and eddy frontal positions in the Gulf of Mexico, *Geophysical Research Letters*,  
685 32(12), L12611, <https://doi.org/10.1029/2005GL023253>, 2005.

686

687 Palusziewicz, T., Atkinson, L. P., Posmentier, E. S., and McClain, C. R.: Observations of a Loop  
688 Current frontal eddy intrusion onto the West Florida Shelf, *Journal of Geophysical Research: Oceans*,  
689 88(C14), 9639-9651, <https://doi.org/10.1029/JC088iC14p09639>, 1983.

690

691 Pasqueron de Fommervault, O., Perez-Brunius, P., Damien, P., and Sheinbaum, J.: Temporal  
692 variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats,  
693 *Biogeosciences*, 14, 5647-5662, <https://doi.org/10.5194/bg-14-5647-2017>, 2017.

694

695 Pichevin, T., and Nof, D.: The momentum imbalance paradox, *Tellus, Series A: Dynamic*

696 Meteorology Oceanography, 49(2), 298–319, <https://doi.org/10.3402/tellusa.v49i2.14484>, 1997.

697

698 Pichevin, T., Nof, D., and Lutjeharms, J.: Why are there Agulhas rings?, Journal of Physical  
699 Oceanography, 29(4), 693-707, [https://doi.org/10.1175/1520-  
0485\(1999\)029<0693:WATAR>2.0.CO;2](https://doi.org/10.1175/1520-<br/>700 0485(1999)029<0693:WATAR>2.0.CO;2), 1999.

701

702 Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive waters are expanding,  
703 Geophysical Research Letters, 35(3), 2–6, <https://doi.org/10.1029/2007GL031745>, 2008.

704

705 Portela, E., Tenreiro, M., Pallàs-Sanz, E., Meunier, T., Ruiz-Angulo, A., Sosa-Gutiérrez, R., and  
706 Cusí, S.: Hydrography of the Central and Western Gulf of Mexico. Journal of Geophysical  
707 Research: Oceans, 123(8), 5134–5149. <https://doi.org/10.1029/2018JC013813>, 2018.

708

709 Richardson, P. L.: Eddy kinetic energy in the North Atlantic from surface drifters, Journal of  
710 Geophysical Research: Oceans, 88(C7), 4355-4367, <https://doi.org/10.1029/JC088iC07p04355>,  
711 1983.

712

713 Savidge, D. K., and Bane, J. M.: Cyclogenesis in the deep ocean beneath the Gulf Stream. I-  
714 Description, Journal of Geophysical Research, 104, 18, <https://doi.org/10.1029/1999JC900132>,  
715 1999.

716

717 Schmitz, W. J.: Cyclones and westward propagation in the shedding of anticyclonic rings from the  
718 Loop Current, In Circulation in the Gulf of Mexico: Observations and Models, Geophysical

719 Monograph Series, 161, 241–262, <https://doi.org/10.1029/161GM18>, 2005.

720

721 Schmitz, W. J., Jr., Biggs, D. C., Lugo-Fernandez, A., Oey, L.-Y., and Sturges, W.: A synopsis of  
722 the circulation in the Gulf of Mexico and on its continental margins. In *Circulation in the Gulf of*  
723 *Mexico: Observations and Models*, Geophysical Monograph Series, 161, 11–30,  
724 <https://doi.org/10.1029/161GM03>, 2005.

725

726 Schmitz, W. J., Jr., and McCartney, M. S.: On the North Atlantic circulation, *Reviews of*  
727 *Geophysics*, 31(1), 29–50, <https://doi.org/10.1029/92RG02583>, 1993.

728

729 Sturges, W. and Lugo-Fernandez, A.: *Circulation in the Gulf of Mexico: Observations and Models*,  
730 Geophysical Monograph Series, 161, 347 pp. <https://doi.org/10.1029/GM161>, 2005

731

732 Sudre, J., Maes, C., and Garcon, V.: On the global estimates of geostrophic and Ekman surface  
733 currents, *Limnology and Oceanography: Fluids and Environments*, 3, 1–20,  
734 <https://doi.org/10.1215/21573689-2071927>, 2013.

735

736 Vukovich, F. M.: Loop Current boundary variations, *Journal of Geophysical Research, Oceans*,  
737 93(C12), 15,585–15,591, <https://doi.org/10.1029/JC093iC12p15585>, 1988.

738

739 Vukovich, F. M., Crissman, B. W., Bushnell, M., and King, W. J.: Some aspects of the  
740 oceanography of the Gulf of Mexico using satellite and in situ data, *Journal of Geophysical*  
741 *Research*, 84, 7749, <https://doi.org/10.1029/JC084iC12p07749>, 1979.

742 Wei, M., Jacobs, G., Rowley, C., Barron, C. N., Hogan, P., Spence, P.,... & Coelho, E.: The  
743 performance of the US Navy's RELO ensemble, NCOM, HYCOM during the period of GLAD at-  
744 sea experiment in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in  
745 Oceanography, 129, 374-393, <https://doi.org/10.1016/j.dsr2.2013.09.002>, 2016.

746

747 Zavala-Hidalgo, J., Morey, S. L., and O'Brien, J. J.: Cyclonic Eddies Northeast of the Campeche  
748 Bank from Altimetry Data, Journal of Physical Oceanography, 33(3), 623–629,  
749 [https://doi.org/10.1175/1520-0485\(2003\)033<0623:CENOTC>2.0.CO;2](https://doi.org/10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2), 2003.

750

751 Zavala-Hidalgo, J., Morey, S. L., O'Brien, J. J., and Zamudio, L.: On the Loop Current eddy  
752 shedding variability, Atmosfera, 19(1), 41–48, 2006.

753

754 Zeng, X., Li, Y., and He, R.: Predictability of the loop current variation and eddy shedding process  
755 in the Gulf of Mexico using an artificial neural network approach, Journal of Atmospheric and  
756 Oceanic Technology, 32(5), 1098-1111, <https://doi.org/10.1175/JTECH-D-14-00176.1>, 2015.

757

758 Zharkov, V., and Nof, D.: Why Does the North Brazil Current Regularly Shed Rings but the Brazil  
759 Current Does Not?, Journal of Physical Oceanography, 40(2), 354-367,  
760 <https://doi.org/10.1175/2009JPO4246.1>, 2010.

761

762

763

764 Table 1. Average bold numbers for *Chl-a* concentrations ( $mg\ m^{-3}$ ) and differences ( $mg\ m^{-3}$ ; (%)) between  
 765 Early and Contemporary averages at two geographical areas: 95.5°W, 22.12°N and 91.5°W, 25.87°N,  
 766 (Western GoM) and 86°W, 22.12°N and 84.75°W, 23.37°N (LC-LCEs) during "early" (1998-2002), "middle"  
 767 (2003-2008), and "contemporary" (2009-2014) epochs. Table 1 shows the compared averages in bold  
 768 print. Standard deviations and number of pixels considered are shown in parenthesis.

| Geographical Areas | Season | Early Averages<br>(1998-2002)            | Middle Averages<br>(2003-2008)          | Contemp. Averages<br>(2009-2014)            | Difference<br>(Early-Contemp) |
|--------------------|--------|------------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------|
| Western GoM        | Winter | <b>0.180</b> ( $\pm 0.047$ ,<br>n=4026)  | <b>0.167</b> ( $\pm 0.048$ ,<br>n=4866) | <b>0.173</b><br>( $\pm 0.0624$ ,<br>n=4828) | <b>0.007 (4%)</b>             |
| Loop Current       |        | <b>0.149</b> ( $\pm 0.052$ ,<br>n=536)   | <b>0.129</b> ( $\pm 0.064$ ,<br>n=647)  | <b>0.117</b> ( $\pm 0.062$ ,<br>n=645)      | <b>0.032 (21%)</b>            |
| Western GoM        | Spring | <b>0.114</b> ( $\pm 0.033$ ,<br>n=3693)  | <b>0.087</b> ( $\pm 0.049$ ,<br>n=4658) | <b>0.0834</b><br>( $\pm 0.036$ ,<br>n=4754) | <b>0.030 (27%)</b>            |
| Loop Current       |        | <b>0.0948</b> ( $\pm 0.074$ ,<br>n=526)  | <b>0.085</b> ( $\pm 0.1287$ ,<br>n=642) | <b>0.0835</b><br>( $\pm 0.116$ ,<br>n=648)  | <b>0.011 (12%)</b>            |
| Western GoM        | Summer | <b>0.0887</b> ( $\pm 0.024$ ,<br>n=3924) | <b>0.080</b> ( $\pm 0.022$ ,<br>n=4794) | <b>0.0755</b><br>( $\pm 0.023$ ,<br>n=4837) | <b>0.013 (15%)</b>            |
| Loop Current       |        | <b>0.109</b> ( $\pm 0.217$ ,<br>n=535)   | <b>0.091</b> ( $\pm 0.171$ ,<br>n=647)  | <b>0.0938</b><br>( $\pm 0.148$ ,<br>n=648)  | <b>0.015 (14%)</b>            |
| Western GoM        | Autumn | <b>0.151</b> ( $\pm 0.052$ ,<br>n=3894)  | <b>0.137</b> ( $\pm 0.044$ ,<br>n=4876) | <b>0.127</b> ( $\pm 0.043$ ,<br>n=4846)     | <b>0.024 (16%)</b>            |
| Loop Current       |        | <b>0.138</b> ( $\pm 0.128$ ,<br>n=525)   | <b>0.1325</b> ( $\pm 0.114$ ,<br>n=643) | <b>0.122</b> ( $\pm 0.103$ ,<br>n=648)      | <b>0.016 (12%)</b>            |

770 **FIGURE CAPTIONS:**

771 Fig. 1. Monthly means of absolute dynamic topography (ADT) and surface currents averaged over  
772 a quarter of a century (1993-2017).

773  
774 Fig. 2. Climatological monthly maps of eddy kinetic energy (EKE) in GoM: red color contours  
775 correspond to the areas of maxima EKE. The heavy black line corresponds to the isoline of 40 cm  
776 2.2 cm of the CWF (the contour of the CWF is significant at the 95% of level). The EKE was  
777 calculated using daily maps of satellite-derived currents from AVISO (GEKCO) for a quarter of a  
778 century (1993 – 2017).

779  
780 Fig. 3. Geographical positions of the CWF tracked using the 40 cm ADT isoline representing 1993-  
781 2017 monthly average values: a) Northward and b) Westward, respectively; c) ADT spectral  
782 analysis in a region influenced by the CWF (91.25°W, 23.125°N and 83.5°W, 28.12°N).

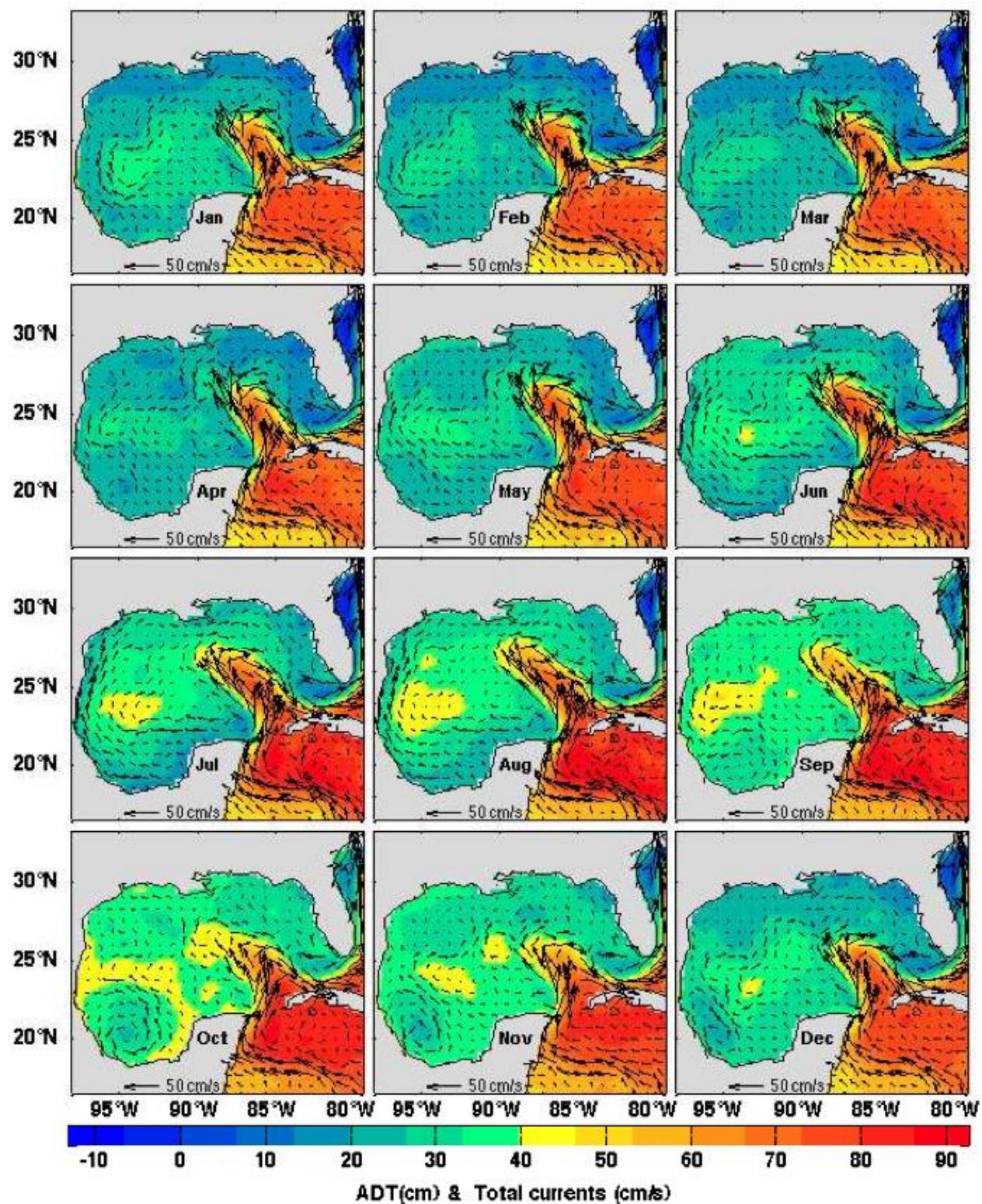
783  
784 Fig. 4. The ADT quarter-century CWF (1993-2017) monthly climatology and its standard  
785 deviation are shown in heavy and dotted lines, respectively. The heavy line corresponds to the 40  
786 cm isoline of the CWF. The dotted line encloses values of the standard deviation >15 cm.

787  
788 Fig. 5. Average monthly percentage surface areas of CW in the interior of the Gulf of Mexico  
789 determined from climatology of the STD contour > 15 cm; enclosed areas were calculated in  
790 relation to the GoM area ( $1.56 \times 10^6 \text{ km}^2$ ).

791  
792 Fig. 6. Monthly means of absolute dynamic topography (ADT) from 1993-2002 (color) and its  
793 respective CWF computed with the 40 cm isoline (heavy black line).

794  
795 Fig. 7. Monthly means of absolute dynamic topography (ADT) from 2003-2017 (color) and  
796 respective CWF computed with the 40 cm isoline (heavy black line).

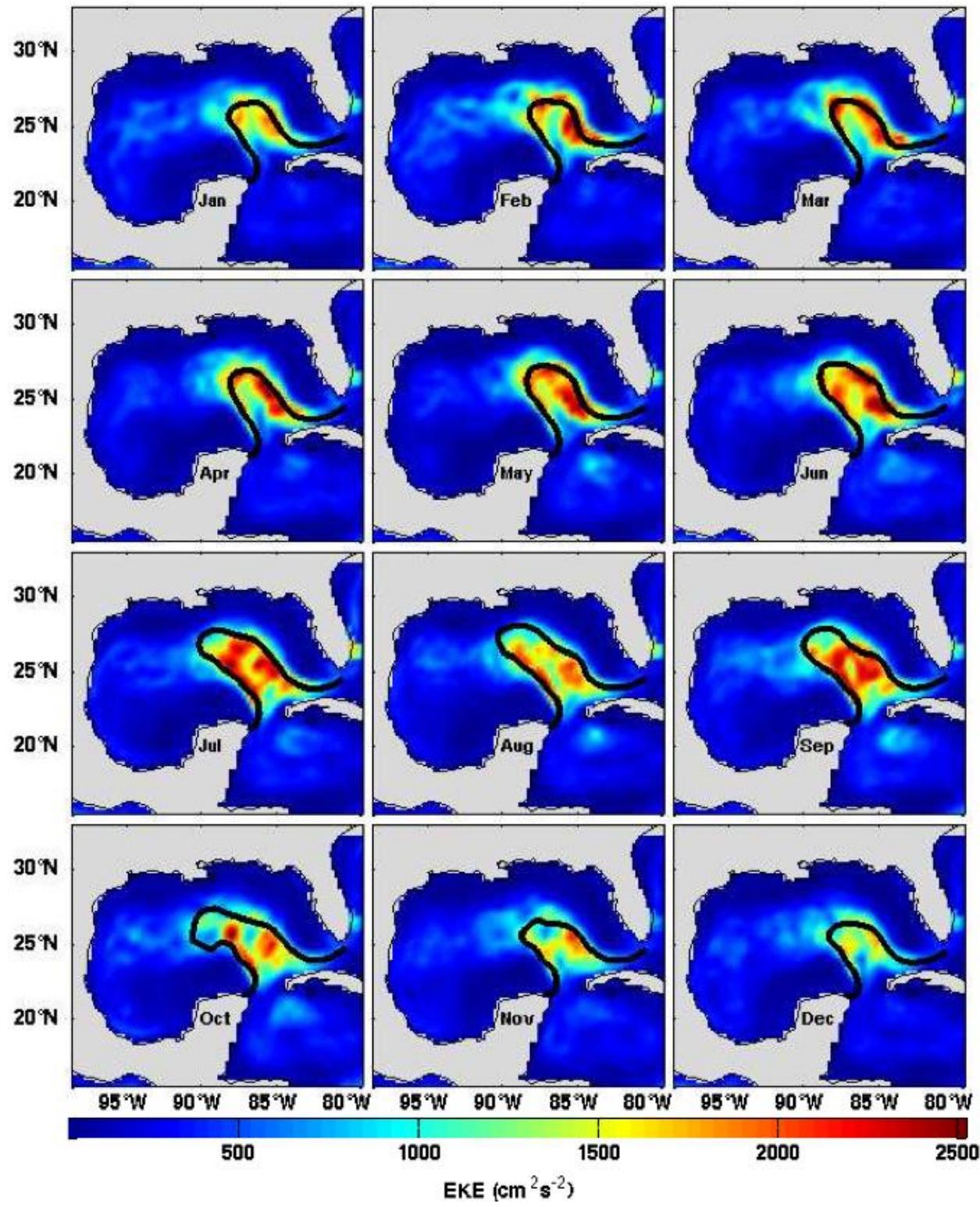
797  
798 Fig. 8. Monthly climatologies of *Chl-a* (SeaWiFS, 1998-2002 and MODIS data source, 2003-  
799 2017). The heavy black line represents the contour of the 40 cm ADT data that represents the CWF  
(1998-2017). *Chl-a* values larger than  $1 \text{ mg m}^{-3}$  are plotted in red.


800  
801 Fig. 9. From top left to bottom right, average *Chl-a* values according to period: column 1, SeaWiFS  
802 1998-2002, column 2, MODIS 2003-2008, and column 3, MODIS 2009-2014. From top to bottom  
803 figures correspond to the mean seasons. Average *Chl-a* concentration is computed inside the white  
804 and red squares (white corresponds to the western GoM and red corresponds to the LC area).  
805 Average values for each time period and season are in Table 1.

806  
807 Fig. 10. Differences of *Chl-a* concentration ( $\text{mg m}^{-3}$ ) between 2009-2014 average values of  
808 MODIS data minus 1998-2002 average SeaWiFS values. The broken line represents the 250 m  
809 isobath. White contoured areas indicate no significant differences.

810  
811 Fig. 11. *Chl-a* concentrations ( $\text{mg m}^{-3}$ ) at four stations (a to d) in the GoM, daily time series derived  
812 from SeaWiFS from 1998 to 2002 (green) and MODIS from 2003 to 2017 (blue). Least square  
813 regressions for SeaWiFS (red line), MODIS (cyan line), and the overall linear regressions for each  
814 station (dashed black line).

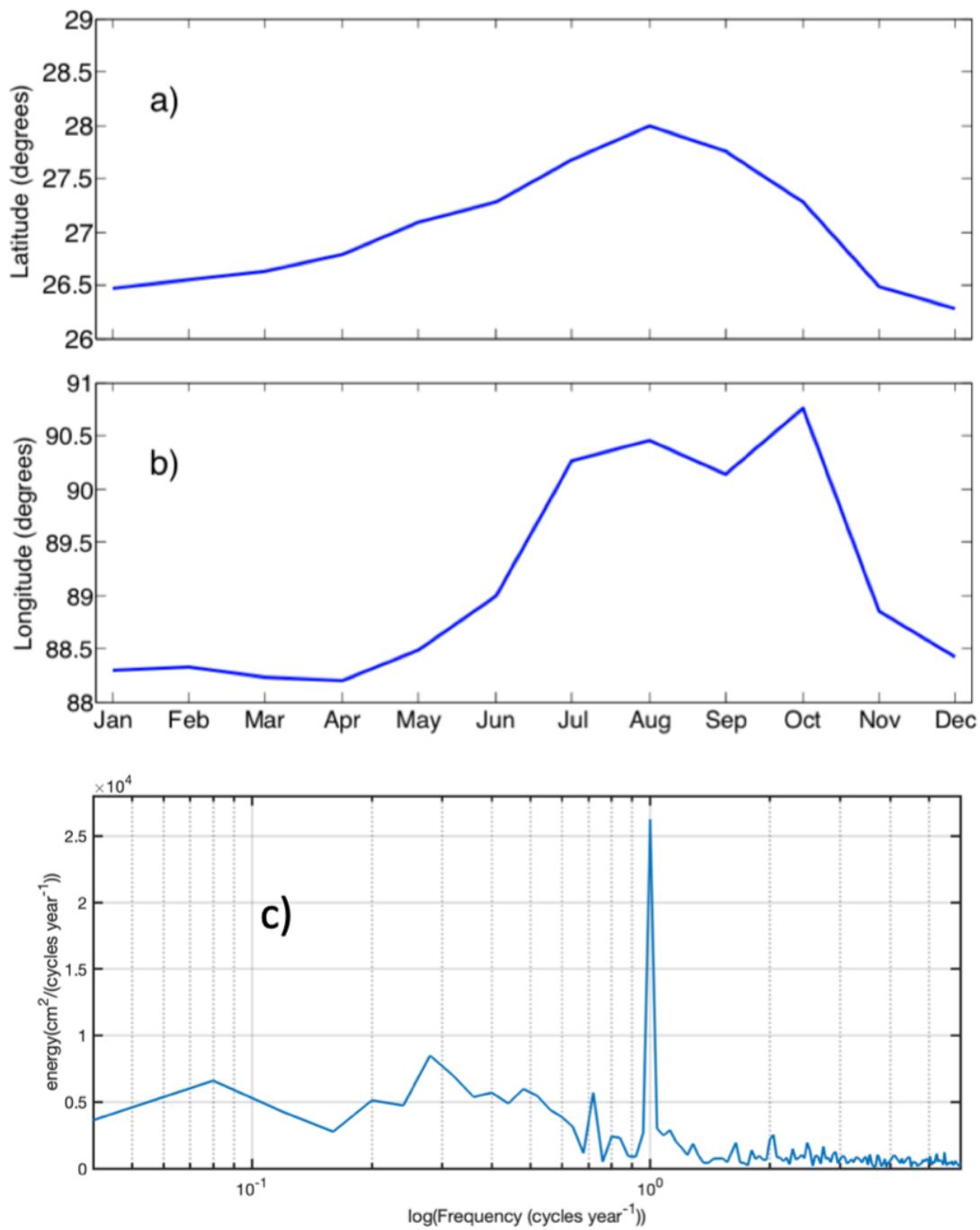
815


816 FIGURE 1



817

818

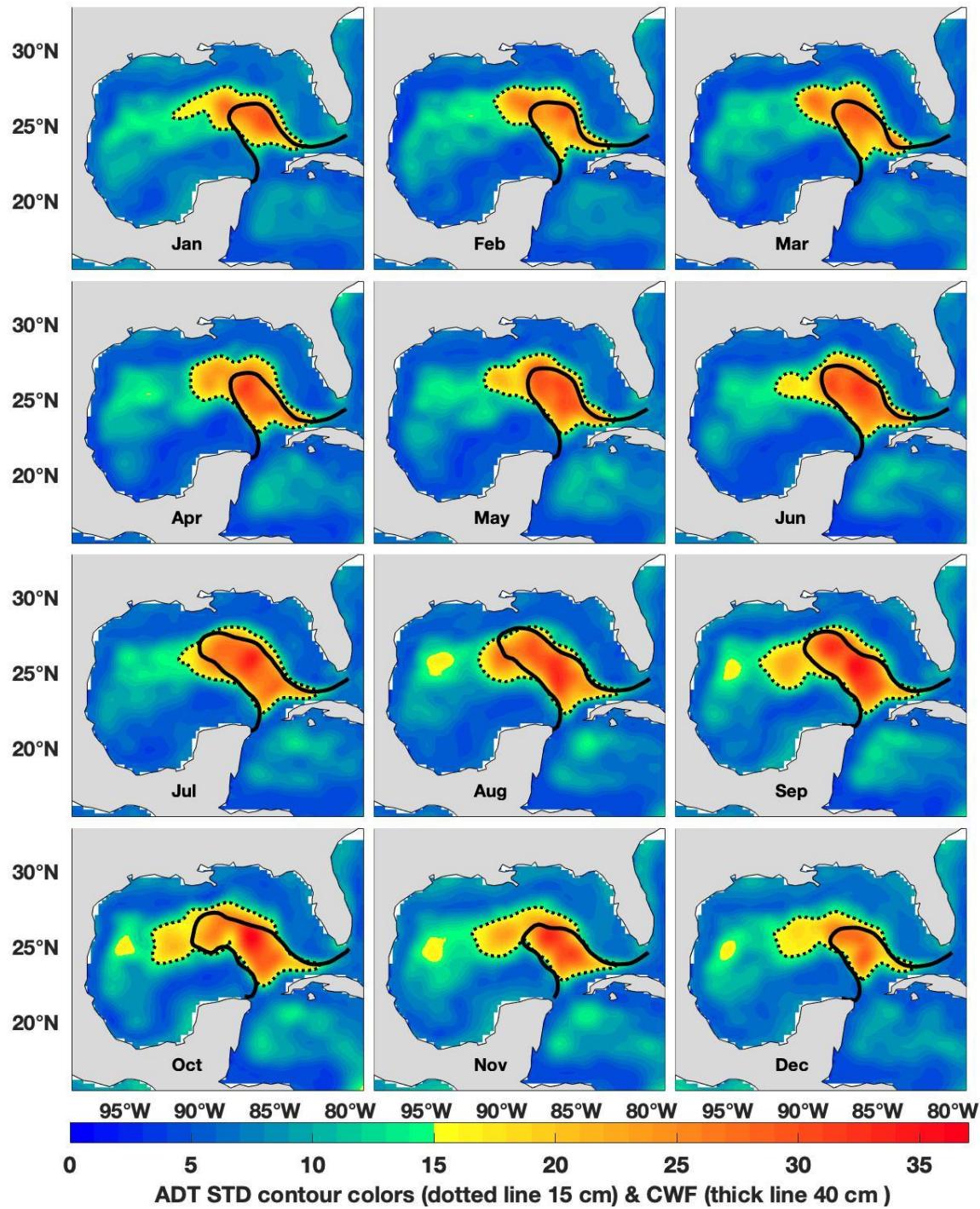

819 FIGURE 2



820

821

822 FIGURE 3

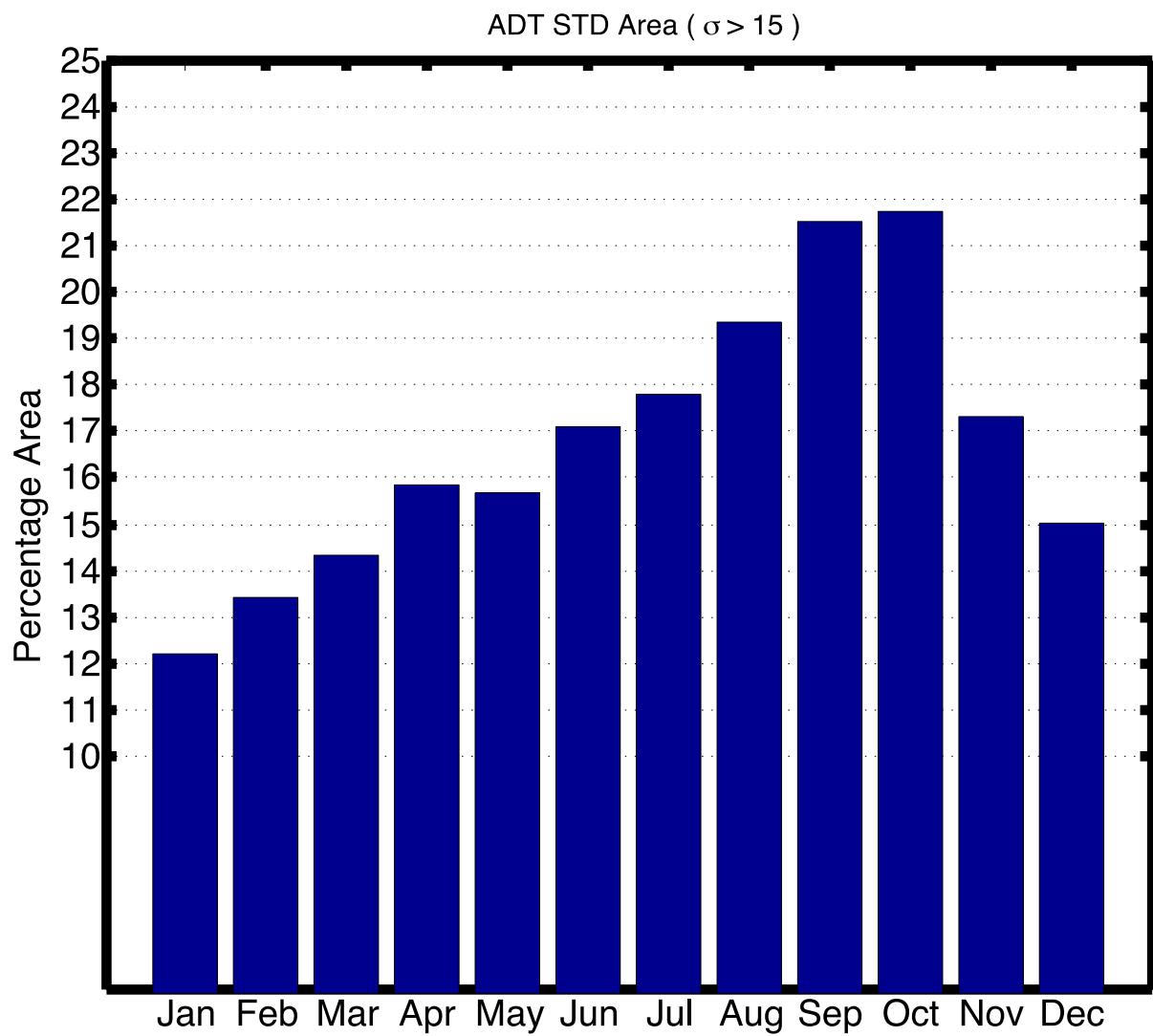



823

824

825

826 FIGURE 4




827

828

829

830 FIGURE 5



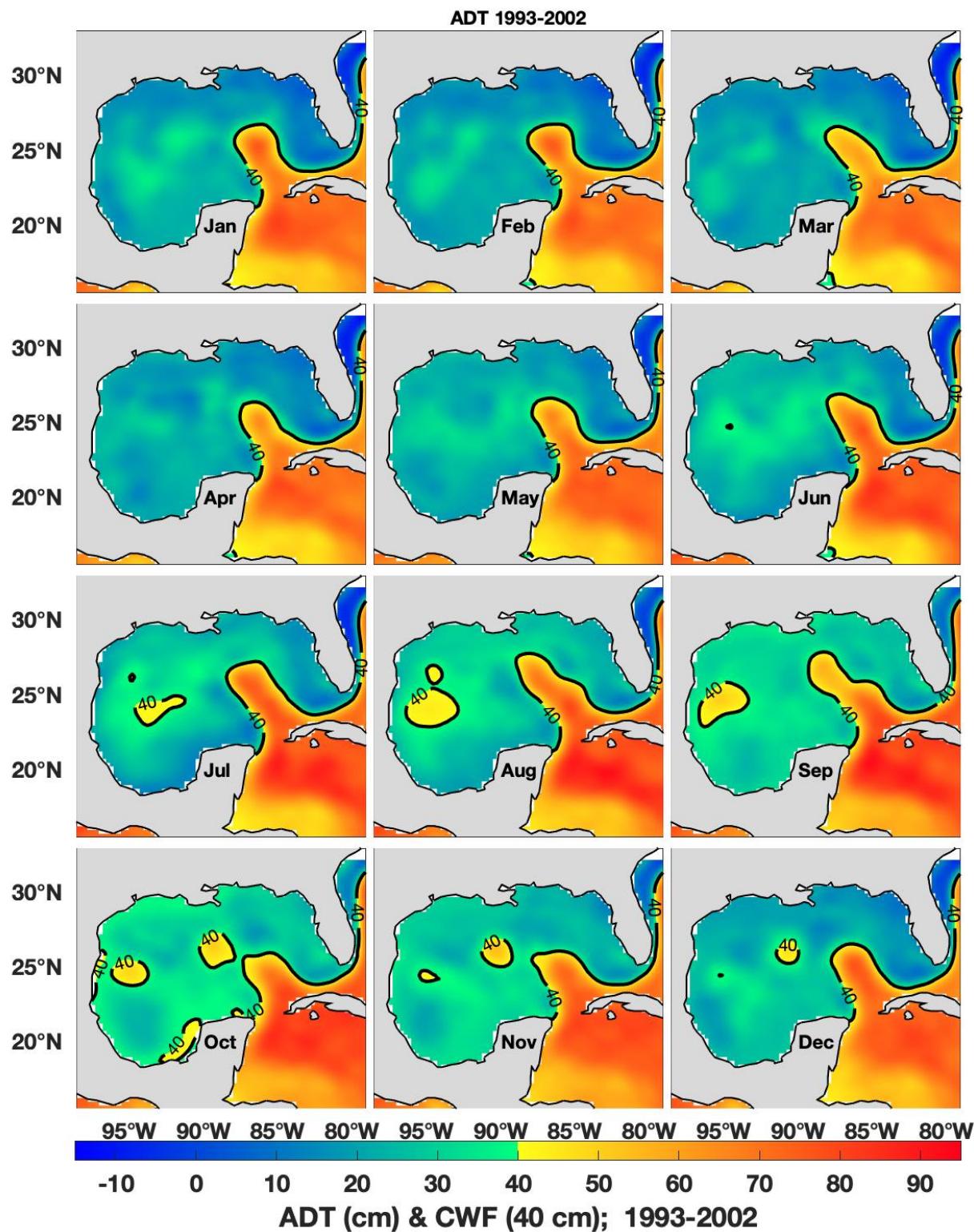
831

832

833

834

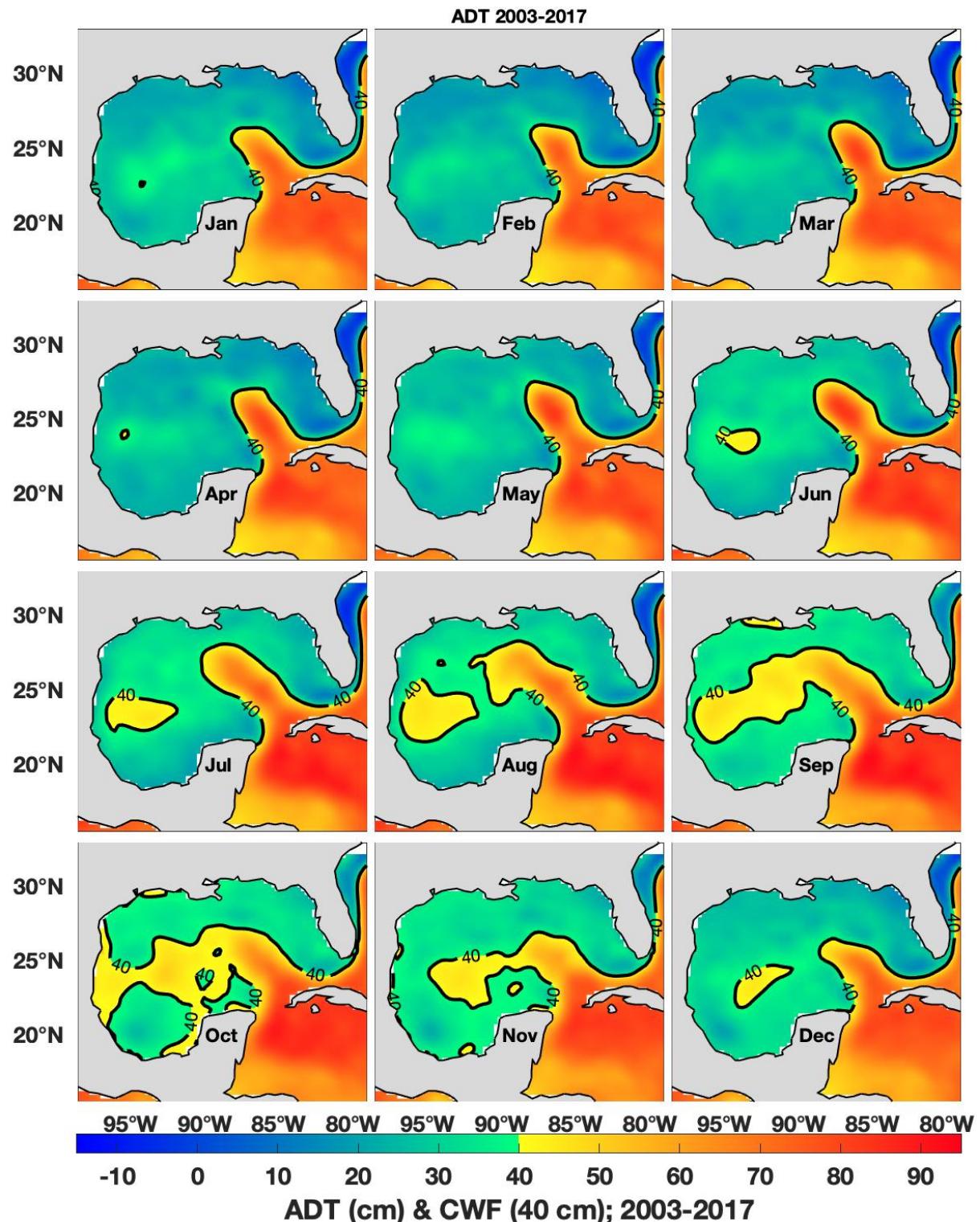
835


836

837

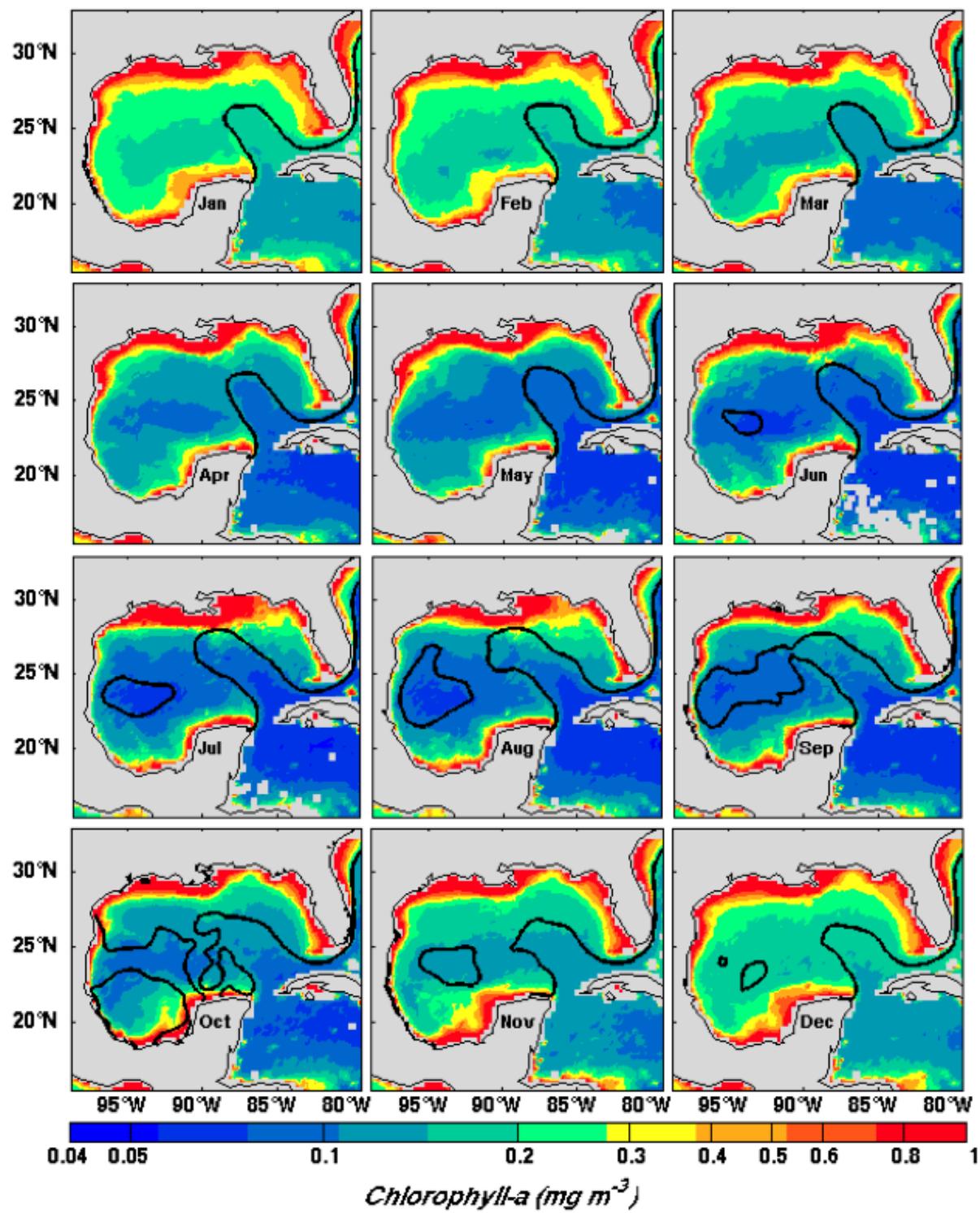
838

839 FIGURE 6


840

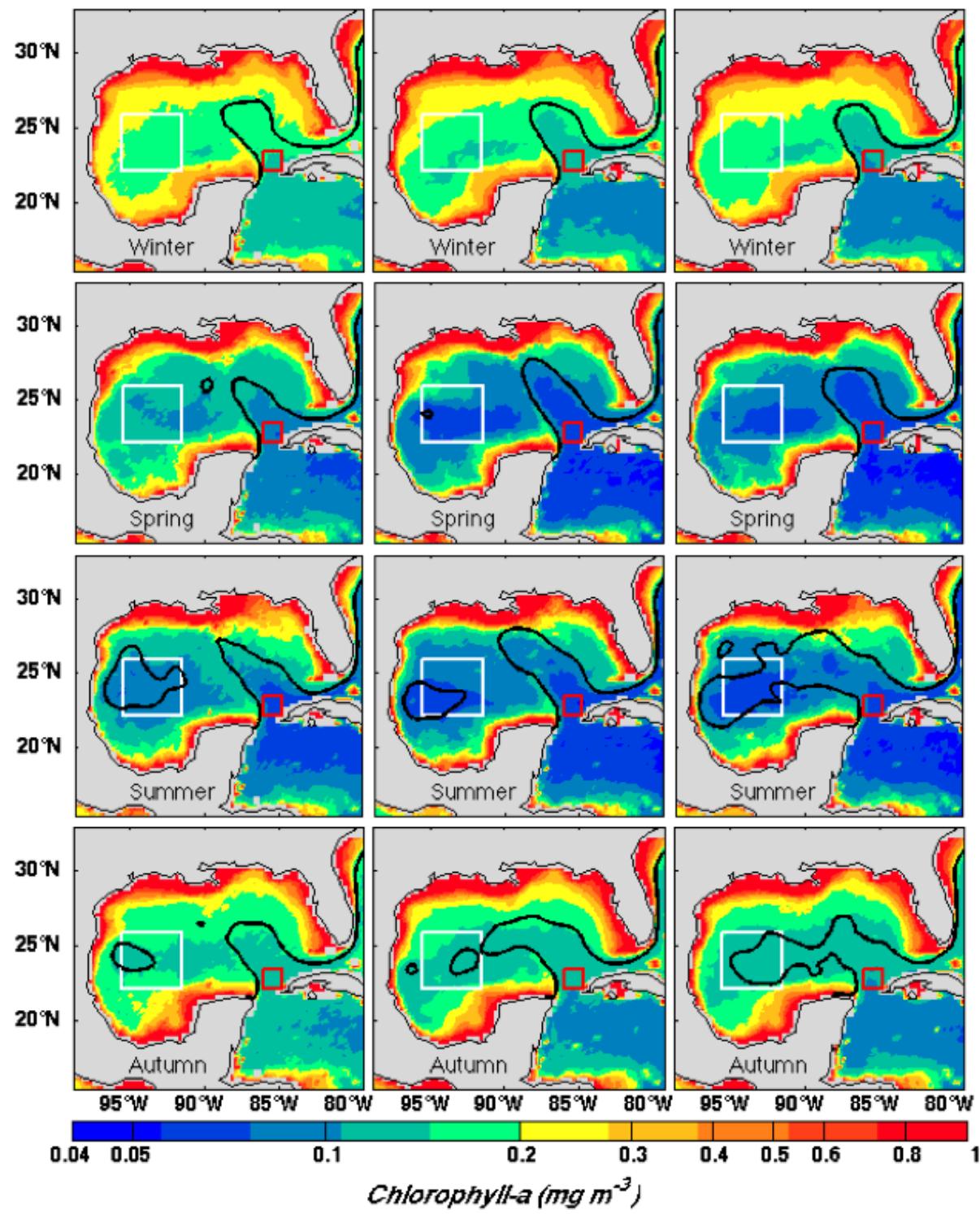


841

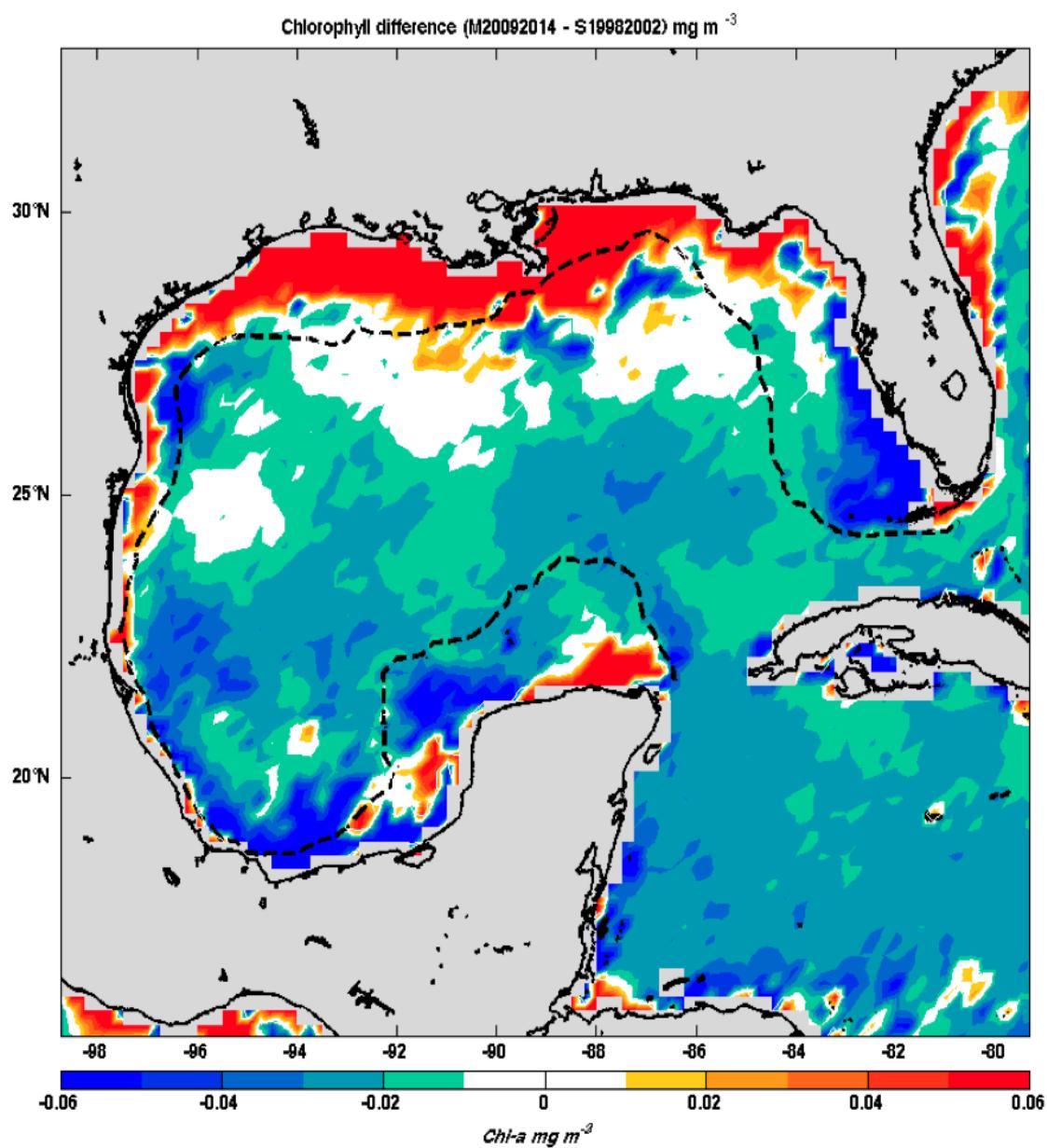

842 FIGURE 7

843




844

845 FIGURE 8




846

847

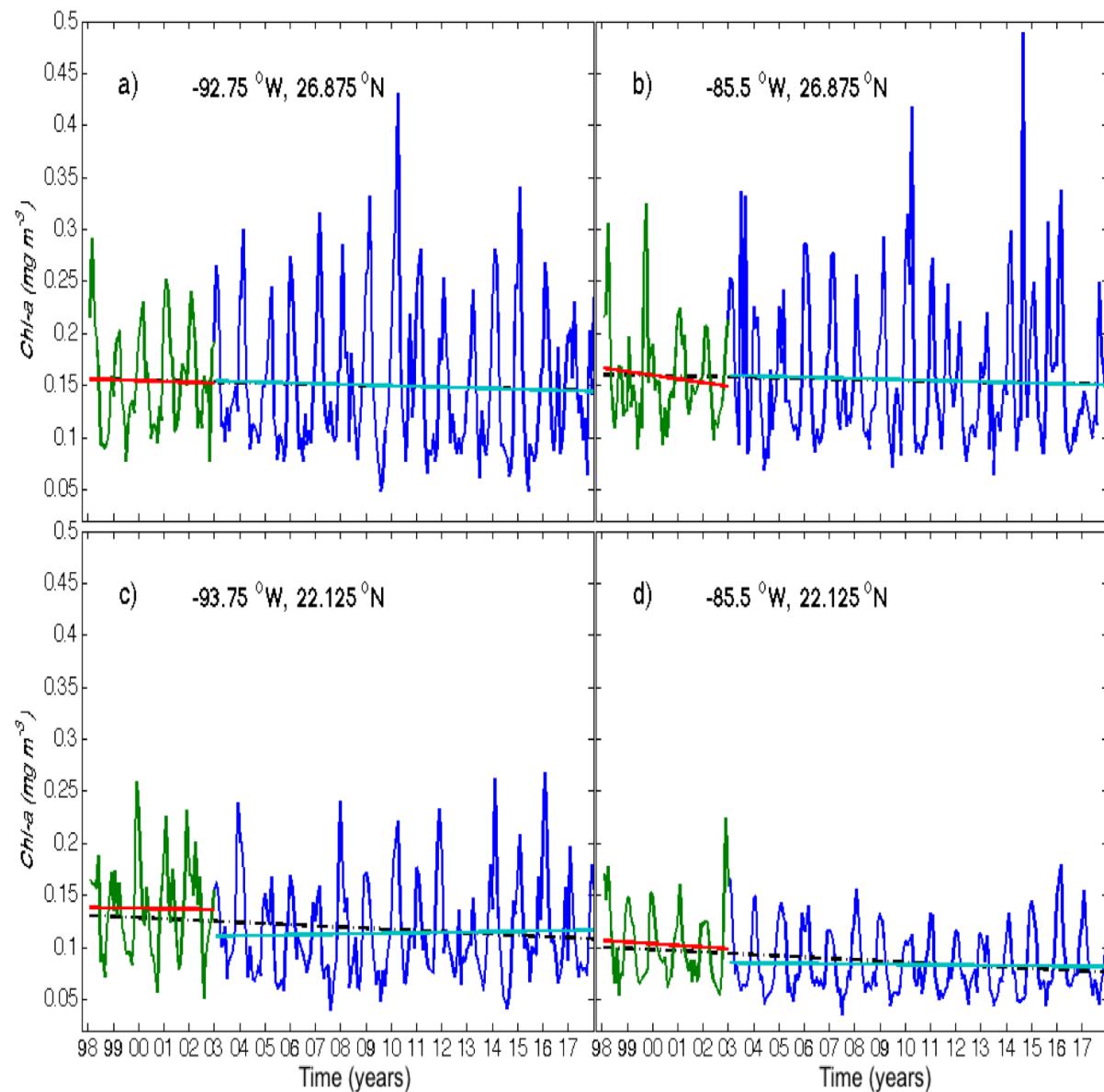


852 FIGURE 10



853

854


855

856

857

858

859

