
1 

 

The impact of a new high-resolution ocean model on the Met Office 

North-West European Shelf forecasting system 

Marina Tonani1, Peter Sykes1, Robert R. King1, Niall McConnell1, Anne-Christine Péquignet1, Enda 

O’Dea1, Jennifer A. Graham2, Jeff Polton3, and John Siddorn1 

1Met Office, Exeter, EX1 3PB, UK 5 
2Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, NR33 0HT, UK 
3National Oceanography Centre, Liverpool, L3 5DA, UK 

 

Correspondence to: Marina Tonani (marina.tonani@metoffice.gov.uk) 

Abstract 10 

The North-West European shelf ocean forecasting system has been providing oceanographic products for the European 

continental shelf seas for more than fifteen years. In that time several different configurations have been implemented, updating 

the model and the data assimilation components. 

The latest configuration to be put in operations, an eddy resolving model at 1.5 km (AMM15), replaces the 7km model 

(AMM7) that has been used for eight years to deliver forecast products to the Copernicus Marine Service and its precursor 15 

projects. This has improved the ability to resolve the mesoscale variability in this area. An overview of this new system and 

its initial validation is provided in this paper, highlighting the differences with the previous version. 

Validation of the model with data assimilation is based on the results of two years (2016-2017) trial experiments run with the 

low- and high-resolution systems in their operational configuration. The 1.5 km system has been validated against observations 

and the low-resolution system, trying to understand the impact of the high resolution on the quality of the products delivered 20 

to the users. Although the number of observations is a limiting factor, especially for the assessment of model variables like 

currents and salinity, the new system has been proven to be an improvement in resolving fine scale structures and variability 

and provides more accurate information on the major physical variables, like temperature, salinity and horizontal currents. 

AMM15 improvements are evident from the validation against high-resolution observations, available in some selected areas 

of the model domain. However, validation at the basin scale and using daily means penalised the high-resolution system and 25 

does not reflect its superior performance. This increment in resolution also improves the capabilities to provide marine 

information closer to the coast even if the coastal processes are not fully resolved by the model. 

1. Introduction 

The North-West European Shelf (NWS) is a shallow shelf region consisting of the North Sea, the Irish Sea, the English Channel 

and the surrounding waters of the Skagerrak, Kattegat in the east and the North and South-West approaches in the west, see 30 

Figure 1. These shelf seas are predominantly shallow (with the exception of the Norwegian Trench) and highly tidal. Marine 

industries in these waters are substantial, with well-established fishing and commercial oil and gas industries more recently 

being joined by the renewables activities which are continuously expanding. The countries that have coastlines in the NWS 

are in the main densely populated in these coastal regions and so there are also significant populations that are directly affected 

by the marine environment in the NWS, with coastal flooding a particular issue due to the high tides, waves and storm surges. 35 

The increasing focus on understanding the marine environment in support of sustaining healthy and biologically diverse seas 

is also a considerable driver in these waters, where human activities like heavy industrial and farming activity, as well as 

fishing, together with climate change effects, may have significant impacts on the quality of the marine environment. 
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There is therefore a significant history of marine monitoring and prediction in support of sustainable use of our marine 

environment, with the Safety of Life at Sea imperative leading to surface wave models providing forecasts, followed by ocean 

model forecasts predominantly by the need for storm surge prediction and (more recently) currents and hydrodynamics, in the 

main led by Defence requirements, but also supporting industry and marine planning (Siddorn et al., 2016). Most recently of 

all there has been an increasing focus on sustained monitoring and forecasting of the lower trophic ecosystem and marine 5 

biogeochemistry (She et al., 2016). The Met Office, with the support of collaborators from around the North-West Shelf region, 

has for a number of years being producing freely available marine predictions and forecasts for this region as part of the 

Copernicus Marine Environment Monitoring Service (CMEMS, Le Traon et al., 2017) and precursor projects (e.g. Siddorn et 

al., 2007; O’Dea et al., 2012). 

 10 

The operational ocean forecasting systems developed with the Forecasting Ocean Assimilation Models (FOAM) are based on 

a seamless prediction philosophy whereby the global and regional systems rely on similar ocean modelling and assimilation 

tools, and are co-developed for short-range forecasting, seasonal forecasting (e.g. MacLachlan et al., 2015, Tinker et al., 2018) 

and climate predictions (Williams et al., 2018). The operational forecasting configuration for the North-West European Shelf 

(NWS) is a FOAM system designed to deal with the specific constraints of operational oceanography on a shallow continental 15 

shelf sea. The model domain (shown in Figure 1) extends into the Atlantic Ocean to resolve exchanges across the shelf, of 

primary importance for the continental shelf seas dynamics and water properties. The Atlantic region is chosen to allow the 

propagation and downscaling onto the shelf of phenomena associated with the large-scale open ocean circulation. For example, 

the North Atlantic Current and European Slope Current which transport heat and salt from the North-East Atlantic, interact 

with the continental shelf slope and forms branches that flow into the North Sea. The boundaries in the Baltic cover the 20 

Kattegat-Skagerrak area, to provide the Baltic inflow, which has a significant influence on the region’s water masses due to 

the significant, and highly variable, freshwater fluxes. 

 

The NWS system has three major components: an ocean model coupled with a biogeochemistry model and a variational data 

assimilation scheme. This system runs a forecast cycle every day to provide 6-day forecasts of the physical and biogeochemical 25 

variables in this area. The forecast is initialized by running two 24-hr analysis cycles. By assimilating observations in this way, 

the FOAM system incorporates information from considerably more observations than would be available in near-real time 

with a single 24-hour window, due to the addition of late-arriving observations. 

 

Until recently the operational system for this region has been run at approximately 7 km horizontal resolution (O’Dea et al., 30 

2012; King et al., 2018). This paper describes the operational implementation of the 1.5 km version of this ocean model, 

referred to as the Atlantic Margin Model, or AMM15 (Graham et al., 2018a). The dominant dynamical scales decrease with 

reducing water depth and have complex interactions with tidal phenomena and other bathymetric interactions requiring a 

modelling system at a kilometric scale resolution for this region (Polton, 2015, Holt et al., 2017). The increase of resolution 

to 1.5 km is therefore a fundamental step change in the ability to resolve key processes and features in the NWS region 35 

(Guihou et al., 2017). As well as being developed for ocean forecasting operations, the AMM15 is being used within a 

coupled ocean-wave-atmosphere research system (Lewis et al., 2019a and 2019b).  

The upgrade of the NWS system to AMM15 does not yet include the biogeochemical component as the computational cost is 

prohibitive, (because)with the production time (exceeds) exceeding the 24-hr for a full hindcast-forecast cycle. Two systems 

are therefore being run in parallel: i) the 7 km AMM7 model with the physical and biogeochemical components similar to 40 

O’Dea et al. (2012) and ii) a 1.5 km AMM15 physics only system (being detailed in this paper), as described by Figure 2. An 

AMM15 based coupled physics-biogeochemistry model is under development, and techniques are being developed to reduce 

the computational cost to allow it to be implemented within the time constraints of operational production. Herein, therefore 
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we describe only the physical component of the high-resolution (AMM15) system, highlighting the differences with the low-

resolution configuration (AMM7). O’Dea et al. (2017, 2012) provide full descriptions of the AMM7 version of this system. It 

is worth noting here that the NWS system also has a wave component providing products on the same grid as the AMM15 

(Figure 2). The wave and physical models are forced by the same wind fields and the wave model uses the surface currents 

computed by AMM15. However, the wave model description and validation are not within the scope of this paper. 5 

The 7km products (AMM7) delivered through Copernicus are: 

• NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b 

(http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-001.pdf); 

• NORTHWESTSHELF_ANALYSIS_FORECAST_BIO_004_002_b 

(http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-002.pdf). 10 

The 1.5km products (AMM15) delivered though Copernicus are: 

• NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013 (http://marine.copernicus.eu/documents/PUM/CMEMS-

NWS-PUM-004-013.pdf); 

• NORTHWESTSHELF_ANALYSIS_FORECAST_WAV_004_014 (http://marine.copernicus.eu/documents/PUM/CMEMS-

NWS-PUM-004-014.pdf). 15 

This study is focused on the product NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013 and its inter-

comparison with NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001b. 

 

Here we provide details on the AMM15 hydrodynamic model, the data assimilation scheme, and the operational suite in the 

following section. Section 3 will then describe the trial experiments while Section 4 details our assessment of the new high-20 

resolution products. Our conclusions are presented in Section 5. 

2. System Description  

2.1 Core Model Description 

The Forecasting Ocean Assimilation Model (FOAM) 1.5 km Atlantic Margin model (AMM15) is a hydrodynamic model, one-

way nested within the Met Office operational North Atlantic 1/12° deep ocean model (Storkey et al., 2010) and the CMEMS 25 

operational Baltic Sea model (Berg et al., 2012.). The model core is based on version 3.6 of the Nucleus for European 

Modelling for the Ocean (NEMO, Madec, 2016). This is a community ocean modelling system that has a wide user and 

developer base, particularly in Europe. 

 

The regional model is located on the North-West European continental Shelf (NWS), extending from approximately 45°N to 30 

63°N, and from 20°W to 11°E. There is a uniform grid spacing of ~1.5 km throughout, in both the zonal and meridional 

direction (Graham et al., 2018a). The vertical coordinate system is based on a hybrid s-sigma terrain following system, z * ̶  σ 

(Siddorn and Furner, 2013), with 51 vertical levels. This is the same as that used in AMM7, with the thickness of the surface 

cell set to ≤ 1 m to guarantee uniform surface heat fluxes across the domain. The terrain-following coordinates used here are 

fitted to a smooth envelope bathymetry, where the level of smoothing is determined such that the local bathymetric slope r = 35 

(hi − hi+1)∕( hi + hi+1), computed between adjacent bathymetry points hi and hi+1, is constrained to be less than a specified 

maximum value (rmax). This is required to mitigate against spurious horizontal velocities that arise from horizontal pressure 

gradient errors in terrain following coordinates that are too steep. Although the number of levels in both AMM15 and AMM7 

are the same, the steeper gradients resolved in AMM15 means that a lower rmax value was chosen (0.1, compared to 0.24) to 

ensure stability along the shelf-break. 40 

 

http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-001.pdf
http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-002.pdf
http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-013.pdf
http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-013.pdf
http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-014.pdf
http://marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-014.pdf
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The bathymetry chosen for AMM15 (and shown in Figure 1 and summarized in Table 1) is from the European Marine 

Observation and Data Network (EMODnet Portal, September 2015 release). The increased resolution of both AMM15 and 

this EMODnet data set allows for improved representation of fine-scale features and processes, particularly along the shelf-

break. The original EMODnet data is referenced to Lowest Astronomical Tide (LAT), so has been converted to Mean Sea 

Level (MSL) for use in the model. The differences between LAT and MSL referenced bathymetry are negligible in the deep 5 

ocean, but can be large on shelf, particularly in shallow coastal areas with large tidal ranges. The model minimum depth is 

forced to be 10m, due to the tidal limit and lack of wetting and dry. This choice ensures that no locations dry out, due to the 

tides. Further details on the model domain and bathymetry can be found in Graham et al., (2018a). 

 

Tidal modelling requires a non-linear free surface, and this is facilitated in NEMO by using a variable volume layer method. 10 

The short time scales associated with tidal propagation and the free surface require a time splitting approach, splitting modes 

into barotropic and baroclinic components. The model uses a non-linear free surface, an energy and enstrophy conserving form 

of the momentum advection, and a free slip lateral momentum boundary condition. The tracer equation’s use a TVD (Total 

Variance Diminishing) advection scheme (Zalesak, 1979). 

 15 

 

Since both AMM15 and AMM7 have a similar vertical grid, the vertical parameterizations remain similar. The generic length-

scale scheme is used to calculate turbulent viscosities and diffusivities (Umlauf and Burchard, 2003). Dissipation under stable 

stratification is limited using the Galperin limit of 0.267 (Holt and Umlauf, 2008). Bottom friction is controlled through a 

nonlinear log layer, with a minimum drag coefficient of 2.5 x 10-3 (compared with a coefficient of 1.0 x 10-3 in AMM7), as 20 

described in Table 1. 

 

As many more fine-scale mixing processes are resolved in AMM15, only minimal eddy viscosity is applied in the lateral 

diffusion scheme. For momentum and tracers, bi-Laplacian viscosity is applied on model levels with coefficients of 6 × 107 

and 1 × 105 m4/s, respectively. For AMM7, additional viscosity and eddy diffusivity must be parameterized. A bi-Laplacian 25 

scheme is used on model levels for momentum, with a coefficient of 1 × 1010 m4/s. For tracer diffusion, a Laplacian diffusion 

scheme is used on geopotential surfaces, with a coefficient of 50 m2/s (Table 1). 

 

 

2.1.1 Boundary and surface forcing  30 

Tidal forcing is included both on the open boundary conditions via a Flather radiation boundary conditions (Flather, 1976) and 

through the inclusion of equilibrium tide. The Topex Poseidon cross-over solution (Egbert and Erofeeva, 2002; TPX07.2, 

Atlantic Ocean 2011-ATLAS) provides 11 constituents for amplitude and phase of surface height and velocity at 1/12°. 

The model is one-way nested with the Met Office Operational North Atlantic 1/12° deep ocean model (Storkey et al., 2010) 

and the CMEMS operational Baltic Sea model (Berg et al., 2012). They provide temperature, salinity, sea surface height (not 35 

at the Baltic boundary), and depth integrated currents at the open boundaries. The two models, AMM7 and AMM15, are both 

nested in the open Atlantic and Baltic boundaries to the same products, but the boundaries are in a different geographical 

position due to the different model domains. 

 

AMM7 and AMM15 are forced at the air-sea interface by two different Numerical Weather Prediction (NWP) outputs, the 40 

Met Office Unified Model (MetUM) global atmospheric model for AMM7 and the European Centre for Medium-Range 

Weather Forecasts (ECMWF) operational Integrated Forecasting System (IFS) for AMM15, see Table 2 for details. The 

Copernicus Marine Environment Monitoring Service requested the change from the MetUM to IFS forcing with the aim of 
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minimizing differences among the regional systems covering all the European seas. The fields from ECMWF and Met Office 

have a similar spatial resolution but IFS fields for wind and atmospheric pressure have a lower temporal resolution as described 

in Table 2. The IFS analysis is available only at a low temporal resolution (6 hours) therefore the decision was made to force 

the system using forecast fields only (3 hourly), from the 00:00 UTC forecast base time run. A specific set of experiments are 

needed to assess the impact of this choice but are not within the scope of this paper. ECMWF products at higher temporal 5 

resolution are now available and will be used in future releases of this operational system, improving the atmospheric forcing 

of this first version of AMM15. The IFS forcing is applied using the CORE (Common Ocean-ice Reference Experiment) bulk 

formulae (Large and Yeager, 2009). The specific humidity, sH, not available from the IFS field, is computed from the dew 

point temperature at 2m and the surface pressure using the World Meteorological Organization formulation (WMO, 2010):  

𝑠𝐻 =
𝑚𝑤𝑎 ∗ 100 ∗ 𝑟𝑆𝑃 ∗ 102

𝑆𝑃 − (1.0 − 𝑚𝑤𝑎) ∗ 100 ∗ 𝑟𝑆𝑃 ∗ 102
 10 

Where mwa is the ratio between the molecular weight of water and of dry air; rSP is the reference surface pressure; SP the 

surface pressure. The AMM7 instead is forced at the surface by direct fluxes from MetUM and using the COARE4 bulk 

formulae, as described in O’Dea et al. (2012). 

An atmospheric pressure gradient force is applied at the surface of both models, using the atmospheric pressure field from 

MetUM and IFS respectively which affects the model free surface elevation. 15 

The light attenuation in AMM15 is set to the standard NEMO tri-band scheme (RGB), assuming a constant Chlorophyll 

concentration (Graham et al., 2018a). AMM7 uses the single band light scheme previously used in the Proudman 

Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) and outlined in Holt and James (2001). In this 

single band light scheme, the extinction depths vary across the domain in proportion to the bathymetry in order to estimate the 

change in water clarity between deep and shallow waters. 20 

For AMM15, river run-off is based predominantly on a daily climatology of gauge data averaged for 1980–2014. UK data 

were processed from raw data provided by the Environment Agency, the Scottish Environment Protection Agency, the Rivers 

Agency (Northern Ireland), and the National River Flow Archive (gauge data were provided by Sonja M. van Leeuwen, 

CEFAS, Lowestoft, UK, personal communication, 2016). For major rivers that were missing from this data set (e.g. along the 

French and Norwegian coast), data have been provided from an earlier climatology (Young and Holt, 2007; Vorosmarty et al., 25 

1998), based on a daily climatology of gauge data averaged for the period 1950-2005, which is the climatology used by AMM7. 

The differences between AMM15 and AMM7 river discharge data are expected to be mainly, but not only, along the UK 

coastline. 

 

 30 

 

2.2 Assimilation method 

The data assimilation component of FOAM is NEMOVAR, a multivariate, multi-length scale assimilation scheme developed 

collaboratively by the Met Office, the Centre Européen de Recherche et de formation avancée en calcul scientifique, the 

ECWMF, and the Institut National de Recherche en Informatique et en Automatique (Mogensen et al., 2012). This has been 35 

implemented at the Met Office as an incremental 3D-Var, first guess at appropriate time (FGAT) scheme for the 1/4° global 

model (Waters et al., 2015) and the 7 km Atlantic Margin Model (AMM7, King et al., 2018). 

 

An assimilation window of 24-hours is used, and observations assimilated include in situ and satellite swath Sea surface 

Temperature (SST) observations, altimeter measurements of Sea Level Anomaly (SLA) (in regions with depth>700 m), and 40 

profile observations of the sub-surface temperature and salinity from a number of sources as detailed in Table 3. The SLA 
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observations assimilated in this model are provided through CMEMS and include the corrections necessary to add back the 

signals due to tides and wind and pressure effects necessary for use with a wind and pressure forced, tidal coastal model (King 

et al., 2018). After the assimilation step, the model is re-run for the same period with a fraction of the increments applied to 

the model fields at each time step (the Incremental Analysis Update procedure (Bloom et al., 1996).  

The Met Office implementation of NEMOVAR includes bias correction scheme for both SST and altimeter data. The SST 5 

bias correction aims to correct for biases in the observed SST due to the synoptic scale atmospheric errors in the satellite 

retrievals, while for SLA we apply a slowly-evolving bias correction to correct for errors in the MDT (Lea et al., 2008). 

In the AMM15 implementation described here the assimilation component has been upgraded to NEMOVARv4, which 

introduced a small number of changes compared to the scheme used in AMM7 (detailed in Table 4). In the AMM7 

configuration, which uses NEMOVARv3, the SST bias correction scheme employs observations-of-bias (determined by 10 

matching nearby, contemporaneous in situ and satellite observations) to estimate a daily correction to the observations from 

each SST satellite. In NEMOVARv4 a variational bias correction has been introduced which combines information from 

average SST innovations with the observations-of-bias used previously. We have also included observations from VIIRS in 

our reference dataset against which the other satellite SST observations are bias-corrected. This new scheme has been shown 

to be more resilient to changes in the observing system and gaps in observation coverage (While and Martin, 2019). The SLA 15 

bias correction in AMM15 is unchanged from AMM7. 

 

Although the same observation and background error variances are used in AMM15 as in AMM7 (see King et al., 2018), the 

background error correlation length-scales have been modified. The spatial covariance of background errors is modelled using 

an implicit diffusion operator with the horizontal length-scales specified a priori, and the vertical length-scales specified using 20 

a parameterisation based on the mixed-layer depth. In NEMOVARv3 this was modelled using three 1D diffusion operators, 

but in NEMOVARv4 it is modelled using a 2D horizontal diffusion with a 1D vertical diffusion (Weaver et al., 2016). In both 

systems, two horizontal correlation length-scales are used (Mirouze et al., 2016): 100km for the long length-scale and the 

Rossby radius of deformation for the short length-scale. To avoid numerical computation issues, the short length-scale is 

restricted to have a minimum value equivalent to 3-times the grid-scale. This has the result that in shallow water the short 25 

length-scale for AMM15 can be as small as 4.5 km compared to 21 km for AMM7. 

 

 

 

2.3 Operational production  30 

The FOAM system produces daily 2-day analyses (Best Estimate and Near Real Time (NRT) analysis) and a 6-day forecast 

(Figure 2). The timeliness of the observations, in situ and from satellite, significantly affects the number and the quality of the 

observations available in the 24 hrs preceding the forecast, so two analysis cycles of 24 hr each are run to include as many 

observations as possible in the data assimilation. 

 35 

The observations are downloaded from different sources: CMEMS for Sea Level Anomaly L3 products, Group for High 

Resolution Sea Surface Temperature for the L2 SST satellite observations and the Global Telecommunication System (GTS) 

and CMEMS for the in situ observations. The vertical profiles need to be thinned to reduce the spatial error correlation between 

the observations. For a given 24 hours, they are thinned in 3D space with the values: Δlon, Δlat=0.2°, Δz=10m. Prior to data 

assimilation, a quality check of the observation is performed using the model background produced by the forecast cycle of 40 

the previous day (Ingleby et al., 2007). Observations flagged as bad are not used for the data assimilation. The quality check 

for the vertical profiles is performed at 51 geopotential standard depth. The full profile is rejected only if more than 1/2 is 
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flagged as bad. The QC information, the background and observations fields are stored in specific files, known as feedback 

files. The error thresholds for the QC are set in order to avoid unrealistic model fields due to bad observations. 

 

The lateral boundaries for the Atlantic region and the Baltic are both from the forecast production of the previous day. The 

Baltic boundaries are downloaded every morning a few hours before starting the operational suite for the NWS. The CMEMS 5 

Baltic Sea product has 5-day forecast, produced twice a day, at 00:00 and at 12:00 and delivered at 07:00 and 19:00 UTC 

respectively. The NWS models are forced with the latest data available at 05:00 UTC and the last hourly field is persisted to 

produce the last day of forecast. 

 

The atmospheric forcing is downloaded from ECMWF and since the last set of data is available at 07:00 UTC, production is 10 

started 15 minutes later to allow for download delays. Once the model and data assimilation task are over, the post-processing 

task starts because the products need to be organized for delivery to the users. The raw output files are interpolated on a 

standard grid at the same resolution as the model rotated grid, 1.5 km, but covering a slightly smaller area (see the yellow 

rectangular dotter line in Figure 1). The vertical terrain-following levels are converted for users’ convenience, into 33 standard 

geopotential levels: [surface, 3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 15 

500, 550, 600, 750, 1000, 1500, 2000, 3000, 4000, 5000 m ]. All the files are then packaged to be compliant with the CMEMS 

and CF standards. Each day the best estimate [T-48h, T-24h] and NRT [T-24h, T+00h] analyses are delivered as well as 6 

forecast days for all products (with the first day of the forecast being for the day of production). The delivered products are 25 

hr daily means and hourly instantaneous products of temperature, salinity, horizontal currents, Sea Surface Height (SSH), 

Mixed Layer Depth (MLD). Daily mean values are calculated as means of 25 instantaneous hourly values, starting at midnight 20 

and finishing on the following midnight to remove the tidal cycles. The data are in netCDF4 format and the volume of each 

production cycle is ~14 Gb (1.7Gb for each day), while for AMM7 is ~1Gb. 

 

AMM15 is running on the Met Office HPC – Cray XC40 super computer using 48 nodes and 1536 processors. AMM7 instead 

is using only 8 nodes and 256 processors. This information is summarized in the Table 5, for each component of the system:  25 

 

 

XIOS is for the I/O of NEMO. The small size of AMM7 model grid doesn’t require dedicated nodes for this task. 

 

The production process takes approximately 4 hours, four times that required by AMM7. It is planned to improve the robustness 30 

of this first implementation of the system by improving the dependencies of the different tasks in the operational suite and 

investigating ways of reducing the dependency on IFS delivery. The quality of the products and the observations used for the 

production are monitored each day to allow the ocean forecasting scientists to take action if there are anomalies in the 

production or missing observations, and to allow users to be promptly alerted in the case of degradation of the products. 

 35 

3. Trial experiments 

The assessment of the pre-operational implementation is based on trial experiments covering the years 2016-2017 (Table 6). 

The strategy for trialling forecasting systems prior to entering into operations is one of significant debate at the time of writing. 

Ideally, given the relatively poor in situ observational coverage, a long period of trialling would be used to assess the system 

performance to gain a full (and statistically significant) understanding of its performance in all seasons and under a range of 40 

conditions. However, a combination of the length of time and computational cost to run those trials, the overhead in preparing 
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observations and fluxes and the difficulty in finding a period of observations and fluxes that truly reflect the operational 

conditions, lead to a more pragmatic approach being taken. It should be noted that the AMM15 modelling system itself has 

already been assessed for a long period and its quality documented in Graham et al.(2018a). Similarly, the data assimilation 

methodologies are well-tested (King et al., 2018) and have been robust in operations in other implementations. This assessment 

is therefore complementary and allows an assessment of the system as it is in operations, with fluxes, boundaries and 5 

assimilated observations used that are similar to the operational system. The trial experiments are required to cover a period 

in the recent past in order to avoid differences in the observational network and/or in the forcing resolution/quality. The two 

years chosen are therefore a balance between covering a multi-year period, that is recent in time (and hence representative of 

the operational conditions) and achievable on the timescales required to transition into operations. 

 10 

Before adding a new product to the operational production, the system must be shown to offer an improvement over the 

previous system. For AMM15 this was done by setting up comparative trials running the existing and the new system, which 

are running with different forcing and initial conditions. This assures that we reproduce the operational products, new and old, 

and we validate the quality of the products. 

The operational version of AMM7 was re-run rather than using the operational products produced in real time in order to avoid 15 

inconsistency in the number and type of observations assimilated by the two systems. Indeed, the real time production can 

suffer temporary delays or problems in the delivery of the observations that are not reproducible in delayed time. 

 

A free (non-assimilative) run was performed as a control, for both AMM7 and AMM15, but the results are not described in 

this work, since our aim is to assess the quality of the products delivered to the users. Apart from the resolution, the major 20 

differences between AMM7 and AMM15 are in the initial conditions, the atmospheric forcing and the location of the lateral 

boundaries. 

 

The AMM7 initial conditions are from the operational (assimilating) system while for AMM15 they are from an extension of 

the non-assimilating experiments presented in Graham et al. (2018a), which finished at the end of 2014. This run was extended 25 

to include 2015 and was run with the same source of atmospheric forcing and Atlantic lateral boundary used for 2016-2017. 

However, the CMEMS Baltic datasets used to calculate the boundaries used in operations for AMM7 are no longer available 

due to the CMEMS retention policy, and so cannot be used to calculate the AMM15 equivalents. We therefore used the 

CMEMS product where it was available (for the years 2016 and 2017) but for 2015 a General Estuary Transport Model 

(GETM, Burchard et al., 2002) implementation for the Baltic (as used by Graham et al., 2018a) was used in its place. 30 

 

This paper details the assessment of the quality of the AMM15 operational system based on the assimilative run and is therefore 

representative of the analysis day. Graham et al. (2018a) have demonstrated that the AMM15 without data assimilation 

performs equally or better than AMM7. A detailed assessment of the forecast based on the real time forecast produced since 

the beginning of November 2018 will be conducted in the future. It is anticipated that the forecast quality improvement for the 35 

AMM15 against the AMM7 will be greater than the improvement for the analysis day, given the improved underlying model, 

but that must still be demonstrated. 

 

 

The results and validation of these trials are used for two purposes: as a basis for making a decision on whether to proceed 40 

with the operational implementation, and to provide feedback to the researchers developing the models and data assimilation 

systems to prioritize their research activities. 
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The observations assimilated in the NWS system are SST from in situ and satellite; SLA from satellite; and sub-surface vertical 

profiles, as detailed in Table 3. The satellite measurements guarantee a good coverage of the area, especially for SST, while 

the sub-surface profiles are variable in terms of number of observations and spatial/geographical distribution. Figure 4 shows 

the observations distribution during year 2016-2017 for sub-surface observations of temperature and salinity for the two most 

extreme seasons in terms of data distribution, winter (defined as December-January-February) and summer (June-July-5 

August). In summer 2016 and 2017, there are very few observations on shelf, in particular in the North Sea and this has an 

impact on the quality of the assimilative runs. Compared to the trial experiments, done in delayed-time, the real-time analysis 

can have a temporary decrease of quality due to timeliness issues affecting the real-time delivery of observations or poor 

quality-controlled data. 

 10 

3.1 System performance: AMM15 vs. AMM7 

The impact of the high resolution can be qualitatively assessed comparing models surface currents maps. The current field of 

AMM15 is more detailed and seems more realistic than AMM7 but the lack of the observations makes it difficult to properly 

assess the horizontal velocity field in key areas. Figure 3 represents the surface currents from AMM7 and AMM15 for a single 

day, to give an example of difference between the two models. AMM15 has a more complex current circulation in the deep 15 

part of shelf, with meanders and eddies, not resolved by AMM7. The European slope current, green arrow in Figure 3, is 

transporting Atlantic water into the North Sea, mainly through the Faroe-Shetland Channel (Marsh at al., 2017), influencing 

the characteristic of the water in the Northern North Sea and its circulation. The AMM15 current patterns seems more realistic, 

reproducing eddies and meanders, has shown by drifters measurements done in this area (Burrows et al., 1999). The European 

slope current plays a major role in the across shelf transport, with AMM15 better reproducing the water exchanges as described 20 

in Graham et al. (20018b). 

The two models are also very different in the area characterised by the Norwegian Coastal Current (NCC) which is highlighted 

by the yellow vectors in Figure 3. 

The NCC is a coastal current flowing from Skagerrak to the Barents Sea, following the Norwegian coastline, in the upper layer 

(50-100m) over the Norwegian Trench. This current is characterized by a front between low salinity water coming from the 25 

brackish Baltic sea and Norwegian coastal water, and the Atlantic water. This current has mesoscale meanders and eddies 

(Ikeda et al., 1989) propagating northward along the Norwegian coast. AMM15 reproduces better the mesoscale eddies and 

meanders of the NCC which are not resolved by AMM7. 

The Scottish coastal current, seems to be well resolved by AMM15, with a strong current flowing along the west Scottish coast 

and meandering before entering the channel between mainland Scotland and the Hebrides (the Minch). This is a persistent 30 

current that interacts with the island chain of the Hebrides (Simpson, 1986). AMM15 has a more detailed coastline and 

bathymetry in this area which is likely to be one of the main reasons why the model resolves this current. In AMM7, this 

current is almost absent, or too weak and misplaced to the west, instead of being, as it in AMM15, between the islands and the 

mainland (Figure 3, red arrows). The contrast between the low salinity along the coast and the higher salinity of the Atlantic 

water is another key driver of this current (Simpson, 1986), and this is better represented by AMM15, which has an improved 35 

salinity field compared to AMM7 (see Section 4). AMM15 seems to be much less diffusive in the proximity of the river plumes 

keeping a narrower plume close to the coast and has a lower lateral diffusion (Graham et al., 2018a). AMM7 has low salinity 

water (less than 34.5 PSU) spreading much further away from the coast, all the way to the Outer Hebrides, while the salinity 

gradient in AMM15 is located between the Minch and the western side of the Outer Hebrides. This assessment shows that 

AMM15 is in very good agreement with literature in this area. Further studies, and possibly targeted observations, are needed 40 
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to validate this preliminary result and to assess AMM15 skills in predicting the seasonal variability of this current and the other 

currents described in this study. 

 

4 Validation of the experiments 

Most of the observations used for the global validation are the same as used for the data assimilation, as described in the 5 

previous section. The model/observation differences are calculated before the model is corrected by the assimilation, but even 

so the observations are not fully independent from previously assimilated observations. All the same, this method is commonly 

used for model validation (King et al., 2018) and we consider the validation significant. Independent observations, available 

on a very limited geographical domain and/or for a shorter period than the two years, have also been used, and have the benefit 

of providing an understanding of the impact of the high resolution locally on small areas and short time-scales. This approach 10 

differs from the validation described in Graham et al. (2018a), which focussed on the seasonal, interannual and multi-year time 

scales. 

The independent observations we have used are:  

• Glider transects from the UK MASSMO4 experiments (north of Scotland); 

• COSYNA High Frequency (HF) radar in the German Bight 15 

• Tide gauges 

• Moorings in the German Bight and in the English Channel. 

 

The geographical location of these observations is presented in Figure 5 where each type of observation is marked by a different 

colour. Also used was the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) L4 SST product (Donlon et 20 

al., 2012) which, although not assimilated, is not fully independent as it assimilates a similar (but not identical) set of SST 

observations as the AMM7 and AMM15 using similar methods (including using the same assimilation framework, albeit set 

up slightly differently). 

 

The basin scale validation results for AMM7 and AMM15 are summarized in Table 7 (with the system that has the best quality 25 

highlighted in bold), with a short description of the observations used. The ambition is to validate all the variables delivered 

to the users, even if there is a huge difference in the number and quality of observations available for the different parameters. 

The RMS Difference and mean error (or bias) values are similar between the two systems and do not reflect the AMM15 

system’s superior performance as the validation at basin scale, averaged on the whole two years or one-year period, penalises 

the high-resolution system. Whilst higher resolution models (subjectively) generate more realistic fields, it is often the case 30 

that statistics based on direct point match-up between interpolated model and observations do not improve due to the double 

penalty effect (e.g. Brassington, 2017). So, although global statistics do not show significant improvement from AMM7 to 

AMM15, it is demonstrated below that AMM15 consistently performs better than AMM7 when validated locally against high 

resolution observations. It is an active area of research both with the ocean and Numerical Weather Prediction communities to 

understand how to quantitatively demonstrate skill improvement from higher resolution systems, and something that needs a 35 

real focus from our community. 

 

 

 

 40 
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4.1 Tides 

Most of the continental shelf seas dynamics is dominated by tidal variability, which impacts the velocity fields and plays a key 

role in the mixing and the generation of fronts. The improved resolution per se doesn’t imply an improvement in capability to 

model the tidal signal even if differences in the topography and coastlines could affect the baroclinic component of the tide 

influenced by interaction of the flow with the bathymetry. This is particularly true in shallow areas when tidal currents are 5 

strong. We have assessed the tides for year 2016 and 2017 using the tidal gauges. In addition, we used HF radar velocity data 

available in a small part of the domain, in the German Bight (South-East North Sea), for a single month, March 2017. 

4.1.1 Tidal harmonics 

A harmonic analysis of the dominant tidal constituents was compared against tide gauge observations from BODC (British 

Oceanographic Data Centre, https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/) and 10 

NOOS (North West Shelf Operational Oceanographic Service, http://noos.eurogoos.eu/). The number of tide gauges taken into 

consideration for AMM15 and AMM7 is the same, therefore the coastal data, not resolved by the AMM7 coastline, are not 

taken into consideration. AMM15 has a high horizontal resolution but since the model applies a minimum depth of 10 m (same 

as AMM7), the inaccuracy in depth can still affect its ability to properly estimate the tidal speed very close to the coast (Graham 

et al., 2018a). The statistics for the 7 dominant tidal constituents are detailed in Table 8. The differences in amplitude between 15 

AMM7 and AMM15 are small. AMM15 has consistently lower Root Mean Square Difference (RMSD) for the phase of the 

tide, although the phase bias is similar or higher in AMM15.  

 

 

While the performance of AMM7 and AMM15 is similar (Table 7) for basin means, anomalies vary across the domain, 20 

showing regional improvements (Graham et al., 2018a). Figure 6 shows the spatial distribution of the M2 tidal errors in the 

two models. The values of RMS and mean error (observation-model) for amplitude and phase are very similar.  

 

The M2 amplitude tends to be somewhat underestimated in the south-west part of the North Sea and along the east coast of 

the UK. Phase errors, in both models, are largest in the southern North Sea and off the north-eastern coast of Northern Ireland. 25 

The AMM15 M2 amplitude is more accurate in the western part of the basin, in particular around the Kintyre peninsula as 

already described in Graham et al. (2018a), and in the Bristol channel area. The AMM15 phase error is smaller than AMM7 

in the German Bight (South-East North Sea) but not in amplitude. 

There are no significant differences in the co-tidal chart (not shown) between AMM7 and AMM15, both are very similar to 

the charts shown in Graham et al. (2018a). 30 

4.1.2 Tidal flow 

One month, March 2017, of HF radar surface current velocity data were used to compare AMM7 and AMM15 in the German 

Bight where the bathymetry is shallow (Figure 1) and AMM15 is expected to performed better. The total surface velocity data 

from the COSYNA (Coastal Observing System for Northern and Arctic Seas) observing network (Gurgel et al., 2011), 

available through the EMODnet Physics data portal, are computed from radials of three HF radars installed on the islands of 35 

Sylt and Wangerooge, and in Büsum (as shown on Figure 5). Data are averaged every 20 minutes on a grid of resolution of ~3 

km. At the operating frequencies used, the total surface velocities represent an integrated velocity over a depth between 1 and 

2 m. Relative error provided with the dataset was used to keep only data with error smaller than 15%.  Model output were 

interpolated at the time and locations when and where observations were available to avoid applying gap-filling technics. 

Temporal coverage over the domain is larger than 75% everywhere except along the base line between Büsum and Wangerooge 40 

where the temporal coverage is ~29%. 

https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/
http://noos.eurogoos.eu/
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Because the high frequency variability of the flow in the German bight is dominated by tidal flow, a low pass filter was applied 

to the data with gaps, to separate the tidal and the residual component of the velocity. The tidal flow assessment presented here 

uses the high-pass filtered data (Figure 7); the residual currents that come from the low-pass filtered data are discussed in the 

next Section, 4.2. Vector correlation (or complex correlation of u+iv, where u and v are the zonal and meridional velocity 5 

respectively, and i is the square root of -1) were estimated and are displayed as correlation amplitude, and phase, or veering. 

The phase represents the rotation between the two vectors that gives the highest correlation. 

 

The various metrics show that AMM15 resolved the tidal current in the south German Bight better than AMM7, as shown in 

Figure 7. Although AMM15 bias is slightly higher than AMM7 in some areas, RMSD of AMM15 is smaller than the RMSD 10 

of AMM7 everywhere in the HF radar domain. 

Both models show high correlation with the observations (not shown) and AMM15 has a lower phase, veering, with the 

observations. Because tidal velocities are rotating periodic signals, the spatial angular veering estimated using the complex 

correlation can also be interpreted as a temporal phase of the tidal signal. Positive veering angle means that the model tidal 

velocities lead the HF radar tidal velocities. Figure 7 shows that the tidal phase is improved in AMM15 compared to AMM7 15 

in most of the domain, consistent with the results of the comparison with the tide gauges, 4.1.1. 

 

4.2 Surface currents in the German Bight 

A good forecast of the intensity and direction of the currents is needed for operations at sea, but the validation of this 

variable is particularly difficult due to the scarcity of observations. There are very few measurements of velocity in the 20 

model domain. Among the few data available we have decided to use the surface currents measured by the HF radar. 

The HF radar data used here are one month of total surface velocity currents estimated from three HF radar installed in the 

German Bight, described in the Section above, 4.1.2 Tidal Flow.  

Because the high frequency variability of the flow in the German Bight is tidally dominated, a low pass filter was used to 

separate the tidal and the residual component of the velocity. Statistics were computed on the high-pass and low-pass filtered 25 

velocity components to assess the tidal and residual flow respectively. The assessment of the tidal flow is described in 

section 4.1.2. Tidal Flow while this section focuses on the sub-tidal circulation.  

The strong tidal signal in the shallow German Bight results in Kelvin waves propagating eastward on the southern boundary 

along Germany and northward at the eastern boundary along Denmark. However, this cyclonic circulation may not dominate 

as other processes are also influencing the circulation such as topographic effects from the shallow basin, wind and 30 

stratification resulting from freshwater input mostly from the Elbe and Weser river discharge. Wind tends to also produce a 

residual cyclonic circulation (Schrum, 1997, Dick et al., 2001, Port et al., 2011). During the month of March 2017, a weak 

cyclonic circulation was observed in the mean HF radar surface currents along the German and Danish coasts. It is also 

observed in the AMM15 simulations and as a weaker flow in AMM7. The strong flow out of the Elbe estuary is evident in 

AMM15 currents pattern, even if shifted to the west. AMM7 shows an intensification of its currents in this area, but with a 35 

speed much smaller than the observations and AMM15 (Figure 8). Generally, the spatial variability observed in HF radar is 

better captured by AMM15 than AMM7. Similar statistics as those estimated for the tidal flow (Figure 7) also show 

improvement in both amplitude and direction of the residual flow (not shown). 

 

4.3 Sea Surface Height 40 

AMM15 and AMM7 SSH is assessed against the satellite Sea Level Anomaly data used for the data assimilation both on and 

off the shelf (Table 7), matching the model to the observation before the SSH data assimilation. The matchups are created by 

interpolating the model field to the observation location, at the model time step nearest to the time of the observations. It is 
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worth noting that the assimilation of SLA is done only where the bathymetry is deeper than 700m, therefore no observations 

are assimilated on shelf and in a large part of the off-shelf region. The differences between AMM15 and AMM7 are negligible 

both on the continental shelf and off shelf. As expected in a tidally dominated area, on the continental shelf the RMSD is 

slightly higher than off shelf: 0.13 m on-shelf and 0.09 off-shelf. Both models are overestimating SSH on the shelf, but AMM15 

has a smaller bias (-0.02m for AMM15 and -0.06m for AMM7). Instead, off-shelf AMM15 and AMM7 have the same absolute 5 

value of bias (0.01 m) but opposite sign, positive for AMM15 and negative for AMM7.  

4.4 Sea Surface Temperature 

Sea surface temperature is one of the key parameters of heat exchange at the air-sea boundary. Thanks to satellite and in situ 

observations, SST is the variable with the best measurement coverage in our model domain. SST data is assimilated in the 

AMM15 and AMM7 models (Figure 4) during the Incremental Analysis Update (IAU) step of each model run. As a result, an 10 

assessment of the model skill at predicting SST compared to observations would be expected to produce a positive result. We 

have compared the model against all the assimilated observations, the OSTIA products and a number of time series at selected 

moorings. It’s worth to notice that while the comparison with the assimilated observations is done using the model output at 

the nearest time step, the comparison against OSTIA is done using the daily means. The hourly instantaneous fields are used 

instead for the comparison at the mooring locations. This validation allows us to have a general overview of the model SST 15 

performance with a detailed analysis of the high-resolution model in few selected locations. 

4.4.1 Comparison with in situ and satellite  

Model SST has been assessed here against in situ SST measurements matching the model to the observation before the data 

assimilation, at the model time step closer to the observations time. The in situ measurements are from different instruments, 

as detailed in Table 3. The number of the in situ SST observations is pretty good during the two years: ~1000 obs/day on the 20 

full model domain of which ~500 on-shelf. The differences between the two systems, in the full model domain, are very small 

(Table 7). The RMSD is ~0.5°C for both AMM7 and AMM15. Both models have a small warm bias, -0.01°C, over the full 

period. The warm bias is mainly due to the winter months when the model is slightly warmer than the observations. The same 

statistics on-shelf shows very similar results. 

 25 

In addition to the in situ observation assessment, the model hourly SSTs have been compared to the Met Office’s Operational 

Sea surface Temperature and sea Ice Analysis (OSTIA) system (Donlon et al., 2012). OSTIA provides analyses of the 

foundation SST (i.e. the SST free of diurnal variability) and assimilates in situ and satellite observations. The OSTIA data, 

available through the CMEMS catalogue, is produced on a 1/20°grid (~6km resolution), however, this is not the feature 

resolution of the product, which depends on other aspects of the system such as the correlation length scales used in producing 30 

the analysis. OSTIA has a maximum feature resolution of ~20-30 km and so both AMM7 and AMM15 are expected to 

represent smaller features than OSTIA. The important point to consider in this assessment is that OSTIA foundation SST is 

being compared to the model surface box daily mean SST that should be biased warm compare to foundation. 

The reference grid used for the inter-comparison of these three datasets is AMM7, therefore OSTIA and AMM15 have been 

interpolated at 7km. 35 

The bias is defined as observation-model. Both models are biased warm compared to OSTIA (Figure 9), in agreement with 

the in situ-model matchups statistics. AMM15 has a slightly higher bias than AMM7 but the same RMSD. The high variability 

of the signal in AMM15 could be penalized by the interpolation onto a grid at lower resolution. Overall, we see little difference 

in performance between the two systems. The mean RMSD for the period 2016-2017 is for both the systems of 0.3°C, smaller 

than the RMSD computed by the in situ-model matchup statistics (0.5°C). The comparison between OSTIA-model and in situ-40 
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model differs also because OSTIA comparison uses a full field to calculate the statistics rather than the single-point observation 

used in the in situ-model matchups. 

4.4.2 Variability in SST 

A small number of buoys have been used to investigate the SST variability in the models (Figure 5). Three sites were 

investigated in this study, E1 (50.026°N, 4.225°W) in the English Channel and the FINO sites in the German Bight (FINO1 at 5 

54° 00.89 N, E 6°35.26 E and FINO3 at 55°11.7 N 7°9.5 E), buoys marked as 1 and 2 in Figure 5. In the future it would be 

helpful to get a broader range of sites included. A Butterworth filter (Butterworth, 1930) has been applied to the hourly model 

and observed SST data, using a cut-off for the filter at 5 days which removes the large scale synoptic and seasonal signals, 

leaving the internal dynamics and the wind driven signals, as well as the tidal frequencies. The observation data were 

interpolated hourly to be equivalent to the model data, and the precision of the model data reduced to the same precision as 10 

the observations, to allow direct comparison and to prevent any aliasing. The timeseries were divided into seasons, both due 

to the high seasonal variability of SST and to avoid observation data gaps that would skew the analysis. We defined the four 

seasons as: December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September, October, 

November (SON). The data used for this study covers the period December 2016-November 2017. 

 15 

The model data was taken from the analysis day. It would be interesting to also assess the forecast, this will be the subject of 

future studies. Figure 10 shows the SST and filtered SST timeseries at the FINO3 mooring for two different seasons, winter 

(DJF) and summer (JJA). The filtered SST signal has a higher variability in summer when the diurnal warming is stronger and 

therefore the SST gradients are bigger. AMM7 and AMM15 have very similar values of SST, probably due to the data 

assimilation of SST that brings both models close to the observations. 20 

Spectral powers were estimated and smoothed using a Loess filter to remove noise in the spectra. Figure 11 shows the power 

spectra for each season at the FINO 3 buoy, the non-filtered spectra are also plotted as faint lines. The power spectra of SST 

at the other mooring locations, E1 and FINO1, are not shown but are similar to FINO3. Although this is not exclusively true, 

the general trend is for the models to drop off in power more quickly with frequencies, and have a steeper spectral slope, than 

the observations. AMM15 SST is more variable at frequency higher than daily, although at periods of 4 hours and lower the 25 

models tend to behave quite similarly. This is consistent with what one would expect from the mesoscale resolving skills of 

AMM15. This high frequency increase of variability in AMM15 compared to AMM7 can also be seen by quantitative 

inspection of the model fields (Figure 10), with small length scale features being more prevalent in AMM15. At higher 

frequencies (shorter periods) SST spectra for both models collapse to the same power spectrum value with generally less 

variability than the observations at high frequencies. 30 

This suggests that on average some of the very high frequency / small scale features are still not being represented in the 

models, although it should be noted that the model represents a mean over a grid which will by definition introduce some 

smoothing, whereas the observations are (at least to a greater extent) sampling at a point. This analysis demonstrates 

quantitatively that the AMM15 better represents the high frequency / small scale features, which can visually be observed from 

model fields time series, but are poorly assessed through global statistics, as shown in Table 7. This result is likely to be even 35 

more pronounced in forecast fields, although that is not demonstrated here. 

 

4.5 Water column 

4.5.1 Temperature and salinity profiles 

AMM15 shows improved vertical structure of the water column, with a lower bias and RMSD compared to AMM7 in salinity 40 

and temperature. Figure 12 shows the mean error (obs-model) and the RMSD averaged over the whole domain, with 
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observation-model differences calculated before the assimilation of the vertical profiles. The temperature bias of both models 

is very small at the surface but increases below 100m. Between 500 and 1000m AMM15 has a mean error close to zero, while 

AMM7 has a cold bias. AMM15 also has a lower RMSD than AMM7 at all depths below the surface. The distribution of the 

sub-surface observations, shown in Figure 4, is uneven, with very few observations on shelf, therefore it is not possible to 

distinguish between the water column improvements off-shelf and on-shelf using this technique, and these improvements are 5 

demonstrated predominantly for the off-shelf region. This is a very good result considering that the skills in modelling salinity 

and temperature depth structure have recently been significantly improved in AMM7 with the improvements in data 

assimilation, with the addition to SST of SLA and sub-surface profiles (King et al., 2018). This means that, in less than 2 years, 

the NWS system has consistently improved its skill in resolving the vertical profiles of temperature and salinity and therefore 

the density of the water column. 10 

 

4.5.2 Moorings in the German Bight 

Table 9 and Table 10 show the temperature and salinity statistics for the model and observations comparison during year 2017 

at the five moorings in the German Bight (Figure 5). Observations for both temperature and salinity are available at surface 

(5m) and bottom. The models assimilate only SST observations, not salinity and no bottom observations. The hourly 15 

instantaneous model data are compared to the buoy observations with a few discontinuities due to missing measurements 

during a short period of the year. AMM15 has a better RMSD and a lower error mean at all buoy locations. The high frequency 

variability is better reproduced by AMM15 than AMM7, as shown in Figure 13 for the surface salinity field in the NsbII 

(mooring number 3 in the map of Figure 5). 

Temperature RMSD and bias are very small at surface, due to the strong constraint of the data assimilation of SST (as described 20 

in 4.3) while at the bottom AMM15 is more accurate in prescribing the temperature at all mooring locations (Table 9).  

 

AMM7 and AMM15 both have high salinity errors in the German Bight, as highlighted by the comparison with the buoys that 

are located closer to the coast (Fino1, Fino3 and UFSDeBucht). This is most probably due to representation of river discharge. 

AMM15 performs better than AMM7, probably because it is less diffusive within river plumes and has a lower lateral diffusion. 25 

Improved bathymetry and coastal resolution are also likely to play a role in coastal areas with depth less than 20m. AMM15 

has halved the salinity error compared to AMM7 when compared with the outer buoys (NsbII and TWEms). It is encouraging 

to see that AMM15 is better than AMM7 at the bottom at all mooring locations. The decision to use the climatological river 

discharge dataset instead of E-Hype for AMM7, and subsequently AMM15, has improved salinity remarkably in the German 

Bight, reducing the model fresh bias. This modification was implemented in April 2017, meaning that we have significantly 30 

improved the salinity in the last two major updates of the NWS forecasting system. Nevertheless, using a climatological river 

runoff dataset is a limitation for a high-resolution forecasting system, affecting variability in coastal water properties. Finding 

a suitable alternative will be a priority for future releases of this system. 

Temperature RMSD and bias are very small at the surface, due to the strong constraints of the data assimilation of SST (as 

described in 4.3) while at the bottom AMM15 is more accurate in prescribing the temperature at all mooring locations (Table 35 

9). 

 

 

 

 40 

 

4.5.3 Glider transects 
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AMM15 and AMM7 vertical structure and high frequency variability is assessed against the glider profiles from MASSMO 

(Marine Autonomous Systems in Support of Marine Observations), Mission4 (Figure 5 and Figure 14). MASSMO is a 

pioneering multi-partner series of trials and demonstrator missions that aim to explore the UK seas using a fleet of innovative 

marine robots. With newly developed unmanned surface vehicles (USVs) and submarine gliders, the multi-phase project has 

successfully completed the largest single deployment of marine autonomous systems ever seen in the UK. In the summer of 5 

2017 a fleet of 11 autonomous marine robots was deployed to explore the seas northwest of the Orkney Islands in search of 

marine mammals and sources of man-made noise pollution. The mission was part of an annual series of marine robot trials co-

ordinated by the National Oceanography Centre in partnership with 16 organisations representing UK government, research 

and industry (http://projects.noc.ac.uk/massmo).The fleet comprised eight submarine gliders and three unmanned surface 

vehicles, travelling up to 200km offshore to the Faroe-Shetland Channel where water depths exceeded 1000m. The MASSMO4 10 

campaign covered the period 22nd May to 6th June 2017 with 3 gliders deployed north of Scotland, close to the coast, and 

then travelled across the shelf break. 

The MASSMO4 dataset is therefore a very high-resolution source of information in a key area of the model domain. We have 

compared the models and observations along the glider track, using the model high frequency data (hourly instantaneous 

fields). Figure 14 shows the trajectory of one of these gliders (553), which was measuring temperature and salinity from surface 15 

to bottom. The background field in this figure shows surface salinity from AMM15 at 12:00 UTC of 23rd May, when the glider 

was in the position marked by the red dot. 

AMM15 is in very good agreement with the observations and shows improvement, compared to AMM7 (Figure 15 and Figure 

16), particularly for salinity along the glider trajectories. The only exception being the low salinity pattern in the whole water 

column measured by the glider around the 23rd of March, when AMM15 is too salty and AMM7 too fresh. It could be due to 20 

a misplaced of a front, as suggested by the AMM15 salinity map (Figure 14). The AMM7 salinity field (not shown) has lower 

variability and this could justify the smaller misfit compare to the glider in that precise location. 

The salinity field in AMM15 has finer scale structures and usually the low salinity is better constrained along the coast. The 

density of the water column during the period of the gliders campaign is therefore much more accurate in AMM15 (Figure 

17). While these results may not be representative of the whole model domain or of the seasonal variability in stratification of 25 

the water column, they are very encouraging. 

In all depth profiles for AMM7, there is a white patch close to the bottom on the 23/05. This is due to the model bathymetry 

being shallower than the reality in that specific location. This is a confirmation than AMM15 has a more realistic representation 

of the bottom topography, as described in Section 2.1 Core Model Description. 

The increased resolution of fine-scale structures in AMM15 results in increased transport across the shelf-break, particularly 30 

in the region observed here (Graham et al., 2018b). These results, showing AMM15 has improved vertical structure and 

variability of the water column, support the conclusions of Graham et al. (2018b). Shelf-break processes transporting water 

masses between the deep ocean and across the shelf, will have a strong impact on conditions observed in this region.  

4.5.4 Mixed layer depth 

The mixed layer depth, MLD, has been calculated within the model using a density criterion, following the definition of Kara 35 

et al. (2000) except the reference depth of 10m is changed to 3m, due to the shallower regions of the continental shelf. The 

MLD is defined as the depth where the density increases, compared to density at 3m depth, corresponds to a temperature 

decrease of 0.2°C in local surface conditions. The EN4 (Good et al., 2013) profile dataset of temperature and salinity was used 

to calculate an ‘observed’ Kara mixed layer depth following the same procedure used within the model.  

An important point to note here is that on daily/monthly timescales the EN4 dataset is still relatively sparse in the region of 40 

interest and often clustered in particular locations. This is particularly true on the continental shelf. Assessing the model as a 

http://projects.noc.ac.uk/massmo
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whole, we see a seasonal cycle of errors with small errors in summer/autumn (bias ~10m and RMSD < 25m) and larger errors 

in winter/spring. 

We have therefore also computed the mixed layer depth from the MASSMO4 observations, comparing the mixed layer depth 

from the gliders (black line in Figure 17) with AMM15 and AMM7 in the corresponding locations (yellow line in Figure 17). 

AMM15 reproduces the mixed layer depth better than AMM7 and represents the variability of the signal very well. This 5 

positive result was also true along the other glider trajectories in this region. AMM15, but not AMM7, also reproduces a 

deepening in the MLD at the shelf-break. While this could be just a temporary feature, it could also be explained by increased 

mixing due to internal waves, which begin to be resolved in AMM15, but not AMM7 (Guihou et al., 2017). Graham et al. 

(2018b) also show that the slope current differs between AMM15 than AMM7 in this region, which is likely to affect the water 

column structure and variability around the shelf-break. Differences in currents are also discussed further in the following 10 

section. 

 

5 Conclusions and future developments 

The validation of pre-operational trial experiments for a new 1.5km resolution model of the European North West Shelf, 

against observations and the predecessor 7km system, shows positive results. 15 

AMM15 has improved skill compared to AMM7 and has proven to be an improvement especially when compared to high 

spatial/temporal resolution observations. The pattern and variability of surface currents are better reproduced by the new 

system, with improved temperature and salinity throughout the whole water column. The most outstanding improvement seems 

to be in the salinity which is closer to observations at basin scale and locally. Probably there are different factors which 

contribute to this improvement. Firstly, salinity will be impacted by river runoff. While the two models have a similar daily 20 

climatological river runoff data set it could differ locally. Despite similar runoff, the path of the river plume may also differ in 

the two models, so may lead to local changes in salinity, for example in the German Bight, where the plume stays close to the 

coast rather than diffusing off-shore. Secondly, the Atlantic and Baltic boundaries are in a different geographical location and 

this could imply differences in the fluxes at the boundary. There is a strong salinity variability at the Baltic boundary and this 

can strongly influence the salinity field and variability in the North Sea. There are ongoing developments to improve the Baltic 25 

boundary implementation in AMM15 that will help to understand further the impact of this boundary on the NWS. The Atlantic 

boundaries influence the exchange across the shelf and they could be partly responsible for improvements like those shown in 

the north of Scotland where the model has been compared with glider data and the AMM15 salinity field is much more realistic 

than AMM7. The significant improvement in this area could also be due to AMM15 better resolving the flow through the 

Faroe-Shetland Channel and shelf-break exchange. The work from Graham et al. (2018b) shows that there is an increased flux 30 

across the shelf-break in AMM15 compared to AMM7. This could affect the exchange of water masses around the shelf break, 

and therefore influence salinity on the shelf. Another reason could be the differences in the atmospheric forcing with the two 

models forced by a different Evaporation-Precipitation rate. As stated earlier, further studies will be carried out to properly 

assess the impact of the ECMWF forcing compared to the Met Office forcing. 

The assimilation scheme used in AMM15 is broadly unchanged from that used in AMM7. While the short correlation length-35 

scale is now ~5km (compared to ~20km), the observation and background error covariances, and the observation types 

assimilated, remain unchanged. In this initial implementation of AMM15 we have not attempted to improve the use of 

observations in the assimilation scheme. We are currently investigating how to adapt our assimilation scheme to assimilate 

SLA observations in stratified water and will be re-estimating the observation and background error covariances for this new 

higher resolution system. 40 
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The 1.5 km resolution model provides a better representation of dynamical features such as coastal currents, fronts and 

mesoscale eddies that can vary in size from only a few kilometres in shelf-seas to tens of kilometres, but a proper assessment 

is very difficult due to the high variability of these patterns and the very limited number of available observations.  

The users’ benefit, using the newly improved European shelf product AMM15, will vary depending from their applications. 

A positive impact on the users and their application is expected from AMM15 products. Higher resolution currents fields with 5 

an improved representation of the coastal areas should improve the results of applications like drifting models simulating 

pollutant or oil spill dispersion and all the applications that need a high-resolution currents field. All the acoustic applications, 

strongly depending on the density stratification and its variability, will benefit from these new products since they have a better 

representation of the water masses. A general positive impact is expected for most of the users like public bodies responsible 

for marine environmental regulation, aquaculture industries, marine renewable oil and gas industries.” 10 

There are some improvements in the tidal signal in AMM15 even if not so remarkable as with the salinity. One limitation is 

the minimum depth set to 10m that prevents the model from properly taking into account the shallow bathymetry in the coastal 

areas. A wetting and drying implementation in under development and could help to have a more realistic bathymetry, with 

improved tidal signal in very shallow waters, in a future version of AMM15. 

AMM15 has been developed with coupled prediction in mind, the domain matching that of the Met Office atmospheric model 15 

UKV. Regional coupled model developments have been done and coupled ocean forecasting systems are already planned. 

The AMM15 system described in this paper, has been already tested in an ocean-wave coupled configuration (Lewis et al., 

2019a) which is planned to become operational in 2020. We hope to add the biogeochemical components in a few years, but 

a precise plan is not yet available. Indeed, a preliminary version of AMM15 with coupled ocean-biogeochemistry is under 

development with encouraging initial results but is still far from meeting operational requirements. A coupled ocean 20 

atmosphere version of this model has already been developed for research (Lewis et al., 2019b) and studies will continue 

toward a fully coupled prediction system with ocean, atmosphere, land and wave model. 
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Table 1: Summary of the AMM15 –AMM7 model differences. 

Model 

differences 

AMM7 AMM15 

Geographical 

domain 

40°N- 65°N 

20°W – 13°E 

Regular grid 

~ 45°N - 63°N  

~ 20°W - 13°E 

The grid has a rotated pole, chosen so that the grid-

equator runs through the domain to reduce the 

distortion of cells with increasing latitude. While 

the rotated latitude is constant, the longitudinal 

grid steps range from ~1.47 km to 1.5 km. 

Bathymetry GEBCO corrected by NOOS partners EMODnet 2015 

Horizontal 

resolution 

7km 1.5km 

Timestep 300s (10s barotropic sub-timestep) 60 s (~3.5s barotropic sub-timestep) 

Penetrative 

radiation 

1-band shortwave radiation light 

attenuation (as used in POLCOMS, Holt 

and James 2001) 

NEMO tri-band Red-Blue-Green (RGB) 

Bottom friction Log layer. Minimum drag coefficient 1.0 

x 10-3    

Log layer. Minimum drag coefficient 2.5 x 10-3 

Momentum 

diffusion 

bi-Laplacian on model levels 1 × 1010 

m4/s 

bi-Laplacian on model levels 6 × 107 m4/s 

Tracer 

diffusion 

Laplacian on geopotential levels 50 m2/s.  bi-Laplacian on model levels 1 × 105 m4/s 
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Table 2: AMM7 and AMM15 forcing description. 

  

Forcing AMM7 AMM15 

Surface forcing Met Office Global Unified Model (MetUM) 

Atmospheric model NWP analysis and 

forecast fields, calculated in the MetUM 

using COARE4 bulk formulae (Fairall et al., 

2003).  

ECMWF Integrated Forecasting System 

(IFS)-Atmospheric Model High Resolution 

(HRES) operational NWP forecast fields using 

CORE bulk formulae (Large and Yeager, 

2009) 

Surface forcing 

resolution 

Horizontal grid: ~10 km (2560 x 1920 grid 

points) 

Frequency: 3 hourly mean fluxes of  long 

and short-wave radiation, moisture, 3 hourly 

mean air  surface temperature but hourly 

10m winds and surface pressure 

Horizontal grid: ~14 km (0.125°x0.125°). 

Frequency: 3 hourly instantaneous 2m dew 

point temperature, surface pressure, mean sea 

level pressure, and 2m air temperature. 3 

hourly accumulated surface thermal and solar 

radiation, total precipitation, and total snow 

fall. 

River run-off Daily climatology of gauge data averaged 

for 1950–2005. Climatology of daily 

discharge data for 279 rivers from the 

Global River Discharge Data Base 

(Vörösmarty et al., 2000) and from data 

prepared by the Centre for Ecology and 

Hydrology as used by (Young and Holt, 

2007). 

Daily climatology of gauge data averaged for 

1980–2014. UK data were processed from raw 

data provided by the Environment Agency, the 

Scottish Environment Protection Agency, the 

Rivers Agency (Northern Ireland), and the 

National River Flow Archive (personal 

communication by Sonja M. van Leeuwen, 

CEFAS, 2016). For major rivers that were 

missing from this data set (e.g. along the 

French and Norwegian coast), data have been 

provided by the same climatology used by 

AMM7 (Vörösmarty et al., 2000 and Young 

and Holt, 2007). 

Tidal constituents M2, S2, N2, K2, K1, O1, P1, Q1, M4, MS4, 

L2, T2, S1, 2N2, MU2, NU2 (15) from a 

tidal model of the North-East Atlantic 

(Flather, 1981). 

M2, S2, N2, K2, K1, O1, P1, Q1, M4, MS4, 

MN4 (11) from  Topex Poseidon cross-over 

solution (Egbert and Erofeeva, 2002; 

TPX07.2, Atlantic Ocean 2011-ATLAS). 

Lateral boundaries Met Office FOAM North Atlantic (1/12°; 6 hourly fields) and CMEMS Baltic Sea (2km, 1 

hourly fields).  

AMM7 and AMM15 have Atlantic and Baltic boundaries in a different geographical location. 
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Table 3: List of observations used for data assimilation. 

Type Fields Platforms/Satellite Data source/Product 

IN SITU SST 

Temperature and salinity 

profiles 

• Ships 

• Drifters 

• Fixed moored arrays 

• Gliders 

• XBTs 

• CTDs 

• ARGO 

• Ferry boxes 

• Recopesca buoys* 

• Thermosalinograph 

GTS; 

http://www.wmo.int/pages/prog/www/TEM/

GTS 

 

http://marine.copernicus.eu/ 

INSITU_GLO_NRT_OBSERVATIONS_01

3_030 

SATELLITE SLA Along Track* 

*along with the corrections 

necessary for the use with a 

wind and pressure forced, 

tidal coastal model. SLA are 

assimilated only in deep 

regions (> 700m). 

• Cryosat-2 

• Altika 

• Jason 3 

• Sentinel 3a 

http://marine.copernicus.eu/ 

SEALEVEL_EUR_PHY_ASSIM_L3_NRT

_OBSERVATIONS_008_043 

SST L2p/L3c 
• NOAA-AVHRR 

• MetOp-AVHRR 

• SEVIRI 

• VIIRSG 

• AMSR2 

Group for High-Resolution Sea Surface 

Temperature (GHRSST) 

www.ghrsst.org 

  

http://www.wmo.int/pages/prog/www/TEM/GTS
http://www.wmo.int/pages/prog/www/TEM/GTS
http://marine.copernicus.eu/
http://marine.copernicus.eu/
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Table 4: AMM15-AMM7 differences in the data assimilation scheme 

Data Assimilation AMM7 AMM15 

NEMOVAR version V3 V4 

SST bias correction 

scheme: 

Offline observations-of-bias scheme. 

Reference dataset: in situ.  

Variational scheme in addition to 

observations-of-bias. 

Reference datasets: in situ (drifters only) and 

VIIRS satellite data. 

Correlation operator short 

scale: 3-times grid scale 

~20 km ~5 km 

Mean Dynamic 

Topography 

CNES-CL09 mean dynamic topography (MDT, Rio et al., 2011) 
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Table 5: AMM7 and AMM15 computational resources on the Met Office HPC-CrayXC40 

System Component # of nodes # of processors 

AMM7 NEMO 8 256 

 NEMOVAR 2 64 

AMM15 NEMO 48 1536 

 NEMOVAR 48 1536 

 XIOS 8 256 
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Table 6: Summary of the trial experiments. 

System Name  Data Assimilated Initial state Forcing 

AMM7  3D SST, SLA, Sub-surface 

profiles 
restart from AMM7 

(assimilative) operational direct fluxes- MetUM 

AMM15  as above for the AMM7 
restart from an extension of 

Graham et al. (2018a) non-

assimilating  
bulk - IFS 

  



28 

 

Table 7: Synthesis of the validation results for AMM7 and AMM15. 

Variable Location Supporting 

observations 

RMS Difference Mean Error  

(observation-model) 

AMM7 AMM15 AMM7 AMM15 

M2 tidal 

harmonic 

(amplitude) 

Full domain Tide gauge data 10.4 cm 9.8 cm 0.2 cm 4.6 cm 

M2 tidal 

harmonic 

(phase) 

Full domain Tide gauge data 12.4° 12.3° 2 ° -4.2° 

SST Full domain In situ 

observations 

0.45°C 0.48°C -0.01°C -0.01°C 

Continental 

shelf 

In situ 

observations 

0.51°C 0.54°C -0.02°C -0.02°C 

SST Full domain  OSTIA satellite L4 0.34°C 0.34°C -0.06 -0.08 

T profiles Full domain In situ 

observations 

0.47°C 0.43°C -0.04°C 0.02°C 

S profiles Full domain In situ 

observations 

0.13PSU 0.11 PSU 0.01 PSU -0.01 PSU 

SSH Off-shelf Altimeter from 

satellite 

0.09 m 0.09 m -0.01m 0.01m 

Continental 

shelf 

Altimeter from 

satellite 

0.13 m 0.11 m -0.06 m -0.02 m 
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Table 8: RMSD and bias of the tidal amplitude and phase of the prevalent tidal constituents. The value are means over 292 tide 

gauges for both AMM7 and AMM15. The value in bold indicates an improvement. 

Tidal 

Constituent 

Amplitude (cm) Phase (deg) 

RMS Difference Mean Error RMS Difference Mean Error 

AMM7 AMM15 AMM7 AMM15 AMM7 AMM15 AMM7 AMM15 

M2 10.4 9.8 0.2 4.6 12.4 12.3 2.0 -4.2 

S2 4.1 4.1 1.1 1.8 14.3 13.4 3.5 -5.5 

K1 1.7 1.6 0.6 0.7 18.1 17.4 -4.1 -5.1 

O1 2.1 1.3 -1.5 0.0 19.6 14.1 -1.7 -2.5 

N2 4.2 3.7 0.6 0.3 31.0 26.7 4.4 -2.6 

Q1 1.7 1.4 0.8 -0.1 34.7 34.0 11.3 -2.0 

M4 4.8 4.5 1.0 1.9 89.6 66.8 2.8 -15.3 
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Table 9: Yearly mean (2017) RMSD and bias statistics at the 5 moorings in the German Bight (observation-model). Surface and 

bottom temperature for AMM7 and AMM15. 

Buoy [bottom depth] 

Temperature (C°) 

Surface Bottom 

RMS Difference Mean Errors RMS Difference Mean Error 

AMM7 AMM15 AMM7 AMM15 AMM7 AMM15 AMM7 AMM15 

1 Fino1 [25m] 0.32 0.21 0.03 -0.05 0.31 0.21 0.07 -0.03 

2 Fino3 [18m] 0.38 0.37 -0.02 -0.04 0.96 0.59 -0.38 -0.24 

3 NsbII [35m] 0.30 0.25 0.12 0.12 0.59 0.49 -0.13 -0.14 

4TWEms [30m] 0.28 0.26 0.13 -0.02 0.28 0.16 0.11 0.00 

5 UFSDeBucht [20m] 0.50 0.50 0.10 0.01 0.95 0.75 -0.31 -0.33 

Mean value  0.36 0.32 0.07 0 0.62 0.44 -0.13 -0.15 
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Table 10: Yearly mean (2017) RMSD and bias statistics at the 5 moorings in the German Bight (observation-model). Surface and 

bottom salinity for AMM7 and AMM15.  

Buoy [bottom depth] 

Salinity (PSU) 

Surface Bottom 

RMS Difference Mean error RMS Difference Mean Error 

AMM7 AMM15 AMM7 AMM15 AMM7 AMM15 AMM7 AMM15 

1 Fino1 [25m] 1.17 1.02 0.97 0.97 1.10 1.02 0.95 0.95 

2 Fino3 [18m] 1.06 0.73 0.35 0.48 0.90 0.62 0.53 0.38 

3 NsbII [35m] 0.33 0.22 0.20 0.03 0.37 0.17 0.26 0.03 

4 TWEms [30m] 1.05 0.51 0.85 0.29 1.08 0.45 0.89 0.26 

5 UFSDeBucht [20m] 0.99 1.07 0.55 0.87 1.08 1.02 0.86 0.90 

Mean value 0.92 0.71 0.58 0.53 0.91 0.66 0.70 0.51 

 

 

  5 
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Figure 1: EMODnet bathymetry, in meters (logarithmic scale), showing the NWS high resolution, AMM15, model domain. The red 

line defines the NWS low resolution, AMM7, model domain. The yellow dotted box is the domain covered by the AMM15 products 

delivered on a regular grid to the Copernicus users. Figure modified from Graham et al. (2018). The bathymetry colour range has 

logarithmic scale. 5 
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Figure 2: FOAM daily production cycle. The 7km system, top panel, has an ocean model coupled with a biogeochemical model and 

a variational assimilation scheme.  The 1.5 km system, bottom panel, has an ocean model with a variational assimilation scheme and 

a wave model, forced by the ocean model surface currents (not coupled). 

  5 
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Figure 3: Surface current from AMM7 (top) and AMM15 (bottom), daily mean 02-12-2018. 
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Figure 4: Number of observations per day for various observation types over 2016/17: winter (DJF) temperature (top left) and 

salinity (top middle) profiles in 2-degree bins, summer (JJA) temperature (bottom left) and salinity (bottom middle) profiles,  in situ 

and satellite SST (top right), and satellite SLA (bottom right). 

  5 
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Figure 5: Maps of the independent observations used for validation. MASSMO4 Gliders are blue, COSYNA HF radar in the German 

Bight in green, the mooring in the German Bight in red, and the tide gauges in yellow. 
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Figure 6 : M2 Amplitude (top) and phase (bottom) error relative to observations (observations-model) for AMM7 (left) and AMM15 

(right). 
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Figure 7: plots of statistics between HF radar surface current observations and AMM7 (top) and AMM15 (bottom) for the high-

passed filtered data (tidal signal). Bias (observation-model) and RMSD (in m/s) are estimated on the velocity vector magnitudes. 

Right panel: phase or veering. Positive (negative) veering represents a clockwise (counter-clockwise) angle of AMM7 (top) or 

AMM15 (bottom) vectors with respect to the HF radar vectors. SYLT, WANG and BUSUM show the locations of the three HF 5 
radars on the islands of Sylt and Wangerooge, and in Büsum respectively. 
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Figure 8: March 2017 average surface flow for HF radar (top), AMM7 (bottom left) and AMM15 (bottom right). Model data are 

re-gridded on the HF radar grid using cubic interpolation. The hourly model output is linearly interpolated every minute to match 

the HF radar observations. Model output are only plotted where HF radar data are available. Grey lines represent the 20 and 40 

m isobaths. SYLT, WANG and BUSUM show the locations of the three HF radars on the islands of Sylt and Wangerooge, and in 5 
Büsum respectively. 
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Figure 9: OSTIA minus Model SST RMSD and bias daily comparison for AMM7 (blue) and AMM15 (red) for the whole domain 

(negative mean error indicates a warm model bias). 
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Figure 10: Timeseries of sea surface temperature (left) and filtered SST (right) for the FINO 3 buoy for December 2016-February 

2017 (top) and June-August 2017 (bottom). Observations are shown in black, AMM7 in blue and AMM15 in red. 
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Figure 11: Power spectrum of SST for the FINO3 buoy (black line) compared with the AMM7 (blue) and AMM15 (red) simulations 

for December 2016 to February 2017 (top left), March to May 2017 (top right), June to August 2017 (bottom left) and September to 

November 2017 (bottom right).  

  5 
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Figure 12: Observation minus model temperature (left) and salinity (right) profile assessment for AMM15 (black) and AMM7 (blue) 

for the whole domain. The RMS difference is shown by the solid lines and mean error (observation-model) is shown by the dashed 

lines. 

  5 
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Figure 13: Sea surface salinity at the NsbII mooring for January-September 2017. The blackline represents the observations, the 

red and the blue lines represent AMM15 and AMM7 respectively. Observations are missing for the period October-December. 
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Figure 14: Glider 553 trajectory. The glider started the measurements close to the Scotland coast, and then moved towards the shelf 

break. The black line is the glider trajectory. The grey line represents the 200m isobath. The red dot is the glider position on the 23rd 

May 2017. The field on the background is the AMM15 salinity on the 23rd of May at 30m. 

  5 
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Figure 15: Top 100m of temperature profile along glider 553-100 trajectory. Top panel: temperature measured by the Glider. 

Bottom left: difference glider-AMM15. Bottom right: difference glider-AMM7. The vertical blue line represents time when the glider 

goes over the shelf break, crossing the 200m isobath. Before that time the glider is on the shelf. The black line is the MLD computed 

from the glider measurements, the yellow line is the model MLD. 5 
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Figure 16: Top 100m of salinity profile along glider 553-100 trajectory. Top panel: salinity measured by the Glider. Bottom left: 

difference glider-AMM15. Bottom right: difference glider-AMM7. The vertical blue line represents time when the glider goes over 

the shelf break, crossing the 200m isobath. Before that time the glider is on the shelf. The black line is the MLD computed from the 

glider measurements, the yellow line is the model MLD. 5 
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Figure 17: Top 100m density profile along glider 553-100 trajectory. Top panel: salinity measured by the Glider. Bottom left: 

difference glider-AMM15. Bottom right: difference glider-AMM7. The vertical blue line represents time when the glider goes over 

the shelf break, crossing the 200m isobath. Before that time the glider is on the shelf. The black line is the MLD computed from the 

glider measurements, the yellow line is the model MLD. 5 


