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Abstract. This work examines the accuracy and validity of two variants of Radon transform and two variants of the Two-

Dimensional Fast Fourier Transform (2D FFT) that have been previously used for estimating the propagation speed of oceanic 

signals such as Sea Surface Height Anomalies (SSHA) derived from satellite borne altimeters based on time-longitude 

(Hovmöller) diagrams. The examination employs numerically simulated signals made up of 20 or 50 modes where one, 10 

randomly selected, mode has a larger amplitude than the uniform amplitude of the other modes. Since the dominant input mode 

is ab-initio known, we can clearly define "success" in detecting its phase/propagation speed. We show that all previously 

employed variants fail to detect the phase speed of the dominant input mode when its amplitude is smaller than 5 times the 

amplitude of the other modes and that they successfully detect the phase speed of the dominant input mode only when its 

amplitude is at least 10 times the amplitude of the other modes. This requirement is an unrealistic limitation on oceanic 15 

observations such as SSHA. In addition, three of the variant methods “detect” a dominant mode even when all modes have the 

exact same amplitude. The accuracy with which the four methods identify a dominant input mode decreases with the increase 

in the number of modes in the signal. Our findings are relevant to the reliability of phase speed estimates of SSHA observations 

and the reported “too fast” phase speed of baroclinic Rossby waves in the ocean. 

1 Introduction 20 

Time-longitude (Hovmöller) diagrams at a given latitude of an oceanic variable, (x,t), that represents e.g. temperature, sea 

surface height, chlorophyll, etc. obtained for example by satellite observations are often used for estimating the propagation 

rate of the oceanic variable. The rate at which (x,t) propagates is determined by the inverse slopes of same-amplitude contours. 

These slopes are calculated by applying various methods, employed in image processing and detailed below in Sect. 2.2, to 

the raw data or to processed data (e.g. Polito and Liu, 2003 who separated the data into tiles of different periods). The methods 25 

examined here were used in many oceanic sub-areas such as: The propagation speed of Rossby waves using SSHA (e.g. 

Tulloch et al., 2009) or data other than SSHA (Belonenko et al., 2018; Xie et al., 2016); Nearshore wave dynamics (Almar et 

al., 2014); Eddy detection (Abernathey and Marshall, 2013; Oliveira and Polito, 2018) and Intraseasonal variability from 

mooring (Hu et al. 2018) to name a few. 
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De-Leon and Paldor (2017a) examined the accuracy of various methods in estimating the phase speed of waves by 

applying these methods to an artificially generated signal made of 3 sine functions (modes) with known phase speeds and 

amplitudes, compounded by large-amplitude random white noise. All methods have successfully filtered out the high 

amplitude white-noise from the 3-harmonic signal and accurately detected the main mode (some of them also detected the 

secondary modes). However, such a signal is too synthetic/ideal and cannot be compared to real oceanic observations that 5 

include tens, if not hundreds, of modes with different frequencies and propagation speeds and not just 3 modes compounded 

by white noise. 

In this short study we simulate "oceanic observations" and examine whether the methods detect a single dominant 

propagation speed out of many (20 or 50) speeds. In Sect. 2 we provide details on the generation of "observed"  signal, the 

methods for evaluating the propagation speed of the signal and the tests we apply to the signals. The results are shown in Sect. 10 

3 and discussed in Sect. 4. 

2 "Data" and methods 

2.1 Generating the simulated "observations" 

The  signals (where  is any oceanic variable) used here are generated numerically by summing up N purely propagating 

sine functions (modes, hereafter) of the form sin(kx-t) where k is the zonal wavenumber, x is longitude, t is time and =kC 15 

is the frequency (where C is the zonal propagation speed). The number of participating modes, N, is taken to be either 20 or 

50 and N-1 of these modes have an amplitude of 1 while the amplitude of the additional N th, randomly chosen, mode is either 

larger than or equal to 1. The sum of all N modes constitutes the -signal which is analyzed by the methods described in 2.2.  

The "spatial domain" (x) is chosen between "longitudes" 70-130° on a Cartesian grid with a 1/4° resolution, and the "time" 

(t) duration is 20 years (1044 weeks) with temporal resolution of one datum per week, similar to publicly distributed products 20 

by e.g. Aviso. The values of the propagation speeds, C, are uniformly distributed in the -18 to 0 cm s-1 range (i.e. each of the 

20 or 50 modes is assigned a different propagation speed within that range), which is typical for baroclinic Rossby waves in 

the ocean (see e.g. Fig. 7 of Killworth et al., 1997; Barron et al., 2009). The values of the frequencies, , are selected randomly 

so that the period, 2/, falls in the range between 5 and 200 weeks while the values of the zonal wavenumbers, k, equal /C. 

The resulting signal was low-pass filtered by applying a 5-week-running-average at each grid point to eliminate short term 25 

variations. 

The  signal made up of the filtered signal (i.e. the sum of N pure sine waves) at a given latitude, is plotted as a function 

of longitude and time (Hovmöller diagram). When a single dominant mode exists that has a certain propagation speed the 

pattern on this diagram is a straight line whose slope is the inverse of the dominant propagation speed (since the abscissa is 

longitude and the ordinate is time). An example of a time-longitude diagram of an artificial signal is shown in Fig. 1a (for 30 

signal with dominant input mode's amplitude of 1.5) where the slope of the solid blue line corresponds to the propagation 
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speed of the dominant input mode. The challenge is to estimate the dominant speeds using different methods and examine their 

success in detecting the propagation speed of the known dominant input mode. The methods examined here are detailed in the 

next subsection. 

2.2 Methods for estimating the "observed" propagation speed 

Four variants of methods have been employed for identifying the preferred direction of the same-amplitude contours on the 5 

Hovmöller diagram, each variant relates a certain measure of the power/intensity in a mode to its propagation speed. The first 

method is the Radon transform, used by e.g. Chelton and Schlax (1996); Chelton et al. (2003) and Tulloch et al. (2009) for 

analysing satellite observations of the ocean. In this method, one calculates the sum of the amplitudes along lines inclined at 

an angle  and displaced a distance s from the origin. Then, the sum of squares of the values of these sums along all lines 

having the same angle is calculated and the angle at which this sum of squares is maximal, is the best estimate for the orientation 10 

of the lines on the image. The dominant propagation speed of the signal is then proportional to the tangent of this angle of 

maximum sum-of-squares. In the second method, which is a variant of the Radon transform, the variance of the amplitudes is 

calculated along every angle   instead of the sum of amplitudes. This method was applied e.g. by Polito and Liu (2003 to 

local auto-correlation of segments of Hovmöller diagram) and Barron et al. (2009). Another, independent, method commonly 

used (e.g. Zang and Wunsch, 1999; Osychny and Cornillon, 2004) is the two-dimensional Fast Fourier Transform (2D FFT). 15 

An example of (ω, k) diagram, obtained by applying 2D FFT to the signal of Fig. 1a is shown in Fig. 1b. Here we use two 

variants of the 2D FFT method: In the first variant one sweeps over the 2D FFT spectra to find the direction in (ω, k) plane 

with maximum "energy" (this is the third method) while in the second variant one finds the maximal amplitude of the 2D FFT 

(i.e. one of the bright points in Fig. 1b) and calculates the ratio ω/k where ω and k are the frequency and zonal wavenumber of 

the maximal amplitude (this is the fourth method). Detailed description of these methods and the interpretation of observed 20 

signals are found in De-Leon and Paldor (2017a). 

Each of the four variants of the methods can yield an estimate of the dominant propagation speed of a signal, based on the 

extremum of a graph that relates the calculated measure of a mode’s intensity to its propagation speed. An estimation of the 

propagation speed based on a local extremum of this graph is accepted when this extremum is narrow and isolated compared 

to other local extrema. When the normalized amplitude (the term normalized amplitudes is used for the calculated amplitudes 25 

divided by the maximal amplitude in the domain) of a distinct peak is 1 while the (normalized) amplitudes of all other peaks 

are smaller than (an arbitrarily determined value of) 0.8, this mode is considered the dominant mode. In the variance method, 

where the extrema are minima, the dominant mode is accepted when its normalized amplitude is 0.0 while the normalized 

amplitudes of all other minima are larger than 0.2. The results shown in Fig. 2 demonstrate the emergence of a “rejected” peak 

that does not differ significantly from other peaks (2d) and "accepted peaks" whose intensities are significantly larger than 30 

those of other peaks (2a, 2c) or "accepted trough" that is significantly smaller than the other troughs (2b). 

2.3 Examining the accuracy of dominant mode detection 
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Two types of tests are applied to these “observations” to examine the accuracy of the various methods in assessing the existence 

of a dominant propagation speed (i.e. mode) in the signal.  

The first is a true-positive/false-negative test in which there is a dominant mode in the “observed” signal and a given 

method indicates whether this dominant mode exists (true-positive; TP) or not (false-negative; FN). In our case, one of the 

sine functions (this is the dominant input mode) is chosen randomly and its amplitude is set to be larger than 1. We check for 5 

each method if (at all) it identifies a dominant mode and if so, if it matches the propagation speed of this (larger amplitude) 

input mode. We divide the interval of propagation speeds into N (=20 or 50) bins of equi-distant values and the determination 

of the success of the methods in identifying a dominant mode is as follows: if the dominant mode found by the method falls in  

the expected bin of the dominant input mode – we score it by 1 ("TP"). If it is found in one of its next neighbours, it is scored 

by 1/2. A score of 0 (“FN”) is assigned when the method cannot find any dominant mode and when it detects a dominant mode 10 

more than 1 bin away from the correct bin. For each of 5 values of dominant mode's amplitudes: 1.5, 2, 2.5, 5 and 10 and for 

2 values of N (20 or 50) we repeat this procedure 50 times (i.e. for 50 different signals), sum up the scores and calculate the 

percentage of success in identifying the dominant input mode in the signals by TP/(TP+FN)*100. Since this choice of scoring 

(1, 1/2, 0) is arbitrary, we also considered an alternative arbitrary choice for scoring: 1 if the dominant mode falls in the 

expected bin of the dominant input mode; 2/3 in one of its nearest neighbours ; 1/3 in one of its next to nearest neighbours and 15 

0 otherwise. 

The second is a false-positive/true-negative test in which no dominant mode exists in the "observed" signal and a given 

method indicates that there exists a dominant mode (false-positive; FP) or not (true-negative; TN). In our case, this is done by 

generating a signal in which all modes have identical amplitudes (=1) and checking whether a method erroneously detects a 

certain propagation speed as dominant. If a dominant mode is detected, we score it by 1 ("FP"), if a peak is detected but is too 20 

wide we score it by 1/2 and if there is no dominant mode (i.e. no distinct peak or more than one peak) we score it by 0 ("TN"). 

We repeat this procedure 50 times for each of N=20 or N=50, sum up the scores and calculate the percentage of erroneous 

detection of dominant mode in the signals by FP/(FP+TN)*100. 

3 Results 

An example of false determination of the dominant mode is shown in Fig. 2 for the signal shown in Fig. 1a. Figure 2a shows 25 

the distribution of the sum-of-squares of the Radon transform versus C (black markers), normalized such that the maximum 

value equals 1. Also plotted are the dashed black vertical lines located at the N values of the uniformly distributed propagation 

speeds, C, where the solid blue line is located at the C-value of the dominant input mode's propagation speed. These dashed 

black and solid blue vertical lines are also shown in panels (b)-(d) of Fig. 2. Clearly, the dominant propagation speed calculated 

by the Radon transform (where the black curve attains its maximum) does not match the propagation speed of the dominant 30 

input mode. Figure 2b shows the (normalized) mean of variances as a function of C (black markers), and here, too, the 

calculated propagation speed (the curve’s minimum point) does not agree with the dominant input mode's speed. Figure 2c 
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shows the (normalized) distribution of the sum-of-squares of the spectral coefficients (2D FFT-amplitudes) along different ω/k 

lines (sweeping) as a function of C (black markers) where a distinct peak exists but it’s located far from the dominant input 

mode's propagation speed. Figure 2d shows the 20 highest (normalized) 2D FFT amplitudes of the (ω, k) diagram of Fig. 1b. 

There are many peaks with no clear single maximum and the dominant input mode has one of the lowest amplitudes. For this 

signal, none of the methods identified correctly the dominant input mode. 5 

The statistics of success of each method in detecting the dominant input mode for the TP/FN test is shown in Fig. 3 for 

dominant input mode's amplitude of 2.5, 5 and 10. The results for amplitudes of 1.5 and 2 are not shown as the success rate of 

all methods at these amplitudes is between 10% and 30% only. In each case we repeated the procedure 50 times (i.e. for 50 

signals; note that there is no significant difference in the results if the number of repeats is changed to 25 or 100) for N=20 and 

then for N=50, summed the scores (1, 1/2 or 0) and calculated the percentage of success by TP/(TP+FN)*100. (The second 10 

scoring of 1, 2/3, 1/3, 0 yielded very similar numbers (up to 3%) so they are not presented here). The conclusions from these 

results are: 1) in order to identify the dominant input mode with more than 70% certainty, its amplitude should be larger than 

5. 2) No method has clear advantage over the other methods. 3) Clearly, as N increases the dominant mode's amplitude has to 

increase, too, for a successful identification (so as to ensure that the ratio between the dominant mode's amplitude and the sum 

of all amplitudes is similar for different values of N since, e.g., 2.5/20>2.5/50). 4) The minimal amplitude at which successful 15 

detection occurs, decreases with the decrease in the ranges of propagation speeds and periods. Thus, for propagation speeds in 

the range of -10 to -2 cm s-1 and periods between 15 and 100 weeks, an amplitude of 5 is successfully detected in over 90% of 

the cases, while an amplitude of 2 yields poor results (results not shown). 

The statistics of erroneous detection of a dominant mode (the FP/TN test where the amplitudes of all input modes equal 1 

i.e. there is no dominant input mode) is shown in Fig. 4 for each of the methods (here, again, we have generated 50 signals for 20 

N=20 and for N=50 and calculated the percentage of erroneous detection by FP/(FP+TN)*100). The 2D FFT maxima method 

is the only method for which the percentage of error is smaller than 20% while other 3 methods err in at least 50% of the cases 

(i.e. they identify a single clear peak in one of the propagation speeds). As N increases this erroneous detection percentage 

decreases slightly in the 2 Radon variants but increases slightly in the 2D FFT sweeping method. 

4 Discussion 25 

None of the methods can identify a dominant input mode unless its amplitude is significantly larger than the others (by a factor 

larger than 5! in the present study’s ranges of propagation speeds and periods) and most of them (except the 2D FFT maxima) 

erroneously detect a dominant mode when there is no such input mode. Though the 2D FFT maxima method does not falsely 

detect dominant mode when it does not exist, its performance in detecting dominant input mode when it exists is not 

satisfactory. For realistic signals of the ocean we don't know that there is a dominant mode with sufficiently large amplitud e 30 

so none of the methods is reliable for estimating the propagation speed of e.g. Rossby waves. 
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When the values of  and k are chosen in a range corresponding to the resolution limit and the Nyquist frequency, the 

success of 2D FFT in identifying the dominant input mode's propagation speed increases significantly, compared to the case 

where the values of C are determined in advance,  is chosen randomly in a particular range and k is set as a result of /C so 

aliasing can occur. For that reason, even if the signal includes only one mode (i.e. one C), and both  and k are chosen in the 

latter manner, there can be a wrong identification by the 2D FFT (but the Radon transform identifies it correctly). In the ocean 5 

we don't know ab-initio which wave numbers and frequencies exist so we cannot filter them out of the signal; hence aliasing 

can occur, and the percentage of success in detecting the real dominant mode is expected to decrease further. 

The erroneous identification of the Radon and variance methods can be partially attributed to the non-linear relation 

between the angle  and the propagation speed, C, which is proportional to tan(𝜃) so the equi-distant values of C are converted 

to  -values that are very close to one another. Figure 5 shows the distribution of the sum of squares of the Radon transform 10 

versus   for the signal shown in Fig. 1a (while the distribution of the sum of squares of the Radon transform versus C for that 

signal is shown in Fig. 2a). It is clear from this figure that the peak is located in the vicinity of  values corresponding to many 

C values. However, the performance of the Radon variants improves with the increase of the dominant input mode’s amplitude, 

so the non-linear relation between the angle and propagation speed is not the only reason for the mismatch. 

As N (the number of modes) increases, the dominant input mode's amplitude should be larger in order to be separately 15 

identified from modes with similar characteristics. Of course, in the real ocean it is impossible to establish a-priori a bound on 

the number of modes, on the width of the bins (which becomes narrower as N increases) and on the expected maximal 

amplitude so fewer results can be evaluated as success. Also, in narrower ranges of propagation speeds and periods and for the 

same number of bins, all methods correctly detect the dominant input mode at lower threshold amplitudes (results not shown).  

An implication of this finding for the detection of the dominant mode in the ocean is that a reliable estimate of the phase speed 20 

cannot be based on a single method (see also De-Leon and Paldor, 2017a).  

In addition to the amplitude of the dominant input mode and its width, a parameter that might affect the success of detection 

of the dominant mode is the existence of a cluster of dominant input modes with similar phase speeds which was ignored in 

the results presented above where in all repeats there was a single dominant input mode. To examine this aspect, we generated 

a signal made of 20 modes out of which a triplet of adjacent, randomly selected, modes had amplitudes of (2,4,2) instead of a 25 

single mode with an amplitude of 5. The statistics of repeats showed that all methods have detected the dominant mode with 

slightly elevated confidence (about 10% higher) in the former, cluster of modes, compared to the latter, single mode (results 

not shown). Though the sum of the squares of the amplitudes of the cluster is smaller than the squared amplitude of the single 

mode (i.e. 22 + 42 + 22 = 24 < 25 = 52), the linear sum of the amplitudes of the cluster is larger than that of the single mode 

(i.e. 2 + 4 + 2 = 8 > 5) so the elevated amplitude rather than the square of the amplitude might explain the improved 30 

detection of the cluster. An examination of this "clustering" effect on a signal made up of a continuous unbounded spectrum 

of phase speeds (i.e. N→) which better models the real ocean, is left for future work. 
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The weakness of the methods in identifying the dominant mode points to the difficulty in comparison between theories 

and observations of baroclinic Rossby waves in the ocean and this difficulty might explain the lack of "continuity" of 

propagation speed estimates between adjacent latitudes in one (or more) methods. It can also explain why a validation of the 

higher order trapped wave theory (where the  term is treated consistently) has been confirmed by observations only in the 

Indian Ocean south of Australia (De-Leon and Paldor, 2017b) and not in other parts of the world ocean. In contrast to the 5 

harmonic theory whose propagation speed estimates are always slower than the observed speeds, the trapped wave theory 

differs from observations sporadically (see Fig 5 of De-Leon and Paldor, 2017b). 
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Figure 1: (a) An example of an artificial "observed" signal. (b) The associated (ω, k) diagram obtained by applying 2D FFT to the 

signal of panel (a). The solid blue line in panel (a) corresponds to the randomly chosen dominant input mode's propagation speed. 

  

(a) (b) 



10 

 

 

 

 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

Figure 2: An application of the 4 methods to the artificially generated signal shown in Fig. 1a (panel a: Radon Transform, panel b: 

Variance, panel c: 2D FFT sweeping, panel d: 2D FFT maximal amplitude). Blue lines correspond to the dominant input mode 

propagation speed and dashed black lines correspond to the input modes’ propagation speeds. 
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Figure 3: The percentage of success of each variant of the methods for dominant mode's amplitude of 2.5 (panel a), 5 (panel b) and 

10 (panel c) for both N=20 and N=50. 
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Figure 4: The percentage of error detection of each variant of the methods where there is no dominant input amplitude. 
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Figure 5: The distribution of the sum-of-squares of the Radon transform versus the Radon angle . Clearly, the distribution of the 

corresponding input propagation speeds (vertical dashed black lines) as a function of   is not uniform due to the nonlinear relation 

between C and . 5 



Authors’ response to editor’s comments on os-2019-34-R2 

 

In the revised version both points are addressed in the Discussion section on P. 6.  

 

The first point (the difficulty with phase speed distribution in the ocean) is addressed in lines 15-21.   

 

The second points (application to dominant input mode that’s made up of a cluster of modes with close 

phase speeds) is addressed in lines 22-33.  

Briefly, the additional calculation we performed with a symmetric “cluster” of 3 randomly selected, 

adjacent, modes (that have similar phase speeds) with amplitudes (2,4,2) has demonstrated that in all 

methods clustering slightly increases the success in detecting the dominant input mode. It is unclear 

whether this improvement in detection results from the wider range of input modes (3 bins compared to 1 

while keeping the maximal amplitude nearly identical) only in a finite range of phase speed and whether 

the same effect will also hold in the ocean where the range of phase speeds is unbounded.       
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