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Characterizing the properties of oceanic Rossby waves is central to understanding 

the role of the ocean in the climate as much of the response of the ocean to large-

scale forcing is mediated by these waves. Indeed, this issue has attracted 

considerable attention across the ocean sciences, particularly since the advent of 

accurate altimetry measurements in 1992 when it became possible, in principle, to 

observe the signature of Rossby waves at the ocean surface, yet many aspects of 

such waves remain poorly understood. In particular, it has been found that observed 

phase speeds derived from altimetry data are systematically faster than the speeds 

suggested by the theory of Rossby waves. A number of explanations for the 

disagreement between observations and theory have been proposed, including the 

effects of the mean zonal flow and bottom topography or the fact that many of the 

westward-propagating features observed in the altimetry data are, in fact, eddies 

rather than Rossby waves. 

The present study tests the ability of several methods to estimate the phase 

speed of Rossby waves on simulated data, and finds that such methods very often 

fail to estimate the true phase speed. The authors then conclude that this is the 

most likely reason for the differences between observed and theoretical phase 

speeds. The paper is well written, the figures are mostly adequate and clear, and the 

experiments designed to assess the skill of the various detection appear to have 

been conducted appropriately. Unfortunately, although the overall aim of the paper 

is worth pursuing, some aspects of the paper raise doubts and I do not believe that 

the results from the performed experiments support the authors’ conclusion that 

“none of the methods is reliable for estimating the phase speed of Rossby waves in 

the real ocean”. The authors are right in concluding that none of the methods is able 

to estimate the true phase speed in the simulated data, but this conclusion cannot 

be extrapolated to the observed data since, to the extent that I understand the 

issue, I don’t think the simulated data provides an accurate representation of Rossby 

waves in the real ocean. In conclusion, I think that the manuscript requires 

substantial revisions and thus I cannot recommend it for publication as it stands. 

Details on my main concerns and other minor points are provided below. 

Following the reviewer's comments, we will include in the revised manuscript 

oceanic phenomena other than Rossby waves in which the same radon Transform 

and 2d-FFT methods are employed. Our findings are relevant to all observations (e.g. 

near shore dynamics, eddy propagation) where propagation speeds are extracted 

from time-longitude diagram. Our choice of parameter ranges is drawn from the 

massive usage of the examined methods in the extraction of Rossby wave phase 



speed from time-longitude diagrams of satellite observed SSHA signals.   

 

Main points: 
1. It is unclear to me from Section2.1 how exactly the simulated data are generated. 

The authors state that “The values of the phase speeds, C, are uniformly distributed 

in the 0 to -18 cm/s range”. Does that mean that each of the 20 or 50 modes is 

assigned a different phase speed within that range?  

Yes, that’s exactly what we did. We will clarify it in the revised version of the 

manuscript.  

Long Rossby waves in the ocean are approximately non-dispersive and so their phase 

speed is the same at all frequencies. Hence, assigning a different speed to every 

mode, if this is indeed what is done here, seems unjustified. Could you please clarify 

how exactly phase speed are ascribed to each mode? How do the results change if 

the same phase speed is used for all modes? 

The emphasis is on “Long” while we include all wavenumbers, long and short, so the 

waves should be considered dispersive. In the case when all modes have the same 

phase speed, the 2D-FFT methods still fail in many cases (see the existing remark in 

the second paragraph of the Discussion) while the Radon transform methods will 

probably detect the phase speed correctly (we will add a note to this effect in the 

same paragraph).   

Also, the range -18 to 0 cm /s contains some rather extreme values, do you get the 

same results if the speeds are generated from the range (-10, -2) cm/s? 

The range of phase speed we employ is an “envelope” of observed values of Rossby 

waves. As per the reviewer’s suggestion we calculated the detection accuracy of the 

4 methods in smaller ranges of frequency and phase speed and the conclusions from 

these results will be added to the revised version of the manuscript.    

In low latitudes the phase speed of Rossby waves can easily exceed 15 cm/sec, and 

in high latitudes it is less than 1 cm/s. See e.g. Fig. 7 of Killworth et al. in the Journal of 

Physical Oceanography (1997), attached below. We will omit the words "in mid-

latitudes" in the 2nd paragraph of section 2.1.  

http://dx.doi.org/10.1175/1520-0485%281997%29027%3C1946:TSOOAT%3E2.0.CO;2


 

 

2. On a similar comment, the theory of Rossby waves indicates that Rossby waves 

have a maximum frequency, which for the ocean is quite restrictive. For example, no 

baroclinic Rossby waves with periods shorter than 13 weeks are possible poleward of 

about 15o latitude. Here, the periods are taken from the range 5 to 200 weeks, 

which again seems to include some rather extreme values. Could you please provide 

a reference supporting such high frequencies for observed Rossby waves? How do 

the results change if you restrict the periods of the Rossby waves to, for example, 

the range 15 to 100 weeks? 

Assume that a typical propagation speed is 5 cm/s and examine a wave with 5000 

km wavelength. Then: 

𝑇 =
2𝜋

𝜔
=

2𝜋

𝑘𝐶
=

𝜆

𝐶
⇒ 𝑇 =

5 ⋅ 106 𝑚

0.05 𝑚/𝑠
= 108 seconds ≈ 1150 days = 165 weeks 

Considering the Nyquist frequency constraint our choice of longest period of 200 

weeks does not seem to be an over-estimate for Rossby waves. Lower values of C 

and higher values of  will yield longer periods.  

The lower value of 5 weeks does not differ much from 13 weeks. However, as stated 

our response to comment point #1 above, we will include a brief description of the 

results for smaller ranges of both frequency and phase speed.  

 

3. Theoretical phase speeds are not only different from observations, they are 

systematically slower. If the simulated data were an accurate representation of the 



real ocean and the detection methods were really the issue here, then the authors 

should also find a systematic bias in the estimated phase speed. However, there is 

no mention of this in the paper. The authors only state that all methods fail to 

estimate the true phase speed of Rossby waves. Do you find any systematic biases? 

Could you please further elaborate on this? 

Right, the observed speeds are always faster than the harmonic speeds but have no 

systematic bias compared to the Trapped wave’s speeds. A clear example of this 

behavior is given in the comparison shown in Fig. 5 of De-Leon and Paldor, 2017b 

(reproduced below). The red curve is the Trapped wave speed and the Green curve – 

the Harmonic speed. Symbols are the observational speeds that are distributed 

systematically above the harmonic speed but with no obvious bias compared to the 

trapped wave speed.  

In addition, we don't state "…that all methods fail to estimate the true phase speed 

of Rossby waves", but that they fail to estimate a dominant input phase speed 

regardless of its physical origin i.e. Rossby waves are an example. 

Figure 5. The observed phase speeds and the two theoretical phase speeds (trapped and harmonic) as 

a function of m in intervals of 0.5 latitude. Blue dots denote latitudes where the estimates of at least 

two methods agreed by 10 % or less, triangles denote latitudes where such estimates agreed by 11 to 

12 % and squares denote latitudes where the agreement is 25 %. No reliable estimates were obtained 

north of 35 S and in some more latitudes. The sum of squares of the distances in (cm s-1)2 between 

trapped wave phase speeds and observed speeds (3.5) is much smaller than that of harmonic phase 

speeds (15.3).   
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4. In assessing the skill of the various methods, the authors assign a score of ½ if the 

dominant mode falls in one of its nearest neighbors. This seems to me like a rather 

arbitrary choice. Why not the second nearest neighbor or the third one? Can you 

estimate a “standard error” for the phase speed estimates based on the multiple 

realizations and assign a score of 1 when the true value is within one standard error 

and zero otherwise? This would be, in my view, a fairer metric for skill. Also, I think 

that 50 realizations is not sufficient and would suggest you use at least 100, if not 

1000. 

Indeed, our choice is arbitrary but so is any other choice. We will emphasize it in the 

revised text. The number of cases where the detected mode was 1-bin away from 

the dominant input mode (i.e. the score was ½) is very small in all signals we 

examined.  As for the number of realizations, we didn't find significant difference 

between 25, 50 or 100 repeats. 

 

Minor points: 
Page 1. The spatiotemporal resolutions quoted here for the altimetry data refer to 

the grid size and time step of the altimetry gridded products rather than the scales 

that can actually be resolved by altimeters. Depending on latitude, the spatial 

separation between altimetry tracks can be of several hundred kilometers and 

altimeters take measurements over the same location once every 10 days at most. I 

think that some clarification is needed here, along with some references. 

We define the grid in the same way it is defined by Aviso in their description of the 

altimetry gridded products they distribute to the community. 

Page 1. “these features propagate...” What features? Please clarify. We removed this 

sentence. 

Page 1. “Rossby waves that propagate westward” I suggest you remove “that 

propagate westward” as this seems redundant in this particular sentence. We 

removed this sentence. 

Page 1. replace “diagrams at certain latitude” with “diagrams at a certain latitude”. 

Done. 

Page 2. “phase speed exceeds”. We removed this sentence. 

Page 2. I suggest “in the -18 to 0 cm/s range”. Done. 

Page 5. I suggest “None of the methods can identify a dominant input ...” Done. 

 



Author’s response to: Referee #1’s comments on 

“Commonly used methods fail to detect known phase 

speeds of simulated signals of Sea Surface Height 

Anomalies” by Y. De-Leon and N. Paldor 

 
Summary and recommendation: 

The main aim of this paper is to challenge the reliability of the observational basis for 

the ‘too-fast’ Rossby waves evidenced by Chelton and Schlax (1996) based on 4 years 

of Topex-Poseidon satellite altimeter data. The authors derive their conclusion from 

showing that it is possible to construct a synthetic Rossby wave signal composed of 

20 to 50 sine waves with random known speeds, which standard techniques such as 

the Radon and Fourier transforms fail to identify accurately. In a previous study, 

Paldor et al. had showed such techniques to work well for a synthetic signal 

composed of three basic waves only, so the difficulties experienced by the Radon 

and Fourier transforms in this paper appear to result from the increase in many 

more basic waves in the synthetic signal constructed. As to the motivation for the 

present study, Nathan Paldor’s group has been working on the ‘too-fast’ Rossby 

wave issue for many years, promoting the view that the observed phase speed 

enhancement results from latitudinal trapping due to Earth’s curvature. So far, 

however, Paldor’s group appear to have found it difficult to vindicate their theory 

from observations; but rather than concluding that the problem might rest with their 

theory, as others theoreticians may have done, the present study proposes that the 

blame should lie with the observations and the kind of techniques used to analyse 

them instead, not their theory. 

We appreciate the concise summary the reviewer has written about Paldor’s work in 

the last decade but neither the theoretical work itself nor the reviewer’s summary 

have anything to do with the work under review that examines the applicability of 

Radon Transform and 2D-FFT methods to time-longitude (Hovmöller) diagrams. We 

share the reviewer’s frustration with the minute impact that a higher-order theory 

that consistently accounts for the latitudinal variation of Coriolis parameter (instead 

of the traditional paradigm that “f is constant though its derivative is non-zero”) had 

in planar GFD (not only spherical as the reviewer erroneously claims!).  

Since no additional assumptions or approximations are employed in the Trapped 

wave theory (in comparison to the Harmonic traditional theory), and only higher 

order terms are consistently included, we see no basis for the claim: "…  that the 

problem might rest with their theory". The reviewer is invited to refute the Trapped 

wave theory in another forum. 

As far as presentation is concerned, the paper is clearly written, and the analysis 

appears to be competently done. However, as a contribution to the general issue of 

what satellite altimeter data actually tell us about westward propagation in the 

ocean and about the usefulness/validity of the standard Rossby wave theory, this 



study appears to be very biased in its approach and therefore of very little scientific 

value, clearly failing to meet the required standards for publication. This is 

unfortunate, because I otherwise find Paldor’s work on the rigorous analysis of the 

waves supported by the shallow water equations to useful and valuable. As far as I 

understand the issue, their work appears to be essentially concerned with refining 

the standard flat-bottom, no mean flow, linear theory of the shallow-water waves on 

the sphere, and has therefore no bearing with real Rossby waves, which theoretical 

advances over the past 50 years have clearly showed to be strongly affected by both 

the background mean flow and topography. The rationale for my assessment is 

contained in the following remarks and observations. 

Again, the current work does not deal with the consistent wave theory of Rossby 

waves (on a sphere or a plane) but with methods for extracting propagation speeds 

from slopes of contour levels on time-longitude (Hovmöller) diagrams. In our view, 

the reviewer’s assessments: 1) that the paper is “clearly written” and 2) that the 

analysis is “competently done” along with the prevalent usage of these methods in 

recent (see the response below to main point #1) interpretations of various oceanic 

observations should render the paper suitable for publication in Ocean Science.       

 

Main points 

1. The authors fail to mention that the reliability of Chelton and Schlax (1996)’s 

conclusions has already challenged by Dudley Chelton himself and his collaborators 

in Chelton et al. (2011), in which the authors argue that westward propagation in the 

oceans is dominated by meso-scale eddies rather than linear Rossby waves in 

contrast to what CS96 had previously assumed. Since then, how to disentangle the 

meso-scale eddy field from the background Rossby wave field has been a major 

challenge that only a few authors have tried to tackle. Since we know that meso-

scale eddies tend to have an equatorward or poleward drift depending on whether 

they are cyclonic or anti-cyclonic, it is clear that determining their propagation 

characteristics cannot be easily achieved from the use of Hoevmuller diagrams in 

longitude/time, which is why eddy tracking algorithms have been developed. Since 

we don’t really know to what extent the propagation speed of eddies differs from 

that the more linear background Rossby wave field, it seems clear that there is some 

degree of uncertainty about how CS96’s results should be interpreted. In any case, it 

is clear from Chelton et al. (2011) that there is no observational basis for their 

synthetic signal. 

We changed the focus of the paper from satellite derived SSHA signals to 

propagation speeds derived from time-longitude diagrams (but we cannot ignore the 

simple fact that the Radon transform and 2D FFT methods were heavily employed in 

SSHA signals derived from satellites). Both the Hovmöller diagrams and the methods 

employed to interpret them were used in recent years (last 5-6 years) and not only 

prior to 2011. Additional such references will be included in a revised version of the 

manuscript.   



 

2. Theoretical developments prompted by Chelton and Schlax (1996) have clearly 

revealed that the background mean flow and bottom topography have a major 

impact on the propagation and vertical structures of Rossby waves, and hence that 

the standard theory can never be a satisfactory description of actual Rossby wave 

propagation regardless of what satellite altimeter data actually tell us. Indeed, Aoki 

et al. (2009) and Hunt et al. (2012) have both convincingly established that the 

standard theory cannot account for the features of simulated Rossby waves 

propagation, which can only be satisfactorily explained when both the mean flow 

and bottom topography are accounted for. Flat bottom, no mean flow, modes are 

completely unable to capture the vertical structure of simulated Rossby wave 

variability. Irrespective of what the observations tell us, I believe it is pretty clear 

that the authors’ approach cannot tell us anything about actual Rossby waves. 

Again – the manuscript does not deal with the theory of Rossby waves (be it Trapped 

or Harmonic)! We only examine the accuracy of the methods used to extract 

propagation speeds from time-longitude diagrams. Indeed, the manuscript does not 

“tell us anything about actual Rossby waves” and the reviewer’s comment belongs 

somewhere else and not in a review of the issue our paper addresses.  

 

3. Contrary to what this paper and previous ones assert, theoretical studies of the 

standard theory based on the WKB approximation are able to account for both the 

trapping of the Rossby waves as well as for Earth curvature, and it is misleading to 

refer to such theories as harmonic theories. In WKB theory, one will typically express 

the pressure anomaly in the form 

 

𝑝 =  𝐴(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑖Σ(𝑥,𝑦,𝑡) 

𝑘 = ∇Σ   ,      𝜔 =  −
∂Σ

∂t
 

In such an approach, the amplitude is slowly varying, and will in general decay with 

latitude, thus capturing the trapped wave behaviour emphasised by the authors. The 

function Σ is a rapidly varying phase function, allowing to define a local wave vector 

and frequency. Note that a single WKB wave mode is able to represent the observed 

beta-refraction and a latitudinally varying phase speed. 

In contrast, the basic wave mode considered by Paldor’s group is separable in 

latitude, and typically chosen of the form 

𝑝 =  𝐴(𝑦)𝑒𝑖(𝑘𝑥−𝜔𝑡) 

Arguably, if the term ‘harmonic mode’ needs to be used, it seems more appropriate 

to the modes considered by Paldor’s group, since it is clearly what they chose for the 

temporal and zonal dependence of their mode. As a result, such a mode does not 

capture the beta-refraction pattern described by Shopf et al. (1981) for instance, 

raising the question of how useful this kind of mode is to describe mid-latitude 

Rossby waves. 



Though this point has nothing to do with the sermon of our paper we agree with the 

reviewer. The difference between the Trapped wave theory and the Harmonic wave 

theory is precisely the form of A(y) in the last expression for p: In the traditional, 

Harmonic, theory the variation of p is sinusoidal so these waves (that spread over 

the entire latitudinal domain) are named Harmonic while in the Trapped wave 

theory A(y) has the form of Airy function whose maximum is located near the 

equatorward boundary (southern in the northern hemisphere). In mid-latitudes 

Schopf’s theory employs the usual “f is constant though its derivative does not 

vanish” while in his equatorial ray theory the frequency is y-dependent so the 

concept of separation of variables, that underlies the form of p is entirely lost (d/dy 

should include the latitudinal derivative of the frequency). Again – we emphasize 

that these (interesting) issues have nothing to do with the sermon of the present 

work! 
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Commonly used methods fail to detect known propagation speeds of 

simulated signals from time-longitude (Hovmöller) diagrams 

Yair De-Leon1, Nathan Paldor 1 
1Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 

Givat Ram, Jerusalem, 9190401, Israel 5 

Correspondence to: Nathan Paldor (nathan.paldor@huji.ac.il) 

Abstract. This work examines the accuracy and validity of two variants of Radon transform and two variants of the Two-

Dimensional Fast Fourier Transform (2D FFT) that have been previously used for estimating the propagation speed of 

oceanic signals such as Sea Surface Height Anomalies (SSHA) derived from satellite borne altimeters based on time-

longitude (Hovmöller) diagrams. The examination employs numerically simulated signals made up of 20 or 50 modes 10 

where one, randomly selected, mode has a larger amplitude than the uniform amplitude of the other modes. Since the 

dominant input mode is ab-initio known, we can clearly define "success" in detecting its phase/propagation speed. We show 

that all previously employed variants fail to detect the phase speed of the dominant input mode even when its amplitude is 5 

times larger than all other modes and that they successfully detect the phase speed of the dominant input mode only when its 

amplitude is 10 times (or more) larger than the other modes. This requirement is an unrealistic limitation on oceanic 15 

observations such as SSHA. In addition, three of the variant methods “detect” a dominant mode even when all modes have 

the exact same amplitude. The accuracy with which the four methods identify a dominant input mode decreases with the 

increase in the number of modes in the signal. Our findings are relevant to the reliability of phase speed estimates of SSHA 

observations and the reported “too fast” phase speed of baroclinic Rossby waves in the ocean. 

1 Introduction 20 

Time-longitude (Hovmöller) diagrams at a given latitude of an oceanic variable, (x,t), that represents e.g. temperature, sea 

surface height, chlorophyll, etc. obtained for example by satellite observations are often used for estimating the propagation 

rate of the oceanic variable. The rate at which (x,t) propagates  is determined by the inverse slopes of same-amplitude 

contours. These slopes are calculated by applying various methods, employed in image processing and detailed below in 

Sect. 2.2, to the raw data or to processed data (e.g. Polito and Liu, 2003 who separated the data into tiles of different 25 

periods). The methods examined here were used in many oceanic sub-areas such as: The propagation speed of Rossby waves 

using SSHA (e.g. Tulloch et al., 2009) or data other than SSHA (Belonenko et al., 2018; Xie et al., 2016); Nearshore wave 

dynamics (Almar et al., 2014); Eddy detection (Abernathey and Marshall, 2013; Oliveira and Polito, 2018) and Intraseasonal 

variability from mooring (Hu et al. 2018) to name a few. 
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De-Leon and Paldor (2017a) examined the accuracy of various methods in estimating the phase speed of waves by 

applying these methods to an artificially generated signal made of 3 sine functions (modes) with known phase speeds and 

amplitudes, compounded by large-amplitude random white noise. All methods have successfully filtered out the high 

amplitude white-noise from the 3-harmonic signal and accurately detected the main mode (some of them also detected the 

secondary modes). However, such a signal is too synthetic/ideal and cannot be compared to real oceanic observations that 5 

include tens, if not hundreds, of modes with different frequencies and propagation speeds and not just 3 modes compounded 

by white noise. 

In this short study we simulate "oceanic observations" and examine whether the methods detect a single dominant 

propagation speed out of many (20 or 50) speeds. In Sect. 2 we provide details on the generation of "observed"   signal, the 

methods for evaluating the propagation speed of the signal and the tests we apply to the signals. The results are shown in 10 

Sect. 3 and discussed in Sect. 4. 

2 "Data" and methods 

2.1 Generating the simulated "observations" 

The  signals (where  is any oceanic variable)  used here are generated numerically by summing up N purely propagating 

sine functions (modes, hereafter) of the form sin(kx-t) where k is the zonal wavenumber, x is longitude, t is time and =kC 15 

is the frequency (where C is the zonal propagation speed). The number of participating modes, N, is taken to be either 20 or 

50 and N-1 of these modes have an amplitude of 1 while the amplitude of the additional Nth, randomly chosen, mode is either 

larger than or equal to 1. The sum of all N modes constitutes the -signal which is analyzed by the methods described in 2.2.  

The "spatial domain" (x) is chosen between "longitudes" 70-130° on a Cartesian grid with a 1/4° resolution, and the 

"time" (t) duration is 20 years (1044 weeks) with temporal resolution of one datum per week, similar to publicly distributed 20 

products by e.g. Aviso. The values of the propagation speeds, C, are uniformly distributed in the -18 to 0 cm s-1 range (i.e. 

each of the 20 or 50 modes is assigned a different propagation speed within that range), which is typical for baroclinic 

Rossby waves in the ocean (see e.g. Fig. 7 of Killworth et al., 1997; Barron et al., 2009). The values of the frequencies, , 

are selected randomly so that the period, 2/, falls in the range between 5 and 200 weeks while the values of the zonal 

wavenumbers, k, equal /C. The resulting signal was low-pass filtered by applying a 5-week-running-average at each grid 25 

point to eliminate short term variations. 

The  signal made up of the filtered signal (i.e. the sum of N pure sine waves) at a given latitude, is plotted as a function 

of longitude and time (Hovmöller diagram). When a single dominant mode exists that has a certain propagation speed the 

pattern on this diagram is a straight line whose slope is the inverse of the dominant propagation speed (since the abscissa is 

longitude and the ordinate is time). An example of a time-longitude diagram of an artificial signal is shown in Fig. 1a (for 30 

signal with dominant input mode's amplitude of 1.5) where the slope of the solid blue line corresponds to the propagation 

Deleted: The phase speed estimates from observations were 
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speed of the dominant input mode. The challenge is to estimate the dominant speeds using different methods and examine 

their success in detecting the propagation speed of the known dominant input mode. The methods examined here are detailed 

in the next subsection. 

2.2 Methods for estimating the "observed" propagation speed 

Four variants of methods have been employed for identifying the preferred direction of the same-amplitude contours on the 5 

Hovmöller diagram, each variant relates a certain measure of the power/intensity in a mode to its propagation speed. The 

first method is the Radon transform, used by e.g. Chelton and Schlax (1996); Chelton et al. (2003) and Tulloch et al. (2009) 

for analysing satellite observations of the ocean. In this method, one calculates the sum of the amplitudes along lines inclined 

at an angle  and displaced a distance s from the origin. Then, the sum of squares of the values of these sums along all lines 

having the same angle is calculated and the angle at which this sum of squares is maximal, is the best estimate for the 10 

orientation of the lines on the image. The dominant propagation speed of the signal is then proportional to the tangent of this 

angle of maximum sum-of-squares. In the second method, which is a variant of the Radon transform, the variance of the 

amplitudes is calculated along every angle   instead of the sum of amplitudes. This method was applied e.g. by Polito and 

Liu (2003 to local auto-correlation of segments of Hovmöller diagram) and Barron et al. (2009). Another, independent, 

method commonly used (e.g. Zang and Wunsch, 1999; Osychny and Cornillon, 2004) is the two-dimensional Fast Fourier 15 

Transform (2D FFT). An example of (ω, k) diagram, obtained by applying 2D FFT to the signal of Fig. 1a is shown in Fig. 

1b. Here we use two variants of the 2D FFT method: In the first variant one sweeps over the 2D FFT spectra to find the 

direction in (ω, k) plane with maximum "energy" (this is the third method) while in the second variant one finds the maximal 

amplitude of the 2D FFT (i.e. one of the bright points in Fig. 1b) and calculates the ratio ω/k where ω and k are the frequency 

and zonal wavenumber of the maximal amplitude (this is the fourth method). Detailed description of these methods and the 20 

interpretation of observed signals are found in De-Leon and Paldor (2017a). 

Each of the four variants of the methods can yield an estimate of the dominant propagation speed of a signal, based on 

the extremum of a graph that relates the calculated measure of a mode’s intensity to its propagation speed. An estimation of 

the propagation speed based on a local extremum of this graph is accepted when this extremum is narrow and isolated 

compared to other local extrema. When the normalized amplitude (the term normalized amplitudes is used for the calculated 25 

amplitudes divided by the maximal amplitude in the domain) of a distinct peak is 1 while the (normalized) amplitudes of all 

other peaks are smaller than 0.8, this mode is considered the dominant mode. In the variance method, where the extrema are 

minima, the dominant mode is accepted when its amplitude is 0.0 while the normalized amplitudes of all other minima are 

larger than 0.2. The results shown in Fig. 2 demonstrate the emergence of a “rejected” peak that does not differ significantly 

from other peaks (2d) and "accepted" peaks whose intensities are significantly larger than those of other peaks (2a, 2c) or 30 

"accepted" trough that is significantly smaller than the other troughs (2b). 

2.3 Examining the accuracy of dominant mode detection 

Deleted: phase 

Deleted: phase 

Deleted: phase 35 

Deleted: analyzing

Deleted: phase 

Deleted: used 

Deleted: on a

Deleted: applied to40 

Deleted: piecewise 

Deleted: phase 

Deleted: phase 

Deleted: phase 



4 

 

Two types of tests are applied to these “observations” to examine the accuracy of the various methods in assessing the 

existence of a dominant propagation speed (i.e. mode) in the signal.  

The first is a true-positive/false-negative test in which there is a dominant mode in the “observed” signal and a given 

method indicates whether this dominant mode exists (true-positive; TP) or not (false-negative; FN). In our case, one of the 

sine functions (this is the dominant input mode) is chosen randomly and its amplitude is set to be larger than 1. We check for 5 

each method if (at all) it identifies a dominant mode and if so, if it matches the propagation speed of this (larger amplitude) 

input mode. We divide the interval of propagation speeds into N (=20 or 50) bins of equi-distant values and the 

determination of the success of the methods in identifying a dominant mode is as follows: if the dominant mode found by the 

method falls in the expected bin of the dominant input mode – we score it by 1 ("TP"). If it is found in one of its next 

neighbors, it is scored by 1/2. A score of 0 (“FN”) is assigned when the method cannot find any dominant mode and when it 10 

detects a dominant mode more than 1 bin away from the correct bin. For each of 5 values of dominant mode's amplitudes: 

1.5, 2, 2.5, 5 and 10 and for 2 values of N (20 or 50) we repeat this procedure 50 times (i.e. for 50 different signals), sum up 

the scores and calculate the percentage of success in identifying the dominant input mode in the signals by 

TP/(TP+FN)*100.  

The second is a false-positive/true-negative test in which no dominant mode exists in the "observed" signal and a given 15 

method indicates that there exists a dominant mode (false-positive; FP) or not (true-negative; TN). In our case, this is done 

by generating a signal in which all modes have identical amplitudes (=1) and checking whether a method erroneously detects 

a certain propagation speed as dominant. If a dominant mode is detected, we score it by 1 ("FP"), if a peak is detected but is 

too wide we score it by 1/2 and if there is no dominant mode (i.e. no distinct peak or more than one peak) we score it by 0 

("TN"). We repeat this procedure 50 times for each of N=20 or N=50, sum up the scores and calculate the percentage of 20 

erroneous detection of dominant mode in the signals by FP/(FP+TN)*100. 

3 Results 

An example of false determination of the dominant mode is shown in Fig. 2 for the signal shown in Fig. 1a. Figure 2a shows 

the distribution of the sum-of-squares of the Radon transform versus C (black markers), normalized such that the maximum 

value equals 1. Also plotted are the dashed black vertical lines located at the N values of the uniformly distributed 25 

propagation speeds, C, where the solid blue line is located at the C-value of the dominant input mode's propagation speed. 

These dashed black and solid blue vertical lines are also shown in panels (b)-(d) of Fig. 2. Clearly, the dominant propagation 

speed calculated by the Radon transform (where the black curve attains its maximum) does not match the propagation speed 

of the dominant input mode. Figure 2b shows the (normalized) mean of variances as a function of C (black markers), and 

here, too, the calculated propagation speed (the curve’s minimum point) does not agree with the dominant input mode's 30 

speed. Figure 2c shows the (normalized) distribution of the sum-of-squares of the spectral coefficients (2D FFT-amplitudes) 

along different ω/k lines (sweeping) as a function of C (black markers) where a distinct peak exists but it’s located far from 
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the dominant input mode's propagation speed. Figure 2d shows the 20 highest (normalized) 2D FFT amplitudes of the (ω, k) 

diagram of Fig. 1b. There are many peaks with no clear single maximum and the dominant input mode has one of the lowest 

amplitudes. For this signal, none of the methods identified correctly the dominant input mode. 

The statistics of success of each method in detecting the dominant input mode for the TP/FN test is shown in Fig. 3 for 

dominant input mode's amplitude of 2.5, 5 and 10. The results for amplitudes of 1.5 and 2 are not shown as the success rate 5 

of all methods at these amplitudes is between 10% and 30% only. In each case we repeated the procedure 50 times (i.e. for 

50 signals) for N=20 and then for N=50, summed the scores and calculated the percentage of success by TP/(TP+FN)*100. 

The conclusions from these results are: 1) in order to identify the dominant input mode with more than 70% certainty, its 

amplitude should be larger than 5. 2) No method has clear advantage over the other methods. 3) Clearly, as N increases the 

dominant mode's amplitude has to increase, too, for a successful identification (so as to ensure that the ratio between the 10 

dominant mode's amplitude and the sum of all amplitudes is similar for different values of N since, e.g., 2.5/20>2.5/50). 4) 

The amplitude at which successful detection occurs decreases with the decrease in the ranges of propagation speeds and 

periods. Thus, for propagation speeds in the range of -10 to -2 cm s-1 and periods between 15 and 100 weeks, an amplitude of 

5 is successfully detected in over 90% of the cases, while an amplitude of 2 yields poor results (results not shown). 

The statistics of erroneous detection of a dominant mode (the FP/TN test where the amplitudes of all input modes equal 15 

1 i.e. there is no dominant input mode) is shown in Fig. 4 for each of the methods (here again we have generated 50 signals 

for N=20 and for N=50 and calculated the percentage of erroneous detection by FP/(FP+TN)*100). The 2D FFT maxima 

method is the only method for which the percentage of error is smaller than 20% while other 3 methods err in at least 50% of 

the cases (i.e. they identify a single clear peak in one of the propagation speeds). As N increases this erroneous detection 

percentage decreases slightly in the 2 Radon variants but increases slightly in the 2D FFT sweeping method. 20 

4 Discussion 

None of the methods can identify a dominant input mode unless its amplitude is significantly larger than the others (by a 

factor larger than 5! in the present study’s ranges of propagation speeds and periods) and most of them (except the 2D FFT 

maxima) erroneously detect a dominant mode when there is no such input mode. Though the 2D FFT maxima method does 

not falsely detect dominant mode when it does not exist, its performance in detecting dominant input mode when it exists is 25 

not satisfactory. For realistic signals of the ocean we don't know that there is a dominant mode with sufficiently large 

amplitude so none of the methods is reliable for estimating the propagation speed of e.g. Rossby waves. 

When the values of  and k are chosen in a range corresponding to the resolution limit and the Nyquist frequency, the 

success of 2D FFT in identifying the dominant input mode's propagation speed increases significantly, compared to the case 

where the values of C are determined in advance,  is chosen randomly in a particular range and k is set as a result of /C so 30 

aliasing can occur. For that reason, even if the signal includes only one mode (i.e. one C), and both  and k are chosen in the 

latter manner, there can be a wrong identification by the 2D FFT (but the Radon transform identifies it correctly). In the 
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ocean we don't know ab-initio which wave numbers and frequencies exist so we cannot filter them out of the signal; hence 

aliasing can occur, and the percentage of success in detecting the real dominant mode is expected to decrease further.  

The erroneous identification of the Radon and variance methods can be partially attributed to the non-linear relation 

between the angle  and the propagation speed, C, which is proportional to tan(𝜃) so the equi-distant values of C are 

converted to  -values that are very close to one another. Figure 5 shows the distribution of the sum of squares of the Radon 5 

transform versus   for the signal shown in Fig. 1a (while the distribution of the sum of squares of the Radon transform 

versus C for that signal is shown in Fig. 2a). It is clear from this figure that the peak is located in the vicinity of  values 

corresponding to many C values. However, the performance of the Radon variants improves with the increase of the 

dominant input mode’s amplitude, so the non-linear relation between the angle and propagation speed is not the only reason 

for the mismatch. 10 

As N (the number of modes) increases (it is impossible to establish a-priori a bound on the number of modes in the 

ocean), the dominant input mode's amplitude should be larger in order to be separately identified from modes with similar 

characteristics. In addition, the width of the bins becomes narrower as N increases so fewer results can be evaluated as 

success. Also, in narrower ranges of propagation speeds and periods and for the same number of bins, all methods correctly 

detect the dominant input mode at lower threshold amplitudes (results not shown). 15 

The weakness of the methods in identifying the dominant mode points to the difficulty in comparison between theories 

and observations of baroclinic Rossby waves in the ocean and this difficulty might explain the lack of "continuity" of 

propagation speed estimates between adjacent latitudes in one (or more) methods. It can also explain why a validation of the 

higher order trapped wave theory (where the  term is treated consistently) has been confirmed by observations only in the 

Indian Ocean south of Australia (De-Leon and Paldor, 2017b) and not in other parts of the world ocean. In contrast to the 20 

harmonic theory whose propagation speed estimates are always slower than the observed speeds, the trapped wave theory 

differs from observations sporadically (see Fig 5 of De-Leon and Paldor, 2017b). 
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Figure 1: (a) An example of an artificial "observed" signal. (b) The associated (ω, k) diagram obtained by applying 2D FFT to the 

signal of panel (a). The solid blue line in panel (a) corresponds to the randomly chosen dominant input mode's propagation speed. 
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Figure 2: An application of the 4 methods to the artificially generated signal shown in Fig. 1a (panel a: Radon Transform, panel b: 

Variance, panel c: 2D FFT sweeping, panel d: 2D FFT maximal amplitude). Blue lines correspond to the dominant input mode 

propagation speed and dashed black lines correspond to the input modes’ propagation speeds. 
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Figure 3: The percentage of success of each variant of the methods for dominant mode's amplitude of 2.5 (panel a), 5 (panel b) and 

10 (panel c) for both N=20 and N=50. 
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Figure 4: The percentage of error detection of each variant of the methods where there is no dominant input amplitude. 
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Figure 5: The distribution of the sum-of-squares of the Radon transform versus the Radon angle . Clearly, the distribution of the 

corresponding input propagation speeds (vertical dashed black lines) as a function of   is not uniform due to the nonlinear 

relation between C and . 5 
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