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Abstract. In December 2002 and January 2003 satellite observations ofChlorophyll showed a strong coastal signal along the

west african coast between10◦ and22◦ N. In addition, a wavelike pattern with a wavelength of about750 km was observed

from December20th 2002 and was detectable for one month in the open sea, south west of the Cape Verde peninsula. Such

a pattern suggests the existence of a locally generated Rossby wave which slowly propagated westward during this period.

This hypothesis was confirmed by analyzing sea surface height provided by satellite altimeter during this period. To decipher5

the mechanisms at play, a numerical study based on a reduced gravity shallow water model has first been conducted. A wind

burst, broadly extending over the region where the offshoreoceanic signal is observed, is applied during 5 days. A Kelvin wave

quickly develops along the northern edge of the cape, then propagates and leaves the area in a few days. Simultaneoulsly,a

Rossby wave whose characteristics seem similar to the observed pattern forms and slowly propagates westward. The existence

of the peninsula limits the extent of the wave to the north. The spatial extent of the wind burst determines the extent of the10

response and correspondingly the time scale of the phenomenon (about 100 days in the present case). When the wind burst

has a large zonal and small meridional extent, the behaviourof a wave to the north of the peninsula differs from that to the

south. These results are corroborated and completed by an analytical study of a linear reduced gravity model using a non-

Cartesian coordinate system. This system is introduced to evaluate the potential impact of the coastline shape. The analytical

computations confirm that a period around 100 days can be associated with the observed wave considering the value of the15

wavelength; they also show that the role of the coastline remains moderate at such time scales. On the contrary, when the period

becomes shorter (smaller than 20-30 days), the behaviour ofthe waves is modified because of the shape of the coast. South of

the peninsula, a narrow band of sea isolated from the rest of the ocean by two critical lines appears. Its meridional extent is

about 100 km and Rossby waves could propagate there towards the coast.

1 Introduction20

Eastern Boundary Upwelling Systems (EBUS) — let us quote theCalifornia, Humboldt, Canary and Benguela upwelling

systems — constitute an ubiquitous feature of the coastal ocean dynamics, which has been extensively studied. They are

biologically very productive thanks to a transport of nutrients from deep ocean layers to the surface, which favors the bloom

of phytoplanktons. Consequently they present a strong signature, which is detectable by ocean color satellite sensors(see for

example Lachkar and Gruber 2012, 2013).25
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The dynamics of EBUS has first been studied with conceptual models. Upwellings are created by alongshore equatorward

winds (Allen, 1976, McCreary et al., 1986) generating an offshore Ekman transport, which is compensated by a vertical trans-

port at the coast in order to satisfy the mass conservation. The near shore pattern of the upwellings is affected by the baroclinic

instability mechanism which is associated with the coastalcurrent system and produces eddies and filaments (Marchesiello

et al., 2003). Lastly wind fluctuations modulate the upwelling intensity by generating Kelvin waves propagating poleward5

(Moore, 1968; Allen, 1976; Gill and Clarke, 1974; Clarke, 1977, 1983; McCreary, 1981).

At a given frequency, there is a critical latitude poleward of which Kelvin waves no longer exist and are replaced by Rossby

waves propagating westward (Schopf et al., 1981; Clarke, 1983; McCreary and Kundu, 1985). The critical latitude decreases

when the wave period shortens (Grimshaw and Allen, 1988) or when the coastline angle with the poleward direction increases

(Clarke and Shi, 1991). This latter property suggests that the shape of the coast has an impact on the upwellings.10

Using a high-resolution 3D numerical model, Batteen (1997)then Marchesiello et al. (2003) confirmed that the shape of

the coastline actually plays a role on the upwelling pattern. However they did not investigate by which mechanisms they are

driven. In particular they did not try to confront their results with the theoretical investigations of Crépon et al. (1982, 1984) who

analyzed the mechanisms responsible for this behaviour. Using anf -plane model, these authors showed that a cape modifies

the characteristics of the upwelling, its intensity being less on the upwind side of the cape than on the downwind side. However15

they did not investigate what occurs in the open sea up to 1000km from the coast and which role could play theβ effect.

The role of the forcing has also been investigated, both fromobservational and theoretical viewpoints. Enriquez and Friehe

(1995) computed the wind stress and wind stress curl off the California shelf from aircraft measurements and showed, thanks to

numerical experiments with a two layer model and an analytical study, that a non zero wind stress curl expands the horizontal

extent of upwelling offshore; it increases from 20-30 km to 80-100 km. The importance of the wind stress curl, which generates20

a strong Ekman pumping, were first emphasized by Richez et al., (1984) and later by Pickett and Paduan (2003) then Castelao

and Barth (2006). They could establish that the Ekman pumping and the Ekman transport due to the alongshore winds have

a comparable importance in the California Current area or off Cabo Frio in Brazil. These works did not study what occurs

beyond 100 km from the coast.

In the present paper, we study the role of wind stress and coastline geometry in generating mesoscale anomalies offshore,25

up to a distance of 500-1000 km off the coast. Both a numericaland an analytical point of view are adopted. The departure

point is the observation of a wave-like pattern on Chlorophyll satellite observations off the Senagalese coast, in the region of

the Sénégalo-Mauritanian upwelling (see Lathuillière et al., 2008, and Farikou et al., 2015 to find further informationabout

the Chl-a variability and the upwellings off the west African coast, Capet et al., 2017 for a recent analysis of the small scale

variability close to the Senegal and Gambia coasts, and Kounta et al., 2018 for a detailed study of the slope currents along west30

Africa). Attention is focused on offshore mesoscale activity associated with the upwelling, a recurrent feature of upwelling

systems (see Capet et al., 2008 a, b). The alongshore activity, which has received much more attention (see for example

Diakhaté et al., 2016 and the references herein) is not studied.
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The paper is articulated as follows. Observations of Chlorophyll in 2002-2003 off the west African coast are shown and

described in section 2. In section 3, a numerical study with anonlinear reduced gravity shallow water model on the sphere

with a single active layer is conducted; it shows that a wind stress anomaly active during a few days can generate a pattern

that seems very similar to the observated one. The impacts ofthe wind anomaly extent and coastline geometry are also briefly

studied. In section 4, a theoretical analysis of the wave dynamics in the vicinity of a cape is conducted to confirm and enlarge5

upon the results obtained in the previous section, using a linear shalow water model in a non-Cartesian coordinate system.

2 Observation of a wave off the Cape Verde peninsula from an ocean color satellite sensor.

The Senegalo-Mauritanian upwelling off the west coast of Africa forms the southern part of the Canary upwelling system.

This region has been intensively studied by analysis of SeaWiFS ocean-color data and AVHRR sea-surface temperature as

reported in Demarcq and Faure (2000), and more recently by Sawadogo et al. (2009), Farikou et al. (2013, 2015), Ndoye et al.10

(2014), and Capet et al. (2017). These studies indicate thatthe presence of an intense upwelling is attested by ocean-color and

sea-surface temperature signals. Moreover this upwellingshows a strong seasonal modulation. It starts to intensify in October,

reaches its maximum in April and slows down in June. Very highchlorophyll-a concentration are observed near the coast where

the maximum is reached. However the concentration rapidly decreases offshore (Farikou et al., 2013, 2015; Sawadogo et al.,

2009), suggesting that the upwelling extent and the eddy activity in this region is less than in other upwelling systems like the15

Californian Upwelling system (Marchesiello and Estrade, 2009, Capet et al., 2017).

From December 20th 2002 up to January 8th 2003, a strong chlorophyll signal was observed along the African coast on

SeaWIFs satellite images, between10◦N and22◦N, indicating an intense biological activity. In addition,a well-defined “sine-

like” pattern (circled in Figure 1) was observed on ten images taken at ten non-consecutive different days, which excludes a

possible artifact due to image processing. This pattern is located between12◦N and14◦N east of20◦W and extends offshore20

up to22◦W in a region which is off the coastal upwelling zone. West of20◦W the signal seems to have a larger meridional

extent, reaching16◦-17◦N (see panel 3).

This pattern, which broadly keeps the same form during a twenty day interval, slowly progresses westward at a speed not

exceeding 5 cm s−1 (a more precise estimation of the speed from the observations is quite hazardeous). After January 8th

2003, a cloudy period of several days occurred, which prevented satellite observations. At the end of this episode (January25

15th) the “sine” pattern was no longer visible. This episode might be the signature of a Rossby wave propagating westward.

As this phenomenon lasts at least one month, its typical time-scale is expected to range between one and a few months.

To corroborate this hypothesis, we analyzed the Sea SurfaceHeight (hereafter SSH) obtained from AVISO satellite altimeter

data for the corresponding period (December 2002 - January 2003). Hoevmuller diagrams are shown at12◦, 13.5◦, 15◦, and

16.5◦ in figure 2; they clearly confirm the existence of a Rossby wavepropagating westwards with a velocity of about4.5 cm30

s−1. The amplitude of this wave becomes smaller northwards: it peaked at 13 cm between12◦ and13.5◦ but did not exceed 7

cm at16.5◦. The wavelength is around 700 km, comparable with the extentof the Chlorophyll signal.
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An enhanced chlorophyll concentration, as seen by the satellite sensor, is the signature of growing phytoplankton. A local

development of phytoplankton benefits from an increase of the nutrient concentration in the surface layers of the ocean.The

latter may be generated by an enhanced mixing in the surface layers associated with an increased turbulence due to the Kelvin

or Rossby wave activity and by the vertical velocity associated with the divergent Rossby waves. Another possible process

explaining this growth could be the advection linked with Rossby waves – they create a current anomaly which can transport5

nutrients and phytoplankton from the upwelling area where they are highly concentrated. However, this mechanism is slow;

for a current anomaly of 5 cm s−1, the transport of a parcel of fluid over 500 km – less than the zonal extent of the offshore

pattern – would need about one year.

The signal along the coast is also modulated by coastal Kelvin waves propagating northwards. Clarke and Shi (1991) showed

that they can propagate when their angular frequency is larger than a critical angular frequencyωc = cβ cosΘ/2f0. In this10

formulaΘ is an angle taking into account the tilt of the coastline witha meridian,c a typical velocity of a baroclinic mode and

f0 andβ the usual parameters linked to the Earth’s rotation. These authors found thatωc ranges between 84.69 and 115.2 days

around the Cape Verde peninsula (see their table 2a). These values are close to the characteristic time scales we expect here.

The existence of a long period divergent baroclinic Rossby wave, evidenced by the AVISO satellite altimeter data of the SSH,

can explain the offshore sine-like pattern described here.To investigate the mechanism of emergence of this wave and analyze15

its properties, we first describe numerical experiments made with a numerical shallow water model. They help us see how such

a wave is created and elucidate its nature. Then, a theoretical analysis is presented in order to understand how the Kelvin and

Rossby waves behave when the coast presents a cape and to complete the interpretation of the numerical experiments. A wide

range of periods is explored, going from 10 days to one year.

3 Numerical study20

3.1 The model

The numerical model is a reduced gravity model on the sphere with one active layer of thicknessh. It extends over an infinite

layer at rest. The velocityv in the active layer and the thicknessh verify the equations

∂th+ div(hv) = 0 (1)

and25

∂tv+ (rotv + f)n×v = −gradΦ +
τ 0

h
− r

h
v + ν∆Hv (2)

wheren is a vector normal to the Earth’s surface androtv = (∇×v).n. The functionΦ is equal tog⋆h+v2/2 whereg⋆ is

the reduced gravity.

We assume for simplicity that the vectorτ 0, which represents the surface wind stress divided by the ocean density, derives

from a potentialφ0(x,y): τ 0 = −gradφ0 (implying an irrotational mean wind). This hypothesis allows us to compute ex-30

plicitely the obtained mean state. Indeedv = 0 andg⋆h2
0/2 = −φ0 +C0 is an obvious solution of the previous system (the
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constantC0 is determined by using the fact that the mean value ofh0 remains unchanged during the integration). It will

also facilitate the analytical computations made in the next section. A more complex set-up could be used for the numerical

experiments but it will be seen below that this one suffices.

3.2 Numerical resolution

The model domain is closed and centered at15◦N, the latitude of the Cape Verde peninsula; it has a latitudinal extent of 20◦5

and a longitudinal extent of 30◦. The peninsula is modeled as indicated in Fig. 4 in order to mimic the geometry of the coast

of Senegal (simplified and smoothed). The mean value ofh0 is equal to 200 m and the reduced gravityg⋆ to 0.02 m s−2.

Consequently the Rossby radius of deformationR0 =
√
g⋆h0/f0 at the latitude of the Cape Verde is equal to 53 km.

The previous equations are solved by finite differences on a C-mesh on the sphere, the mesh size being equal to(1/12)◦ in

longitudinal and latitudinal directions. The spatial scheme preserves enstrophy, following Sadourny (1975). No slipboundary10

conditions are applied everywhere (including along the artificial boundaries which limit the open ocean). There is no added

dissipation in the continuity equations and mass is conserved by the numerical scheme. The time integration is performed using

a leapfrog scheme with a time step of 300 seconds. The viscosity ν and the coefficientr of equation (2) are respectively equal

to 28 m2s−1 and8× 10−5 m s−1 (h/r ≃ 1 month). More details can be found in Février et al. (2007) where the two layer

version of this model is described.15

3.3 Numerical set-up of the model

In Figure 3 the mean wind for the considered period (December2002-January 2003) is shown. It exemplifies the situation

which is normally found in this region. The wind regularly blows from the north-north-east with a velocity ranging from 4to

8 m s−1. To take this into account, a constant mean wind stress of amplitude equal to 0.06 N m−2 (corresponding to a mean

wind velocity of about 5 m s−1 and a value ofτ 0 equal to6× 10−5 m2 s−2) and oriented along a south-south-west direction20

is applied from rest during four years, until a stationary mean state, which verifies the theoretical relation given in section 3.1,

is reached.

As shown by Figure 3, a wind anomaly was active when the wave ofFigure 1 begins to be observed. This anomaly obviously

is transient, but to the south of the Cape Verde, it mainly points southwards. To represent this situation in a simplified way,

we defined in a first experiment a north-south wind stress anomaly which extends over approximately 500 km and whose25

maximum is still equal to 0.06 N m−2. This anomaly is applied during five days (see Fig. 4 first panel). The integration is

continued during 45 days, after the anomaly has disappeared.

To explore the sensibility of the model response to the wind anomaly, others wind anomalies were applied (see below, in

particular Figures 6 to 8). The results obtained for these anomalies are discussed in the next section.
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3.4 Numerical results

After the wind stress anomaly corresponding to the first experiment has vanished, the subsequent states of the ocean are shown

every five days in Fig. 4 in terms of the active layer thickness. A coastal Kelvin wave forms north of the cape and quickly

propagates along the coast. After 5 days, it has already gonebeyond 25◦ N and after 10 days only the remains of the wave are

still visible. South of the cape, a well marked (Rossby) wavedevelops. Its size matches more or less the size of the wind stress5

anomaly. It slowly propagates westwards with a velocity of about 4 cm s−1. The amplitude of the wave decreases quickly

because of the large value ofh/r. The minimum value ofh is about−3.5 m when the wind ceases (second panel) and reaches

only−2 m after 25 days (seventh panel).

These characteristics are actually those of a Rossby wave locally generated by a wind anomaly, then freely propagating

in the open ocean. The wavelength of this wave is about 750 km (kR ≃ 0.84× 10−5 m−1). Such a value is compatible with10

the theoretical study presented in section 4 when the periodof the wave is about 100 days. This modeled response to a wind

stress anomaly also matches the satellite observed signal described in the previous section. It thus suggests that the latter is the

consequence of the existence of Rossby wave generated by a wind burst.

Though the duration of the wind burst is short in our numerical experiment (5 days), the response of the system privileges

a much longer time scale, exceeding 2 months. This result is not inconsistent. Indeed the Fourier transform of a rectangular15

pulse is the sine-cardinal function. It thus contains a significant amount of energy at low frequencies and thus can generate a

low frequency response like the one observed here.

Figure 5 shows the results obtained in a similar experiment in which the cape is absent. The response of the model is very

similar: in the area of the wind anomaly, a Kelvin wave forms then quickly desappears whereas a more persistant Rossby wave

slowly propagates westward. However the meridional extentof the Rossby wave is broader east of 18◦ W, in the area where20

previously was the cape. This suggests that the cape simply limits the extent of the wave northward but does not modify its

dynamics. The theoretical study of section 4 will confirm that the role of the cape remains moderate at low frequency.

A question arises: why does the wave have such a wavelength ? Numerical experiments clearly show that the longitudinal

wavelength is defined by the spatial scale of the forcing anomaly. This is first illustrated in Figure 6, which shows the response

of the model to a wind burst whose extent is four times smallerthan the initial wind burst of Figure 4. The latitudinal and lon-25

gitudinal extent of the model response are approximately divided by two as expected. No Kelvin wave of significant amplitude

is generated because there is no longer wind anomalies at thecoast; indeed, the centre of the wind anomaly is unchanged in

comparison with the reference experiment. We will show in section 4 that the period associated with the wave are increased

when the wavelength is reduced (reaching approximately 150days).

Two supplementary experiments (Figures 7 and 8) have been made, in which a wind burst of large longitudinal (about 100030

km) and small latitudinal (about 100 km) extent is applied during 5 days; the anomaly is centered at 14◦N in one case and

17◦N in the other (see the first panel in Figures 7 and 8). These anomalies create a Rossby wave with a large zonal extent.

However the response of the model differs in the two cases. When the anomaly is located south of the cape, a Kelvin wave is
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generated and a negative anomaly appears between26◦ and20◦W. However no positive anomaly with a comparable amplitude

can be seen closer to the coast. A weak signal appears after day 20 but its extent is very small and its amplitude is four times

smaller than the amplitude of the anomaly observed around25◦-27◦W. South of14◦, a wave of small amplitude is created and

propagates southward. Its latitudinal wavelength is comparable with the latitudinal extent of the wind anomaly. When the wind

anomaly is located north of the cape, a negative anomaly appears between26◦ and20◦W as previously; besides, a positive5

anomaly can be seen from day 5 and its amplitude is half the amplitude of the signal observed around25◦-27◦W.

Clearly the response of the model close to the cape depends onthe location of the wind anomaly, north or south of the

cape. When the latter acts south of the cape, the anomaly which forms around15◦W is small and quickly desappears; a wave

which propagates southward seems to prevent its existence.On the contrary, when the wind anomaly acts north of the cape,an

anomaly forms around15◦W and gets stuck in this place; the wave which propagates southward still exists but its amplitude10

is about twice samller than in the previous case. In the next section, we analytically investigate this dissymmetric behaviour in

an idealized case.

4 Analytical study

In this section, we aim at understanding if the coastline mayinfluence the propagation of the Rossby waves which are created

close to the coast and propagate towards the open sea. The impact of the coastline has been investigated by Crépon and Richez15

(1984), Clarke (1977), and Clarke and Shi (1991) for the Kelvin waves using an analytical approach. Here we focus on the

Rossby waves; as we consider an area which extends up to about1000 km from the coast, we have to generalize the approach

followed by Clarke and Shi, which introduced a local system of coordinates dependent of the coastline to study Kelvin waves

along an irregular coastline. We try to answer the followingquestions:

a) Are there time scales for which the impact of the coastline(small in the numerical experiments) becomes more important20

?

b) A dissymetry between the response north and south of the Cape was visible in the numerical experiments; can this

dissymmetry be dependent on the existence of the Cape ?

The analysis begins by defining and building a system of coordinates that permits to follow the coastline geometry. This

procedure is a standard one in mathematics when boundaries are complex; indeed the the boundary conditions can be simply25

written, which constitutes a substantial advantage. however, it has a drawback: the differential equations which characerize the

problem become slightly more complex because they must include geometrical factors that take into account the deformations

associated with the new system of coordinates. This drawback is small in comparison with the advantage.

When these new equations are established, staightforward calculations are made to obtain a unique partial differential equa-

tion (equation (7)), which characterizes the evolution ofη (the thickness of the active layer). This equation is a wave equation.30

Consequently the ray theory (or equivalently the WKB method) can be applied. When the forcing terms are neglected, this

yields a first order nonlinear differential equation (equation (11). No new ideas are introduced after this. We just rewrite equa-
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tion (11) by introducing new notations, in order to facilitate its study and the presentation of the results (end of paragraph 4.2).

We then describe the results when the tranport along the coast is much larger than the transverse transport (section 4.3).

4.1 A model for the Kelvin and Rossby waves

We consider a reduced gravity shallow water model in theβ plane forced by a constant wind stress which derives from a

potentialφ0(x,y) (τ 0 = −gradφ0), as in section 3. Numerical integrations have shown that the exact solutionv = 0 and5

g⋆h2
0/2 = −φ0 +C0 is actually obtained after a few year integration (see section 3.1 and 3.3).

If an anomaly(τx, τy) is added to the mean forcingτ 0, a perturbation is generated; it is characterized by adepth anomaly h

(the thickness of the first layer is nowh0 + h) and a velocityv. A linear approximation is sufficient to study the first stepsof

the evolution of the perturbation if the forcing anomaly remains moderate. The anomaly(τx, τy) can be written in terms of a

potentialφ(x,y,t) and a stream functionψ(x,y,t),10

τx = −∂xφ− ∂yψ

τy = −∂yφ+ ∂xψ
(3)

so that the divergent part of the forcing is given by−∆φ and the rotationnal part by∆ψ.

The equations verified bythe anomalies h andv are thus:

h0∂tu− fh0v+ ∂x(g
⋆h0h+φ) = νh0∆Hu− ru− ∂yψ

h0∂tv+ fh0u+ ∂y(g
⋆h0h+φ) = νh0∆Hv− rv+ ∂xψ

∂th+ ∂x(h0u)+ ∂y(h0v) = 0

(4)

The role of the diffusion and dissipation will not be considered below – a smoothing and damping of the solution is expected15

when it is taken into account. The previous system may be further simplified by introducing the zonal and meridional transports

Tx = h0u andTy = h0v and a potentialη equal tog⋆h0h+φ. It becomes

∂tTx− fTy + ∂xη = −∂yψ
∂tTy + fTx+ ∂yη = ∂xψ

∂tη+ c2[∂xTx+ ∂yTy] = ∂tφ

(5)

wherec=
√
g⋆h0 is a function ofx andy.

These equations apply inside the ocean domain, whatever itsshape. A boundary condition is added along the domain frontier20

(the normal transport vanishes) but the latter is difficult to handle when the shape of the coast is complex. Lastly, the spatial

mean value of the depth anomalyh remains null.

The propagation of a Kelvin wave along the eastern boundary and the possible generation of Rossby waves can be studied

by using system (5). Here, we consider an eastern boundary whose angle with the meridians smoothly varies and we seek to

understand how these variations may affect the wave dynamics. We consider only the case of a cape even though the method25
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could be applied in other cases. A coordinate change is made in order to “straighten the coast” and therefore have a simple

boundary condition; equations (5) are correspondingly modified to match the new coordinates.

A new orthogonal system of coordinatesX = X (x,y) andY = Y(x,y) is thus introduced such that the eastern boundary

is now defined by the simple equationX = 0 (rather than a complex one such asf(x,y) = 0). In the local orthonormal basis

eX ,eY associated with this coordinates system, the line elementdl reads5

dl = adXeX + bdY eY

wherea andb are geometrical factors which convey the stretching of the coordinates along orthogonal directions (note that the

relations

a=
√

(∂Xx)2 + (∂Xy)2 and b=
√

(∂Y x)2 + (∂Y y)2

where the initial coordinatesx andy are now functions of the new coordinatesX andY are used to computea andb).10

Such a coordinate change is illustrated in figure 9 for a cape protruding into the sea over a distance of 80 km. Only half of

the symmetric domain is shown. The initial coordinatesx andy are the zonal and meridional coordinates; the new coordinates

X andY are represented in the original system and some of their values are indicated. Other coordinate changes would be

possible. The corresponding geometrical factorsa andb are shown in figure 10. They differ from 1 respectively in a close

neighbourhood and to the west of the cape (a is equal to 0.1 around the extremity of the cape whereasb reaches 40 at 300 km15

west of the cape). A detailed study of this example will be presented in subsection 4.3.

Using the coordinates(X,Y ), system (5) becomes

∂tTX −FTY + a−1∂Xη = −b−1∂Y ψ

∂tTY +FTX + b−1∂Y η = a−1∂Xψ

∂tη+ (C2/(ab))[∂X(bTX)+ ∂Y (aTY )] = ∂tφ

(6)

whereF , C, TX , TY are functions ofX andY corresponding tof , c, Tx andTy (the notations forη, φ andψ have not been

changed to enhance the readability, but these functions also depend onX andY ).20

Note that we use a more complex system than the traditional one which is used for the study of the Kelvin waves and which

neglect the variations of the transport perpendicular to the coast :














−FTY + a−1∂Xη = −b−1∂Y ψ

∂tTY +FTX + b−1∂Y η = a−1∂Xψ

∂tη+ (C2/(ab))[∂X(bTX)+ ∂Y (aTY )] = ∂tφ

We use the complete system 6 because we study Rossby waves farfrom the coast, for which these hypotheses does not hold. In-

deed, the previous simplified system leads to drop in equation (11) below two terms:(1/b2)(∂Y θ)2 andiF 2∂Y (a/(bF 2))∂Y θ).25

These terms include the geometrical factorsa andb due to the coordinates change; and we precisely try to investigate which is

the impact of such terms.
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We now concentrate on processes whose time scale is much larger than one day. Moreover we consider only the evolution

of free waves. This situation corresponds to the case numerically investigated in section 3 and illustrated in Figures (4 - 8):

the wind stress anomaly that had created the depth anomalieshas ceased to exert. With these hypotheses, system (6) can be

reduced into the following equation which characterizes the evolution ofη:

∂t

[

η−R2
0(

1

a2
∂2
XXη+

1

b2
∂2
Y Y η)

]

− ·· ·5

· · · R
2
0

ab

[

F 2∂X(
b

aF 2
)∂2
tXη+ ∂Y F ∂Xη+F 2∂Y (

a

bF 2
)∂2
tY η− ∂XF ∂Y η

]

= 0 (7)

whereR0 = C/F is the Rossby radius. The boundary condition at the eastern coast now reads:

at X = 0, b∂2
tXη+ aF∂Y η = 0 (8)

for all t > 0 andY . The details of the computations can be found in Appendix 1.

Whena andb are close to 1 and the coast has a south-north orientation (see Figure 10) the new coordinates system is nearly10

similar to the original one; indeedF mainly depends onY ≃ y only and in those regions equation (7) thus simplifies:

∂t
[

η−R2
0(∂

2
XXη+ ∂2

Y Y η)
]

−R2
0

[

∂Y F ∂Xη+F 2∂Y (
1

F 2
)∂2
tY η

]

= 0 (9)

We recognize the equation characterizing the propagation of waves in theβ plane (β = ∂Y F ) for a shallow water model. For

a tilted coast the dependance of the Coriolis parameter as a function ofX should be still taken into account. For spatial scales

much larger thanR0 and at low frequency, equation (9) can be further simplified.It becomes∂tη−R2
0∂Y F ∂Xη = 0 which15

simply models the westward propagation of long Rossby waves.

The coefficientb decreases as one gets closer to the cape (see Figure 10). An impact of the cape in the open sea may therefore

be expected because of the terms proportional to∂X(
b

aF 2
)∂2
tXη and∂XF ∂Y η in equation (7).

4.2 Ray theory

When a wave propagates in a medium whose properties spatially change, it does not follow straight lines but more complex20

paths. Ray theory – or WKBJ approximation – is used to determine the paths followed by the waves in such a medium. It

applies when the wavelength is smaller than the typical scale at which the properties of the medium vary. The spatial variations

of the componentsk andl of the wavevectors are taken into account by introducing a complex functionθ(X,Y ) = θR + iθI

such ask = ∂Xθ andl = ∂Y θ. The potentialη is then equal to

η = η0(X,Y )exp[i(ωt+ θ(X,Y ))] (10)25

where it is assumed that|η−1
0 ∂Xη0| ≪ |∂Xθ|, |k−1∂Xk| ≪ |∂Xθ|, |η−1

0 ∂Y η0| ≪ |∂Y θ|, |l−1∂ll| ≪ |∂Y θ|. As required by the

theory, these inequalities ensure that the wavelength is smaller than the typical scale of variation of the system, hereconveyed

byR0,F and the coefficientsa andb. Excepted in a very close vicinity of the cape (distance smaller than around ten kilometers)
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and for the meridional wavelength in the area located between -50 and 50 km north and south of the cape and beyond 200 km

west of the cape, these inequalities mean that several wave patterns must be visible in the considered domain. This condition

is verified for the waves observed in the numerical experiments and for the waves considered below.

Considering these hypotheses,η is given from equation (10) in the neighbourhood of a pointM0 of coordinates(X0,Y0) by

the approximate expression5

η(X,Y ) = η0(X0,Y0)exp[i(ωt+ k(X−X0)+ l(Y −Y0))]

wherek = ∂Xθ|M0
andl = ∂Y θ|M0

. The physical meaning of this solution is explicited by taking its real part:

ℜ(η) = η0(X0,Y0)e
−kI(X−X0)−lI(Y−Y0) cos[ωt+ kR(X −X0)+ lR(Y −Y0)]

The solution must not increase westward since it cannot become infinite, which implieskI < 0. Note however thatkI > 0 is

possible if this occurs only in a (small) bounded domain. ForkR > 0, the wave propagates westwards.10

The values ofk andl are obtained by computing the functionθ from equations (7) and (8). After simplifying them by using

the hypotheses above, we find thatθ verifies the approximate (eikonal or Hamilton-Jacobi) equation
(

1 +R2
0[

1

a2
(∂Xθ)

2 +
1

b2
(∂Y θ)

2]

)

− ·· ·

· · · R
2
0

ab

[

iF 2∂X(
b

aF 2
)∂Xθ+ iF 2∂Y (

a

bF 2
)∂Y θ+ ∂Y (

F

ω
)∂Xθ− ∂X(

F

ω
)∂Y θ

]

= 0 (11)

with the boundary condition15

ib∂Xθ+ a(F/ω)∂Y θ = 0 (12)

atX = 0.

To make the computations clearer we set

— z1 = (∂Xθ)R0/a= kR0/a

— z2 = (∂Y θ)R0/b= lR0/b,20

— w1 = (R0/2b)

[

∂Y (
F

ω
)+ iF 2∂X(

b

aF 2
)

]

— w2 = (R0/2a)

[

−∂X(
F

ω
)+ iF 2∂Y (

a

bF 2
)

]

and the problem (11) associated with the boundary condition(12) is rewritten as the following system :

∂Y (
az1
R0

) = ∂X(
bz2
R0

) (13)

25

1 + z2
1 + z2

2 − 2z1w1 − 2z2w2 = 0 (14)

z2 = −i ω
F
z1 at X = 0 (15)
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At the boundary, equations (14) and (15) permit to determinethe values ofz1 andz2, hence ofk andl. Indeed, the introduction

of (15) in (14) leads to the equation

1 + (1− ω2

F 2
)z2

1 − 2z1(w1 − i
ω

F
w2) = 0

Settingξ =
√

1− (ω/F )2, this equation can be rewritten

J(ξ z1) =
1

ξ
(w1 − i

ω

F
w2) =WR + iWI (16)5

whereJ(z) =
1

2
(z+

1

z
) is the Joukowsky transform ofz; WR andWI are given by the relations

WR =
R0F

2ξ
× F

ω

[

−ξ2 1

b
∂Y

1

F
+ (1− ξ2)

1

a
∂Y (

a

bF
)

]

WI =
R0F

2ξ
× 1

b
∂X(

b

aF
)

Equation (16) is the dispersion relation of the wave at the boundary. The Joukowsky transform ofξ z1 (or equivalently of

i
F

ω
ξ z2) depends on the frequencyω, the mean state (throughR0), the latitude (throughF ) and the geometry of the coast

(througha andb).10

The sketch in Figure 11, which shows the half complex planeℑ(z)< 0 (upper panel) and the complex planeW = J(z)

(lower panel), explicits how the Joukowsky transformationworks. The inferior half plane has been chosen since we expect

kI < 0, or in other wordsℑ(z)< 0.

— WhenWI = ℑ(W ) is positive, the complex numberξ z1 such asJ(ξ z1) =W =WR + iWI has a norm smaller than 1

(it corresponds to the gray areas in Figure 11). The wavelength is thus large (λ > 2πξR0/a). If WR = ℜ(W ) is positive, the15

phase speed is negative (westward propagation).

— WhenWI = ℑ(W ) is negative, the complex numberξ z1 such asJ(ξ z1) =W =WR + iWi has a norm larger than 1 (it

corresponds to the white areas). The wavelength is thus small. If WR = ℜ(W ) is positive, the phase speed is still negative.

— WhenWI vanishes, a situation which occurs when the coast is a straightline, the unique complex solution previously

found can cease to exist. Indeed, if|WR| is smaller than 1, there isone complex solution whose norm is equal to 1 (on the half20

circle in bold in Figure 11); and if|WR| is larger than 1,two real solutions are obtained (between]− 1,1[ and outside this

interval). The case (WI = 0) is detailed in the next subsection.

At the coast, relation (15) determinesz2 whenz1 is known. It implies that

lI =
ω

F

b

a
kR and lR = −ω

F

b

a
kI

For low frequenciesω/F is much smaller than 1 andlI andlR can be ignored. An approximate expression of the waves is25

η(X,Y,t) = η0(X0,Y0)e
−kI (X−X0) cos(ωt+ kR(X −X0))

and the dynamics is controlled by the westward propagation of Rossby waves. For shorter periods, the situation may be more

complex because the ratioωb/(aF ) may be close to 1. This effect is in agreement with the resultsobtained in section 3, where
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a southward propagation of waves was observed in the open ocean, simultaneously with the westward progation of Rossby

waves.

Knowingz1 andz2 along the coast, it is possible to continue the resolution ofthe problem (13-14) and compute explicitely

the rays characterizing the propagation of the waves. An algorithm which fulfils this objective is described in appendix2.

However, under the supplementary assumption that|TX | remains much smaller than|TY | up to a distance from the coast5

of about a few Rossby radius of deformation, approximate expressions forz1 andz2 can be obtained analytically. This also

permits to initialize the algorithm described in appendix 2.

4.3 Analytical study for |TX | ≪ |TY |.

In this case, equation (15) which is exact at the coastX = 0 can also be used on a band of a few hundred kilometers off the

coast and yields a good approximation of the solution (for a more detailed discussion, see Appendix 2). Consequently, equation10

(16) becomes valid over a domain which extends far off the coast in the open ocean. In this section, the consequences of this

relation are briefly presented for a straight coastline, then investigated in detail for the cape shown in figure (9). In agreement

with the hypotheses of the previous subsection, we assume thatω≪ F but the results and graphics will be produced up to the

limit valueω = F .

Case of a straight coastline. This case has been extensively studied in the literature — let us mention Richez et al. (1984),15

Grimshaw and Allen (1988), Clarke and Shi (1991), McCalpin (1995), Liu et al. (1998) — each article stressing a particular

issue. Using the previously established equations, we summarize here known results about the existence of critical frequencies

along an ocean boundary.

For a straight coastline following the south north direction, we haveX = x andY = y; consequentlya= b= 1 andF

depends only onY . ThusWI = 0 and20

2WR =
R0β

ω

2ξ2 − 1

ξ

whereβ = ∂Y F .

In figure 12 (top panel), the coefficientWR is shown at different latitudes as a function of the period. At 15◦ N, the critical

valueWR = 1, which ensures the transition from a complex solution to tworeal solutions, is reached when the period is 140

days. The bottom panel shows the wavenumber as a function of the wave period computed fromWR for 10◦ N (black),15◦25

N (grey) and20◦ N (light grey). WhenWR > 1, a condition which is always fulfilled at low frequency (characteristic time

longer than 125 days at 15◦), equation (16) has two real solutions. IfWR ≫ 1 these solutions are close to2WR ≃R0β/ω

and1/2WR ≃ ω/(βR0). Consequently, the wave numberk is equal to eitherβ/ω or ω/(βR2
0) (see equation 16). This result

proves the existence of Rossby waves, whose wavelength is either short or long. When the frequency increases,WR decreases

and eventually reaches the critical value 1. WhenWR becomes smaller than 1, there are two complex conjugate solutions. The30

only acceptable solution has anegative imaginary part and conveys the existence of a Kelvin wave, trapped along thecoastline

and propagating northward. The absolute value of this imaginary partkI is represented as a dashed curve in Figure 12 (bottom
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panel). When the wave frequency is close to the critical value,kI vanishes and consequently the Kelvin wave no longer exist.

A Rossby wave with a significant amplitude can propagate westwards. At15◦ N its wavelength will be around 300 km. The

zonal velocity (phase speed) of this non dispersive wave is about 2.5 km/day. On the other hand, aslR vanishes withkI , the

meridional velocity becomes infinite.

Similar results are obtained when the coast presents a constant angleθ with a meridian. The only change is that the critical5

frequency for which the wave regime changes is modified and depends on the tilt of the coast as indicated in Clarke and Shi

(1991).

Case of a cape. The wave dynamics in a neighbourhood of the cape is characterized by the coefficientsWR andWI which

convey the effect of the coastline on the propagation of the wave. The coefficientWR can be splitted into two terms; the first

one
R0

2b

2ξ2 − 1

ξ
∂Y

F

ω
is similar to the term obtained from a straight coastline whereas the second one

R0

2a

1− ξ2

ξ
∂Y

a

b
explicits10

the role of the coast. It is large whenξ is small — in the frequency range where the model is valid, this means for wave periods

going from∼ 10 days to a month — and when the deformation of the coastline is large. The existence of such a term was

expected. When the angle of the coastline with a meridian increases, the impact of the latitudinal variations of the Coriolis

parameter decreases along the path followed by the wave. It even vanishes when the coast becomes parallel to the equator.

These changes are taken into account by this term. On the contrary, at low frequency, the lengthening or shortening of thepath15

followed by the wave becomes negligible because it occurs over a time which remains short in comparison with the period of

the wave.

The variations of the coastline geometry also prevent the existence of two distinct solutions at low frequency. Indeed,WI

differs from 0 and consequently two complex solutions are obtained as explicited in Figure 11. IfWI is strictly negative (grey

area), the solutionz is inside the half unit disk andkR is small. IfWI is strictly positive, the solution is outside andkR is large.20

The degeneracy of the equation thus desappears and a selection of the wavelength operates.

Figure 13 showsWR for T = 10, 20, 50, and100 days and makes visible an interesting property. When the periodT is equal

to 10 days, a dissymmetry around the cape occurs:WR is negative south and positive north of the cape. This dissymmetry

weakens when the period increases. ForT = 20 days, the area whereWR is negative is strongly reduced and forT = 50 days,

it has vanished. Since the signs ofWR andkR are similar (see Figure 11 and the associated comments), a negativekR is25

expected in this area and actually appears (see Figure 15)

SinceWI is nearly independent of the period in the considered frequency range, a single map suffices to describe it (Figure

14). WI is positive everywhere except in an narrow area west of the cape (the isoline -0.2 is indicated and the bold line

corresponds toWI = 0). Figure 11 shows that the corresponding values ofξz1 are smaller than 1. This suggests that this area

is occupied by waves whose wavelength is longer than everywhere else, a result which appears in Figure 15.30

The maps ofkR andkI (see Figures 15 and 16) show properties in agreement with theprevious analysis. For periods shorter

than 20 days,kR becomes negative south of the cape. Consequently the waves no longer propagate westward towards the open

sea, but eastward towards the coast. On the contrary, north of the cape the propagation occurs always westward, whateverthe
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frequency. At lower frequency this phenomenon is not observed. The coefficientkI shows a smaller dependence as a function

of the period. The shape of the Kelvin wave is modified close tothe tip of the cape – its offshore extent is smaller sincekI is

larger – but it still exists and propagates northwards.

Lastly, note that the order of magnitude predicted in Figure12 for a straight coastline with a south north orientation are

noticeably changed when the shape of the coast is taken into account. For a wavelength of about 700 km, the corresponding5

period was equal to approximately 150 days. Now, figure 15 shows that this wavelength are obtained in a large part of the

domain for a period equal to 100 days. Note that this value is close to the values predicted by Clarke and Shi (1991) at the coast

(between 84.69 and 115.2 days). Note also that, in a small area around the extremity of the cape (grey area), larger wavelengths

are compatible with periods of about 100 days.

5 Conclusions10

The analysis of SeaWiFS satellite observations of Chlorophyll showed a well marked signal along and off the west africancoast,

between10◦ and22◦ N, in winter (December to April). Along the coast the high concentration of Chlorophyll is associated

with the offshore Ekman drift generated by the equatorward component of the trade wind, which forces an upward motion. Its

variability is modulated by Kelvin wave propagating northwards. In December 2002 and January 2003 we observed a wavelike

pattern in the open sea, which extends far away offshore, up to a distance of about 800 km off the coast. This signal was visible15

from 20 December 2002 and was detectable during approximately one month, south of the Cape Verde Peninsula.

This pattern suggested the existence of locally generated Rossby waves, which slowly propagated westward. Indeed such

a wave can generate an elevation of the lower layers of the ocean corresponding to an upwelling of nutrient-rich water. The

existence of this wave was confirmed by the study of the SSH signal coming from AVISO altimeter data. It evidenced a wave

propagating westward with a velocity of about 4.5 cm s−1. The existence of a Chlorophyll signal far from the coast – here20

extending up to 750 km west to the Cape Verde has to our knowledge never been described. This strongly differs from the

coastal signals associated with Kelvin waves which have been previously carefully analyzed (see Diakhaté et al. 2016 and the

references herein).

In this study we thus investigated the mechanisms which could lead to the existence of such a wave and analyzed the potential

role of the cape, by first doing numerical experiments with a forced nonlinear model, then by analytically studying a linear25

reduced gravity model.

The numerical study, based on a reduced gravity shallow water model, showed that a Rossby wave similar to the observed

pattern could be created by a wind burst broadly extending over the region where the oceanic signal was seen. This agreed

with wind reanalysis of this period. In our experiments a longshore wind burst which lasted 5 days was used to generate the

oceanic response. We showed that the spatial scale of the latter matches the spatial scale of the forcing. The time scale of the30

reponse, controlled by the wavelength (see below), is not that of the forcing (5 days) but much longer around 100 days for the

first experiment.
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The cape does not seem to modify the basic features of the wavedynamics. It mainly limits the extent of the wave to the

north. However, when the wind burst has a large zonal extent (of about 1000 km) and a small meridional extent (not exceeding

100 km), the response of the model close to the cape depends onthe location of the wind anomaly. When the latter acts south of

the cape, the anomaly which forms around15◦ W is small and quickly desappears; a wave which propagate southward seems

to prevent its existence. On the contrary, when the wind anomaly acts north of the cape, an anomaly forms and remains around5

15◦ W, without moving; a secondary wave which propagates southward still exist but desappears quickly.

The analytical study is new and extends the study of Clarke and Shi (1991) to the open sea up to a distance of about 1000

km away from the coast. It helps us interpret the numerical results and gives futher information. It first shows that a timescale

around 100 days can be associated with the observed wave, considering the value of the wavelength (around 700 km). This

value matches the critical value predicted by Clarke and Shialong the coast of Senegal, even though their model applied only10

at the coast when the angle defining the tilt of the coastline is not too large. It also shows that the role of the cape does not

dramatically modify the dynamics of the system at such time scales.

On the contrary, when the period becomes shorter (smaller than 20-30 days), the waves behaves differently north and south

of the cape, as suggested by the numerical experiments. For the studied set-up, Rossby waves can propagate eastwards, in

a narrow band of the ocean whose latitudinal extent is about 100 km. We verified that this property vanished when the cape15

flattened (the period of the wave progressively becoming shorter). This strongly suggests that the wave dynamics in the vicinity

of a cape – and the associated upwelling – depends on the geometry of the coastline for time scales shorter than one month.

These changes no longer matter for longer time scales. Note that the behaviour difference predicted by the theory are notso

important in the numerical experiments. This is not surprising since the geometry of the system is different in the numerical

experiments.20

This study thus suggests that offshore upwellings can be created or enhanced by Rossby waves. An example of such a

phenomenom has been observed in the region off Senegal. Thisexample is probably not unique. For instance Kounta et al.

(2018) show patterns which provide clear evidence of an important Rossby wave activity to the south of the Cape Verde (seefor

example their Figure 10, which shows a climatology of the volume meridional transport). Observations will have to be pursued

in this region and in other EBUS region to determine the importance of such events. However the observations of such structure25

by satellite requires several condition which are seldom occuring together. First we need a long period of observationswithout

clouds, second a typical wind event able to generate the Rossby wave and third the existence of nutrients in the subsurface

layers, which could enrich the surface layers.

An important problem is the detectability of these waves. Dealing with a reduced gravity model whose characteristics are

fitting the observations, we found that the elevation of the interface probably does not exceed a few meters. The interface30

elevation facilitates the nutrient enrichment of the surface layers and consequently favours phytoplankton blooms. As the

elevation of the interface is relatively small, the phytoplankton bloom is likely to occur only under very specific conditions

such as a relatively small average thermocline depth or the presence of phytoplankton species capable of rapid growth, with

a strong chlorophyll signature like diatoms. In fact, phytoplankton pigment retrieval from ocean color satellite observation
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shows that the chlorophyll signal we observed is dominated by fucoxanthin, which is a signature of diatoms (Khalil et al,2019,

submitted)

Appendix A: Appendix A

Since we consider processes whose time scale is larger than aday, equations (6) can be simplified. We define a characteristic

frequencyω0 and a daily frequencyFd and assume that they verifyǫ= ω0/Fd ≪ 1. Settingω0t= τ andF = FdF0, the first5

two equations of system (6) become

ǫ∂τTX −F0TY = RX/Fd

ǫ∂τTY +F0TX = RY /Fd (A1)

withRX = −a−1∂Xη−b−1∂Y ψ andRY = −b−1∂Y η+a−1∂Xψ. An elementary computation leads to the following relations

(ǫ2∂ττ +F 2
0 )TX = (ǫ∂τRX +F0RY )/Fd

(ǫ2∂ττ +F 2
0 )TY = (ǫ∂τRY −F0RX)/Fd

(A2)

Considering our hypothesis, the terms of order 1 andǫ can be kept in the previous equations and the terms of orderǫ2 can be10

neglected. Consequently we can use the approximate relations

TX = F−2(∂tRX +FRY )

TY = F−2(∂tRY −FRX) (A3)

(We used the fact thatǫF−1
d ∂τ = F−1∂t andF0Fd = F ). Note that the terms∂tRX and∂tRY are of orderǫ in comparison

with the termsFRY andFRX .

We now introduce these equations in the last equation of system (6). This leads to a new equation15

∂tη+
C2

ab
[∂X(

b

F 2
(∂tRX +FRY ))+ ∂Y (

a

F 2
(∂tRY −FRX))] = ∂tφ (A4)

or equivalently

∂t

[

η−R2
0(

1

a2
∂2
XXη+

1

b2
∂2
Y Y η)

]

−

R2
0

ab

[

F 2∂X(
b

aF 2
)∂2
tXη+ ∂Y F ∂Xη+F 2∂Y (

a

bF 2
)∂2
tY η− ∂XF ∂Y η

]

= ∂tφ+Rψ (A5)

whereR2
0 = C2/F 2 is the Rossby radius andRψ contains the forcing terms depending onψ:20

Rψ = −C
2

ab

[

∂X(
1

F 2
)∂tY ψ+ ∂Y (

1

F 2
)∂tXψ+ ∂X(

b

aF
∂Xψ)− ∂Y (

a

bF
∂Y ψ)

]
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The vanishing of the velocity orthogonal to the coordinatesis easily obtained from system (A3). With the same approximations,

the conditionTX = 0 atX = 0 implies∂tRX +FRY = 0 or equivalently

b∂2
tXη+ aF∂Y η = −a∂2

tY ψ+ bF∂Xψ (A6)

for all t > 0 andY .

When the forcing terms can be neglected, the previous relations simplify. They become respectively5

∂t

[

η−R2
0(

1

a2
∂2
XXη+

1

b2
∂2
Y Y η)

]

− ·· ·

· · · R
2
0

ab

[

F 2∂X(
b

aF 2
)∂2
tXη+ ∂Y F ∂Xη+F 2∂Y (

a

bF 2
)∂2
tY η− ∂XF ∂Y η

]

= 0 (A7)

and atX = 0, for all t > 0 andY

b∂2
tXη+ aF∂Y η = 0 (A8)

Appendix B: Appendix 210

A method to solve system (13-14) with the boundary condition(15) is presented here. It has been shown that the values ofz1

andz2 are known on the boundary thanks to equation (16). We set

z1 = z0
1 + z̃1 and z2 = z0

2 + z̃2

wherez0
1 andz0

2 verifies equation (14) and the conditionz0
2 = −i(ω/F )z0

1 everywhere. Consequently,z0
1 verifies equation (16)

everywhere15

J(ξ z0
1) =WR + iWI

and can be computed on the ocean domain. The results of this computation are presented in section 4.3 (z0
2 is also known

thanks to the relationz0
2 = −i(ω/F )z0

1).

Sincez1 andz2 are known on the coast andz0
1 andz0

2 everywhere,̃z1 andz̃2 are known on the coastX = 0. It is now easy

to write the equations verified bỹz1 andz̃2.20

∂Y (
az̃1
R0

)− ∂X(
bz̃2
R0

) = ∂Y (
az0

1

R0
)− ∂X(

bz0
2

R0
) = Z0 (B1)

z̃2
1 + 2z̃1(z

0
1 −w1)+ z̃2

2 + 2z̃2(z
0
2 −w2) = 0 (B2)

with z̃1 = 0 andz̃2 = 0 for X = 0.
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The variables̃z1 andz̃2 can be computed on a grid(−i∆X,j∆Y ) for i= 0,1, . . . ,N , j = −P,. . . ,−1,0,1, . . . ,P . They are

known forX = 0 (i= 0). We suppose that they have been computed fori > 0 (valuesz̃1,i,j andz̃2,i,j) and show how̃z1,i+1,j

andz̃2,i+1,j can be computed. Equation (B1) can be discretized in the following way:

bz̃2,i+1,j

R0
=
bz̃2,i,j
R0

− ∆X

2∆Y
(
az̃1,i,j+1

R0
− bz̃1,i,j−1

R0
)+ ∆XZ0,i,j

the error being proportionnal to∆X . A boundary condition (for examplẽz2,i,−P = 0) is prescribed to end the computation.5

Knowing z̃2,i+1,j , the value of̃z1,i+1,j is obtained by solving

z̃2
1,i+1,j + 2z̃1,i+1,j(z

0
1 −w1)+ z̃2

2,i+1,j + 2z̃2,i+1,j(z
0
2 −w2) = 0 (B3)

The computation ofz0
1 andz0

2 would correspond to a solution such asTX = 0 everywhere. The correction brought byz̃1 and

z̃2 is associated with a mass transport perpendicular to the coast. As the latter in general is much smaller than the transport TY

parallel to the coast, it is expected thatz̃1 andz̃2 are small in comparison withz0
1 andz0

2 (they are null atX = 0 and increase10

proportionally to the distance to the coast). In section 4.3, the approximate value ofk associated with the solutionz0
1 is fully

described.
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Figure 1. Chlorophyll observed by SEAWIFS at four different days. A wave-like pattern (which is circled by a dashed line) is visible

between−22◦ and−18◦ in longitude and−12◦ and−14◦ in latitude. At the end of the period a westward propagation seems to initiate.

The chlorophyll concentration is given in mg m−3 by the color bar at the right of the maps.
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Figure 2. Hoevmuller diagrams of the SSH at latitudes12◦N, 13.5◦N, 15◦N, and16.5◦N (the SSH amplitude is given in cm by the color

bar at the right of the diagrams). Note the decrease of the amplitude at16.5◦N. The phase velocity of the wave is about 4.5 cm/s.
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Figure 3. Mean wind velocity in December 2002 (maximum≃ 8 m s−1) and wind velocity anomaly in December 3, 5, and 7 (maximum

≃ 4 m s−1).
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Figure 4. Response of the ocean to an anomalous wind stress applied during five days (panel (a)) and corresponding evolution of the active

layer thickness for every five days from the close of the the wind stress anomaly up to 35 days after (panels from (b) to (i)).A Rossby wave

is generated and a Kelvin wave quickly propagates along the coast. The Rossby wave propagates westward and its amplitudeis divided by

two between the first and the last panel. The 0 m isoline is indicated in bold; the isoline interval is 0.5 m (blue: negative).
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Figure 5. Solution obtained for the same conditions as in Fig. 4 for a straight coastline. Note that the mean wind stress is added to the wind

stress anomaly in panel (a). A Rossby wave is still generatedbut the halting of the signal due to the cape is no longer observed. The latitudinal

extent of the wave east of 19◦W is thus nearly twice larger than in the previous case.
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Figure 6. The wind anomaly extent is four times smaller than the one used in Figure 4 and the position of the center is kept unchanged (panel

(a)). It still acts during five days and as previously the active layer thickness is shown for every five days from the close of the the wind stress

anomaly up to 35 days after. A Rossby wave is generated and itsextent is approximately four times smaller than previously. No Kelvin waves

are created. The 0 m isoline is indicated in bold; the isolineinterval is 0.5 m (blue: negative).
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Figure 7. The wind anomaly now acts over a long (1000 km) and narrow (200km) domain south of the cape during five days (panel (a)). The

solution after the close of the wind burst is shown. A wave is generated but the anomaly remains moderate near the coast. The 0 m isoline is

indicated in bold; the isoline interval is 0.1 m (blue: negative).
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Figure 8. The wind anomaly now acts over a long (1000 km) and narrow (200km) domain north of the cape during five days (first panel).

The solution after the close of the wind burst is shown. A waveis generated and the anomaly near the coast has an amplitude comparable

with the anomaly around 25◦ W. The 0 m isoline is indicated in bold; the isoline interval is 0.1 m (blue: negative).
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Several values ofX andY have been indicated. Only one half of the domain has been represented.
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Figure 11. In top panel, the half complex planeℑ(z) ≤ 0 with z = ξz1 is shown. The domain is restricted to complex numbers with a negative

imaginary part sincekI = aℑ(z)/(ξR0) must be negative. The half circle|z| = 1 and a few straight lines have been drawn. In botton panel

the Joukowsky transform of the previous half planeW = J(z) is shown. The segment[−1,1] is the image of the half circle. The upper

(lower) half plane corresponds to the image of its interior (exterior). The image of the straight lines are correspondingly represented.
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Figure 12. Top panel:WR is shown for latitudes ranging from5◦N (left segment) to40◦ N (right segment). The critical valueWR = 1 is

reached at15◦ N for a period of about 125 days. Bottom panel: wavenumberk as a function of the periodT for three different latitudes (10◦

(blue), 15◦ (red), and 20◦).
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Figure 13. Dimensionless coefficientWR for periods equal to 10 days, 20 days, 50 days, and 100 days. The bold black line corresponds to

WR = 0. When the period of the wave shortens (smaller than 20 days),WR becomes negative in a narrow band south of the cape. For period

longer than 100 days, the diagram is nearly symmetric.
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Figure 14. Dimensionless coefficientWI . It is independent of the period of the wave. Note that the domain is reduced in comparison with

the previous figure.
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Figure 15. CoefficientkR for periods equal to 10 days, 20 days, 50 days, and 100 days. The bold black line separates postive from negative

values. WhereWR is negative,kR is negative (for periods shorter than 20 days, in the area located to the south of the cape).
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Figure 16. CoefficientkI for periods equal to 10 days and 100 days. This coefficient weakly depends on the period of the wave.
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