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Abstract.

Extreme high sea levels (ESL) caused by storm floods constitute a major hazard for coastal regions. We here quantify their

long-term variability in the southern German Bight using simulations covering the last 1000 years. To this end, global Earth

System Model simulations from the PMIP3 past1000 project are dynamically scaled-down with a regionally coupled climate

system model focusing on the North Sea. This approach provides an unprecedented long high-resolution data record that can5

extend the knowledge of ESL variability based on observations, and allows for the identification of associated large-scale

forcing mechanisms in the climate system.

While the statistics of simulated ESL compare well with observations from the tide gauge record at Cuxhaven, we find that

simulated ESL show large variations on interannual to centennial timescales without preferred oscillation periods. As a result

of this high internal variability, ESL variations appear to a large extent decoupled from those of the background sea level, and10

mask any potential signals from solar or volcanic forcing. Comparison with large-scale climate variability shows that periods

of high ESL are associated with a sea level pressure dipole between northeastern Scandinavia and the Gulf of Biscay. While

this large-scale circulation regime applies to enhanced ESL in the wider region, it differs from the North Atlantic Oscillation

pattern that has often been linked to periods of elevated background sea level.

The high internal variability with large multidecadal to centennial variations emphasizes the inherent uncertainties related15

to traditional extreme value estimates based on short data subsets, which fail to account for such long-term variations. We

conclude that ESL variations as well as existing estimates of future changes thereof are likely to be dominated by internal

variability rather than climate change signals. Thus, larger ensemble simulations will be required to assess future flood risks.

Copyright statement. TEXT

1 Introduction20

Inundation due to storm floods is one of the major geophysical risks in coastal regions and bears high damage potential for

coastal environments, in both natural and socio-economic terms. This is especially important for low-lying regions such as

coasts and estuaries of the Southern North Sea and, in particular, the German Bight. Situated between Denmark to the North

and the Netherlands to the West, the German Bight is a shallow shelf sea under the influence of the major northern hemispheric
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storm-track paths. At the same time, the shallow water depths of under approximately 40 meter (see Fig. 1) in combination with

the basin’s geometry lead to relatively strong tides, with a maximum tidal range of around 4.5 m. Thus, storms can generate

particularly high floods in this region. The region has seen many devastating storm floods in the past; one of the most severe,

the great storm flood ’Grosse Manndrenke’ (the Great Drowning of Men) in 1362 resulted in death tolls of tens of thousands,

the destruction of numerous settlements including the disappearance of the legendary town ’Rungholdt’ (Heimreich, 1819) and5

shifts in the Wadden Sea coastline (Hadler et al., 2018). More recently, the great flood in 1962, resulted in a high death toll

and vast economic loss along the coastal regions of Germany and in particular the city of Hamburg. Disasters like these have

driven extensive research in the field; yet, most studies focused either on individual events, on the observed trend during the last

couple of decades, or a projection of future storm flood exposure. Variations on longer time scales and their underlying mech-

anisms have received less attention. However, a deeper understanding of the long-term variability of strength and occurrence10

of extreme storm floods can be of great importance for coastal planning and risk assessment. Here we assess the longer-term

variability of high sea level extremes in the German Bight using a novel regionally coupled model approach over a 1000-year

long simulation period.

Following Pugh (1987), the sea level at a certain point and time can be decomposed into three factors: Meteorological surge,15

astronomical tide and background sea level (BSL). The surge is the "dynamic response of the sea surface to forcing by the

atmosphere" (Mawdsley and Haigh, 2016) and can consist of (i) the local wind surge that pushes water against the coast, (ii)

an external surge generated in the North Atlantic by fast bypassing cyclones and air pressure variations that travel as a Kelvin

wave counterclockwise in the North Sea (Gönnert et al., 2012), and (iii) the direct effect of air pressure acting on the water

surface (the inverse barometric effect). The total sea level is thus a product of interactions between the surge component, the20

astronomical tide and the underlying longer term change in BSL, the latter of which depends on various oceanographic and at-

mospheric processes such as coastally trapped waves, local steric effects or longshore winds (Dangendorf et al., 2014a; Sturges

and Douglas, 2011; Calafat et al., 2012). Extreme sea levels particularly arise when these components are in superposition,

e.g. if a strong wind surge occurs concomitantly with a tidal maximum, or – as a result of the tide-surge interaction – a few

hours before on the rising tide (Horsburgh and Wilson, 2007). Topographic features, such as water depth, sand bars or reefs can25

further affect their height locally. These components interact non-linearly (e.g., Kauker and von Storch, 2000; Plüß, 2004) and

are non-stationary, with variations occurring on multiple timescales. Long term changes in any of those components, e.g. due to

internal variability or external climate change, may substantially alter the risk associated with sea level extremes. Since we are

solely interested in high water extremes, we refer with the term extreme sea level (ESL) only to the upper end of the distribution.

30

Many studies have investigated the recent dynamics of ESL both regionally and globally using data from tide gauges (e.g.,

Tsimplis and Woodworth, 1994; von Storch and Reichardt, 1997; Woodworth and Blackman, 2004; Marcos et al., 2009;

Menéndez and Woodworth, 2010; Mudersbach et al., 2013; Weisse et al., 2014; Wahl and Chambers, 2015) or using barotropic

surge models for hindcasts of storm-surges (e.g., Kauker and von Storch, 2000; Langenberg et al., 1999; Woth, 2005; Weisse

and Plüß, 2006). For a review of past storm surge statistics and projected changes in the North Sea region see Weisse et al.35
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Figure 1. Bathymetry of the North Sea (left) and the German Bight (right; the main study location Cuxhaven is marked by the black square)

as represented in MPIOM. The model’s land mask is shown in white, the present-day coastline is shown in black.

(2012). While most studies agreed on an overall increase in storm surge activity along the German Bight since the 1960s

(e.g., WASA-group, 1998; Weisse and Plüß, 2006; von Storch and Woth, 2008; Mudersbach et al., 2013), both observations

and hindcast simulations over a longer time span have set this recent trend into the perspective of a marked multi-decadal

variability during the last century (e.g., WASA-group, 1998; Dangendorf et al., 2013b; Mudersbach et al., 2013; Weisse and

Plüß, 2006) with higher values at the beginning and end of the century.5

The data record, though, is limited and only few high-frequency tide gauge records (e.g. Cuxhaven) date back more than

a couple of decades. Thus, conclusions on multidecadal to centennial variability as well as the separation of longer-term

fluctuations from the transient sea level rise are difficult from a statistical point of view. Concerning the latter, different studies

on German Bight sea level reported similar ESL and BSL trends (e.g. Kauker and Langenberg, 2000) or trends at rather

different rates (e.g., Mudersbach et al., 2013; Dangendorf et al., 2014b) – a question of great importance for estimations of10

future ESL behavior on top of a gradual sea level rise. Further, as ESL are by definition rare, the attribution to modes of climate

variability, which often operate on similar or even longer timescales, is hampered by the short instrumental record. While

many studies have related mean sea level variations to modes of climate variability, esp. the North Atlantic Oscillation (NAO)

(e.g., Wakelin et al., 2003; Dangendorf et al., 2012; Ezer et al., 2015), the dominant pattern of atmospheric variability over

the North Atlantic (Hurrell, 1995), which showed coherent trends during the last decades, only a few have set this in context15

with ESL variations (Woodworth and Blackman, 2004; Woodworth et al., 2007; Marcos et al., 2009; Marcos and Woodworth,

2017). Finally, such long-term ESL fluctuations can also have important implications for storm flood protection measures. The

design of coastal defense structures in Germany is based on deterministic or statistical approaches (e.g. M.f.L.R., 2012). For

the latter, water levels with assigned return periods are needed, which are typically based on parametric extreme value analysis
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of observed sea level data. Yet, due to the relatively short tide gauge records, the quality of the estimation of return periods

longer than the investigated sea level data series depend on the type of extreme value distribution and its goodness-of-fit to the

data. Additionally, any longer-term variability in ESL further complicates the estimation of high return levels, as they depend

on the state of long-term variability during the underlying baseline period. Here we argue that significant centennial variations

in high-impact return levels entail a large source of uncertainty for parametric ESL estimates. The standard approach using a5

typically short baseline period for such sea level estimates thus fails to reflect the possible range of most extreme events that

happen only once or twice during that period.

A longer, high-frequent data series as obtained from a climate simulation can offer a statistically more robust assessment

of these problems, as the full time series can be treated as an ensemble of data series comparable in size to the observational

record. However, currently available long-term climate simulations do not include tides and have an insufficient resolution to10

realistically represent storm surges in the North Sea. Dynamical surge models or regional climate models, driven by global

climate model simulations, can provide a better representation of small-scale processes, topographic influences and land-sea

contrasts, and are thus better suited for the simulation of extreme events. Due to their open lateral boundaries, however, they

cannot account for a consistent propagation of external signals into the study region, which has been shown to affect North

Sea sea level variability (e.g., Chen et al., 2014). Here we employ a global ocean model with regionally high horizontal resolu-15

tion, which allows a consistent simulation of signals propagating from the open Atlantic onto the North West European shelf,

coupled to an atmospheric regional model to dynamically downscale the climate variations from a Last Millennium simula-

tion from MPI-ESM (Jungclaus et al., 2014; Moreno-Chamarro et al., 2017). With a long-term simulation, this study allows

a non-parametric approach in estimating such high return levels and can thus give insight into the uncertainties in extreme

value analysis when based on short records. The goal is to describe and understand the (multi)decadal variability of ESL in the20

German Bight as well as their relationship with BSL and large-scale climate variability, which to our knowledge has not yet

been investigated in a model study over such long timescales.

This article is structured as follows: Section 2 introduces the model system and experimental setup. In section 3, we present

results on ESL variability, including the validation of the model with respect to observations from tide gauges (3.1), the25

relation to BSL (section 3.2) and climate variability (section 3.3). The results on ESL variability as well as some implications

for observation-based extreme value estimates are discussed in section 4. Finally, in section 5 we close with a summary and

conclusions for coastal defense measures.

2 Methods

2.1 Model system and experimental design30

This study employs a regionally coupled climate system model, consisting of the global ocean model MPIOM (Marsland

et al., 2004; Jungclaus et al., 2013) and the regional atmospheric model REMO (Jacob and Podzun, 1997). Both models are

interactively coupled over the wider EURO-CORDEX domain (e.g., Jacob et al., 2014) with the coupler OASIS-3 (Valcke,
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Figure 2. Coupled model setup, consisting of MPIOM (black) and REMO (green).

2013). The coupled model system has been described in Mikolajewicz et al. (2005); Elizalde et al. (2014) and Sein et al.

(2015); a sketch is shown in Fig. 2.

REMO is run with a 0.44 degree setup, corresponding to approx. 50 km grid spacing, and with 27 vertical levels covering

Europe, northern Africa and the northeast Atlantic. MPIOM is run on a stretched grid configuration with a nominal horizontal

grid resolution of 1.5◦ and 30 vertical layers. In order to maximize the grid resolution in the study focus area, the model’s5

poles are shifted to Central Europe and North America, respectively. This results in a maximum grid resolution of under 10

km in the German Bight and thus enables a more realistic simulation of small-scale shelf processes. Further, it includes the full

luni-solar ephimeridic tidal potential according to Thomas et al. (2001). At the same time, the ocean model’s global domain

without lateral boundaries allows the full simulation of signals propagating from the open Atlantic into the North Sea. In order

to prevent ocean grid-points to fall dry due to strong tidal sea level variations, as for example in the English channel, MPIOM’s10

uppermost layer thickness is set to 16 meter. This model setup is identical to the one used in Mathis et al. (2018).

We employ this model setup to downscale transient coupled climate simulations performed with the paleo-version of the

global Earth System Model MPI-ESM (Max-Planck-Institute Earth System Model) in its low resolution (LR) version (Giorgetta

et al., 2012), corresponding to 1.875◦ or approx. 200 km grid spacing in the atmosphere. The parent global simulations cover

the period 900–2000AD and comprise parts of the PMIP3 simulation Last-Millennium (850–1850AD, (Jungclaus et al., 2014;15

Moreno-Chamarro et al., 2017)), extended with the corresponding CMIP5 "historical" simulation (1850-2005AD (Taylor et al.,

2012)), including all relevant transient forcings. Greenhouse gases (GHG) follow PMIP3 protocol (Schmidt et al., 2012), solar

irradiance is prescribed after Wang et al. (2005) and volcanic eruptions in terms of radiation imbalance after Crowley et al.

(2008) (see Supplementary Fig. A3). 6-hourly atmospheric forcing derived from the atmosphere component of the driving GCM

is used as lateral boundary conditions for REMO, or as surface forcing for MPIOM outside the coupling domain, respectively.20

Topography and coastlines as well as ice sheets are immutable, and thus transient sea level modulations due to ice sheet melt
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or changes in coastal morphology including land sinking or lifting are not accounted for. Furthermore, as a Boussinesq model,

MPIOM conserves volume rather than mass and does therefore not explicitly represent the thermosteric sea level rise.

The downscaling was performed as one continuous run with hourly coupling started in year 900AD, the first 100 years

are used as a spin-up. Sea level and selected atmospheric fields are stored at hourly resolution. Additionally, in order to

quantify the variability from the downscaling process, as well as the contributions of natural variability and external forcing,5

we performed two further downscalings, one of the same global realization and one of another ensemble member of the global

Last-Millennium simulations, each starting in 1400AD, with the first 100 years again used as spin-up (see Supplementary

Material A3). The implications of these additional downscalings are discussed in the respective sections; yet, for simplicity,

we only show results from the 1000-year continuous downscaling.

2.2 Extreme value sampling10

Several techniques have been used to characterize extreme sea level, e.g. the use of high percentiles (e.g., Woodworth and

Blackman, 2004; Dangendorf et al., 2013a), the selection of r-largest maxima over a block of time (e.g., Araújo and Pugh,

2008; Méndez et al., 2007; Marcos et al., 2009), and the selection of peaks over a certain threshold (POT) (e.g., Méndez et al.,

2006). While the choice of the respective percentile, threshold, block length or number of block maxima is essentially arbitrary,

the resulting events are sensitive to the choice of extreme value sampling index which represents a trade-off between bias (too15

high r or too low threshold) and variance (too low r or too high threshold) of the estimates.

Here, we have chosen the annual maximum sea level as an index representing ESL. Due to its relative definition of what

constitutes an extreme it is robust to temporal variations. The use of a ’direct’ method for ESL (instead of e.g. surge residual

or skew surge) is chosen in order to avoid a decomposition between tidal and surge parts and their nonlinear interaction. Since

storm floods primarily occur in winter, annual statistics are computed for years defined as starting in July and ending in June20

in order to not split up one storm flood season. If not specified otherwise, these definitions are used when referring to ESL in

the text.

For the design of coastal defense structures, policy makers and adaptation planners often require statistics of water levels

of a certain assigned return period (e.g. (M.f.L.R., 2012)), especially those of high impact but low probability, i.e. the upper

tail. The return periods and associated exceedance probabilities are typically estimated based on parametric extreme value25

analysis of the available instrumental data record. As data records rarely date back more than a couple of decades, this implies

a substantial extrapolation of the data. That is, in order to obtain estimates for large return periods, different extreme value

distributions are fitted to the comparably short data series. The choice of extreme value distribution depends on the considered

extreme value sampling method and ultimately represents a tradeoff between bias and variance of selected extremes. While

the POT method is linked to the Generalized Pareto distribution, the r-largest samples follow approximately a three-parameter30
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generalized extreme value (GEV) distribution (e.g., Coles et al., 2001). Its cumulative distribution function is

F (z;µ,σ,k) =


e−(1+k( z−µσ ))−1/k

k 6= 0

e−e−
z−µ
σ k = 0

(1)

where F is the probability that a water level z will not be exceeded, while µ, σ, and k are the location, scale and shape

parameters, respectively. The special case for k = 0, k < 0 and k > 0 represent three extreme value families, namely the

Gumbel (type I), Weibull (type II) and Frechet (type III) distribution (Coles et al., 2001). From Eq. 1, the probability of5

exceedance is E = 1−F , where E(z) represents the expected frequency of events exceeding z. The expected time-interval

between events of level z or greater, the return period RP , is

RP (z) = 1/E(z) (2)

The advantage of our long simulation period is that it allows us to infer high-end extreme value statistics without the use of

parametric methods. These non-parametric estimates have been inferred by first ranking the data points of the sea level time10

series and associating a cumulative probability to each value. The probability of exceedance is P = m
(N+1) , where m is the

rank of N observations ordered in decreasing order. Following Eq. 2, return periods are again defined as the reciprocal of the

respective probability of exceedance.

3 Results: Extreme sea level variability

The simulated timeseries of ESL at Cuxhaven (see Fig. 1) over the last 1000 years is shown in Fig. 3 (black curve). For15

comparison, we show the frequency of storm floods as events binned per decade (blue), following the storm surge definition

from the Federal Maritime and Hydrographic Agency (BSH) (Müller-Navarra et al., 2003). Heavy (extreme) storm floods

correspond to elevations above 2.5 (3.5) meter, relative to the long-term mean high water level (MHW). The BSL as a reference

in terms of winter median is shown in green. Sea level is given in meter above the long-term mean, the model location of

Cuxhaven refers to its nearest gridpoint.20

Simulated ESL range between 2 and 5.5 m above the long-term mean. With a standard deviation of 50 cm and a maxi-

mum year-to-year amplitude of roughly 3 m, ESL exhibit large interannual variations and pronounced variability on various

timescales. Yet, the highest events occur without pronounced clustering throughout the full 1000 years. This variability is

analyzed in more detail below.

3.1 Validation of simulated storm surge statistics25

As the reality can be viewed as only one realization of the climate system one should not compare individual historic events in

simulation and observation, but rather their statistics. To validate the model’s performance considering storm flood statistics,

we compare the simulated ESL with observations from the tide gauge record in the German Bight (data from AMSeL project,
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Figure 3. Simulated ESL (black), winter median sea level (green) as well as number of heavy (blue bins) and extreme (dark blue bins) storm

surges per decade at Cuxhaven. Thick lines denote the 11-year running mean.

see Jensen et al. (2011); Wahl et al. (2011)), and specifically show results at Cuxhaven which, starting in 1900 marks one of

the longest reaching records of the German Bight tide gauge stations. The long-term (linear) trend in the tide gauge data has

been removed.

While the general North Sea tidal oscillations are well reflected in the model, the tidal range is underrepresented at Cuxhaven

(see Supplementary Fig. A1 for a comparison of the broader highest water level from observations and model simulation,5

respectively). Accordingly, this results in a lower long-term MHW (defined as the time-mean over tidal maximum values).

Relative to the respective long-term MHW, however, simulated and observed ESL compare well (see the quantile plot in Fig. 4

for ten 100 year-long segments of the simulation against the Cuxhaven tide gauge record.), and we therefore express ESL in

such relative terms in the remainder of the study.

Figure 5 shows return values of ESL compared to the Cuxhaven tide gauge record. In order to better compare the different10

data record lengths, the simulated 1000 years of data are again split into ten 100 year-long segments, roughly the length of

the Cuxhaven tide gauge record. Both slope and magnitude above MHW are well-captured; the return values inferred from

observations lie within the spread of the model simulation at all periods. Yet, other than in the simulation, observations tend

to level off for return periods above 20 years, before they rise again for return periods higher than 50 years, while simulated

return levels rather increase steadily. As a consequence, the 100-year return levels (RL100) in all but the 11th century exceed15
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Figure 4. Quantile-quantile plot of simulated sea level at Cuxhaven against the 100-year long ESL from the tide gauge record. Colors

following the gradient from light red to black represent ascending 100-year segments from 1000-2000.

the corresponding return water level inferred from the instrumental record. The large scatter of about 1.2 m between the highest

simulated sea levels of each century has important implications for extreme value analysis (see section 4).

The spatial structure of simulated return values (Fig. 6) shows lowest values for open waters which increase towards the

coast, especially the inner German Bight. Most points along the German Bight coast (circles represent Cuxhaven, Husum,

Norderney and Delfzijl (Netherlands)) compare well with the respective tide gauge records. Yet, while the return values at5

Cuxhaven lie slightly higher than the observed ones, ESL along the coastline of Lower Saxony and the Netherlands are rather

low compared to the observation-based estimates. Furthermore, the model’s uppermost layer thickness is with 16 meter well

above the shallow shorelines of the Wadden Sea (see Fig. 1) and thus likely leads to lower surge heights. Note that for Husum

and Norderney the observational record does not date back the full 100 years, so these points are only shown for the 50-year

return period.10

The seasonality is well-captured, with strongest and most frequent storm floods in winter (Supplementary Fig. A2), espe-

cially in the months of October-January. However, the distribution is slightly shifted towards autumn and early winter.

In agreement with observational studies (Gerber et al., 2016), simulated storm floods at Cuxhaven stem from predominantly

west-north-westerly directions, while their associated daily pressure anomaly patterns (not shown) are similar to observations

of storm flood weather situations (Donat et al., 2010; Dangendorf et al., 2014c).15

We thus conclude that the model reasonably reproduces storm flood physics and statistics. Due to the good skill in repro-

ducing storm surge statistics as well as the comparability owing to its relatively long instumental record, the remainder of this

study will focus on Cuxhaven only. However, the temporal variability of other gridpoints along the German Bight is similar

(see Supplementary Fig. A6) and the here discussed results qualitatively agree irrespective of the exact location.
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Figure 5. Return value plot using non-parametric plotting positions of simulated sea level at Cuxhaven (colored lines represent 100-year

long subsets of the full 1000 years) against observations from tide gauges (green crosses). The bars on the right mark the corresponding

RL1000 estimates using a Gumbel (left) and GEV (right) fit to the observations (dark green, 95% confidence interval in light green) and to

each 100-year subset of the simulation (red Box-Whiskers, range of the 95% confidence intervals in grey). The horizontal black line shows

the RL1000 directly inferred from the full simulation.

Figure 6. Gridded 50- and 100-year return levels and the corresponding water values from tide gauge observations at selected locations

(circles). All values given in m above mean high water.
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3.2 Relation to the background state

An important question concerning ESL variability as well as future ESL projections is the relation to time-averaged sea levels,

i.e. the background state. Separation into the different components of extreme water levels, such as the subtraction of mean and

tide are useful methods to investigate this question (e.g. Woodworth and Blackman, 2004). Reviewing literature on recent ESL

trends globally, Woodworth et al. (2011) concluded that the majority of studies suggest an increase over the last century, but5

at most locations at rates comparable to those observed in BSL. However, analyzing tide gauge records in the German Bight,

Mudersbach et al. (2013) found differences in linear trends in high sea level percentiles from those in mean sea level. Are these

differences representative for this period only or can the finding be extended to a general statement?

Fig. 3 shows both ESL in terms of annual maxima (black) and BSL in terms of winter median sea level (green), and their

respective 11-year running mean. We choose the median instead of the more simple mean in order to not obtain a skewed value10

due to an exaggerated influence of the very maxima. As the predominant storm surge season we only average over an extended

winter period (October - March). Neither ESL nor BSL exhibit long-term trends, but show high interannual to multidecadal

variability. Yet, their modulations are not always coherent: As the histogram at the bottom of Fig. 3 shows, years with one

extreme storm surge do not necessarily coincide with a greater occurrence of more moderate heavy storm floods or elevated

BSL. The correlation between BSL and ESL is comparably low (r = 0.36) and highly variable over time (see black curve15

in Fig. 7 for a 100 year running correlation), while the different magnitudes of variances lead to a low explained variance

(R2 = 0.12). While there are periods of significant positive correlation between BSL and ESL after 1400, lower insignificant

correlations are prevailing during the 1st half of the last millennium. That is, the coherent behavior between mean and upper-

end extreme sea level states varies on decadal to centennial timescales. After subtraction of the annual median from the ESL,

the correlation between the resulting atmospheric surge residual and BSL further reduces and is insignificant over a large20

fraction of the last 1000 years (blue curve in Fig. 7, r = 0.10, R2 = 0.01). In fact, significant coherence only applies in the

15th century and towards the end of the past millennium on timescales of several decades. This further indicates that the similar

trends between ESL and BSL during the last century that have often been described (Kauker and Langenberg, 2000; Menéndez

and Woodworth, 2010) might merely be an unusual state if compared to a longer time horizon as obtained from our long-term

simulation.25

Are the temporal modulations of coherent behavior between ESL and BSL due to different modes of variability and are there

any systematic variations in ESL? Spectral analysis (Fig. 8a) shows that ESL exhibit white power spectra across all resolved

periods (p= 0.57 in Ljung-Box Q test) and do – except for a minor spectral peak around 8 years – not show preferred modes of

variability (Fig. 8a). There is no significant difference between sites located along the coast of Lower Saxony and on sites at the

coast of Schleswig-Holstein (not shown). On the other hand, BSL in terms of annual median sea level (Fig. 8b, separately shown30

for both winter and summer seasons) exhibits a red spectrum with more power on multidecadal and centennial timescales. The

predominance of lower frequencies in the power spectrum stresses the influence of the ocean which carries the "memory" of the

system. In summer and further off the coast (not shown), the high-frequency variability is reduced and thus lower frequencies

are dominating the power spectrum. In winter, the higher frequencies are not as damped and the spectrum appears flatter, as
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Figure 7. 100-year running correlation between BSL and ESL (black) and between BSL and median-reduced ESL (blue) with shading mark-

ing the uncertainty of the correlation using bootstrapping. Time series have been smoothed with a 11y moving window prior to calculating

the running correlations. Red dashed lines mark significant correlation on the 95th percent confidence level. The long-term correlation is

given in the bottom left corner.

Figure 8. Power spectrum of sea level at Cuxhaven: Annual maximum sea level (left) and annual median sea level (right), split into winter

(black) and summer season (blue). Spectra have been smoothed over 7 spectral estimates using a Daniell window (Daniell, 1946). The thick

lines correspond to an average over 9 overlapping 200-year subsets of the full time series, the shadings mark their range. Red lines indicate

the 95 % confidence bounds using a theoretical Markov spectrum (red noise), black dashed lines the 95% confidence bounds derived from

the 9 realizations.

the wind stress effect on the water surface is more pronounced during winter when winds are strongest. Coherent variability of

BSL and ESL is only visible on multidecadal timescales, at higher frequencies the random ESL variations outweigh the BSL

ones and do thus not result in coherent variations for periods shorter than several decades (Supplementary Fig. A7).
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3.3 Relation to climate variability

Several mechanisms have been related to sea level variations, which mainly focused on those of the mean state. These range

from large-scale atmospheric circulation patterns (e.g., Wakelin et al., 2003; Woodworth and Blackman, 2004; Chafik et al.,

2017) over longshore winds and resulting Kelvin waves (Sturges and Douglas, 2011; Calafat et al., 2012) to steric variations

due to temperature oscillations (Frankcombe and Dijkstra, 2009). Mechanisms leading to longer-term ESL variations, however,5

remain more uncertain as data is limited, which challenges the robustness of statistical relationships between sea level extremes

and other variables in the climate system. Yet, the patterns of large-scale climate variability over the North Atlantic that

potentially influence ESL may be different to those responsible for BSL variations. In order to investigate large-scale climate

patterns associated with enhanced storm surge activity, we relate such periods with multi-decadal climate variability, both

internally generated as well as externally forced.10

3.3.1 Internal variability

The NAO has often been linked to BSL variations in the North Sea (e.g., Wakelin et al., 2003; Woodworth and Blackman, 2004;

Dangendorf et al., 2012), both through baroclinic as well as barotropic processes (Chen et al., 2014). Correlating observed ESL

from tide gauges with climate reanalysis data, some authors found the same large-scale patterns responsible for high ESL as

the pattern persists after removing the annual median (e.g., Woodworth et al., 2007; Marcos and Woodworth, 2017)). Yet,15

the standard NAO is not necessarily the most indicative index: Kolker and Hameed (2007) have shown that the location of

the centers of action comprising the NAO is affecting observed mean sea level trends and variability. Introducing a "tailored

NAO index", Dangendorf et al. (2014c) showed that slightly different pressure constellations than the standard NAO can better

describe the observed ESL variability in the German Bight. Additionally, other teleconnection patterns such as the East Atlantic

Pattern (EAP) or the Scandinavian pattern (SCA) have been shown to exert some influence on North Sea storminess (Seierstad20

et al., 2007) and mean sea level (Chafik et al., 2017). However, as some of the modes of climate variability are operating on

similar timescales as the high-resolution instrumental sea level record, it is difficult to obtain robust conclusions.

As an indicator of the large-scale circulation, we compute positive composite maps of winter (Oct-Mar) mean sea level

pressure (SLP) during times of high sea level at Cuxhaven, both in terms of ESL and, for comparison, BSL. Composites have

been calculated as the average over periods where the simulated sea level time series at Cuxhaven exceeds its mean µ plus25

1.5 times its standard deviation σ. The choice of the threshold is arbitrary, but the character of the pattern remain robust to

minor changes in its value, specifically the range of ±0.25σ around the chosen threshold, especially for the BSL case. In the

case of the ESL composites, the spatial variability of associated SLP patterns is large and single years can differ in shape and

magnitude. The broader spatial character of the averaged anomaly pattern, however, is less affected. Again, we restrict the

analysis to the extended winter season as storm surges primarily occur during these months. Further, SLP has been low-pass-30

filtered with a 3 year moving average to better investigate variability on longer timescales, but to still be able to account for the

slightly pronounced variations with periods of around 8 years.

13



The SLP pattern associated with enhanced BSL (Fig. 9a) deviates from the long-term winter mean pattern as the meridional

pressure gradient over the North Atlantic is strengthened, comprising a negative SLP anomaly East of Iceland and a positive

one over the Iberian Peninsula. This dipole with a meridional axis is similar to a positive NAO. The resulting correlation

coefficients between (i) associated SLP index and NAO as well as (ii) the BSL timeseries and the NAO, computed as the

leading principal component of the North Atlantic SLP, are significant (r = 0.9 and 0.5, respectively), marking a qualitative5

agreement with the literature outlined above.

The SLP constellation favoring high ESL (Fig. 9b), however, differs slightly. As for BSL, it comprises a dipole over the

northeast Atlantic, yet its centers of action are shifted to northeastern Scandinavia and the Gulf of Biscay, leading to a further

eastward stretching Icelandic Low and a clockwise turned dipole favoring a more northwesterly wind component. This pattern

is different from the meridional NAO-like dipole as in the case of elevated BSL. Due to the large ESL variability and the10

considerable noise in the extreme value time-series, the composite pattern is weaker pronounced than the one associated with

high BSL and exhibits a higher variance. Yet, despite this large spatial variance, there is an overall tendency towards a more

zonal axis of the associated SLP anomaly pattern. Note that the SLP composites are averaged over the winter season while the

ESL time series is based on winter maximum values; the SLP pattern do therefore not represent the situation during individual

extreme storm floods but rather reflect a general circulation pattern during times of enhanced storm surge activity. The anomaly15

structure resembles the dipole described by Dangendorf et al. (2014b) for cross correlations of SLP with observations of daily

wind surges at Cuxhaven and agrees well with the mean weather situation triggering strong storm surges found by Heyen et al.

(1996) in the wider region using statistical downscaling. Its spatial structure points to an influence of the Scandinavian Pattern

in its negative phase (SCA−) onto the NAO centers of action, such as described by Chafik et al. (2017) for North Sea sea

level variability. The pattern is also in agreement with a complementary analysis performed on the 2-6 day band-pass-filtered20

pressure variance (not shown), which indicates enhanced storm track activity over the northeast Atlantic and North Sea.

As the SLP pattern associated with enhanced storm surge activity at Cuxhaven differs from the NAO, we use the shifted

centers of action (Biscay – Northeast Scandinavia) to define a SLP index based on the normalized SLP difference between

those points of the dipole, to directly investigate the influence of this circulation pattern on storm surge activity in the wider

region. Compared to the pattern associated with high BSL (correlation with NAO of r = 0.9), this SLP pattern has a lower25

correlation with the NAO (r = 0.67). As a result, the ESL time series at Cuxhaven as well shows a weaker correlation with

the NAO (r = 0.19) than with the newly defined SLP pattern (r = 0.31). Only towards the end of the millennium, BSL and

ESL related SLP patterns evolve rather coherently. This feature may also explain why ESL and BSL show a higher coherency

(see Fig. 7) during the last centuries. Regressing the time series of this SLP index onto the ESL field shows highest values

not only in the German Bight (Fig. 10a), but also in the southern Baltic Sea where the regressed annual maximum sea levels30

are of similar magnitude. This suggests that periods of enhanced ESL activity in both German Bight as well as the southern

Baltic Sea are linked via the same large-scale circulation pattern. The spatial coherence of long-term ESL variations (see also

Supplementary Fig. A6) is in agreement with the study by Marcos et al. (2015) using data from tide gauges globally. The

wavelet coherence – which can illustrate both timescales and timing of coherent behavior of both data series – between this

index and ESL at Cuxhaven shows that this relationship acts mainly on multidecadal to centennial timescales (Fig. 10b).35
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Figure 9. Composite gridded winter SLP anomaly for periods of high BSL (left) and ESL (right) at Cuxhaven. Stippling marks areas

significant at the 5 % confidence level.

Figure 10. Left: Pointwise regression of the SLP index derived from Fig. 9 onto annual maximum sea level (color shading, [m per unit of

SLP index]). Right: Wavelet coherence and cospectrum between annual maximum sea level at Cuxhaven and the tailored SLP index. Arrows

to the right (left) indicate a positive (negative) correlation and upward (downward) arrows indicate a lag (lead) of ESL at Cuxhaven. Thick

contours designate the 5% significance level against red noise, the cone of influence is shown in a lighter shade.

15



The second downscaling (1500-2000) of the same GCM simulation yields a similar spatio-temporal variability. This indicates

that the large-scale pattern responsible for high ESL activity is also a feature of the parent global simulation, which determines

the temporal ESL variability on larger scales – the regionalization however can give added value in the development of dynamic

systems such as blockings and is more important for the specific surge heights and finer regional differences that are related to

the exact wind direction and strength.5

3.3.2 External forcing

It has been suggested that external influence, such as solar variations or large volcanic eruptions can have an impact on mag-

nitude and phasing of various climate phenomena such as the Atlantic Multidecadal Oscillation (AMO) (Otterå et al., 2010;

Knudsen et al., 2014), longer-term anomalous temperature regimes (e.g., Miller et al., 2012) or atmospheric variability patterns

such as the NAO (Swingedouw et al., 2011; Zanchettin et al., 2013), and can even trigger periods of enhanced storminess and10

coastal flooding (Barriopedro et al., 2010; Kaniewski et al., 2016; Martínez-Asensio et al., 2016). For instance, using geologi-

cal proxy data of the central Mediterranean Sea, Kaniewski et al. (2016) argue for long-term correlations on cycles of around

2200-yr and 230-yr between storminess and solar activity; periods of lower solar activity will intensify the risk of frequent

flooding in coastal areas. For the same region, Barriopedro et al. (2010) and Martínez-Asensio et al. (2016) also found coherent

decadal changes in solar activity and autumn sea level extremes from tide gauges linked to the 11-year solar cycle through15

modulation of the atmospheric variability, namely a large-scale wave train pattern, implying an indirect role of solar activity in

the decadal modulation of storm flood frequency.

The last millennium has seen substantial variations in solar irradiation, that have affected surface temperatures and lead

to various longer-term temperature regimes such as the Late Maunder Minimum (1675-1710) or Dalton Minimum (1790-

1840). Additionally, volcanic eruptions can alter the radiation balance substantially for a shorter time and clearly outweigh the20

variations of solar irradiance alone (see Supplementary Fig. A3). Due to the different timescales, magnitude and expected lag

of a potential response to these external variations, it can be useful to separately investigate both forcings and their potential

relationship with ESL variations through atmospheric variability.

However, a relation to extreme storm surge activity in the German Bight is not evident in our simulations. Wavelet co-

herence between total solar irradiance and ESL at Cuxhaven (Supplementary Fig. A8a) and a ’superposed epoch’ analysis25

between volcanic eruptions and ESL (Supplementary Fig. A8b) do not show a consistent significant relationship. Furthermore,

the different temporal variations of ESL found in the downscalings of the two different global Last Millennium simulations

(Supplementary Fig. A4) stresses the dominance of natural variability in the timing of ESL variations. Due to the high internal

variability of ESL, any signal from a potential external influence is masked and there is no evidence of coherent variability

between German Bight storm surge activity and insolation variations – with or without the inclusion of volcanic forcing –30

during the last millennium. That is, extreme storm floods have occurred independently of major changes in forcing mecha-

nisms or resulting long-term anomalous temperature regimes. This is in agreement with the findings by Fischer-Bruns et al.

(2005) for multi-century simulations of mid-latitude storms. The above described link to atmospheric modes rather stresses the

internal component of storm flood variability; this is in accordance with Gómez-Navarro and Zorita (2013) who have shown
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that the decadal variability of atmospheric modes such as the wintertime NAO is mainly unforced in CMIP5 Last Millennium

simulations.

3.4 Relation to ESL components

Which components are governing ESL variability? As described above, the high-end extreme sea levels arise as a combination

of three components: the tide, longer-term base level variations and the surge residual, comprising all faster meteorological and5

oceanographic influences, from both local as well as remote forcing.

Following Woodworth and Blackman (2004), we investigate the surge residual via removal of the two other components,

namely tide and background state in terms of the winter median. Removal of tides (using matlab program "t-tide" (Pawlowicz

et al., 2002)) alters the extreme storm surge time series by up to 1 m, depending on the tidal phase during the storm surge. Yet,

after removal of tides and median, the general features of variability and spectra remains similar (not shown), stressing that the10

variability of extreme storm surges mainly stems from the atmosphere. This may not be surprising, as wind stress is expected

to be the most important factor in shallow seas. The unchanged variability also implies that the absolute ESL index using

annual maxima is a reasonable indicator of storm flood variability. Furthermore, the large-scale circulation pattern associated

with high ESL qualitatively persists if the annual median is subtracted, although weaker. The comparably large spatial variance

in the ESL pattern, however, leads to slight shifts in the location of the centers of action of the corresponding SLP dipole;15

yet, both ESL and ESL-BSL share a tendency towards a more zonal character of the associated SLP patterns. This similarity

emphasizes that the SLP pattern associated with high ESL is linked to the surge residual variations. BSL variations are of much

smaller amplitude than ESL variations and thus become marginal amid the strong variability of the latter. This is in accordance

with findings by Woodworth and Blackman (2004) and Marcos and Woodworth (2017) who concluded that relationships with

larger scale climate variability, and specifically the NAO, remain even after removal of the other storm surge components.20

4 Discussion

The pronounced ESL variability on various time scales found in our simulation has important implications for the interpretation

of the instrumental record, including trends as well as estimates of present and future storm floods. With a single realization

of limited length such as the instrumental ESL record, statements about potential correlation with BSL, climate variability or

alleged trends are statistically problematic and should therefore be treated with caution. For instance, setting recent ESL trends25

from the observational record (5.7± 4.3 cm/decade for the 99.9th percentile of hourly sea level at Cuxhaven from 1953 to

2008, see Mudersbach et al. (2013)) in context with the simulated ESL variability shows that the trends lie within the internal

variability obtained from the long-term simulation: Using a running trend with a window length similar to the aforementioned

observational data (55 years) over the 1000 years of simulated data, a trend of the same or higher magnitude occurs in roughly
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10% of the segments. A trend higher than the given upper uncertainty limit (10cm/decade) still occurs 10 times during the 1000

years, or in around 1% of the segments.

Further, the large variations in high return values (around 1 meter for RL100) illustrate the peril of using the standard

approach of estimating extreme sea levels for flood protection standards. Typically, such estimates are based on parametric

extreme value theory which is based on only a couple of decades of data (typically 30-50 years), be it the observational record5

or simulated data at end of the century. The effect of fitting different extreme value distributions onto the same baseline period

alone can be significant: A recent study by Wahl et al. (2017) quantified the uncertainties related to different extreme value

estimates and showed that the "high-impact-low-probability" sea level states can vary substantially depending on both extreme

value distribution and sampling technique. If for example a GEV distribution is fitted to a sample with more weight on more

moderate extremes it might lead to a mismatch in higher return levels. For instance, Arns et al. (2013) have shown that for10

Cuxhaven, the use of r-largest order statistics with r > 1 value per year leads to an overestimation of return water levels.

Together with the considerable spread of high-impact return level statistics however, this results in even larger uncertainties:

The error bars in Fig. 5 illustrate the uncertainties related to extrapolation from shorter subsets. The 1000-year return level

(RL1000) estimated from the 100-year long instrumental record yields error bars of 0.8 (3.2) meter for a Gumbel (GEV) fit

using maximum-likelihood estimation. The uncertainty is further stressed by the ensemble of ten 100-year long segments,15

which in itself scatter around 1.2 meter for 100-year return levels. This means in turn that a flood protection standard based on

the highest observed sea level from a 100 year data set could as well correspond to a 30-year return level, only if another 100

year period were considered. That is, the observational record is not necessarily representative of the distribution and likelihood

of the uppermost ESL. The spread of the simulated RL100 from the 10 subsets is around twice as large as the 95% confidence

interval of the estimated RL1000 using a Gumbel distribution fit onto the observed 100-year data (green bar). This uncertainty20

range of the Gumbel fit doubles though if the spread in RL100 is taken into account (grey bar). The non-parametrically obtained

RL1000 lies with 3.7 meter within both distribution ranges, but closer to the median of the Gumbel distribution fits. Considering

the large variations and corresponding uncertainties it is obvious that high-impact return levels (or flood protection standards

for that matter) cannot reliably be inferred from short time series. The sample size considered as a base for parametric extreme

value analysis affects not only the likely range of high-impact return events, but may also lead to a problematic negligence of25

potential scenarios.

How the data record combined with the choice of extreme value distribution impacts the estimation of high-impact return

levels is illustrated in Fig. 11. For this, we fit the GEV distribution and its special case of a Gumbel distribution to shorter

subsets (33 x 30 year and 16 x 60 year segments, respectively) of the full 1000 annual maximum sea levels and compare the

RL100 estimates to the non-parametrically obtained RL100 (Fig. 11). A doubling of the data length from 30 to 60 years, for30

instance, roughly reduces the range of the RL100 from each segment’s distribution fit to half and the uncertainty range to 1/3

(GEV fit) or 2/3 (Gumbel fit), respectively. The flexible GEV distribution gives more weight to the strongly varying tails of

the distribution and results in a larger range of estimated RL100, which is mostly due to the variations in the shape parameter

k which strongly depends on the respective subset. If k is held constant (which is often assumed in non-stationary extreme

value analysis, e.g. in Mudersbach and Jensen (2010)), the uncertainty range reduces considerably. In contrast, the Gumbel fit35
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Figure 11. Box-Whisker-plots of RL100 non-parametrically obtained from 10×100-year segments of the full simulation against RL100

estimates based on GEV and Gumbel distributions fitted to 60-year and 30-year subsets using maximum likelihood. The range of the dashed

whiskers represents the total range of the fits, light grey shading represents the maximum range of the 95% confidence limits of the respective

fits. The red lines indicate the median of the realizations, the green lines mark the RL100 directly inferred from the full 1000-year long

simulation.

with a constant zero shape parameter leads to a narrower estimate of RL100. Yet, both distribution fits tend to favor the lower

end of simulated 100-year return levels, although the RL100 inferred non-parametrically from the full simulation (green bar)

lies within the inter-quartile range of both distributions’ estimates. This discrepancy can also manifest itself in the temporal

variations: The parametric return value estimates can further exhibit different temporal behavior in comparison to the non-

parametric plotting positions of the full simulation, and may even lie outside the associated uncertainty range. That is, even5

such non-stationary extreme value analysis (e.g. Méndez et al. (2007); Mudersbach and Jensen (2010)) does not necessarily

reflect the ’real’ variations in high return levels.

Thus, existing ESL estimates based on limited data lengths do therefore not reflect the full range of ESL variability, e.g. if

data stems from a period of unusual state of a driving mechanism such as the SLP dipole outlined above.

10

Putting these findings into the context of climate change, mean sea level rise will – following a shift of the entire distribution

– accordingly translate into a higher probability of occurrence of a particular level and lower return periods. However, while

the probability distribution shifts to the right, the large noise in the simulated ESL time series and the low explained variance

by BSL imply that in the short term, German Bight ESL might in reality show a much stronger or even a reversed trend.
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Yet, additional to a simple shift, a change in the shape of the distribution with increasing atmospheric GHG concentrations

can further complicate the picture. Such a change may arise from changes in storm surge climate (e.g. due to an intensification

and poleward shift of storm activity (e.g., Yin, 2005; Fischer-Bruns et al., 2005)), or from a damping effect on the wind surge

in a deeper sea, although this effect has been found to be comparably small (Lowe et al., 2001). This uncertainty in future storm

surge projections is expressed by differing findings in existing studies that show a spectrum from no (e.g., Sterl et al., 2009)5

over little (e.g., Langenberg et al., 1999; Woth, 2005) to considerable change (Lowe and Gregory, 2005). As the variations of

ESL are of one order of magnitude higher than the corresponding BSL ones (see Fig.3), the variance explained by the latter

is low and the detection of changes in the distribution difficult from a statistical point of view. With the strong, but random

fluctuations of ESL on timescales of years to decades, we expect existing estimates of ESL changes to be dominated by natural

variability rather than climate change signals. Large ensemble simulations will be necessary to detect any significant change in10

ESL statistics in the presence of the high natural variability found in our simulation. Sterl et al. (2009) have already addressed

this issue by using a large ensemble (17 members) of the SRES A1b climate change scenario run with a regional storm surge

model and found no signal from climate change on RL10000 along the Dutch coast. Yet, most studies evaluating future storm

risks on data shorter than the estimated return periods, either from observations or from scenario simulations, do not account

for such large ensembles and thus systematically disregard ESL variability on timescales longer than the baseline periods. The15

ESL variation can be substantial though as the large spread of simulated upper-end return levels during the last millennium

has shown. For instance, assuming a sea level rise of 0.5 m until the end of the century and given the here quantified ESL

variability, more than roughly 200 (350) years of data would be necessary for RL100 estimates (95% confidence bounds) using

a Gumbel fit to range over less than the estimated signal. Without using large ensembles, ESL projections may be biased by the

respective baseline period for extreme value analysis; and even worse, with a small ensemble size or one realization only (e.g.20

the instrumental record) we cannot say whether they are biased or not. On the other hand, the high internal variability which is

essentially irreducible (Fischer et al., 2013) also implies that even perfect models cannot provide well-constrained information

on local ESL changes from one realization that might be desirable for adaptation planners.

A couple of caveats that may have an influence on our results are worth discussing. Simulated ESL are – relative to the25

long-term mean – biased low, which is most likely related to an under-representation of the tidal range in the German Bight

(see Supplementary Fig. A1) and to simplifications in the model bathymetry: the ocean model’s uppermost layer thickness

of 16 meter exceeds the real depth of the shallow waters in many coastal areas of the German Bight and thus may lead to

lower wind surges than observed. At Cuxhaven, this effect should be smaller than at points along the flatter Wadden Sea where

the tidal oscillations and the shallow waters lead to coastline changes which cannot be represented here. The influence of the30

bottom topography is expected to play a subordinate role compared to the rather complex horizontal coastline geometry. Yet,

in terms relative to mean high waters, simulated ESL statistics agree well with observations, and the temporal variability is not

affected by this.

Additionally, the model does not allow for changes in bathymetry, shoreline or coastal management that may influence

relative sea levels. This may benefit the homogeneity of the simulated sea level variations, but may hamper the comparability35
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to observations. Processes such as changes in local bathymetry, wave interference at ports or simply inconsistencies in the

data record can obstruct the homogeneity of observations from tide gauge records. Additionally, discrepancies between the

exact tide gauge position and the nearest-neighbor grid-box can further complicate the picture. A direct comparison between

simulated and observed sea levels should therefore be treated with caution. Furthermore, a transient sea level rise due to melting

of ice sheets, post-glacial isostatic rebound or the thermosteric effect is not accounted for in the model and a potential increase5

in ESL with a gradual rise in the BSL base could not be investigated. Such transient sea level changes can further impact ESL

on longer time scales, since the sea level distribution shifts with changes in BSL and may potentially also change in shape.

Finally, the results were obtained by downscaling simulations from one GCM only. Potential biases in the parent GCM can

thus feed into the downscaled results. For instance, both Northern Hemispheric storm tracks as well as the North Atlantic

Current have been found to be too zonal in ECHAM and MPIOM, respectively (Sidorenko et al., 2015; Jungclaus et al., 2013).10

As the downscaling of another ensemble member of the parent GCM simulations has shown, the temporal ESL variations

of the two different downscalings differ significantly (see Supplementary Fig. A4), albeit their long-term statistics are compa-

rable. That is, any external influence on long-term ESL variability is negligible and it is the natural variability of the parent

GCM which determines the temporal variability on a larger scale. The regionalization, however, can offer more detailed dy-15

namical patterns such as blockings. With more precise wind speeds and directions as well as the consideration of regional

shelf dynamics it is thus more important for individual surge heights and finer regional differences. The variability due to the

downscaling has been addressed by performing an additional downscaling of the same global simulation which has yielded

similar spatio-temporal variability (see Supplementary Fig. A5), indicating that the temporal ESL variability directly linked

to the downscaling is negligible. This is in accordance with Woth et al. (2006) who, comparing a number of regional climate20

models, concluded that the added uncertainty from the downscaling step of ESL variations from global to regional models was

comparably small.

5 Summary and conclusions

Our study has provided the first coupled downscaling simulation focusing on storm surges and sea level evolution, which gives

an unprecedentedly long high-resolution data record that can extend the knowledge of long-term ESL variability based on25

observations from tide gauge data which are limited in time and space. This simulation renders non-parametric extreme value

analysis possible and has the advantage of not relying on extreme value distributions that are typically applied to short data

series to provide information about return periods longer than the original time series, as well as their associated uncertainties.

The special setup of coupling a high-resolution regional atmospheric model to a global ocean model including tides combines

their respective advantages of (i) a consistent simulation of signals both inside and outside the region of interest, and (ii) a30

sufficiently high resolution in the region of interest to properly account for regional ocean-atmosphere dynamics and other
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shelf processes. At the same time, the continuous global simulation allows for setting the ESL variability into the context of

simulated climate states.

The variability of extreme storm floods has been investigated through the means of annual maximum sea levels at Cuxhaven;

the results obtained from different extreme value indices and other gridpoints along the German Bight coastline however do

not differ significantly, suggesting that the qualitative behavior and variability are robust and do not depend on the extreme5

value sampling method or exact location.

Our results suggest that

1. The model reproduces observed storm surge statistics at Cuxhaven, both in terms of seasonality as well as magnitude

above mean high waters.

2. ESL variations are large, but operate on a white spectrum and do not exhibit significant oscillatory modes beyond the10

seasonal cycle.

3. High-impact extreme events vary substantially on timescales longer than the typically available base period for return pe-

riod estimates. Estimates of ESL obtained via the standard parametric approach based on short data records are therefore

not representative for the full ESL variations.

4. Long-term ESL variations in the German Bight are regionally consistent, indicating a common large-scale forcing.15

Large-scale circulation regimes that favor periods of enhanced ESL in the German Bight are similar to those associated

with elevated BSL, but the location of the respective centers of action of the governing SLP dipole differs. While BSL

variations correlate well with the wintertime NAO, ESL variations are rather associated with a shifted NAO+/SCA- like

pressure pattern leading to a stronger local northwesterly wind component.

5. Any potential links to BSL fluctuations as well as external influence through solar variability or volcanic activity are20

masked by the strong internal variability of ESL. This is in accordance with the findings by Fischer-Bruns et al. (2005)

who, using coupled Last Millennium simulations of the last five centuries, concluded that the natural variability of mid-

latitude storms is not related to solar, volcanic or GHG forcing nor to anomalous climate states such as the Maunder

Minimum. Similar conclusions have been made for North Atlantic summer storm tracks over Europe by combining

observations, simulations and reconstructions of the last millennium (Gagen et al., 2016).25

We thus conclude that the magnitude of ESL and existing estimates of changes thereof are dominated by natural variability

rather than forced signals. Given the large variability from our simulation, large ensemble simulations are required to detect a

potential future change in ESL statistics with respect to climate change induced BSL.

Nevertheless, the obtained information on the statistics of ESL variability together with the here established links to large-

scale climate variability may be used to better explore future pathways of extreme sea levels. Owing to the large ESL variability,30

a responsible adaptation strategy should therefore reflect the range of possible developments rather than solely being designed

to a forced signal. At the end, uncertainties in both SLR projections as well as ESL estimates need to be better understood and

combined to fully assess potential impacts and required adaptation measures.
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