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Abstract. Empirical flow field data evaluation in a well studied ocean region along the U.S. West Coast revealed a surprisingly

strong relationship between the surface integrals of kinetic energy and enstrophy (squared vorticity). This relationship defines

a single isolated Gaussian super-vortex, whose fitted size parameter is related to the mean eddy size, and the square of the

fitted height parameter is proportional to the sum of the square of all individual eddy amplitudes obtained by standard vortex

census. This finding allows a very effective coarse-grained eddy statistics with minimal computational efforts. As an illustrative5

example, the westward drift velocity of eddies is determined from a simple cross correlation analysis of kinetic energy integrals.

Copyright statement. Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

Mesoscale eddies (MEs) are energetic, swirling, time-dependent circulatory flows on a characteristic scale of around 100 km

(see Fig. 1), which are observed almost everywhere in satellite altimetry data of global sea surface height (Chelton et al., 2007,10

2011). The total volume transport by drifting eddies is comparable in magnitude to that of the large-scale wind-driven and

thermohaline circulations (Zhang et al., 2014), therefore MEs play a crucial role in global material and heat transport and

mixing of oceans. In spite of their importance, it is far from trivial to identify and characterize MEs from remote sensing data.

The vast majority of the ME studies is based on some automatic algorithm that identifies and tracks the eddies from gridded

maps of sea level anomaly (SLA). Various Eulerian methods were developed and deployed in practice such as detecting closed15

contours of SLA (Chelton et al., 2011; Mason et al., 2014; Li et al., 2016; Schütte et al., 2016; Pessini et al., 2018), evaluating

the geometry of the velocity vectors (Nencioli et al., 2010), determining contours of the Okubo-Weiss parameter (Chelton

et al., 2007; Kurian et al., 2011; Ubelmann and Fu, 2011; Schütte et al., 2016; Pessini et al., 2018), or using wavelet analysis

to identify coherent eddy-like structures (Rubio et al., 2009; Pnyushkov et al., 2018). Critical comparisons show that none of

the Eulerian methods is superior to another (Souza et al., 2011; Escudier et al., 2016). The algorithms based on searching for20
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Figure 1. Visualization of the geostrophic flow field on a randomly choosen day (13 Oct 2013) from the data set over the U.S. West Coast by

Risien and Strub (2016). Sea level anomalies (η) are color coded, blue stream lines indicate flow directions. The centers of cyclonic (yellow

dots) and anticyclonic (black dots) eddies are determined by a standard algorithm (Chelton et al., 2011).

finite-time Lagrangian coherent structures obey a better theoretical foundation (Haller, 2015; Beron-Vera et al., 2018; Haller

et al., 2018), nevertheless a recent test of twelve different approaches revealed that the various methods often produce very

different predictions for coherent structures. In addition, false positives and negatives can be produced too (Hadjighasem et al.,

2017). Apart from the difficulties of identifying MEs, Amores et al. (2018) pointed out that the spatial resolution of gridded

fields is also a critical limiting factor. It is not surprising that small vortices are detected in large numbers at fine grid sizes.5

However, it is somewhat unexpected that many large eddies remain unidentified by close contour searching when the velocity

field is represented at lower resolutions (Amores et al., 2018).

The original aim of our work was a detailed analysis of kinetic energy budget of the oceanic surface flow field along the

U.S. West Coast. At the evaluation of integrated kinetic energy and enstrophy (squared vorticity), we found a non-trivial strong

temporal correlation between these quantities. Since the dominating flow features are obviously mesoscale eddies (Fig. 1), it10

is rather straightforward to formulate an explanation related to the description of individual ocean vortices. One of the basic

models is the Gaussian geostrophic vortex exhibiting the attractive features of finite total energy and total enstrophy over an
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Figure 2. Characteristics of a shielded Gaussian geostrophic vortex with peak height η0 = 1 m and size parameter R= 10 km at an approx-

imate location of 45◦N latitude (Coriolis parameter f = 10−4 s−1). (a) Amplitude, see Eq. (1), (b) tangential velocity, see Eq. (2), and (c)

vertical vorticity, see Eq. (3), as a function of radial distance r. Note that R is the radial distance of maximum tangential velocity (vertical

red line), and 2R is the distance of maximal vorticity in the shielding ring (vertical red dashed line). The “visual” radius based on closed

contours of zero height anomaly is around 2.5 - 3 R.

infinite domain, and a simple closed relationship between them. We demonstrate here that a single Gaussian super-vortex

properly describes the empirical energy/enstrophy ratio over an extended region, furthermore the height and radius of such

super-vortex are strongly related to the mean values over the same area obtained by classical vortex census.

2 Shielded Gaussian vortices

As for the shape of ocean MEs, the common picture is that they are close to Gaussian humps or troughs (Hopfinger and5

van Heijst, 1993; Chelton et al., 2011). A detailed fitting procedure of about five million SLA profiles by Wang et al. (2015)

revealed that around 50% of MEs are indeed Gaussian, another ∼40% are Gaussian over a sloping background or merger

of two close Gaussian eddies, and the rest have a quadratic core resembling Rankine vortices. An isolated Gaussian circular

eddy in geostrophic equilibrium (where the hydrostatic pressure gradient force is balanced by the local Coriolis force) can
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be characterized by the following radial profiles of height η, tangential velocity v, and vertical vorticity ξ (in cylindrical

coordinates):

η(r) = η0 exp

(
− r2

2R2

)
, (1)

v(r) =− η0g

fR2
r exp

(
− r2

2R2

)
, (2)

ξ(r) =
η0g

fR2

(
r2

R2
− 2

)
exp

(
− r2

2R2

)
. (3)5

Here, η0 and R are the height and size parameters for the vortex, respectively, g is the gravitational acceleration, and f =

2Ωsin(ϕ) is the local Coriolis parameter at latitude ϕ with Ω = 7.292× 10−5 s−1 for the Earth. The label “shielded” in the

title of this section refers to that the core of such a vortex is surrounded by a ring of opposite vorticity (Tóth and Jánosi, 2015),

see Fig. 2c.

The simplest model of planetary-scale dynamics of the ocean is a single layer of homogeneous fluid, described by the10

two-dimensional (2D) barotropic Navier-Stokes equations in a co-rotating frame of reference (Bracco et al., 2004). In the

absence of dissipative processes, such a model conserves the total kinetic energy
∫∫
KE = 1

2

∫∫
v2dA, and total enstrophy∫∫

Z = 1
2

∫∫
ξ2dA. An appealing property of an isolated Gaussian vortex is that its total kinetic energy and enstrophy are

finite over an infinite domain of integration:

IKE =
1

2

∞∫
0

2πrv2(r)dr =
g2πη2

0

2f2
, (4)15

IZ =
1

2

∞∫
0

2πrξ2(r)dr =
g2πη2

0

f2R2
. (5)

Note that the total kinetic energy integral IKE depends only on the height parameter η0, reflecting self-similarity in the velocity

field, and that the ratio of the two integrals is simply IKE/IZ = 1
2R

2. The very relationship was utilized in a recent paper by

Li et al. (2018), in a different context of studying viscous decay of individual MEs.20

3 Data analysis

Simple visual inspection of a reconstructed geostrophic flow field (Fig. 1) reveals that MEs are indeed the dominating features.

The area shown in Fig. 1 is an extremely well-studied region of the California Current System (CCS) both by observations

and calibrated high resolution numerical simulations (Kelly et al., 1998; Strub and James, 2000; Marchesiello et al., 2003;

Castelao et al., 2006; Stegmann and Schwing, 2007; Capet et al., 2008a, b; Checkley and Barth, 2009; Matthews and Emery,25

2009; Kurian et al., 2011; Molemaker et al., 2015; Yuan and Castelao, 2017). Openly available data compiled by Risien and

Strub (2016) comprise a set of fields of sea level anomalies by combining gridded daily altimeter fields with coastal tide gauge

data (Saraceno et al., 2008). The geographic area covers 32.0◦N – 48.5◦N (latitude) and 135.0◦W – 111.25◦W (longitude)
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Figure 3. (a) Ten years of daily values for total enstrophy (red) and rescaled total kinetic energy (blue) integrated over the offshore region

(westward from 125.0◦W longitude, see Fig. 4), and (b) correlation plot of the two quantities. The rescaling factor for the kinetic energy

integral is 7.97× 10−10 (see text).

with a spatial resolution of 0.25◦×0.25◦. Daily mean geostrophic velocity fields are produced for the period 1 January 1993 -

31 December 2014 (8035 days). The primary validation compares geostrophic velocities calculated from the SLA values and

velocities measured at four mooring sites in the test region (Risien and Strub, 2016).

Figure 3 illustrates the total enstrophy (squared vorticity) and total kinetic energy (sum of squared velocity components)

integrated over the offshore region (see the dashed frame in Fig. 4) for each day of the record. The correlation is strikingly5

strong, and it is not trivial. When the shore region is included, much larger differences appear, especially when the area of

integration is restricted to a narrow band along the shoreline. Fig. 5a clearly demonstrates that large correlation coefficients

require large enough areas of integration, a value of 0.95 is reached around A= 2.7× 105 km2 (∼ 202 grid cells or 5◦×5◦).

Nevertheless the geometry of the area must not be a square. The red and black symbols in Fig. 5a belong to meridional stripes

of width of 1◦ and 2◦ longitudes (smaller areas are stripes eastward from 125.0◦W where the meridional length is restricted10

by the land). Their apparent scatter, however, is not random, the correlation coefficients in equal areas of integration (symbols

lined up vertically in Fig. 5a) systematically increase with the distance from the shoreline.

By exploiting the strong correlations, the ratio of integrated kinetic energy and integrated enstrophy provides an effective

size parameter of a hypothetical Gaussian super-vortex as Reff =
√

2
∫∫
KE/

∫∫
Z. Results for the temporal mean values of

this quantity are shown in Fig. 5b. Note that the obtained Reff ≈ 50 km scale belongs to the 1σ width of a Gaussian profile15

given by Eq. (1). A visual contour of the super-vortex on a SLA map would have a radius closer to ∼ 2.5-3Reff ≈ 125-150 km

(see Figs. 2a and 4).

As for the height parameter of the super-vortex, Eq. (4) is used for an estimate of ηeff
0 shown in Fig. 5c. Since it is obtained

from the total kinetic energy integrated over various areas A, an appropriate comparison requires a proper normalization. A

practical choice correcting somewhat shape differences is the characteristic length scale L=
√
A. The error bars are much20

larger than the ones in Fig. 5b as a consequence of the marked annual oscillations shown in Fig. 3a. These oscillations are can-

celed when the ratio of strongly correlated kinetic energy and enstrophy is considered. Similarly to the correlation coefficients
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Figure 4. Visualization of the geostrophic flow field on the same day as in Fig. 1 (13 Oct 2013) from the data set over the U.S. West Coast by

Risien and Strub (2016). Empirical vertical vorticity (ξ) is color coded, blue stream lines indicate flow directions. The color-mesh illustrates

well the spatial resolution. Heavy dashed frame indicates the offshore region, where the integrated quantities in Fig. 3 are determined, and

the yellow circle demonstrates the size of the hypothetical “super-vortex” related to mean vortex statistics on the given day over the offshore

region (see text). Black squares illustrate the first 15 growing integration frames centered at the location 40.125◦N, 130.125◦W (see Fig. 5).

in Fig. 5a, the fitted height values of ηeff
0 for the meridional stripes (red crosses and black squares) exhibit systematic changes

with the distance from the shoreline, as discussed below.

4 Eddy census

The super-vortex fit makes only sense when the parameters have some relationship with the existing MEs. In order to make

such a comparison, we implemented the eddy census procedure of Chelton et al. (2011) based on closed SLA contour searches.5

The methodology is described in (Chelton et al., 2011; Oliver et al., 2015), here we emphasize three particular details. (i) The

SLA fields in the data bank (Risien and Strub, 2016) exhibit marked annual oscillations, daily spatial mean values are changing

between -8.6 and 10.1 cm. Since this range is comparable to the most common amplitude of the individual eddies (see below),
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Figure 5. (a) Pearson correlation coefficient for the total kinetic energy and enstrophy as a function of the area of integration. Blue circles

indicate growing correlations for square shaped areas around a central grid cell in the offshore region (40.125◦N, 130.125◦W), see Fig. 4. Red

crosses (black squares) denote correlation coefficients for meridional stripes of width of 1◦ (2◦) longitude. (b) Fitted mean scale parameter

Reff for a super-vortex determined from the ratio of integrated kinetic energy and enstrophy (in units of km). Notations are the same as in (a).

(c) Fitted mean height parameter ηeff
0 normalized by the square root of the area of integration L (and rescaled for the sake of convenience)

for a super-vortex determined from the integrated kinetic energy, see Eq. (4). Notations are the same as in (a).

we removed daily means before the eddy census. (ii) In order to avoid differences due to various definitions of the eddy

amplitude, we adopted the following rule: when the algorithm identified the location (lat, lon) of an eddy center, the amplitude

value is imported directly from the (corrected) SLA field. (iii) We adopted the “equivalent radius” as scale parameter for an

eddy (Chelton et al., 2011), that is S =
√
π−1Atot, where Atot is the total sum of grid cell areas identified inside a closed SLA

contours.5

Figure 6 shows the results of eddy census. The histograms are very similar to previous statistics at the same spatial resolution

(Stegmann and Schwing, 2007; Chelton et al., 2011; Kurian et al., 2011; Amores et al., 2018). Note that the eddy scale

histograms in Fig. 6a are sensitive to the level spacing parameter ∆l of the closed contour search, fine scale scans identify

smaller eddies in a larger number. The oscillations at smaller eddy scales are due to the discretization error, the area of an eddy

is composed of an integer number of grid cells. It is clear that the fitted super-vortex parameter Reff fluctuates around the mean10
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Figure 6. (a) Normalized eddy scale distributions obtained by individual eddy census with the closed contour SLA method (Chelton et al.,

2011) at three different level spacing ∆l, see legends. Vertical dotted lines indicate the mean values of the histograms. Black curve denotes

the normalized histogram of Reff parameter of the super-vortex. The logarithm of frequencies is scaled on the vertical scale. (b) Normalized

eddy height distributions obtained by individual vortex census as in (a). The inset shows the histogram for the height parameter of the super-

vortex fit ηeff
0 in units of m. Both the eddy census and super-vortex fit were performed over the offshore region (westward from 125.0◦W

longitude, see Fig. 4).

values of eddy scale histograms (black curve in Fig. 6a). We reiterate here that Reff is an 1σ radius of a Gaussian vortex, while

S is closer to a “real” visual radius based on a closed contour estimate of zero height anomaly. As for the super-vortex height

ηeff
0 , Fig. 6b illustrates that it is much larger than the height of individual eddies, as expected, because it is related to the total

kinetic energy over the test area (the offshore region, in the particular case). For this reason, we compare the square of eddy

amplitudes in what follows.5

The significant advantage of using super-vortex picture emerges when the fits are performed over sub-regions of the test

area. We have shown already results for meridional stripes of widths of 1◦ and 2◦ in Figs. 5b and 5c. Figure 7a illustrates

local mean Reff values compared with local mean eddy scale 〈S〉 as a function of the mean distance from the shore. Both

quantities exhibit very good agreement and a clear tendency of growth when eddies move away from the shore. The error bars
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Figure 7. (a) Fitted mean super-vortex radius Reff and mean eddy scale 〈S〉 from eddy census, determined in meridional bands, and plotted

as a function of mean distance from the shore. (b) Square of fitted mean super-vortex height
(
ηeff

0

)2
and the sum of square of all individual

eddy heights
∑
η2

0 normalized by the area of integration or eddy census A. (c) Estimated westward drift velocities by evaluating the cross

correlation function Eq. (6), and from vortex tracking of MEs living at least 60 days.
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reflect temporal fluctuations over the whole period of 8035 days which are much larger for the eddy census data, because their

frequency fluctuates strongly day to day in a given narrow meridional band.

Figure 7b is a comparison of the height parameters of the super-vortex and eddy census. It is reasonable to consider a rela-

tionship between
(
ηeff

0

)2
and

∑
η2

0 . The former measures the total kinetic energy [see Eq. (4)], while the latter is proportional

to the sum of kinetic energies of all individual eddies when we assume that all of them are Gaussian vortices. The sum of kinetic5

energies based on
∑
η2

0 agrees pretty well with direct counting, when the kinetic energy is determined by adding up squared

velocity components for each grid cell assigned to an eddy. Fig. 7b illustrates that an empirical ratio of around 2 arises in each

meridional stripe, that is the long term mean value of kinetic energy for individually identified eddies is ∼ 50% of the total

kinetic energy in the test region. Interestingly, Amores et al. (2018) reported on a partition ratio between 1 and 5 fluctuating

strongly in time, however they note that the total kinetic energy obtained for satellite altimetry accounts only for half of the10

real value. The tendency of initial growth upto ∼ 150 km (see Fig. 7b) might be related to the fact that eddies are generated

mostly along the shore, and later they are slowly decaying during the drift in open water.

A well-known characteristic of eddy trajectories is the strong tendency for purely westward propagation (Cushman-Roisin

et al., 1990; Chelton et al., 2007, 2011; Kurian et al., 2011). Chelton et al. (2007) found globally that only about 0.25% of the

eddies have mean drift directions that deviated by more than 10◦ from pure zonal, however Kurian et al. (2011), and Stegmann15

and Schwing (2007) obtained stronger dispersion in the CCS study area. Together with the traditional eddy tracking algo-

rithm, we used our approach to evaluate the cross correlations of total kinetic energy I(t) = 1
2

∫∫
v2dA(t) between neighboring

meridional bands of width of a single grid cell (0.25◦):

X(τ) =
〈[I(t)i− Ii][I(t± τ)i−1− Ii−1]〉

σiσi−1
, (6)

where the time lag τ represents a temporal shift between the two time series by τ days, overbar denotes temporal mean, and20

σ is the standard deviation in the given band. Indeed, we find clear maxima at nonzero time lags (actual values are between

5 and 8 days) indicating that total kinetic energy and enstrophy are mostly advected in the offshore region, production or loss

is almost negligible (considering geostrophic flow). The time lag and distance of neighboring bands permit an easy estimate

of westward drift velocities, the results are shown in Fig. 7c. Drift velocity values in the literature are in the same order of

magnitude (Stegmann and Schwing, 2007; Kurian et al., 2011; Chelton et al., 2007, 2011), similarly to our test. As for a direct25

validation, all individual eddy tracks are evaluated which had longer lifetime than 60 days (432 cyclonic and 422 anticylonic

MEs are identified). The cut of 60 days is somewhat arbitrary, however we think that the detection error from both the limited

spatial and temporal resolutions is larger for short living vortices (note that the typical westward traveling distance during 60

days is ∼ 155 - 200 km). Drift values estimated from vortex tracking belong to the centers of eddies, and as expected from

a stable β-drift, no spatial dependence in the zonal direction is revealed. Theoretical considerations suggest that anticyclonic30

eddies might drift faster than cyclonic ones (Cushman-Roisin et al., 1990), however we could not detect statistically significant

difference between the two subgroups of trajectories.
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5 Conclusions

We proposed a simple description of geostrophic ocean surface flow fields by exploiting the following results. Firstly, a shielded

Gaussian vortex has a finite total kinetic energy and finite total enstrophy, the ratio of them is proportional to the square of

the radius of the vortex. Secondly, these two quantities determined from empirical velocity data are strongly correlated, and

their ratio correlates with the mean eddy size obtained from traditional eddy census. Thirdly, the fitted amplitude parameter5

is strongly related to the sum of all squared eddy amplitudes. While this description cannot replace traditional eddy census

algorithms, it is certainly able to extract coarse grained eddy statistics in order to follow temporal and regional changes of eddy

activity.

Author contributions. I.M.J. designed research; I.M.J. and M.V. performed research; G.T. and J.A.C.G. contributed new numerical/analytical

tools; I.M.J. and G.T. analyzed data; and I.M.J., M.V. and J.A.C.G. wrote the paper.10

Competing interests. The authors declare no conflict of interest.

Acknowledgements. This work was supported by the Hungarian National Research, Development and Innovation Office under grant numbers

FK-125024 and K-125171, and by the Max-Planck Institute for the Physics of Complex Systems in the framework of an Advanced Study

Group on “Forecasting with Lyapunov Vectors”. J.A.C.G. was supported by CNPq, Brazil.

11



References

Amores, A., Jordà, G., Arsouze, T., and Le Sommer, J.: Up to what extent can we characterize ocean eddies using present-day gridded

altimetric products?, J. Geophys. Res. Oceans, 123, 7220–7236, 2018.

Beron-Vera, F. J., Hadjighasem, A., Xia, Q., Olascoaga, M. J., and Haller, G.: Coherent Lagrangian swirls among submesoscale motions,

Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1701392115, https://www.pnas.org/content/early/2018/5

03/13/1701392115, 2018.

Bracco, A., von Hardenberg, J., Provenzale, A., Weiss, J. B., and McWilliams, J. C.: Dispersion and mixing in quasigeostrophic turbulence,

Phys. Rev. Lett., 92, 084 501, https://doi.org/10.1103/PhysRevLett.92.084501, https://link.aps.org/doi/10.1103/PhysRevLett.92.084501,

2004.

Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F.: Mesoscale to submesoscale transition in the California Current10

System. Part I: Flow structure, eddy flux, and observational tests, J. Phys. Oceanogr., 38, 29–43, 2008a.

Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F.: Mesoscale to submesoscale transition in the California Current

System. Part II: Frontal processes, J. Phys. Oceanogr., 38, 44–64, 2008b.

Castelao, R. M., Mavor, T. P., Barth, J. A., and Breaker, L. C.: Sea surface temperature fronts in the California Current System from

geostationary satellite observations, J. Geophys. Res. Oceans, 111, C09 026, 2006.15

Checkley, D. M. and Barth, J. A.: Patterns and processes in the California Current System, Progr. Oceanogr., 83, 49 – 64,

https://doi.org/10.1016/j.pocean.2009.07.028, eastern Boundary Upwelling Ecosystems: Integrative and Comparative Approaches, 2009.

Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophys. Res. Lett., 34,

L15 606, 2007.

Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Progr. Oceanogr., 91, 167 – 216,20

2011.

Cushman-Roisin, B., Tang, B., and Chassignet, E. P.: Westward motion of mesoscale eddies, J. Phys. Oceanogr., 20, 758–768,

https://doi.org/10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2, 1990.

Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier, J.: Eddy properties in the Western Mediterranean Sea from

satellite altimetry and a numerical simulation, J. Geophys. Res. Oceans, 121, 3990–4006, 2016.25

Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., and Haller, G.: A critical comparison of Lagrangian methods for coherent

structure detection, Chaos, 27, 053 104, 2017.

Haller, G.: Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47, 137–162, 2015.

Haller, G., Karrasch, D., and Kogelbauer, F.: Material barriers to diffusive and stochastic transport, Proceedings of the National Academy of

Sciences, 115, 9074–9079, https://doi.org/10.1073/pnas.1720177115, 2018.30

Hopfinger, E. J. and van Heijst, G. J. F.: Vortices in rotating fluids, Annu. Rev. Fluid Mech., 25, 241–289,

https://doi.org/10.1146/annurev.fl.25.010193.001325, 1993.

Kelly, K. A., Beardsley, R. C., Brink, R. L. K. H., Paduan, J. D., and Chereskin, T. K.: Variability of the near-surface eddy ki-

netic energy in the California Current based on altimetric, drifter, and moored current data, J. Geophys. Res., 103, 13 067–13 083,

https://doi.org/10.1029/97JC03760, 1998.35

Kurian, J., Colas, F., Capet, X., McWilliams, J. C., and Chelton, D. B.: Eddy properties in the California Current System, J. Geophys. Res.,

116, C08 027, https://doi.org/10.1029/2010JC006895, 2011.

12

https://doi.org/10.1073/pnas.1701392115
https://www.pnas.org/content/early/2018/03/13/1701392115
https://www.pnas.org/content/early/2018/03/13/1701392115
https://www.pnas.org/content/early/2018/03/13/1701392115
https://doi.org/10.1103/PhysRevLett.92.084501
https://link.aps.org/doi/10.1103/PhysRevLett.92.084501
https://doi.org/10.1016/j.pocean.2009.07.028
https://doi.org/10.1175/1520-0485(1990)020%3C0758:WMOME%3E2.0.CO;2
https://doi.org/10.1073/pnas.1720177115
https://doi.org/10.1146/annurev.fl.25.010193.001325
https://doi.org/10.1029/97JC03760
https://doi.org/10.1029/2010JC006895


Li, Q.-Y., Sun, L., and Lin, S.-F.: GEM: a dynamic tracking model for mesoscale eddies in the ocean, Ocean Sci., 12, 1249–1267,

https://doi.org/10.5194/os-12-1249-2016, 2016.

Li, Q.-Y., Sun, L., and Xu, C.: The lateral eddy viscosity derived from the decay of oceanic mesoscale eddies, Open J. Marine Sci., 8,

152–172, https://doi.org/10.4236/ojms.2018.81008, 2018.

Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Equilibrium structure and dynamics of the California Current System, J. Phys.5

Oceanogr., 33, 753–783, 2003.

Mason, E., Pascual, A., and McWilliams, J. C.: A new sea surface height–based code for oceanic mesoscale eddy tracking, J. Atmos. Oceanic

Technol., 31, 1181–1188, 2014.

Matthews, D. K. and Emery, W. J.: Velocity observations of the California Current derived from satellite imagery, J. Geophys. Res., 114,

C08 001, https://doi.org/10.1029/2008JC005029, 2009.10

Molemaker, M. J., McWilliams, J. C., and Dewar, W. K.: Submesoscale instability and generation of mesoscale anticyclones near a separation

of the California Undercurrent, J. Phys. Oceanogr., 45, 613–629, 2015.

Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A vector geometry–based eddy detection algorithm and its applica-

tion to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight, J. Atmos.

Oceanic Technol., 27, 564–579, 2010.15

Oliver, E. C. J., O’Kane, T. J., and Holbrook, N. J.: Projected changes to Tasman Sea eddies in a future climate, J. Geophys. Res. Oceans,

120, 7150–7165, https://doi.org/10.1002/2015JC010993, 2015.

Pessini, F., Olita, A., Cotroneo, Y., and Perilli, A.: Mesoscale eddies in the Algerian Basin: do they differ as a function of their formation

site?, Ocean Science, 14, 669–688, https://doi.org/10.5194/os-14-669-2018, 2018.

Pnyushkov, A., Polyakov, I. V., Padman, L., and Nguyen, A. T.: Structure and dynamics of mesoscale eddies over the Laptev Sea continental20

slope in the Arctic Ocean, Ocean Science, 14, 1329–1347, https://doi.org/10.5194/os-14-1329-2018, 2018.

Risien, C. M. and Strub, P. T.: Blended sea level anomaly fields with enhanced coastal coverage along the U.S. West Coast, Sci. Data, 3,

160 013, 2016.

Rubio, A., Blanke, B., Speich, S., Grima, N., and Roy, C.: Mesoscale eddy activity in the southern Benguela upwelling system from satellite

altimetry and model data, Progr. Oceanogr., 83, 288 – 295, 2009.25

Saraceno, M., Strub, P. T., and Kosro, P. M.: Estimates of sea surface height and near-surface alongshore coastal currents from combinations

of altimeters and tide gauges, J. Geophys. Res., 113, C11 013, https://doi.org/10.1029/2008JC004756, 2008.

Schütte, F., Brandt, P., and Karstensen, J.: Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean,

Ocean Science, 12, 663–685, https://doi.org/10.5194/os-12-663-2016, 2016.

Souza, J. M. A. C., de Boyer Montégut, C., and Le Traon, P. Y.: Comparison between three implementations of automatic identification30

algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean, Ocean Sci., 7, 317–334, 2011.

Stegmann, P. M. and Schwing, F.: Demographics of mesoscale eddies in the California Current, Geophys. Res. Lett., 34,

https://doi.org/10.1029/2007GL029504, 2007.

Strub, P. T. and James, C.: Altimeter-derived variability of surface velocities in the California Current System: 2. Seasonal circulation and

eddy statistics, Deep Sea Res. II, 47, 831–870, https://doi.org/10.1016/S0967-0645(99)00129-0, 2000.35

Tóth, G. and Jánosi, I. M.: Vorticity generation by rough walls in 2D decaying turbulence, J. Stat. Phys., 161, 1508–1518,

https://doi.org/10.1007/s10955-015-1375-x, 2015.

13

https://doi.org/10.5194/os-12-1249-2016
https://doi.org/10.4236/ojms.2018.81008
https://doi.org/10.1029/2008JC005029
https://doi.org/10.1002/2015JC010993
https://doi.org/10.5194/os-14-669-2018
https://doi.org/10.5194/os-14-1329-2018
https://doi.org/10.1029/2008JC004756
https://doi.org/10.5194/os-12-663-2016
https://doi.org/10.1029/2007GL029504
https://doi.org/10.1016/S0967-0645(99)00129-0
https://doi.org/10.1007/s10955-015-1375-x


Ubelmann, C. and Fu, L.-L.: Vorticity structures in the Tropical Pacific from a numerical simulation, J. Phys. Oceanogr., 41, 1455–1464,

2011.

Wang, Z., Li, Q., Sun, L., Li, S., Yang, Y., and Liu, S.: The most typical shape of oceanic mesoscale eddies from global satellite sea level

observations, Front. Earth Sci., 9, 202, 2015.

Yuan, Y. and Castelao, R. M.: Eddy-induced sea surface temperature gradients in Eastern Boundary Current Systems, J. Geophys. Res.5

Oceans, 122, 4791–4801, https://doi.org/10.1002/2017JC012735, 2017.

Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale eddies, Science, 345, 322–324, 2014.

14

https://doi.org/10.1002/2017JC012735

