

- Predicting tidal heights for extreme environments: From 25 h
- 2 observations to accurate predictions at Jang Bogo Antarctic Research
- 3 Station, Ross Sea, Antarctica
- 4 Do-Seong Byun¹, Deirdre E. Hart²
- 5 ¹Ocean Research Division, Korea Hydrographic and Oceanographic Agency, Busan 49111, Republic of Korea
- 6 2School of Earth and Environment, University of Canterbury, Christchurch 8140, Aotearoa New Zealand
- 7 Correspondence to: Do-Seong Byun (dsbyun@korea.kr)
- 8 Abstract. Accurate tidal height data for the seas around Antarctica are much needed, given the crucial role of tidal processes
- 9 as represented in regional and global climate, ocean and marine cryosphere models. Though obtaining long term sea level
- 10 records for traditional tidal predictions is extremely difficult around ice affected coasts. This study evaluates the ability of a
- 11 relatively new, tidal species based approach, the Complete Tidal Species Modulation with Tidal Constant Corrections
- 12 (CTSM+TCC) method, to accurately predict tides for a temporary tidal station in the Ross Sea, Antarctica using records from
- 13 a nearby reference station characterized by a different regime. Predictions for the 'mixed, mainly diurnal' regimes of Jang
- 14 Bogo Antarctic Research Station (JBARS) were made and evaluated based on summertime (2017; and 2018 to 2019) short-
- 15 term (25 h) observations at this temporary station, along with tidal prediction data derived from yearlong observations (2013)
- 16 from the nearby, 'diurnal' regime of Cape Roberts (ROBT). Results reveal the CTSM+TCC method can produce accurate (to
- 17 within ~5 cm Root Mean Square Errors) tidal predictions for JBARS when using short-term (25 h) tidal data from periods with
- 18 higher than average tidal ranges (i.e. tropic-spring periods). Predictions were successful due to the similar relationships
- $19 \quad \text{between the main tidal constituents'} \ (K_1 \ \text{and} \ O_1 \ \text{tides}) \ phase-lag \ differences \ at the prediction \ \text{and reference stations}, \ \text{and despite}$
- 20 these tidal stations being characterized by different tidal regimes according to their form factors (i.e. mixed, mainly diurnal
- 21 versus diurnal). We demonstrate how to determine optimal short-term data collection periods based on the Moon's declination.
- 22 The importance of using long period tides to improve tidal prediction accuracy is also considered, along with the characteristics
- 23 of the different decadal scale tidal variations around Antarctica, from the four major FES2014 tidal harmonic constants.

25

1 Introduction

- 26 Conventionally, yearlong sea level records are used to generate accurate tidal height predictions via harmonic methods (e.g.
- 27 Codiga, 2011; Foreman, 1977; Pawlowicz et al. 2002). Obtaining long term records for such tidal analyses is extremely difficult
- 28 for sea ice affected coasts, like that surrounding Antarctica (Rignot et al. 2000). However, Byun and Hart (2015) developed a
- 29 new approach to successfully predict tidal heights based on as little as ≥25 h of sea level records, combined with nearby
- 30 reference site records, using their Complete Tidal Species Modulation with Tidal Constant Corrections (CTSM+TCC) method,
- 31 on the coasts of Korea and New Zealand. Demonstrating the usefulness of this method for generating accurate tidal predictions
- 32 for new sites on sea ice affected coasts is the motivation for this study. We focus on the Ross Sea, Antarctica, as our case study
- 33 area
- 34 Long-term, quality sea level records in the Ross Sea are few and far between, and include observations from gauges operated
- 35 by New Zealand at Cape Roberts (ROBT); by the United States in McMurdo Sound; and by Italy at Mario Zucchelli Station,
- 36 all in eastern Terra Nova Bay. Permanent sea level gauge installations in this extreme environment must accommodate or
- 37 somehow avoid surface vents freezing over with sea ice, as well as damage to subsurface instruments from icebergs. At ROBT,

- 38 these issues have been avoided by sheltering the sea level sensor towards the bottom of a 10 m long hole, drilled through a
- 39 large shore boulder, from its surface ~2 m above the sea and sea ice level, to ~6 m below sea level below the base of the sea
- 40 ice (Glen Rowe, Technical Leader Sea Level Data, New Zealand Hydrographic Authority, pers. comm. 13 Dec. 2019). In the
- 41 absence of a suitable permanent gauge site, such as the current situation at the Korean Jang Bogo Antarctic Research Station
- 42 (JBARS), hydrographic surveys are best conducted during the summertime predominantly sea ice free window around mid-
- 43 January to mid-February. Even then, mobile ice (Figure 1) and severe weather events frequently hinder such surveys via
- 44 instrument damage or loss, not to mention the logistical difficulties of instrument deployment and recovery (Rignot et al.
- 45 2000). Accurate tidal records from the Ross Sea and other areas around Antarctica are thus scarce compared to those available
- 46 from other regions, though these data are much needed given the crucial role of tidal processes around this continent (Han and
- 47 Lee, 2018; Han et al., 2005; Jourdain et al., 2018; Padman et al., 2002; 2003; 2008; 2018).
- 48 Floating ice shelves occupy around 75% of Antarctica's perimeter (Padman et al., 2018). Tidal oscillations at the ice-ocean
- 49 interface influence the location and extent of grounding zones (Padman et al., 2002; Rosier and Gudmundsson, 2018), and
- 50 control heat transfers and ocean mixing in cavities beneath the marine cryosphere (Padman et al., 2018; Wild et al., 2019) and
- 51 the calving and subsequent drift of icebergs (Rignot et al. 2000). Tides also affect variability in polynyas; patterns of seasonal
- 52 sea ice; and thus the functioning of marine ecosystems (Han and Lee, 2018). In addition, tides affect the dynamics of landfast
- 53 sea ice, which provides aircraft landing zones for Antarctic science operations (Han and Lee, 2018).
- 54 Accurate Antarctic region tidal input data are needed for models examining changes in global climate and ocean circulation,
- 55 including for the generation of Antarctic bottom water (Han and Lee, 2018; Wild et al., 2019). Data on coastal tides are also
- 56 essential for studies of ice mass balances and motions (Han and Lee, 2018; Padman et al., 2008; 2018; Rignot et al. 2000;
- 57 Rosier and Gudmundsson, 2018; Wild et al., 2019). Ice thickness is typically measured via the subtraction of tidal height
- 58 oscillations from highly accurate, but relatively low frequency, satellite imagery based observations of ice surface elevation
- 59 and/or from in situ Global Positioning System (GPS) instrument observations (Padman et al., 2008). For floating ice, this
- 60 procedure is relatively straightforward but where ice shelves and glacier tongues occur, the mechanics of grounding zones and
- 61 ice flexure render the determination of ice thickness and motion very challenging (Padman et al. 2018; Rosier and
- 62 Gudmundsson, 2018), making the accuracy of the tidal height inputs crucial for effective ice modelling (Wild et al. 2019).
- 63 In this study, we tested applicability of Byun and Hart's (2015) CTSM+TCC method in an extreme observation environment
- 64 using 25 h short-term records from JBARS, our temporary tidal observation station, and yearlong data from ROBT, the nearby
- 65 reference station. Sect. 2 of this paper details the JBARS and ROBT observation data sets used to generate harmonic tidal
- 66 analysis results and CTSM+TCC tidal predictions. Sect. 3 explains the CTSM+TCC method and settings, while Section 4
- 67 demonstrates the CTSM+TCC tidal prediction capability. Sect. 5 discusses the generation of double tidal peaks, particularly
- 68 during low tides, and tidal characteristics around Antarctica.

69 2 Antarctica's major tides: Observations and background

70 2.1 Study sites and data records

- 71 The Korea Hydrographic and Oceanographic Agency (KHOA) survey team went to JBARS in Northern Victoria Land's Terra
- 72 Nova Bay, Ross Sea, Antarctica, in the summertime of 2017 (Figure 2) for a preliminary fieldtrip to conduct hydrographic
- 73 surveys and produce a nautical chart. This mission collected the first 19 day sea level records for JBARS: 10 min interval
- 74 observation data were recorded from 29 January to 16 February 2017 using a bottom-mounted pressure sensor (WTG-256S
- 75 AAT, Korea). High frequency signals were removed from the observation record using a fifth-order low-pass Butterworth
- 76 filter, with a cut-off frequency of 3 h. We use these data in our study's tidal prediction experiments as the temporary tidal
- 77 station's primary observation record.

- 78 For the purposes of a full-scale survey, 3 additional, discontinuous sea level observation records were measured by KHOA at
- 79 JBARS between 29 December 2018 and 11 March 2019, all at 10 min intervals using the same type of instrument. Of these,
- 80 the 20.54 day record produced between 29 December 2018 and 18 January 2019 comprised relatively high quality data with
- 81 small residuals. We used this additional dataset to verify the CTSM+TCC method tidal predictions generated from input
- 82 parameters derived from daily (25 h) slices of the 2017 sea level records. Due to the short duration of the KHOA survey team's
- 83 2017 and 2018 to 2019 forays into the Ross Sea, and the absence of in situ instruments, it was not possible to collect the
- 84 yearlong sea level records that are commonly employed to obtain reliable tidal constituents.
- 85 Approximately 269 km south of JBARS, there is a permanent tidal observation station named after its location on Cape Roberts
- 86 (ROBT), operated by Land Information New Zealand (LINZ) and recording at intervals since November 1990 (Figure 2). Five
- 87 minute interval sea level data have been collected at ROBT since November 2011 using Standard Piezometers (Model 4500,
- 88 GEOKON). Part of the 2017 record from this site was unavailable at the time of starting this research, so instead we chose as
- 89 our reference records the 2013 ROBT sea level data, a quality yearlong dataset with few missing points.

90 2.2 Tidal characteristic analyses and descriptions

- 91 Using the T_TIDE toolbox (Pawlowicz et al., 2002), we obtained the tidal harmonic constants of the 8 and 6 major tidal
- 92 constituents for ROBT and JBARS, respectively. In order to separate out the two major diurnal (K1 versus P1) and semi-diurnal
- 93 (S₂ versus K₂) tide constituents from the short term records at JBARS, we used the inference method. That is, we used inference
- 94 parameters (i.e., amplitude ratios and phase-lag differences) for each tidal constituent pair (K1 versus P1; and S2 versus K2)
- 95 derived from harmonic analysis of records from the nearby ROBT reference station. Analysis revealed that the dominant tides
- in this area are diurnal $(O_1 \text{ and } K_1)$, with the second most important tides being semi-diurnal $(M_2 \text{ and } S_2)$ (Table 1). These four
- $97 \quad tides \ were \ characterized \ by \ similar \ amplitudes \ between \ ROBT \ and \ JBARS: 21.1 \ and \ 19.6 \ cm \ for \ O_1; 20.5 \ and \ 16.3 \ cm \ for \ K_1;$
- 5.3 and 6.7 cm for M₂; and 4.9 and 6.4 cm for S₂. Note that the diurnal amplitudes were slightly larger at ROBT than at JBARS,
 whereas the semi-diurnal amplitudes were slightly smaller at ROBT than at JBARS. Despite the relatively close distance (269)
- km) between ROBT and JBARS in tidal terms, the phase-lags showed slightly different values. The amplitude differences
- result in slightly different tidal patterns as indicated by the two sites' tidal form factors (F). At ROBT F is 4.1 while at JBARS
- 102 F is 2.7: that is, ROBT has 'diurnal' type tides whereas JBARS has 'mixed, mainly diurnal' type tides.
- 103 Next we explored the characteristics of the four main tidal constituents around the entire Antarctic continent, using the
- 104 FES2014 database (Carrère et al., 2016). The horizontal distributions of the co-amplitudes and co-tides for K₁, O₁, M₂ and S₂
- 105 show that the diurnal tides rotate in an anticlockwise direction around Antarctica, with increasing co-amplitudes towards the
- 106 south, in particular, towards the Ronne and Ross ice shelves and hinterlands (Figure A1). In contrast, the M2 and the S2 tides
- 107 exhibit more complex patterns, with 5 and 7 amphidromic points respectively around Antarctica. Most of the semi-diurnal
- 108 tides rotate clockwise around their amphidromic points, except at one amphidromic point occurring ~150° W, where the S2
- 109 tide rotates in an anticlockwise direction (Figure A2). The semi-diurnal co-amplitudes increase landwards in the Weddell Sea
- 110 but reduce across the entire Ross Sea quadrant, with relatively low semi-diurnal tide co-amplitudes (>7 cm) in this area. These
- FES2014 results reveal that the tides of the Ross Sea are very different to regimes elsewhere in Antarctica.

112 3 Using the CTSM+TCC tidal prediction methodology in the Ross Sea

- 113 In this study, we used the -CTSM+TCC method (Byun and Hart, 2015) to predict tidal heights for JBARS. This prediction
- approach is based on the idea of being able to use comparisons between the tidal harmonic constants at a temporary observation
- 115 station (JBARS in our study) and at a nearby reference tidal observation station (ROBT in this case) that is situated in an area
- 116 with similar tidal characteristics to that of the temporary observation station. It requires three data sets: long-term (ideally \geq 183
- 117 days duration, from anytime) sea level records (LH_R) from the reference station, plus concurrent 25 h sea level records from

- 118 both the temporary observation station (SHo) and the reference station (SH_R). Note that Byun and Hart (2015) recommend
- 119 using short-term data from periods with larger than average tidal ranges (e.g., in their situation these were spring tide periods
- 120 due to their study site having a semi-diurnal tidal regime) to produce accurate CTSM+TCC predictions, with periods of below
- 121 average tidal ranges (e.g., neap records) producing less accurate predictions. They also recommended the use of temporary
- 122 records gathered during periods of calm weather, to minimize errors due to atmospheric influences.
- 123 A complicating factor in this study was that, for the 2017 summertime period when SH_O were recorded at JBARS, the ROBT
- 124 records were poor quality, including multiple missing data up until 12 February 2017. As such we did not start with two quality,
- 125 concurrent short-term observation records from our 2 stations. This issue was solved simply, using T_TIDE (Pawlowicz et al.,
- 126 2002) to produce accurate 10 min interval 2017 yearlong tidal height predictions for ROBT, based on LH_R that station's 2013
- 127 yearlong and high quality record. In short, the LH_R dataset was harmonically analyzed to obtain harmonic constants for the
- tidal constituents. In turn, these harmonic constants were used to produce the modulated amplitudes $(A_{r\eta}^{(s)}(\tau))$ and phase-lags
- 129 $(\varphi_{rn}^{(s)}(\tau))$ over the 2017 tidal prediction period. Note that the period of the modulated species amplitudes and phase-lags
- 130 determine the tidal prediction period. Seventeen days of daily (25 h) data slices from the resulting 2017 tidal prediction data,
- 131 overlapping temporally with the SH_O dataset, was then used as our SH_R dataset. Figure 3 shows the modulated amplitudes and
- 132 phase-lags for the diurnal and semi-diurnal species, calculated from this SH_R summertime 2017 tidal prediction data.
- Using the CTSM+TCC approach, tidal predictions for the temporary station $(\eta_0(\tau))$ were initially derived from reference tidal
- station predictions $(\eta_r(\tau))$ on the assumption that the tidal peculiarities between the two stations remain similar through time.
- 135 This step is expressed in Byun and Hart (2015) as:

136
$$\eta_r(\tau) = \sum_{s=1}^k A_{r\eta}^{(s)}(\tau) \cos\left(\omega_R^{(s)} t - \varphi_{r\eta}^{(s)}(\tau)\right)$$
 (1)

137 with

$$138 \quad A_{r\eta}^{(s)}(\tau) = \sqrt{\sum_{i=1}^{m} [f(\tau)_{i}^{(s)} a_{i}^{(s)}]^{2} + 2\sum_{i < j}^{m} [f(\tau)_{i}^{(s)} a_{i}^{(s)}] [f(\tau)_{j}^{(s)} a_{j}^{(s)}] \cos \left\{ \left(\omega_{i}^{(s)} - \omega_{j}^{(s)}\right) t + \left[V(t_{0})_{i}^{(s)} + u(\tau)_{i}^{(s)} - g_{i}^{(s)}\right] - \left[V(t_{0})_{j}^{(s)} + u(\tau)_{j}^{(s)} - g_{j}^{(s)}\right] \right\}}$$

139 and

$$140 \quad \varphi_{r\eta}^{(s)}(\tau) = tan^{-1} \left(\frac{\sum_{i=1}^{m} a_i^{(s)} \sin[(\omega_i^{(s)} - \omega_R^{(s)})t + V(t_0)_i^{(s)} + u(\tau)_i^{(s)} - g_i^{(s)}]}{\sum_{i=1}^{m} a_i^{(s)} \cos[(\omega_i^{(s)} - \omega_R^{(s)})t + V(t_0)_i^{(s)} + u(\tau)_i^{(s)} - g_i^{(s)}]} \right)$$

$$(3)$$

- where superscript s denotes the type of tidal species (e.g., 1 for diurnal species and 2 for semi-diurnal species), τ is time, m is
- the number of tidal constituents and $\omega_i^{(s)}$ and $\omega_R^{(s)}$ are the angular frequencies of each tidal constituent (subscripts i and j) and
- of representative tidal constituents (subscript R) for each species (e.g., K1 and M2 used as representative diurnal and semi-
- diurnal species, respectively). For each tidal constituent, $a_i^{(s)}$ and $g_i^{(s)}$ are the tidal harmonic amplitudes and phase-lags,
- 145 $f(\tau)_i^{(s)}$ is the nodal factor, $u(\tau)_i^{(s)}$ is the nodal angle and $V(t_0)_i^{(s)}$ are the astronomical arguments. T_TIDE was used for tidal
- 146 harmonic analysis as well as for calculation of the nodal factors, nodal angles and astronomical arguments for the representative
- 147 species
- The amplitude ratio $\binom{a_{o\eta}^{(s)}}{a_{rn}^{(s)}}$ and phase-lag difference $(g_{o\eta}^{(s)}-g_{r\eta}^{(s)})$ of each representative tidal species between the temporary
- 149 tidal observation station (subscript $o\eta$) and the reference station (subscript $r\eta$) were then calculated from tidal harmonic
- 150 analysis of concurrent 25 h tidal records from both stations. In order to explore the best 25 h data window to use during this
- 151 step, we sliced the 17 day SHo and SH_R records (from 29 January to 14 February 2017) into individual 'daily' data slices, each
- 152 starting at 00:00 and 25 h in duration. The 17 daily data slices from each station were harmonically analyzed (Figure 4) to
- 153 calculate daily amplitude ratios $\left(\frac{a_{ou}^{(s)}}{a_{n}^{(s)}}\right)$ and phase-lag differences $\left(g_{ou}^{(s)}-g_{r\eta}^{(s)}\right)$ for the diurnal and semi-diurnal representative
- species (i.e., K₁ and M₂), as illustrated in Figure 5. The initial tidal predictions were then adjusted to represent those for the
- 155 temporary station $(\eta_o(\tau))$ by substituting the above amplitude ratios and phase-lag differences between the temporary and
- 156 reference stations into Eq. (1) as follows (Byun and Hart, 2015):

157
$$\eta_o(\tau) = \sum_{s=1}^k A_{o\eta}^{(s)}(\tau) \cos\left(\omega_R^{(s)} t - \varphi_{o\eta}^{(s)}(\tau)\right) \tag{4}$$

158 with
$$A_{o\eta}^{(s)}(\tau) = A_{r\eta}^{(s)}(\tau) \left(\frac{a_{o\eta}^{(s)}}{a_{r\eta}^{(s)}}\right)$$
 and (5)

159
$$\varphi_{o\eta}^{(s)}(\tau) = \varphi_{r\eta}^{(s)}(\tau) + g_{o\eta}^{(s)} - g_{r\eta}^{(s)}$$
 (6)

Substituting Eqs. (5) and (6) into Eq. (4), $\eta_o(\tau)$ can be expressed as:

161
$$\eta_o(\tau) = \sum_{s=1}^k A_{r\eta}^{(s)}(\tau) \left(\frac{a_{o\eta}^{(s)}}{a_{r\eta}^{(s)}} \right) \cos\left[\omega_R^{(s)} t - \left(\varphi_{r\eta}^{(s)}(\tau) + g_{o\eta}^{(s)} - g_{r\eta}^{(s)} \right) \right]$$
 (7)

- where t_0 is the reference time, t is the time (t) elapsed since t_0 and $\tau = t_0 + t$.
- 163 In addition to the 2017 tidal height prediction experiments, we examined the capacity of the CTSM+TCC method to generate
- 164 tidal predictions for the period 29 December 2018 to 18 January 2019 (hereafter referred to in shorthand as '2019
- summertime'), using the same 2017 input data (i.e. using data from Figure 3 and Figure 5 in Eq. (7)). This 2019 summertime
- 166 prediction period corresponds to the second tidal observation mission made to JBARS by KHOA surveyors.

167 **4 Results**

168 4.1 Tidal predictions

- 169 The CTSM+TCC experiments produced seventeen datasets, each comprising 17 day long, 10 min interval tidal height
- 170 predictions for JBARS, together with data on the 'daily' (25 h) amplitude ratios and phase-lag differences between our two
- 171 observation stations (JBARS and ROBT). In order to evaluate these CTSM+TCC results, each predicted tidal height dataset
- 172 was compared with the concurrent JBARS field observations via Root Mean Square Error (RMSE) and coefficient of
- 173 determination (R²) statistics.
- 174 As illustrated in Figure 6, the RMSE and R² results varied in relation to the JBARS tidal ranges, with greater accuracy evident
- 175 in predictions made using data derived from 25 h periods where the tidal range was higher than average. In the JBARS 'mixed,
- 176 mainly diurnal' type tide area of the Ross Sea, during our 2017 observation period, greater than average tidal ranges
- 177 corresponded to the spring tide period when the moon was near its maximum (tropic) declination. RMSEs between
- observations and predictions ranged from 4.26 cm to 20.56 cm while R² varied from 0 to 0.94 across the 17 'daily' experiments.
- 179 Eleven of the experiments produced accurate results (i.e. excluding those based on 25 h input data derived from 31 January;
- 180 and 1 to 4 and 14 February records), with their RMSEs <5 cm and R2 values >0.92. In contrast to the majority of successful
- 181 experiments, the experiment based on data derived from the '2 February' 25 h data slice produced predictions with very high
- 182 RMSE (20.56 cm) and very low R2 (0.00) values. Notably, the 2 February tides were characterized by the smallest tidal range
- 183 (11.95 cm) of the temporary JBARS record, during an equatorial tide period. In contrast, daily datasets from periods with
- 184 relatively high tidal ranges (>83.5 cm) produced predictions with RMSEs <5 cm and R² values >0.92. The maximum spring
- 185 tidal range occurred on 9 February: the data slice from this occasion produced predictions with a low (but not the lowest)
- 186 RMSE (4.81 cm). The predictions with the lowest RMSE (4.259 cm) and highest R² value (0.941) were produced using inputs
- derived from 25 h data recorded one day earlier, on 8 February 2017.
- 188 As with the 2017 predictions, RMSEs between the 2019 summertime predictions and observations were lower when generated
- 189 using input data derived from 25 h data slices from the 2017 tropic spring (as opposed to equatorial and/or neap) tide periods
- 190 (Figure 7). As in the earlier experiments, the 2019 summertime predictions made using input data derived from the 8 February
- 191 2017 (25 h) data slice produced the lowest RMSE (5.3 cm) and highest R² (0.913) values of the 2019 summertime experiments
- 192 (Figure 8)
- 193 These results demonstrate that the CTSM+TCC method can be successfully employed to predict tidal heights for JBARS for
- any particular period, using 25 h observation records gathered from tropic or tropic-spring tide periods with relatively calm

- weather, together with yearlong sea level observation or prediction records from the nearby reference station ROBT, despite 195
- the two stations having slightly different types of tidal regime. 196

4.2 Determining the ideal short-term sea level observation period when using CTSM+TCC 197

- 198 The previous section verified that the CTSM+TCC method can be used to generate accurate tidal predictions based on 25 h
- sea level records, from periods with higher than average tidal ranges, for a temporary station in a 'mixed, mainly diurnal' 199
- 200 regime and a reference station in a 'diurnal' regime. The question arises as to how to determine the ideal day from which to
- 201 source the 25 h observation records in order to produce the most accurate tidal predictions.
- 202 For semi-diurnal or mixed, mainly semi-diurnal tidal regimes, we can estimate preferred temporary observation days based on
- 203 the moon's phase, without reference to tide tables. That is, spring tides commonly occur just a day or two after the full and
- 204 new moon, which reoccurs at a period of 14.7653 days. The time lag between the full or new moon and the spring tide is called
- the age of the tide (AT). 205
- 206 Similarly, in a 'diurnal' tide regime or a 'mixed, mainly diurnal' tide regime (Figure 6), the preferred temporary observation
- 207 days can be estimated based on the lunar declination, which varies at a period of 13.6608 days. That is, maximum range tropic
- tide days can be estimated for JBARS based on the day of the Moon's maximum and minimum declinations. The time between 208
- 209 the Moon's semi-monthly maximum (and minimum) declinations and its maximum effect on tidal range, called the age of
- 210 diurnal inequality (ADI), is commonly 1 to 2 days.
- 211 As shown in Figure 9, the maximum and minimum Moon's declinations during our 2 temporary summertime observation
- 212 periods occurred on 8 February 2017 (max) and on 6 January 2019 (min) respectively. The diurnal maximum tide tends to
- 213 occur ~1 day after the maximum declination, during one half of the tropic month and about 2 days after the minimum
- declination during the other half of the tropic month. 214

4.3 Comparison of ROBT and JBARS tidal species characteristics 215

- 216 The CTSM+TCC tidal prediction method is based on the assumption that the tidal harmonic characteristics of each tidal species
- are very similar between the temporary observation and reference stations. This is because the reference station tidal species' 217
- 218 CTSMs, derived from yearlong reference station sea level records or tidal harmonic analysis results, form the basis of the tidal
- predictions for the temporary observation station. To test the validity of this assumption, we examined the phase-lag differences 219
- 220 of the 2 major diurnal (K₁ and O₁) and 2 major semi-diurnal tidal constituents (M₂ and S₂) using the age of diurnal inequality
- 221 (ADI) and the age of the tide (AT), calculated as:

222
$$ADI(day) = \left(\frac{g_{K_1} - g_{O_1}}{\omega_{K_1} - \omega_{O_1}}\right) / 24$$
, and (7)

223
$$AT(day) = \left(\frac{g_{S_2} - g_{M_2}}{\omega_{S_3} - \omega_{M_2}}\right) / 24$$
, (8)

- where ω_{K_1} (= 15.0410686° hr⁻¹), ω_{O_1} (= 13.9430356° hr⁻¹), ω_{M_2} (= 28.9841042° hr⁻¹) and ω_{S_2} (= 30.0000000° hr⁻¹) are the angular speeds of the K_1 , O_1 , M_2 and S_2 tides, respectively. 224
- 225
- 226 Results revealed that the ADI are very similar, and there is <1 day AT difference, between the 2 stations: the ADI values were
- 0.57 versus 0.23 day, while the and AT values were -2.30 versus -1.44 day, for ROBT versus JBARS (Table 1). These values 227
- 228 indicate that the tidal characteristics of the representative tidal constituents for each species between ROBT and JBARS are
- 229 very similar, in particular the dominant diurnal species. Hence the applicability and success of the CTSM+TCC method for
- generating JBARS tidal predictions, using concurrent 25 h records from both stations and reference records from ROBT. 230

231 5 Discussion

2 5.1 Fortnightly tide effects around Antarctica

- 233 We have so far demonstrated that the CTSM+TCC approach can produce reasonably accurate tidal predictions (RMSE <5 cm,
- 234 R² >0.92) for a new site in the Ross Sea, Antarctica, based on 25 h temporary observation records from periods with higher
- 235 than average tidal ranges, plus nearby reference station records.
- 236 Our results compare favourably with those of Han et al. (2013), who reviewed the tidal height prediction accuracy of 4 models
- 237 for Terra Nova Bay, Ross Sea: that is, TPXO7.1 developed by Egbert and Erofeeva (2002), FES2004 from Lyard et al (2006);
- 238 the Circum-Antarctic Tidal Solution (CATS2008a) from by Padman et al. (2008), and the Ross Sea Height-Based Tidal Inverse
- 239 Model (Ross_Inv_2002) from Padman et al. (2003). Han et al. (2013) compared the model datasets to 11 days of February
- 240 2011 in situ sea level observations, corrected for inverse barometer effects, and considered model usefulness for investigating
- 241 tidal signals in satellite data from the Campbell Glacier tongue. The 4 models generated similar quality results to those
- 242 generated by the CTSM+TCC method in this study, with R² values varying between 0.876 and 0.907, and RMSEs ranging
- 243 from 3.6 and 4.1 cm.
- However, as shown in Figure 8, our results appear to contain a changing bias in estimates occurring at fortnightly timescales,
- 245 with predictions slightly overestimating tides during the period from the equatorial to tropic tides (the ETT), and slightly
- 246 underestimating tides from the period between the -tropic to equatorial tides (the TET). This error pattern likely resulted from
- 247 our application of CTSM+TCC only considering 2 major tidal species, those representing diurnal and semi-diurnal
- 248 constituents, whilst ignoring long period tides.
- 249 In their GPS field measurement and modelling study of the Ronne Ice Shelf in the Weddell Sea, Rosier and Gudmundsson
- 250 (2018) found that ice shelf and ice stream horizontal flows are strongly modulated at a variety of tidal frequencies, with a
- 251 significant M_{sf} tide correlated signal occurring across their field site. Modelling without vertical tidal oscillations produced
- horizontal ice flow rates almost 30% lower than observed. In an earlier Synthetic Aperture Radar (SAR) interferometry and
- 253 tide model comparison study of the Ronne and Filchner Ice Shelves, Rignot et al. (2000) found that eight 'major' tidal
- $254 \quad constituents \ (M_2,\,S_2,\,K_2,\,N_2,\,O_1,\,K_1,\,Q_1,\,and\,\,2N_2,) \ plus \ an \ additional \ 18 \ \ \ \ 'minor' \ constituents \ measurably \ influenced \ patterns$
- 255 of ice flexure and motion. The authors of both of these papers recommend the inclusion of both major and minor tidal
- 256 constituents, including long period tides, for successful ice flow and ice-ocean front modelling.
- 257 Long period tides cycle across timeframes including 18.61 y, seasons, months and fortnights (Woodworth, 2012). Table 2
- 258 summarizes the characteristics of 6 long-period tides (Sa, Ssa, Msm, Mm, Mf, Msf) at the ROBT station, derived from tidal
- 259 harmonic analysis of yearlong (2013) in situ records. Comparisons between Tables 1 and 2 reveal that the S_a amplitude (5.8
- 260 cm) was similar to that of the M₂ (5.3 cm), the amplitudes of the M_m and M_f tides were >50 % of the M₂ (≥2.7 cm), while the
- S_{sa} and M_{sm} amplitudes were all minor (\leq 0.4 cm). While the 2013 S_a amplitude was equivalent to that of the M₂, inter-annual
- variation in the S_a harmonic constant is large (1.2 cm to 9.1 cm for amplitude; 75° to 131° for phase-lag, Table 3). This is
- because the S_a constituent comprises both astronomical and seasonal components (Pugh, 1987). Hence our focus here on the
- 264 error bias between the ETT and TET periods.
- 265 In order to verify the main cause of the apparent fortnightly prediction biases, in particular that found in the 2019 summertime
- results (Figure 8b), we examined the effects of two fortnightly period tidal constituents (M_f and M_{sf}) at ROBT. Three 2019
- summertime tidal prediction experiments were conducted: 1) Srum excluding all long-period tides (i.e. those in Table 2); 2)
- 268 Run1 incorporating the M_f alone; 3) Run2 incorporating the M_f and the M_{sf} alone.
- 269 Results revealed that exclusion of the M_f tide (2.7 cm amplitude) alone can produce ETT and TET prediction biases (Figure
- 270 10a), with exclusion of the M_{sf} tide (1.2 cm amplitude) intensifying the biases (Figure 10b). Thus, consideration of additional,
- 271 fortnightly timescale tidal constituents in predictions is our recommended next step for improving tidal prediction accuracies
- 272 for JBARS.

5.2 Decadal scale tidal variations around Antarctica

- 274 Tidal regime characteristics in the seas surrounding Antarctica mostly fall into three of the four daily form factor types, as
- 275 revealed by FES2014 model data. Figure 11 shows there are areas of 'diurnal' (DD); 'mixed, mainly diurnal' (MD); and
- 'mixed, mainly semi-diurnal' (MS) forms. Only in a small area half-way along the Weddell Sea coast of Antarctic Peninsula
- 277 do tides exhibit a 'semi-diurnal' form. Strong 'diurnal' tides (F>3) predominate in the Ross Sea area of West Antarctica,
- around to the Amundsen Sea. In addition, a small area near Prydz Bay in East Antarctica exhibits diurnal and mixed mainly
- 279 diurnal tides. The rest of the seas surrounding Antarctica, including the Weddell Sea, are predominantly characterized by
- 280 'mixed, mainly semi-diurnal' tides.
- 281 Tides around the Weddell Sea coast are significantly amplified due to shoreline shape and bathymetric shoaling effects, with
- the increase in semi-diurnal amplitudes $(a_{M_2} + a_{S_2})$ being more pronounced than those of the diurnal tides $(a_{K_1} + a_{O_1})$. Tidal
- 283 ranges >2 m are largely confined to the Weddell Sea region, with the exception of the area surrounding the M2 tide
- amphidromic point at the head of the Weddell Sea embayment, where relatively large 'mixed, mainly semi-diurnal' tides occur
- 285 thanks to the pronounced M_2 and S_2 amplitudes there.
- 286 The contrasting tidal environments of the Weddell and Ross Seas feature different tidal dynamics and, thus, different tidal
- 287 influences on their environments, across the full 18.61 y tidal cycle. Accurate (cm scale) quantification of the tidal cycle
- 288 patterns resulting from these different regimes are essential for calculating ice-sheet motion near Antarctica's different ocean
- 289 margins, based on the subtraction of ice flexure and tidal elevation changes from land ice elevation measurements (Wild et al.,
- 290 2019). Such studies contribute to our understanding of global climate models, providing estimates of ice sheet and glacier
- 291 flows to the sea.
- 292 A question arises as to how much the Weddell and Ross Sea tidal form differences can be explained by tidal height changes.
- 293 To answer this, we explored variation in nodal modulation correction factors (nodal factors and nodal angles) over an 18.61 y
- 294 cycle. Daily nodal modulation correction factor values for the 3 major lunar tide constituents (K1, O1 and M2) were estimated
- for JBARS over the 20 y period 2011 to 2030, as illustrated in Figure 12. Interestingly the diurnal, O1 tide variations in nodal
- modulation correction factors were the largest (nodal factor range = 0.3833; nodal angle range = 22.59°), with those of the K_1
- 297 tide being second largest (nodal factor range = 0.2320; nodal angle range = 17.86°). In comparison, those of the semi-diurnal,
- 298 M_2 tide were relatively small (nodal factor range = 0.0754; nodal angle range = 4.39°).
- 299 These nodal modulation correction factor variations have different implications for the Weddell and Ross Seas due to their
- 300 differing tidal regimes. The resulting variations in tidal height are less pronounced in the semi-diurnal Weddell Sea, while the
- 301 diurnal regime of the Ross Sea experiences large tidal range variations across 18.61 y cycles due to the influence of diurnal
- 302 nodal factor variation. Of note, variations in the nodal factors of the O1 and K1 tides are out of phase with that of the M2 tide
- 303 (Figure 12a). Variations in the nodal angle of the K₁ tide is in phase with that of the M₂ tide but out of phase with that of the
- 304 O₁ tide (Figure 12b).

6 Conclusions

- 306 This paper has demonstrated the usefulness of the CTSM+TCC method for tidal prediction in extreme environments, where
- 307 long-term tidal station installations are difficult, using the Ross Sea in Antarctica for our case study. Here CTSM+TCC
- 308 methods can be employed for accurate tidal height predictions for a temporary tidal observation station using short-term (≥25
- 309 h) sea level records from this site, plus long-term (1 y) tidal records from a nearby reference tidal station. Essentially the
- 310 temporary and reference station sites must share similarities in their main tidal constituent and tidal species characteristics for
- 311 CTSM+TCC to produce accurate results.
- 312 Using this approach, an initial tidal prediction time series is generated for the temporary station using CTSM and the reference
- 313 station long-term records. The temporary station predicted time series can then be adjusted via TCC of each tidal species,

https://doi.org/10.5194/os-2019-133

Preprint. Discussion started: 13 January 2020

© Author(s) 2020. CC BY 4.0 License.

- 314 based on comparisons between the short-term temporary station observation record and its corresponding modelled
- 315 predictions, leading to improved accuracy in the tidal predictions.
- 316 This paper has further demonstrated that the CTSM+TCC approach can be employed successfully in the absence of concurrent
- 317 short-term (25 h) records from the reference station, since a tidal harmonic prediction program can be used to produce a
- 318 synthetic short-term record for the reference station based on a quality long-term record from that site.
- 319 The proper consideration of long-period tides in the CTSM+TCC approach remains a challenge, as outlined in this study, with
- 320 the solutions to this issue likely to improve the accuracy of CTSM+TCC tidal predictions even further. However, this study
- 321 demonstrates that the method can already produce tidal predictions of sufficient accuracy to aid scientists studying important
- 322 issues such as the rate and role of ice loss along polar coastlines.

323 Code Availability

324 The T_TIDE based CTSM code is available from https://au.mathworks.com/matlabcentral/fileexchange/73764-ctsm_t_tide.

325 Data Availability

- 326 The sea level data used in this paper are available from LINZ (2019) for selected ROBT records, with the remaining ROBT
- 327 records available by email application (customersupport@linz.govt.nz); and the JBARS records used are available on request
- 328 from KHOA (infokhoa@korea.kr). Details of the FES2014 tide model database are found in Carrère et al. (2016) and via
- 329 https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html.

330 Appendix 1

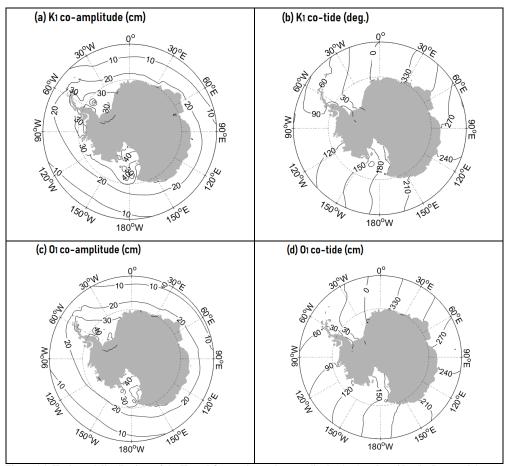


Figure A1. Horizontal distributions of the K₁ and O₁ constituents' co-amplitudes (a, c) and co-tides (b, d) around Antarctica.

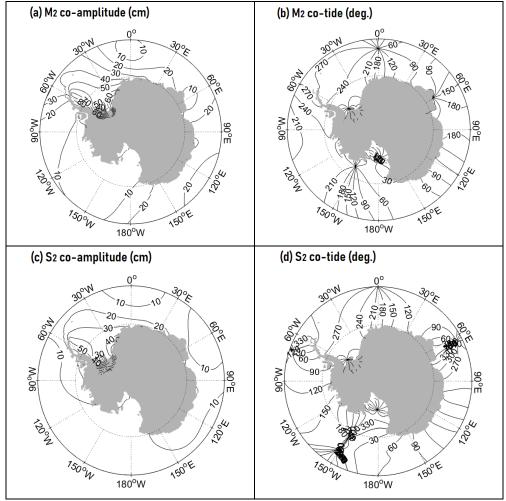


Figure A2. Horizontal distributions of the M2 and S2 constituents' co-amplitudes (a, c) and co-tides (b, d) around Antarctica.

333 Author contribution

- 334 D-SB conceived of the tidal prediction idea behind this paper, and wrote the results sections. Both authors worked on initial
- and final versions of the full manuscript.

336 Competing interests

- 337 The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be
- 338 construed as a potential conflict of interest.

339

340 Acknowledgements

- 341 We are grateful to Land Information New Zealand (LINZ) and the Korea Hydrographic and Oceanographic Agency (KHOA)
- 342 for supplying the tidal data used in this research. A special thank you to Glen Rowe from LINZ for sharing his extensive
- 343 knowledge of the Cape Roberts sea level gauge site and its records. Further, we gratefully thank Ms. Hyowon Kim at KHOA
- 344 for her kind assistance with drafting figures.

345 References

- 346 Byun, D.-S. and Hart, D. E.: Predicting tidal heights for new locations using 25h of in situ sea level observations plus reference
- 347 site records: A complete tidal species modulation with tidal constant corrections, J. Atmos. Ocean. Tech., 32, 350-371, 2015.
- 348 Carrère L., Lyard, F., Cancet, M., Guillot, A. and Picot, N.: FES 2014, a new tidal model validation results and perspectives
- 349 for improvements, Presentation to ESA Living Planet Conference, Prague, 2016.
- 350 Codiga, D. L.: Unified Tidal Analysis and Prediction Using the UTide Matlab Functions, Technical report 2011-01, Graduate
- 351 School of Oceanography, University of Rhode Island, 2011.
- 352 Egbert, G. and Erofeeva, S.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183-204,
- 353 https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
- 354 Foreman, M. G. G.: Manual for Tidal Heights Analysis and Prediction, Pacific Marine Science Report, 77-10, 1977.
- 355 Han, H. and Lee, H.: Glacial and tidal strain of landfast sea ice in Terra Nova Bay, East Antarctica, observed by interferometric
- 356 SAR techniques, Remote Sens. Environ., 209, 41–51, https://doi.org/10.1016/j.rse.2018.02.033, 2018.
- 357 Han, H., Lee, J., and Lee, H.: Accuracy assessment of tide models in Terra Nova Bay, East Antarctica, for glaciological studies
- of DDInSAR technique, Korean Journal of Remote Sensing, 29, 375–387, 2013.
- 359 Han, S. C., Shum, C. K., and Matsumoto, K.: GRACE observations of M2 and S2 ocean tides underneath the Filchner-Ronne
- 360 and Larsen ice shelves, Antarctica, Geophys. Res. Lett., 32, L20311, https://doi.org/10.1029/2005GL024296, 2005.
- Jourdain, N. C., Molines, J.-M., Le Sommer, J., Mathiot, P., Chanut, J., de Lavergne, C., and Madec, G.: Simulating or
- 362 prescribing the influence of tides on the Amundsen Sea ice shelves, Ocean Model., 133, 44-55,
- 363 https://doi.org/10.1016/j.ocemod.2018.11.001, 2018.
- 364 LINZ, Land Information New Zealand: Sea level data downloads, http://www.linz.govt.nz/sea/tides/sea-level-data/sea-level-
- 365 data-downloads, last access 2019.
- 366 Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global ocean tides: modern insights from FES2004, Ocean
- 367 Dynam., 56, 394-415, 2006.

https://doi.org/10.5194/os-2019-133

Preprint. Discussion started: 13 January 2020

© Author(s) 2020. CC BY 4.0 License.

- 368 Padman, L., Erofeeva, S., and Fricker, H.: Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice
- 369 shelves, Geophys. Res. Lett., 35, 122504, https://doi.org/10.1029/2008GL035592, 2008.
- 370 Padman, L., Erofeeva, S., and Joughin, I.: Tides of the Ross Sea and Ross Ice Shelf cavity, Antarct. Sci., 15, 31-40,
- 371 https://doi.org/10.1017/S0954102003001032, 2003.
- 372 Padman, L., Fricker, H., Coleman, R., Howard, S., and Erofeeva, L.: A new tide model for the Antarctic ice shelves and seas,
- 373 Ann. Glaciol., 34, 247–254, https://doi.org/10.3189/172756402781817752, 2002.
- 374 Padman, L., Siegfried, M., and Fricker, H.: Ocean Tide Influences on the Antarctic and Greenland Ice Sheets, Rev. Geophys.,
- 375 56, 142–184, https://doi.org/10.1002/2016RG000546, 2018.
- 376 Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using
- 377 T_TIDE, Comput. Geosci., 28(8), 929-937, doi:10.1016/S0098-3004(02)00013-4, 2002.
- 378 Pugh, D. T.: Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists, Wiley, Chichester, United
- 379 Kingdom, 1987.
- 380 Rignot, E., Padman, L., MacAyeal, D., and Schmeltz, M.: Observation of ocean tides below the Filchner and Ronne Ice
- 381 Shelves, Antarctica, using synthetic aperture radar interferometry: Comparison with tide model predictions, J. Geophys. Res.-
- 382 Oceans, 105, 19615–19630, https://doi.org/10.1029/1999JC000011, 2000.
- 383 Rosier, S. H. R. and Gudmundsson, G. H.: Tidal bending of ice shelves as a mechanism for large-scale temporal variations in
- 384 ice flow, The Cryosphere, 12, 1699–1713, https://doi.org/10.5194/tc-12-1699-2018, 2018.
- 385 Wild, C.T., Marsh, O.J., and Rack, W.: Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-
- 386 shelf grounding zones, The Cryosphere, 13(12), 3171-3191, doi.org/10.5194/tc-13-3171-2019, 2019.
- Woodworth, P. L.: A note on the nodal tide in sea level records, J. Coastal Res., 28(2), 316-323, 2012.

Table 1. Major tidal harmonic results for diurnal and semi-diurnal constituents from harmonic analyses of yearlong (2013) sea level observations recorded at Cape Roberts (ROBT), and from 17 day sea level observations (29 January to 15 February 2017) and 20.54 day sea level observations (29 December 2018 to 18 January 2019) recorded at the Jang Bogo Antarctic Research Station (JBARS), in Antarctica. For the JBARS tidal harmonic analyses, the inference method was applied to separate out the K₁ (S₂) and P₁ (K₂) tidal constituents, using inference parameters estimated from the ROBT 2013 harmonic analysis. Phase-lags are referenced to 0°, Greenwich.

		ROBT (2013)		JBARS (2017)		JBARS (2019)			
Tidal constituents		369 days		17 days		21 days		Note	
		$a_{r\eta}$ (cm)	$g_{r\eta}$ (°)	$a_{o\eta}$ (cm)	$g_{o\eta}$ (°)	$a_{o\eta}$ (cm)	$g_{o\eta}$ (°)		
Diurnal	O_1	21.1	202	19.6	208	16.0	208		
	\mathbf{K}_1	20.5	217	16.3	214	14.9	216	ROBT: Diurnal tides (<i>F</i> =4.1)	
	\mathbf{P}_1	6.6	215	5.2	213	4.8	214	<i>ADI</i> =0.57 day	
	Q_1	4.4	190	-	-	-	-	AT=-2.30 days	
Semi-diurnal	M_2	5.3	5	6.7	4	6.3	34		
	S_2	4.9	309	6.4	329	6.6	324	JBARS: Mixed, mainly diurnal tides (<i>F</i> =2.7)	
	N_2	3.8	255	-	-	-	-	<i>ADI</i> =0.23 day <i>AT</i> =-1.44 days	
	K ₂	1.8	315	2.4	333	2.4	328		

Note that ADI and AT denote the age of diurnal inequality and the age of the tide.

Table 2. Harmonic constants for 6 long-period tidal constituents, derived from harmonic analyses of yearlong observations (2013)
 measured at the Cape Roberts sea level gauge (ROBT)

Constituent		Period (day)	Angular speed (° hr-1)	Amplitude (cm)	Phase-lag (°)
Solar annual	S_a	365.24	0.0410686	5.8	75
Solar semi-annual	S_{sa}	182.62	0.0821373	0.1	352
Lunar monthly	M_{sm}	31.81	0.4715280	0.4	57
Zanar monung	$M_{\rm m}$	27.55	0.5443747	2.9	139
Lunar fortnightly	$M_{\rm sf}$	14.77	1.0158958	1.2	281
Edital fortingitity	$M_{\rm f}$	13.66	1.0980331	2.7	153

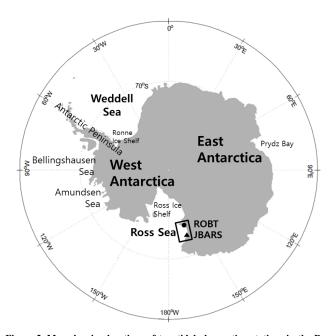
398 Phase-lags are referenced to 0°, Greenwich.

© Author(s) 2020. CC BY 4.0 License.

Table 3. Harmonic constants for the S_a constituent derived from harmonic analyses of 4 separate yearlong observation records (2008; 2011; 2012; 2013) measured at the Cape Roberts sea level gauge (ROBT)

Year	Amplitude (cm)	Phase-lag (°)
2008	9.1	131
2011	1.2	90
2012	3.4	108
2013	5.8	75

401 Phase-lags are referenced to 0°, Greenwich.



403 Figure 1. Drifting ice, including icebergs and mobile sea ice, around the Jang Bogo Antarctic Research Station (JBARS).

405 Figure 2. Map showing locations of two tidal observation stations in the Ross Sea of Antarctica: Jang Bogo Antarctic Research
 406 Station (JBARS, ▲) and Cape Roberts (ROBT, ◆).

409

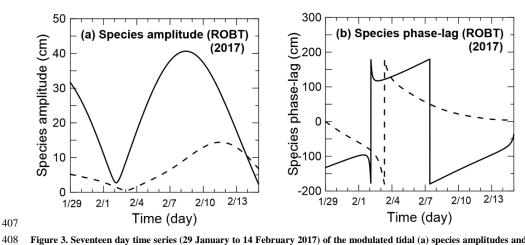


Figure 3. Seventeen day time series (29 January to 14 February 2017) of the modulated tidal (a) species amplitudes and (b) phaselags for the diurnal (solid lines) and semi-diurnal tides (dashed lines), estimated from the 2017 Cape Roberts (ROBT) tidal prediction data.

414

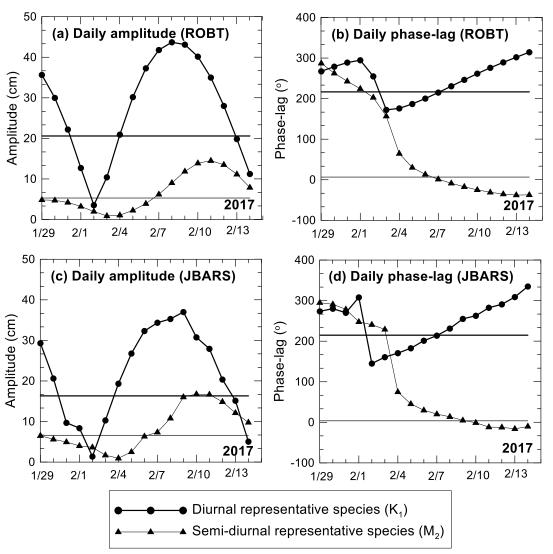


Figure 4. Daily amplitudes and phase-lags of the K_1 tide (diurnal representative species) and M_2 tide (semi-diurnal representative species) at ROBT and JBARS, estimated from 25 h daily data slices of the 17 day ROBT tidal predictions and JBARS sea level observations, 29 January to 14 February 2017. Thick solid (K_1) and thin gray (M_2) lines in each panel indicate the amplitude and phase-lag derived from results of the 369 day 2013 ROBT and 17 day 2017 summertime JBARS sea level record harmonic analyses, respectively.

420

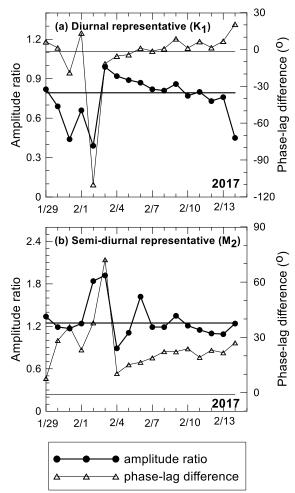
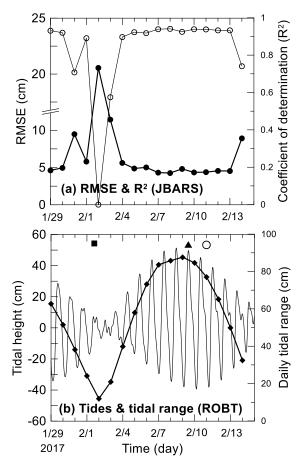


Figure 5. The daily amplitude ratios and phase-lag differences of the (a) diurnal (K_1) and (b) semi-diurnal (M_2) species representative tidal constituents, calculated harmonically from JBARS sea level data and ROBT predicted tidal height data, using harmonic inputs derived from analysis of 'daily' (25 h) data slices. Thick solid and dashed lines in each panel indicate the amplitude ratio and phase-lag differences, respectively for each tide, derived from harmonic analysis of the 17 day 2017 JBARS sea level data.



426

427

428

Key: ○: full moon; ▲: Moon's maximum

424 declination; ■: Moon's declination is zero.

Figure 6. (a) Time series of Root Mean Square Errors (RMSE, thick line with \bullet) and coefficients of determination (R^2 , thin line with \circ) between JBARS 10 min interval sea level observations (29 January to 15 February 2017) and the CTSM+TCC prediction datasets generated for this site using harmonic analysis results from the daily (25 h) sea level data slices from JBARS plus concurrent daily (25 h) tidal prediction slices and harmonic analysis results from ROBT station's yearlong (2017) tidal predictions. (b) Time series of predicted 2017 tidal heights (thin line) and daily tidal ranges (thick line with \circ) for ROBT, based on harmonic analysis of this station's 2013, 5 min interval sea level records, plus an indication of the moon's phase and declination.

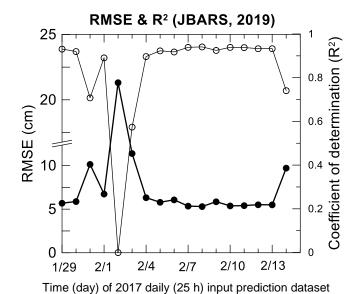


Figure 7. Time series of Root Mean Square Errors (RMSE, thick line with \bullet) and coefficients of determination (R², thin line with \circ) between JBARS 10 min interval sea level observations (29 December 2018 to 18 January 2019) and the CTSM+TCC prediction datasets generated for this site using harmonic analysis results from daily (25 h) summertime 2017 sea level data slices from JBARS plus concurrent daily (25 h) tidal prediction slices and harmonic analysis results from ROBT station's yearlong (2017) tidal predictions.

432 433

434

435

440

441

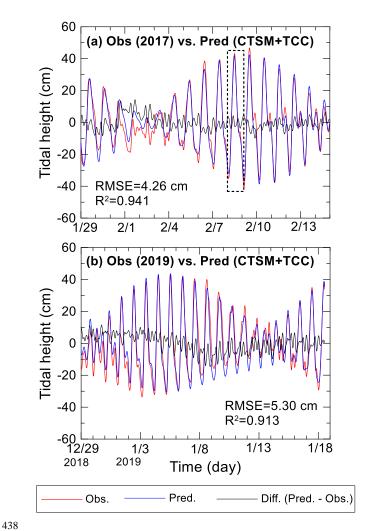


Figure 8. Time series of JBARS sea level observations, predicted tidal heights, and sea level residuals (i.e. predictions minus observations) from (a) 29 January to 15 February 2017 and (b) 29 December 2018 to 18 January 2019. The JBARS predictions were generated using CSTM+TCC, with a daily (25 h) slice of local sea level observations from 8 February 2017 (dashed box in (a)), plus concurrent predictions and yearlong (2017), 5 min interval ROBT tidal predictions.

445

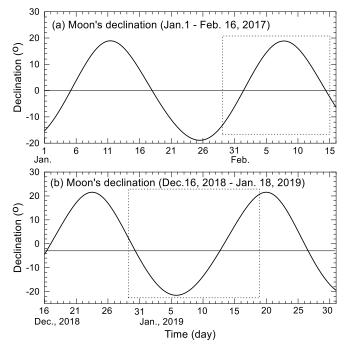


Figure 9. Time series of the Moon's declination, estimated at daily intervals for two observation periods: (a) 1 January to 15 February 2017; and (b) 16 December 2018 to 30 January 2019. Dashed boxes indicate the sea level observation windows examined in this study.

449

450

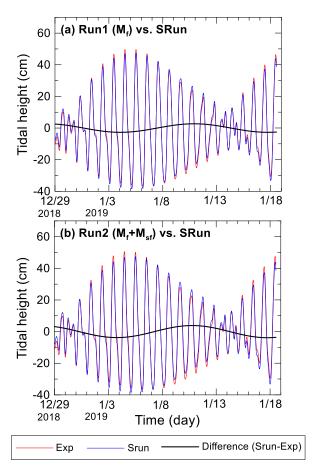


Figure 10. Time series of ROBT tidal predictions (a) made without long-period constituents ('SRun', i.e. excluding the constituents listed in Table 2) versus with the M_f tide ('Exp1'); and (b) time series of ROBT tidal predictions made ('SRun') without the long-period constituents versus ('Exp2') with the M_{sf} tide. All predictions were generated based on tidal harmonic analysis results from the yearlong (2013) ROBT sea level records.

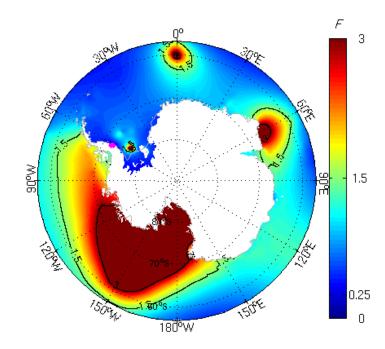
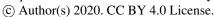



Figure 11. Horizontal distribution of tidal form factor (F) values around Antarctica. Note the magenta area on the Antarctic Peninsula's Weddell Sea coast denotes the only area of semi-diurnal tides (F < 0.25) in the Antarctic region.

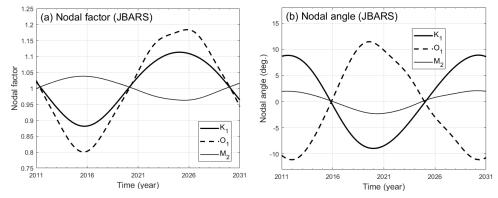


Figure 12. Variation in nodal factors and nodal angles for the three main lunar tidal constituents (K1, O1 and M2) over a 20 year period from 2011 to 2030 at Jang Bogo Antarctic Research Station (JBARS), estimated at daily intervals from the t_vuf.m program of T_Tide (Pawlowicz et al., 2002).