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ABSTRACT 19	

We processed daily ocean-color satellite observations to construct a monthly climatology of 20	

phytoplankton pigment concentrations in the Senegalo-Mauritanian region. Our proposed new method 21	

primarily consists of associating, in well-identified clusters, similar pixels in terms of ocean-color 22	

parameters and in situ pigment concentrations taken from a global ocean database. The association is 23	

carried out using a new Self Organized Map (2S-SOM). Its major advantage is to allow taking into 24	

account the specificity of the optical properties of the water by adding specific weights to the different 25	

ocean color parameters and the in situ measurements. In the retrieval phase, the pigment concentration 26	

of a pixel is estimated by taking the pigment concentration values associated with the 2S-SOM cluster 27	

presenting the ocean-color satellite spectral measurements, which are the closest to those of the pixel 28	

under study according to some distance. The method was validated by using a cross-validation 29	

procedure. We focused our study on the fucoxanthin concentration, which is related to the abundance 30	

of diatoms. We showed that the fucoxanthin starts to develop in December, presents its maximum 31	

intensity in March when the upwelling intensity is maximum, extends up to the coast of Guinea in 32	

April and begins to decrease in May. The results are in agreement with previous observations and 33	

recent in situ measurements. The method is very general and can be applied in every oceanic region. 34	
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 35	

1 - INTRODUCTION 36	

 37	

Phytoplankton are the basis of the ocean food web and consequently drive the ocean productivity. 38	

They also play a fundamental role in climate regulation by trapping atmospheric carbon dioxide (CO2) 39	

through gas exchanges at the sea surface, and consequently lowering the rate of anthropogenic increase 40	

in the atmosphere of CO2 concentration by about 25% (Le Quéré et al, 2018). With the growing interest 41	

in climate change, one may ask how the different phytoplankton populations will respond to changes 42	

in ocean characteristics (temperature, salinity, acidity) and nutrient supply, which presents an 43	

important societal impact with respect to both climate and fisheries, with a possible effect on fish 44	

grazing phytoplankton via the marine food chain.  45	

Methods for identifying phytoplankton have greatly progressed during the last two decades. 46	

Phytoplankton were first described by microscopy. Microscopy is time consuming and is unable to 47	

identify picoplankton. Imaging flow cytometry (IFC) has renewed microscopic methods, thanks to the 48	

speed at which they are able to characterize phytoplankton in a water sample (IOCCG report n°15, 49	

2014). An alternative method is the analysis of seawater samples by high-performance liquid 50	

chromatography (HPLC) which is widely used to categorize broad phytoplankton groups such as PFT 51	

or PSC (Jeffreys et al, 1997, Brewin et al, 2010, Hirata et al, 2011). HPLC enables the identification 52	

of 25 to 50 pigments within a single analysis, which is much easier and faster to conduct than 53	

microscopic observations (Sosik, H.M et al, 2014). Each phytoplankton group is associated with 54	

specific diagnostic pigments, and a conversion formula, the so-called “Diagnostic Pigment Analysis” 55	

can be derived to estimate the percentage of each group from the pigment measurements (Vidussi et 56	

al, 2001; Uitz et al, 2010). HPLC measurements are now recognized as the standard for calibrating 57	

and validating satellite-derived chlorophyll-a concentration and for mapping groups of phytoplankton  58	

(IOCCG report n°15, 2014). 59	

The use of satellite ocean color sensor measurements has permitted to map the ocean surface at a daily 60	

frequency. Satellite sensors measure the sunlight, at several wavelengths, backscattered by the ocean. 61	

The downwelling sunlight interacts with the seawater through backscattering and absorption in such a 62	

manner that the upwelling radiation transmitted to the satellite (‘water-leaving’ reflectance) contains 63	

information related to the composition of the seawater. The light transmitted to the satellite depends 64	

on the phytoplankton cell shape (backscattering), its pigments (absorption), the dissolved matter (e.g. 65	

CDOM).  66	

This upwelling radiation, the so-called remotely sensed reflectance rw(l),	is determined by the spectral 67	

absorption a and backscattering (bb (m-1)) coefficients of the ocean (pure water and various particulate 68	
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and dissolved matters) using the simplified formulation (Morel and Gentili, 1996): 69	

	70	

	 rw(l)	=	G	bb	(l)/(a(l)	+	bb(l))	 (1)	71	

	72	

where (a (m-1) ) is the sum of the individual absorption coefficients of water, phytoplankton pigments, 73	

colored dissolved organic matter, and detrital particles, (bb (m-1) ) depends on the shape of the 74	

phytoplankton species. G is a parameter mainly related to the geometry of the situation (sensor and 75	

solar angles) but also to environmental parameters (wind, aerosols). 76	

In the open ocean far from the coast (in case-1 waters), the light seen by the satellite sensor mainly 77	

contains information on phytoplankton abundance and diversity. Ocean-color measurements have 78	

been first used intensively to estimate chlorophyll-a concentration (chl-a in the following) in the 79	

surface waters of the ocean, marginal seas and lakes. (Longhurst et al., 1995; Antoine et al., 1996; 80	

Behrenfeld and Falkowski, 1997; Behrenfeld et al., 2005; Westberry et al., 2008).  81	

It has been shown that it is also possible to extract additional information such as phytoplankton size-82	

classes (PSC) by using some relationship between chlorophyll concentration and PSC (Uitz et al., 2006; 83	

Ciotti and Bricaud, 2006; Hirata et al., 2008; Mow and Yoder, 2010). These algorithms try to establish 84	

a relationship between the chl-a concentration and the chl-a concentration fractions associated with 85	

each of the three PSC. Some of them (Uitz et al, 2006; Aiken et al., 2009) break-down the chl-a 86	

abundance into several ranges for each of which a specific relationship is computed. Others (Brewin 87	

et al, 2010; Hirata et al, 2011) are based on a continuum of chl-a abundance. Studies have also been 88	

done to estimate the phytoplankton groups (PFT) by taking into account spectral information 89	

(Sathyendranath et al., 2004, Alvain et al., 2005, 2012; Hirata et al., 2011; Ben Mustapha et al, 2013; 90	

Farikou et al, 2015). This is of fundamental interest to the understanding of the phytoplankton behavior 91	

and to modeling its evolution. 92	

Due to highly non-linear relationship linking the multispectral ocean color measurements with the 93	

pigment concentrations, we proposed a neural network clustering algorithm (2S-SOM) able to deal 94	

with multi variables linked by complex relationships. The 2S-SOM algorithm is well adapted to this 95	

complex task by weighting the different inputs. The clustering algorithm was calibrated on a restricted 96	

database composed of remote sensed observations co-located with measurements taken in the global 97	

ocean. 98	

In the present paper, we propose the retrieval of the major pigment concentrations from satellite ocean 99	

color multi-spectral sensors in the Senegalo-Mauritanian upwelling, which is an oceanic region off the 100	

coast of West Africa where a strong seasonal upwelling occurs (Figure 1).  101	

 102	
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 103	
Figure 1: Mauritania and Senegal coastal topography.  The land is in brown and the ocean depth is 104	
represented in meters by the color scale on the right side of the figure. The UPSEN stations are shown 105	
at the bottom left cartoon of the figure. 106	
 107	

 108	

The Senegalo-Mauritanian upwelling is one of the most productive eastern boundary upwelling 109	

systems (EBUS) with strong economic impacts on fisheries in Senegal and Mauritania. Since the 110	

region has been poorly surveyed in situ, we have chosen to extract pertinent biological information 111	

from ocean-color satellite measurements. The region has been intensively studied by analysis of 112	

SeaWiFS ocean-color data and AVHRR sea-surface temperature as reported in Demarcq and Faure 113	

(2002), Sawadogo et al. (2009), Farikou et al. (2013, 2015), Ndoye et al, (2014) and more recently by 114	

Capet et al, (2017) with in situ observations.  115	

The paper is articulated as follows: in section 2, we present the data we used (in situ and remote sensing 116	

observations). The mathematical aspect of the clustering method (2S-SOM) is detailed in section 3. In 117	

section 4 we present the methodological results. The spatio-temporal variability of the fucoxanthin and 118	

chl-a concentration in the Senegalo-Mauritanian upwelling region are presented in section 5, as well 119	

as the results of the oceanic UPSEN campaigns. In section 6 we discuss the results and the method. A 120	

conclusion is presented in section 7.  121	

 122	

 123	

 124	

 125	
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2- MATERIALS 126	

 127	

In this study we used three distinct datasets: the first was used to calibrate the method, the second to 128	

conduct a climatological analysis of the Senegalo-Mauritanian upwelling region and the third was 129	

obtained during the oceanographic UPSEN campaign. These datasets are composed of satellite remote 130	

sensing observations and in-situ measurements. 131	

 132	

2.1 The calibration data base (DPIG) 133	

The calibration database (DPIG) comprises in situ pigment measurements co-located with satellite 134	

ocean-color observations done by the SeaWiFS (Sea-viewing, Wide-Field-of-view Sensor).  135	

This DPIG is composed of 515 matched satellite observations and in situ measurements made in the 136	

global ocean (mainly in the North Atlantic and the equatorial ocean; Ben Mustapha et al., 2014). The 137	

match-up criteria were quite severe: we used satellite pixel situated at a distance less than 20km from 138	

the in situ measurement in a time window of +/- 12h. The geographic distribution of the 515 coincident 139	

in situ and satellite measurements is shown in Fig. 2. Matchup procedure between in situ and satellite 140	

observation is a crucial question to estimate remote sensing algorithms. If the parameters of the 141	

procedure are too severe, the number of collocated data is 142	

 143	

 144	
 145	

Figure 2: Geographic positions of the 515 in situ and satellite collocated measurements of the 146	
DPIG database. 147	

 148	

dramatically decreasing. If the parameters are too large, it is the accuracy of the matching, which is 149	

decreasing. We accordingly chose some compromise. Usually people use a matchup window of 3X3 pixels 150	
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(Alvain et al, 2005) which corresponds to a distance less than 20km between the satellite pixel and in 151	

situ measurement, since we deal with level 3 satellite observations whose pixel is of the order of 9X9km. 152	

This criterium refers to the typical length of ocean variability (Levy et al, 2012; Levy, 2003) 153	

 154	

In Figure 3 we present the R2 coefficient between the in situ chl-a a and the SeaWiFS chl-a a computed 155	

by using the OC4V4 algorithm (O’Reilly et al, 2001) for the DPIG collocated observations. We remark 156	

that the two measurements are in good agreement at global scale. Each data of DPIG is a vector 157	

 158	

 159	

 160	
 161	

Figure 3: Dispersion diagram of DPIG chl-a computed from the SeaWiFS observations using the 162	

OC4V4 algorithm versus in situ chl-a. The coefficient of vraisemblance R2 and the RMSE (Root Mean 163	

Square Error) were computed in mg m-3 164	

 165	

having 17 components	(five ocean reflectance (rw(l)	and Ra(l)	at five wavelengths (412, 443, 490, 166	

510 and 555nm), SeaWiFS chl-a, five in situ pigment ratios and  in  situ chl-a concentration). The in 167	

situ chl-a a concentration ranges between 0.007 and   3. mg m-3 (see Table 1).  168	

The five Ra(l) are defined following Alvain et al, (2012 : 169	

Ra(l)	=	rW(l)/ rWref(l, chl-a)	 	 	 	 	 (2)	170	

where the parameter	𝜌#$%&(𝜆, 𝑐ℎ𝑙-)	is an average reflectance depending on the chl-a concentration only 171	

which was computed according to the procedure reported in Farikou et al, 2015. Ra(l) is a non-172	
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dimensional parameter which depends on the chl-a abundance at second order and is mainly sensitive 173	

to the secondary pigments (Alvain et al , 2012).  174	

 175	

The DPIG database thus provides information on the existing links between the pigment composition 176	

and the SeaWiFS measurements. The pigment composition are defined by the pigment ratios which 177	

are non-dimensional variables of the form in the present study: 178	

Pigment Ratio=DP/Tchl-a        (3) 179	

which is defined as the ratio of the diagnostic pigment (DP) versus the total chl-a  180	

(Tchl-a = chl-a +divinyl chl-a, according to Alvain et al., 2005). 181	

 182	

The pigments of the DPIG and their statistical characteristics are given in Table 1. The statistical tests 183	

presented in Figure 3 (R2 and RMSE) and in Table 1 (MEAN, STD, MIN, MAX) were computed in 184	

mg m-3. 185	

  186	

  	187	
	 RDIVINY	A	 RPERID	 RFUCO	 R19HF	 RZEAX	 CHLORO	

IN	SITU	
MEAN	 0.1414	 0.0272	 0.1248	 0.1859	 0.1696	 0.5292	
STD	 0.1584	 0.0196	 0.0971	 0.0996	 0.2063	 0.5720	
MIN	 0.0037	 0.0035	 0.0053	 0.0066	 0.0027	 0.007	
MAX	 0.8889	 0.2027	 0.8514	 0.7654	 1.5574	 2.9980	

 188	

 189	

Table 1: Pigments of the DPIG and their statistical characteristics: STD (Standard Deviation), MIN  190	
(minimum value), MAX (maximum value). 191	
 192	

2.2 The Senegalo-Mauritanian upwelling satellite data (DSAT) 193	

The satellite dataset we processed to retrieve the pigment concentration consist of five rw(l)	and	five 194	

Ra(l)	at five wavelengths (412, 443, 490, 510 and 555nm), and the SeaWiFS chl-a concentration 195	

observed in the Senegalo-Mauritanian upwelling region (8°N-24°N, 14°W-20°W; Figure 3) during 11 196	

years (1998-2009) by SeaWiFS. This data set is here below denoted DSAT.  197	

The satellite observations (rw(l)	and chl-a concentration) were provided by NASA with a resolution 198	

of nine kilometers. Due to the presence of Saharan dusts in this region, very few estimations of satellite 199	

rw(l)	and in situ chl-a were available, and some satellite estimations of chl-a could present strong over-200	

estimations (Gregg et al, 2004). For this reason, we reprocessed the rw(l)	and chl-a data with an 201	

atmospheric correction algorithm developed specifically for Saharan dust (Diouf et al, 2013,  202	

http://poac.locean-ipsl.upmc.fr) in order to improve the satellite observations. 203	
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 204	

2.3 The UPSEN database 205	

Recently, some HPLC measurements were made in the Senegalo-Mauritanian region during two 206	

oceanographic cruises (UPSEN campaigns) of the oceanographic ship “Le Suroit” from 7 to 17 March 207	

2012 and from 5 to 26 February 2013 as reported in Ndoye et al, (2014); Capet et al, (2017). The goal 208	

was to study the dynamics and the biological variability of the Senegalo-Mauritanian upwelling. 209	

During these campaigns, in-situ HPLC measurements were carried out. We expected to be able to co-210	

locate them with the ocean-color VIIRS (Visible Infra-red Imaging Radiometer Suite) sensor 211	

observations whose wavelengths are close to those of the SeaWiFS. Unfortunately, we were only able 212	

to process satellite observations made on 21 February 2013 due to the presence of clouds and Saharan 213	

aerosols the other days. We processed the satellite observations provided by the VIIRS sensor at four 214	

wavelengths (443, 490, 510, 555 nm) for pixels in the vicinity of the ship stations (within a distance 215	

of 20km) and observed in a time window of +/- 12h, and for which the satellite chl-a was less than      216	

3 mg m-3, which is the limit of validity of our method imposed by the range of chl-a observed in DGIP 217	

(mean of 0.52 mg m-3). Only five stations off Cabo Verde peninsula fitted these requirements (see 218	

Figure 1 for their positions). 219	

3 - THE PROPOSED METHOD (2S-SOM) 220	

Classification methods were applied for retrieving geophysical parameters from large databases in 221	

several studies including weather forecasting (Lorenz, 1969; Kruizinga and Murphy, 1983), short-term 222	

climate prediction (Van den Dool, 1994), downscaling (Zorita and von Storch, 1999), reconstruction 223	

of oceanic pCO2 (Friedrichs and Oschlies., 2009), and of chl-a concentration under clouds (Jouini et 224	

al, 2013). In the present study, we used a new neural network classifier, which is an extension of the 225	

SOM algorithms.  226	

3-1 The SOM clustering  227	

The SOM algorithms (Kohonen, 2001) constitute powerful nonlinear unsupervised classification 228	

methods. They are unsupervised neural classifiers, which have been commonly used to solve 229	

environmental problems (Cavazos, 1999; Hewitson et al, 2002; Richardson et al, 2003; Liu et al, 2005, 230	

2006; Niang et al, 2003, 2006; Reusch et al, 2007). The SOM aims at clustering vectors 𝒛0	𝜖	ℝ3of a 231	

multidimensional database 𝑫. Clusters are represented by a fixed network of neurons (the SOM map), 232	

each neuron c being associated with the so-called referent vector wc 𝜖	ℝ3  representing a cluster. The 233	

self-organizing maps are defined as an undirected graph, usually a rectangular grid of size p x q. This 234	
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graph structure is used to define a discrete distance (denoted by  𝛿) between two neurons of the p x q 235	

rectangular grid which presents the shortest path between two neurons. Each vector zi of D is assigned 236	

to the neuron whose referent wc is the closest, in the sense of the Euclidean distance: wc is called the 237	

projection of the vector zi  on the map. A fundamental property of a SOM is the topological ordering 238	

provided at the end of the clustering phase: close neurons on the map represent data that are close in 239	

the data space. The estimation of the referent vectors wc of a SOM and the topological order is achieved 240	

through a minimization process in which the referent vectors w are estimated from a learning data set 241	

(The DPIG data base in the present case).  The cost function is shown in Annex:  242	

The SOMs have frequently been used in the context of completing missing data (Jouini et al, 2013), 243	

so the projected vectors zi may have missing components. Under these conditions, the distance between 244	

a vector zi	Î	D	and the referent vectors wc of the map is the Euclidean distance that considers only the 245	

existing components (the Truncated Distance or TD hereinafter).  246	

	247	

3-2 The 2S-SOM Classifier 248	

In the present case, we used the 2S-SOM algorithm, which is a modified version of the SOM, very 249	

powerful in the case of a large number of variables. It automatically structures the variables having 250	

some common characters into conceptually meaningful and homogeneous blocks. The 2S-SOM takes 251	

advantage of this structuration of D and the variables into different blocks, which permits an automatic 252	

weighting of the influence of each block and consequently of each variable. The block weighting 253	

facilitates the clustering procedure by considering the most pertinent variables.  The vectors of DPIG 254	

defined in section 2 can be decomposed in four blocks. The essence of this decomposition in blocks is 255	

that each of the 17 components of the DPIG vectors gathered information with a different physical 256	

influence in the classification phase. The composition of each block is done as follows:  257	

First Block (B1) comprises the five pigment in-situ concentration ratios (divinyl chlorophyll-a, 258	

peridinin, fucoxanthin, 19'hexanoyloxyfucoxanthin, zeaxanthin concentration ratios). The pigment 259	

ratios are defined in Eq. 3. 260	

Second Block (B2) comprises the water-leaving reflectance rw(l)	at the five SeaWiFS wavelengths 261	

Third Block (B3) comprises the five Ra(l) , 262	

Fourth Block (B4) comprises two variables: The in situ and the SeaWiFS chl-a concentrations.   263	

 264	

The 2S-SOM is able to deal with a large quantity of variables, choosing those that are the most 265	

significant for the classification and neutralizing those which are the least significant. This is done by 266	
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estimating weights on the blocks and the variables. We fully describe the 2S-SOM algorithm in Annex. 267	

In the following we use a simplified version of 2S-SOM in which only the blocks are weighted. 	268	

 269	

3.3 The calibration phase 270	

Similarly to the standard SOM, the 2S-SOM is determined through a learning phase by using a more 271	

complex cost function (see Annex) that estimate for each neuron, in addition to the referent vector, a 272	

weight (a) for each block. For a neuron c, we define the weights 𝛼78of each block b (b = 1….4).  . 273	

At the end of the calibration phase, each element zi  of the dataset DPIG is associated with a referent 274	

wc whose components are partitioned into four blocks. In the present study, the 2S-SOM map is 275	

represented by a two-dimensional (9x18=162) grid that represents the partition of the DPIG dataset 276	

into different classes. Each class provided by the 2S-SOM is associated with a so-called referent vector 277	

wc with c Î	{1…..162}. The size of the map has been determined by using the procedure provided by 278	

the SOM software available at : http://www.cis.hut.fi/projects/somtoolbox/download/. 279	

	280	

3.4 The Pigment retrieval 281	

In the second phase, which is an operating phase, we estimated the pigment concentration ratios of a 282	

pixel 𝑃𝑋;	 from its satellite ocean-color sensor observations only. The 11 ocean color satellite 283	

observations (5 rw(l),	5	Ra(l), and chl-a ) of pixel 𝑃𝑋;	were projected onto the 2S-SOM using the 284	

Truncated Euclidian Distance (section 3.1). We select the neuron c associated with a referent vector 285	

whose the 11 ocean-color parameters are the closest to those observed by the satellite sensor. The 286	

pigment ratios of 𝑃𝑋;	are those associated with the neuron c. At the end of the assignment phase, each 287	

pixel 𝑃𝑋;	  of a satellite image is associated with a referent vector wc, which has 6 pigment 288	

concentration ratios among its 17 components. The flowcharts of the method (2S-SOM learning and 289	

pigment retrieval) are presented in Figure 4. 290	

 291	

 292	
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 293	
 294	

Figure 4: Flowchart	of	the	method:	top	panel	-	Learning	phase;	bottom	panel	–	operational	phase	295	

which	consists	in	pigment	retrieval	and	the	determination	of	the	𝛼78	block	parameters. 296	

 297	

4 - METHODOLOGICAL RESULTS 298	

 299	

4-1 Statistical validation of the method  300	

The validation of the method was focused on the retrieval of the fucoxanthin ratio, which is a 301	

characteristic of diatoms, but the same procedure could be applied to any pigment. The hyper-302	

parameter µ  (see Annex) was optimized in order to retrieve that ratio, while h was set constant since 303	

only the block were weighted in the present study. Due to the small amount of data in the DPIG, we 304	

estimated the accuracy of the fucoxanthin retrieval by a cross-validation procedure, which is a 305	

powerful procedure in statistics. The principle is the following: we learned 30 2S-SOM using 30 306	

different learning datasets Li constituted of 90% of DPIG taken at random, and then computed 307	

statistical estimator on the retrieved quantities using 30 test datasets (10% of DPIG). The algorithm 308	

was as follows:   309	

i=1 …. 30 310	

1. determination at random of a learning dataset Li (90% of DPIG) and a test dataset TLi (10% of 311	

DPIG) 312	

2. training of a 2S-SOM map Mi using Li (see section 3.2 and 3.3).  313	

3. Validation using TLi according to the procedure described in section 3.4 314	

4 Estimation of the RMSEi and R2i on TLi between the estimated and observed fucoxanthin ratios  315	

end 316	
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Computation of the mean RMSE and  R2   (𝑅2, RMSE = 1
30
∑ 𝑅2𝑖, 𝑅𝑀𝑆𝐸𝑖I=30
𝑖=1 )   317	

 318	

The flowchart of the cross-validation procedure is presented in Figure 5.    319	

 320	

 321	
 322	

Figure 5: Flowchart	of	the	cross-validation	procedure	for	30	partitions	of	the	DPIG	database. 323	

 324	

Statistical parameters (R2	coefficients, RMSE and P-values) of the cross validation between the DPIG 325	

in situ pigments and the pigments given by the 2S-SOM averaged for the 30 2S-SOM realizations, 326	

which are presented in table 2, show the good performance of the method.  327	

 328	

	329	
	 R2	 RMSE	(MG	M-3)	 PVAL	

CHLA	SOM	 0.84	 0.22	 0.001	
DVCHLA	 0.60	 0.02	 0.001	
FUCO	 0.87	 0.02	 0.001	
PERID	 0.81	 0.01	 0.001	

 330	

 331	

Table 2: Statistical parameters (R2 coefficients, RMSE and P-values) of the cross validation between 332	
the DPIG in situ pigments and the pigments given by the 2S-SOM averaged for the 30 2S-SOM 333	
realizations. 334	
 335	
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 336	

4-2 Analysis of the topology of the 2S-SOM 337	

As explained in sections 3-2 and 3-3, the referent vector components (wc Î	R17 ), which are estimated 338	

during the learning phase, are partitioned in four blocks B1, B2, B3 and B4. The hyper parameters µ  339	

was tuned in order to favor the accuracy of the retrieval of the fucoxanthin ratio. We recall that all the 340	

pigment ratios are estimated during the calibration phase, but in the present paper attention was focused 341	

on the fucoxanthin ratio when selecting the parameter µ. In Figure 6, we 342	

 343	

 344	
 345	

Figure 6: 2S-SOM	Map.	 	From	left	to	right	and	top	to	bottom,	values	of	the	referent	vectors	for	𝜌#(490),	346	

Ra(490),	SeaWiFS	chl-a,	and	fucoxanthin,	peridinin,	divinyl	Ratios.		The	number	in	each	neuron	indicates	the	347	

amount	of	DPIG	data	captured	at	the	end	of	the	learning	phase,	the	values	indicated	by	the	color	bars	are	348	

centered-reduced	and	non-dimensional	values. 349	

 350	

present six of the referent vector components of the 2S-SOM map. These components are rw(490), 351	

Ra(490),	SeaWiFS chl-a, and the ratios of fucoxanthin, which is a specific diatom pigment, and of 352	
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peridinin	and		divinyl. They exhibit a coherent topological order, the components having close values 353	

being close together on the topological map. The remaining eleven components (not shown) exhibit 354	

the same coherent topological order. One can observe a very good topological order for the fucoxanthin 355	

ratio that was favored by the determination of the hyperparameter µ. Moreover, the bottom right region 356	

in the 2S-SOM map (Figure 6) may correspond to the diatoms with a good confidence since high 357	

fucoxanthin is associated with high chlorophyll concentration and low peridinin. This is endorsed in 358	

section 5 by looking at the geographical location of the different pigment concentrations (figures 8, 10, 359	

11). Another important remark is that the value of each component presents a large range of variation  360	

 361	

 362	
 363	

Figure 7: 2S-SOM	map.		Weights	(𝛼78)	of	the	four	block	parameters	determined	at	the	end	of	the	learning	364	
phase;	from	left	to	right	and	top	to	bottom:	𝜌# ,	𝑅𝑎,	Pigment,	SeaWifs	chl-a.		The	color	bars	show	the	%	of	365	
the	weight	estimated	by	2S-SOM,	a	value	of	1	or	0	indicating	that	the	data	in	the	neuron	are	assembled	with	366	
respect	to	that	block	only.	367	
 368	
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of the same order as the range of variation found in the DPIG variables. It means that the 2S-SOM 369	

map has captured most of the variability of the dataset. 370	

Figure 6 shows a strong link between the values of the referent vectors for fucoxanthin and chl-a (high 371	

fucoxanthin and chl-a values, at the bottom right of the 2S-SOM) while fucoxanthin is high and chl-a 372	

low for the referent vectors at the bottom left of the 2S-SOM. Additional information will be provided 373	

by the Ra(490) values when the fucoxanthin is less closely linked to the chlorophyll. 374	

Besides, for each neuron, the 2S-SOM provides a weight for each block (𝛼78) and each variable (bcbj ).	375	

For a given neuron c the weights (𝛼78) of the blocks are normalized, their sum being 1. A value of 1 376	

for one block (and therefore a value of 0 for the other blocks) indicates that the data in the neuron are 377	

gathered with respect to that block only because there is too much noise in the variables in the other 378	

blocks. By examining the weights on the map, one can see which block most influences the link 379	

between the satellite measurements and the pigment ratios.  380	

In Figure 7, we present the acb values estimated during the learning phase of the 4 blocks (B1, B2, B3, 381	

B4). For some neurons, only the blocks related to the reflectance and the reflectance ratio are used for 382	

the definition of the neuron, while the weights for the two other blocks (pigments and chl-a) are null, 383	

indicating that for these neurons, in situ observations and SeaWiFS chl-a are more noisy than the 384	

reflectance. These neurons correspond to very small chl-a concentrations, which are estimated with 385	

large error. Besides, we remark that high a values for chl-a corresponds to high chl-a concentration 386	

values (bottom right of the chl-a panel in figure 7 and figure 6 respectively). For these cases, the 387	

clustering assembled data that mainly depend on chl-a concentration. 388	

 389	

 390	

5 - GEOPHYSICAL RESULT 391	

 392	

In the present study, we apply the 2S-SOM (section 3), which explicitly makes a weighted use of the 393	

data according to their specificity (ocean-color signals or in situ observations) to retrieve the 394	

fucoxanthin concentration from remote sensed data in the Senegalo-Mauritanian upwelling region 395	

where in situ measurements are lacking. According to the good results of the cross-validation method 396	

as shown in section 4.1, we expect that the 2S-SOM will provide pertinent results in a region which 397	

has been poorly surveyed.   398	

 399	

 400	
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5-1 The pigment estimation from SeaWiFS observations in the Sénégalo-Mauritanian upwelling 401	

region 402	

We decoded the DSAT database (section 2-3) using the 2S-SOM for 11 years (1998-2009) of SeaWiFS 403	

data observed in the Senegalo-Mauritanian upwelling region (8°N-24°N, 14°W-20°W). This study was 404	

done according to the retrieval phase described in section 3.4. For each day, we projected the 11 405	

SeaWiFS observations (5 rw(l),	5 Ra(l) and chl-a) of each pixel 𝑃𝑋; on the 2S-SOM. At the end of 406	

the assignment phase, each pixel of a satellite image was associated with 6 pigment concentration 407	

ratios. The underlying assumption is that the link between the remote sensing information and the 408	

pigment ratios of a pixel is this provided by the selected referent wc. Thanks to the topological order 409	

provided by the 2S-SOM, we expect that the best neurons chosen during the retrieval would give 410	

accurate concentration ratios. In Figures 8, 10 and 11 we present the fucoxanthin concentration ratio 411	

restitution for three different days and the associated SeaWiFS Chlorophyll images (1 and 6 January, 412	

and 28 February 2003). Due to the limited size of the DPIG, the range of the ratio learned for the  413	

 414	

 415	

 416	

Figure 8: A) chl-a concentration, (B) fucoxanthin ratio, (C) aerosol optical thickness, (D) peridinin 417	
for 1 January 2003. Panels (B) and (D) show that a second-order information was retrieved, which is 418	
correlated with the chl-a concentration (A) but not equivalent. The aerosol optical thickness (C) does 419	
not seem to contaminate the estimated parameters (fucoxanthin and peridinin ratios). 420	
 421	
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the fucoxanthin is between 0.3% and 20% with a mean of 10% and the chl-a content is between 0.5 422	

mg m-3 and 3 mg m-3. The statistical estimator we used cannot extrapolate what has not been learned, 423	

 424	

 425	
Figure 9: SST	for	2	January	2003.		Note	the	well-marked	upwelling	(cold	temperature)	north	of	13°N.	426	

	427	

 428	

 429	

Figure 10: (A)	chl-a	concentration,	(B)	fucoxanthin	ratio,	(C)	aerosol	optical	thickness,	(D)	peridinin	for	6	430	
January	2003.	Panels	(B)	and	(D)	show	that	a	second-order	information	was	retrieved,	which	is	correlated	431	
with	the	chl-a	concentration	(A)	but	is	not	equivalent.	It	is	found	that	the	aerosol	optical	thickness	(C)	does	432	
not	contaminate	the	estimated	parameters	(fucoxanthin	and	peridinin	ratios).	433	
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and for that raison we flagged the pixels in the SeaWiFS images that have a chl-a concentration greater 434	

than 3.  mg m-3. 435	

 436	

 437	
 438	

Figure 11: (A)		chl-a	concentration,		(B)		fucoxanthin	ratio,		(C)		aerosol	optical	thickness,		(D)		Peridinin	for	439	
28	 February	 2003.	 	 Panels	 (B)	 and	 (D)	 show	 that	 a	 second	 order	 information	was	 retrieved,	which	 is	440	
correlated	 with	 the	 chl-a	 concentration	 (A)	 but	 is	 not	 equivalent.	 	 It	 is	 found	 that	 the	 aerosol	 optical	441	
thickness	 (C)	 does	 not	 contaminate	 the	 estimated	 parameters	 (fucoxanthin	 and	 peridinin	 ratios).	 The	442	
position	of	the	NSB	and	OFB	boxes	are	figured	out	by	black	square	boxes. 443	
 444	

Regarding the images obtained for 1 January 2003 in the Senegalo-Mauritanian region  445	

(Fig 8A, B, C, D), we observe that the chl-a (Fig 8A) is very high at the coast and decreases offshore 446	

in accordance with the upwelling intensity as shown in the SST image (Fig 9). Moreover, we observed 447	

a persistent well-marked chl-a pattern south of the Cap Vert peninsula in form of a “W“, which is the 448	

signature of a baroclinic Rossby wave (Sirven et al, 2019).  449	

Except in the southern part of the region, the AOT (Aerosol Optical Thickness) is low, which means 450	

that the atmospheric correction of the reflectance is quite small, which gives confidence in the ocean-451	

color data products. The fucoxanthin concentration is maximum at the coast and decreases offshore as 452	

does the chl-a concentration, in agreement with the works of Uitz et al., (2006, 2010). Fucoxanthin 453	

presents coherent spatial patterns. Peridinin concentration is somewhat complementary to that of 454	
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fucoxanthin, with the low fucoxanthin concentration area corresponding to high peridinin 455	

concentration area (northern part of Figs 8B, D). This behavior is also observed in Figure 10 (6 January 456	

2003) and in Figure 11 (28 February, 2003) endorsing the analysis shown in Figure 8.  457	

For 28 February, we selected two square box regions (Fig. 11), one near the coast (NSB,  458	

long [-20°, -18°], lat [12°,14°]) and the other about 800 km offshore (OFB, long [-28°, -26°], lat 459	

[12°,14°]). NSB waters correspond to upwelling waters while OFB waters correspond to oligotrophic 460	

waters. We projected the eleven ocean color parameters of the NSB and OFB pixels on the 2S-SOM 461	

map.  462	

 463	

 464	
 465	

 466	

Figure 12: Reflectance spectra (in blue) captured the 28 February by six neurons whose referent vector 467	
spectra are in yellow: top line, for pixels in the NSB region (long. [-20°, -18°], lat. [12°, 14°]); bottom 468	
line, for pixels in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 469	
 470	

 471	

Figure 12 presents the reflectance spectra (in blue) captured by three neurons of the 2S-SOM 472	

corresponding to pixels located in the NSB region (top line) and those captured by three neurons 473	

corresponding to pixels located in the OFB region (bottom line). The reflectance spectra of the 474	

associated referent vectors w are in yellow. The satellite reflectance spectra match the referent vector 475	

spectra; moreover the fucoxanthin ratio varies inversely with the mean value of the spectrum: the 476	

higher the fucoxanthin ratio, the smaller the mean value of the spectrum. The pigment concentration 477	

is greater near the coast.  478	

We note a strong difference between the shape and the intensity of the near-shore (NSB) and offshore 479	

(OFB) spectra. The OFB spectra present mean values higher than those of the NSB spectra. This is 480	

due to the fact that NSB spectra were observed in a region where diatoms are abundant, as shown by 481	
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the high value of fucoxanthin concentration in this region (Figs 8, 10, and 11), which is a proxy for 482	

diatoms along with higher chl-a concentration. In Figure 12, we note the lower values of the coastal 483	

spectra at 443 nm, which can be interpreted as a predominant effect of spectral absorption by 484	

phytoplankton pigments and CDOM. The different spectra are close together in the OFB region and 485	

more disperse in the NSB region. This can be explained by the fact that the OFB region corresponds 486	

to Case-1 waters while the NSB region waters are close to Case-2 waters and are influenced by the 487	

variability of near shore process like turbidity or presence of dissolved matters, and dynamical 488	

instabilities.  489	

 490	

 491	
 492	

 Figure 13:   Box plot of the weights of the selected neurons during the decoding of the 28 February 493	
data. From left to right, weights of blocks B1, B2, B3, B4. Top panel, in the NSB region (long. [-20°, 494	
-18°], lat. [12°, 14°]); bottom panel, in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 495	
	496	
 497	

We analyzed the weights of the blocks for the neurons selected in the analysis of the costal (NSB) and 498	

offshore (OFB) boxes. Figure 13 presents the box plot of the weight acb corresponding to the neurons 499	

belonging to the four blocks (B1, B2, B3, B4), with the constrain that the sum of the weights of a 500	

neuron is 1; a weight a larger than 0.25 indicates the predominance of a block in the learning for the 501	

classification (see section 3.5). It is clear that the weights for pixels near the coast (Fig 13, top panel) 502	

are different from those for offshore pixels (Fig. 13, bottom panel). As already mentioned in section 503	

4.3 and also shown in Figure 7, the weights of the 2S-SOM play a significant role in the 2S-SOM 504	
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topology and consequently in the pigment retrieval. The weights of blocks B1 and B4 that take into 505	

account the influence of the pigment ratios and the chlorophyll content in the retrieval are very low for 506	

the offshore (OFB) oligotrophic region and more important for the coastal (NSB) region. The weights 507	

of the blocks B2 and B3, which take into account the influence of the reflectance (rw(l), Ra(l)), 508	

dominate for the offshore regions. In coastal waters, the weights of all the blocks are used, with a 509	

smaller influence of B3, which is associated with Ra. This gives information on the role played by the 510	

different variables on the classification in waters having different phytoplankton concentration and 511	

composition. Besides it shows the automatic adaptation of the 2S-SOM to the environment in order to 512	

optimize the clustering efficiency with respect to a classical SOM.  513	

 514	

 515	
Figure 14: Monthly fucoxanthin concentration averaged for an 11- years (1998-2009) for December 516	
(A), March (B) and May (C). 517	
 518	

In order to study the seasonal variability of the fucoxanthin concentration with some statistical 519	

confidence in the Senegalo-Mauritanian upwelling region, we constructed a monthly climatology for 520	

an 11-year period (1998–2009) of the SeaWiFS observations by summing the daily pixels of the month 521	

under study. The resulting climatology is presented in Figure 14 for December (Fig. 14a), March (Fig. 522	

14b), and May (Fig 14c), which correspond to the most productive period (Fig. 14c). The fucoxanthin 523	

concentration, and consequently the associated diatoms, presents a well-marked seasonality. 524	

Fucoxanthin starts to develop in December North of 19°N, presents its maximum intensity in March 525	

when the upwelling intensity is maximum, extends up to the coast of Guinea (12°N) in April and 526	

begins to decrease in May where it is observed north of Cabo Verde peninsula (15°N) in agreement 527	

with the observations reported by Farikou et al, (2015) and Demarcq and Faure, (2000). 528	

Figure 15 shows the fucoxanthin (in green) and the chl-a (in blue) concentrations computed from 529	

satellite observations for an 11-year period of SeaWiFS observations in the NSB region. There is a 530	

good correlation in phase between these two variables but not in amplitude (a good coincidence of 531	
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peak occurrence but weak correlation in peak amplitude) showing that the relationship between  532	

 533	

 534	
 535	

Figure 15: .  chl-a (in blue) and fucoxanthin (in green) concentrations for near-shore pixels (in the NSB 536	
region). 537	
 538	

fucoxanthin and chl-a is complex as mentioned by Uitz et al, (2006). In particular, there is a weak peak 539	

in fucoxanthin in October 2001, which is not correlated with a chl-a peak. 540	

 541	

5-2 Analysis of the UPSEN campaigns 542	

Figure 16 shows, for every UPSEN stations 1, 2, 3, 5a and 5b (see figure 1 for their geographical 543	

position), the averaged in-situ UPSEN spectrum (in blue), the referent spectrum (in red) of the 2S-544	

SOM neuron captured by the collocated satellite VIIRS sensor observations. The	referent	spectrum	545	

is	the	mean	of	the	different	spectra	captured	by	that	neuron	during	the	learning	phase.	Among	546	

these	different	spectra,	there	is	one	(black	curve	in	figure	16)	which	is	the	closest	to	the	UPSEN	547	

spectrum.	Obviously,	the	black	curve	is	closer	to	the	blue	curve	than	the	red	one	which	is	flatten	548	

due	to	the	averaging	process. These three spectra are close together showing the good functioning 549	

of the 2S-SOM.  550	

 551	
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 552	
 553	

 554	

Figure 16: For ship stations 1, 2, 3, 5a and 5b, we show  the averaged spectrum of the in situ spectra 555	
of the UPSEN station in blue; the spectrum of the referent vector (in red) of the 2S-SOM neuron, which 556	
has captured the closest satellite observations to the UPSEN station; among the different spectra 557	
constituting the referent spectrum, the spectrum of the learning database (DGIP) that is the closest to 558	
the averaged satellite spectra is shown in black. In the rectangular cartoons, we show the position of 559	
the UPSEN station, the number of the neuron of the 2S-SOM which has captured the satellite 560	
observation, the Rfuco of the referent vector, the RfucoDGIP of the closest DGIP and the in situ 561	
RfucoUPSEN . 562	
 563	
 564	
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Their shapes are close to these observed in the NSB region (Figure 12) but their intensity is lower 565	

meaning that their waters are more absorbing than the NSB waters due to a higher pigment 566	

concentration. In fact, the UPSEN stations were located close to the coast (figure 1) in the Hann bight 567	

south off the Cap Verde peninsula, which is very rich in phytoplankton pigments. In table 3, we present 568	

the fucoxanthin ratios associated with the referent vectors (Rfuco2S-SOM), the closest DPIG fucoxanthin-569	

ratios captured by the neuron of the referents and the fucoxanthin-ratios measured during the UPSEN 570	

campaign. We note that the fucoxanthin ratios of the in-situ measurements are in the range of the DPIG 571	

(see table 1), which allows a good functioning of the 2S-SOM estimator. The pigment ratios obtained 572	

from ocean-color observations through the 2S-SOM are close to pigment concentrations measured at 573	

the ship stations, which confirms the validity of the method we have developed. We remark that the 574	

best 2S-SOM estimate of fucoxanthin ratio with respect to the UPSEN in-situ measurement is given 575	

at station 5b which is the farthest off the coast. These results endorse the climatological study of the 576	

Senegalo-Mauritanian upwelling region we have done with the 2S-SOM (section 5.1). 577	

 578	

 579	

	580	
UPSEN	STATION	 REFERENT	N°	 RFUCO	

2S-SOM	
RFUCO	
DPIG	

RFUCO	
UPSEN	

STAT	1				17.3E		14.5	N	 126	 0.213	 0.236	 0.378	
STAT	2				17.2E		14.4	N	 126	 0.213	 0.236	 0.391	
STAT	2				17.2E		14.5	N	 126	 0.213	 0.236	 0.436	
STAT	5A			17.5E		14.5	N	 126	 0.213	 0.171	 0.299	
STAT	5B			17.5E		14.5	N	 143	 0.242	 0.258	 0.295	

 581	

 582	

Table 3: For ship stations 1, 2, 3, 5a and 5b of the UPSEN campaigns, we show the referent captured 583	
by the VIIRS observations, the fucoxanthin-ratio associated with this referent (Rfuco-2S-SOM), the 584	
fucoxanthin-ratio of the closest DPIG fucoxanthin-ratio captured by the neuron of the referent and the 585	
fucoxanthin-ratio measured in situ during the UPSEN campaign 586	
	587	
 588	

The 2S-SOM method gives pigment concentrations that are close to those obtained by in situ 589	

observations. The method could be applied to a large variety of other parameters in the context of 590	

studying and managing the planet Earth. The major constraint to obtaining accurate results is to deal 591	

with a learning data set that statistically reflects all the situations encountered in the observations 592	

processed. Due to its construction, the method cannot be used to find values beyond the range of the 593	

learning data set.  594	

  595	
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 596	

6 - DISCUSSION  597	

 598	

Machine learning methods are powerful methods to invert satellite signals as soon as we have adequate 599	

database to support the calibration. Several technics have been used for retrieving biological 600	

information from ocean color satellite observations. First, studies employed multilayer perceptrons 601	

(MLP), which are a class of neural networks suitable to model transfer function (Thiria et al, 1993). 602	

Gross et al, (2000, 2004) retrieved chl-a concentration from SeaWiFS, Bricaud et al, (2006) modeled 603	

the absorption spectrum with MLP, Raitsos et al, 2008 and Palacz et al, 2013 introduced additional 604	

environmental variables in their MLPs such as SST in the retrieval of PSC/PFT from SeaWiFS, which 605	

improved the skill of the inversion. Another suitable procedure was to embed NN in a variational 606	

inversion, which is a very efficient way when a direct model exists (Jamet et al, 2005; Brajard et al, 607	

2006a,b; Badran et al, 2008). Statistical analysis of absorption spectra of phytoplankton and of pigment 608	

concentrations were conducted by Chazottes et al, (2006, 2007), by using a SOM.  609	

In the present study, due to the fact that the learning dataset was quite small (515 elements), we used 610	

an unsupervised neural network classification method, which is an extension of the SOM method well 611	

adapted to dealing with a small database whose elements are very inhomogeneous. We clustered 612	

available satellite ocean-color reflectance at five wavelengths and their derived products, such as 613	

chlorophyll concentration, and the associated in situ pigment ratios. 614	

The major points of this study are as follows: 615	

- The clustering was carried out by developing a new neural classifier, the so-called 2S-SOM, which 616	

presents several advantages with respect to the classical SOM. As in the SOM, we defined clusters 617	

that assemble vectors, which are close together in terms of a specified distance. This classifier was 618	

learned from a worldwide database (DPIG) whose vectors are ocean-color parameters observed by 619	

satellite multi-spectral sensors and associated pigment concentrations measured in situ. In the 620	

operational phase, SeaWiFS images are decoded, allowing the estimation of the pigment 621	

concentration ratios. The major advantage of 2S-SOM with respect to the classical SOM is to cluster 622	

variables having similar physical significance in blocks having specific weights. The weights 623	

attributed to the four blocks are computed during the learning phase and vary with the quality of the 624	

variables and with respect to their location on the ocean (near the coast or offshore). This permits to 625	

modulate the variable influence in the cost function, which makes the clustering more informative 626	

than that provided by the SOM. The block decomposition provides useful scientific information. For 627	

offshore, the weight analysis allowed us to show that more influence is given to the reflectance ratios 628	

Ra(l)  and less to the chl-a and pigment concentrations; on the contrary near the coast the weights 629	
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indicate a more active use of the pigment composition and the chl-a concentration. Therefore, the 630	

resulting 2S-SOM clustering therefore at best takes into account the information that belongs to the 631	

specific water content.  632	

- The 2S-SOM decomposes the DPIG into a large number of significant ocean-color classes allowing 633	

reproduction of the different possible situations encountered in the dataset we analyze. Besides, we 634	

assume that the relationship between the pigment concentration and the remote sensed ocean-color 635	

observations is independent on the location, which is justifiable since the relationship depends on the 636	

optical properties of ocean waters through well-defined physical laws which are region-independent. 637	

This also endorses the fact that we used a global database to retrieve pigments in a definite region. 638	

On the contrary, the different phytoplankton species vary from one region to another making the 639	

relationship between pigment ratio and phytoplankton species strongly depending on the region. This 640	

justifies the fact we focused our study on the pigment retrieval rather than on the PSC or PFT, as 641	

mentioned above. Moreover, most of the recent phytoplankton in situ identifications have been made 642	

using pigment measurements with the HPLC method (Hirata et al, 2011). It is therefore more natural 643	

to retrieve the pigment concentrations, which is the quantity we measured, than the associated PSC 644	

or PFT, which are estimated from the pigment observations through complex non-linear and region-645	

dependent algorithms (Uitz et al, 2006). Due to the characteristics of the DPIG, the method can 646	

retrieve pigment concentration patterns over a large range (0.02 – 2 mg m-3). 647	

- We were able to analyze the pigment concentration in the Senegalo-Mauritanian region by processing 648	

satellite ocean color observations with the 2S-SOM. We found an important seasonal signal of 649	

fucoxanthin concentration with a maximum occurring in March. We evidenced a large offshore 650	

gradient of fucoxanthin concentrations, the near shore waters being richer than the offshore ones. We 651	

showed that the offshore region waters correspond to Case-1 waters, while the near shore waters are 652	

close to Case-2 waters and are influenced by the variability of near shore process like turbidity, or 653	

the presence of dissolved matters. The UPSEN measurements show that the pigment ratios of the 654	

Senegalo-Mauritanian region are in the range of the DPIG database used to calibrate the method, 655	

which justifies the use of the 2S-SOM algorithm to investigate this region.  656	

- We used daily satellite observations to construct a monthly climatology of pigment concentrations 657	

of the Senegalo-Mauritanian upwelling region, which has been poorly surveyed by oceanic cruises. 658	

Due to the highly non-linear character of the algorithms for determining the pigment concentrations 659	

from satellite measurements, it is mathematically more rigorous to apply these algorithms to daily 660	

satellite data and to average this daily estimate for the climatology period under study, than to 661	

estimate them from the satellite data climatology, as many authors have done (Uitz et al., 2010; 662	

Hirata et al., 2011). We found that Fucoxanthin starts developing in December North of 19°N, 663	
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presents its maximum intensity in March when the upwelling intensity is maximum, extends up to 664	

the coast of Guinea (12°N) in April and begins to decrease in May 665	

 666	

Another important aspect of our study concerns the validity of our results. The 2S-SOM method has 667	

been validated by focusing the retrieval accuracy on the fucoxanthin ratio, by using a cross-validation 668	

procedure. These results were qualitatively confirmed by two other independent studies. 669	

- We first applied a cross validation procedure (see section 4.1), which is powerful technique for 670	

validating models (Kohavi, 1995; Varma and Simon, 2006). We learned 30 different 2S-SOM using 671	

30 different learning dataset determined at random from the DPIG dataset (each learning dataset 672	

representing 90% of DPIG) and 30 test datasets (10% of DPIG). By averaging the results, we found 673	

that the 2S-SOM method retrieves the fucoxanthin concentration with a good score (see the 674	

statistical parameters in table 2) which confirms the pertinence of the method. 675	

- We then found that our fucoxanthin climatology is in agreement with in situ observations of 676	

phytoplankton reported in Blasco et al. (1980) in March to May 1974 off the coast of Senegal during 677	

the JOINT I experiment. These authors analyzed 740 water samples collected with Niskin bottles 678	

at 136 stations extending along a line at 21°40’N (in the northern part of the studied region) from 0 679	

to 100 km offshore. The samples were taken at several depths (mostly at 100, 50, 30, 15, 5 m). 680	

Phytoplankton cells were counted and identified by the Utermohl inverted microscope technique 681	

(Blasco, 1977). These authors found that diatoms reach their maximum concentration in April–May 682	

and are the most abundant group in that period, whereas the other cells predominate in March. 683	

Similar microscope observations have been reported in the ocean area south of Dakar by A. Dia 684	

(1985) during several ship surveys in February–March 1982–1983.  685	

- Our method is also in agreement with the monthly eleven years climatology presented in Farikou et 686	

al, (2015) who used a modified PHYSAT method to retrieve the PFT in the Senegalo-Mauritanian 687	

region.   688	

- The pigment concentrations provided by the 2S-SOM from the VIIRS sensor observations are in 689	

qualitative agreement with the in-situ measurements done at five stations during the two UPSEN 690	

campaigns in 2012 and 2013, showing that the method is able to function in waters where the 691	

pigment concentrations are quite high (fucoxanthin ratios of the order 0.4). 692	

 693	

 694	

 695	

 696	

                                       697	
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7 - CONCLUSION  698	

 699	

We developed a new neural network clustering method, the so-called 2S-SOM algorithm to retrieve 700	

phytoplankton pigment concentration from satellite ocean color multi spectral sensors. The 2S-SOM 701	

algorithm is a SOM specifically designed to deal with a large number of heterogeneous components 702	

such as optical and chemical measurements. The major advantage of 2S-SOM with respect to the 703	

classical SOM is to cluster variables having similar significance in blocks having specific weights. 704	

The weights attributed to the blocks during the learning phase vary with the quality of the variables in 705	

the classification. This permits to modulate the variable influence in the cost function, which makes 706	

the clustering more informative than that provided by the SOM. Besides, the block weighting provides 707	

useful information on the functioning of the classification by permitting to identify the variables which 708	

control it. It also allows us to better understand the dynamics of the phytoplankton communities.  709	

The 2S-SOM method is efficient and rapid as soon as the calibration is done, since it uses elementary 710	

algebraic operations only. The 2S-SOM method is like a piecewise regression that takes advantage of 711	

the unsupervised classification of the SOM. We decomposed the DPIG database into quite a large 712	

number of partitions (9x8=162) when comparing our study to other studies (Uitz et al, 2006, 2012). 713	

The validity of the method has been controlled through a cross validation procedure and confirmed by 714	

three qualitative studies. Statistical parameters (R2	coefficients, RMSE and P-values) of the cross-715	

validation between the DPIG in situ pigments and the pigments given by the 2S-SOM averaged for the 716	

30 2S-SOM realizations presented in table 2, show the good performance of the method. It must be 717	

noticed that the performance mainly depends on the size of the learning set used to calibrate the 2S-718	

SOM. This set must include all the situations encountered in the pigment retrieval. The larger the 719	

learning set, the better the method performs. Due to its generic character and its flexibility, the method 720	

could be used to determine a large variety of measures done with satellite remote sensing  721	

observations.  722	

In this work, the method was applied to study the seasonal variability of the fucoxanthin concentration 723	

in Senegalo-Mauritanian upwelling region. We showed a large offshore gradient of fucoxanthin, the 724	

higher concentration being situated near the shore. We were able to construct a monthly climatology 725	

for an 11-year period (1998–2009) of the SeaWiFS observations by summing the daily pixels of the 726	

month under study in a region which was poorly surveyed by oceanic cruises. The fucoxanthin 727	

concentration, and consequently the associated diatoms, present a well-marked seasonality (Figure 10). 728	

Fucoxanthin starts developing in December North of 19°N, presents its maximum intensity in March 729	

when the upwelling intensity is maximum, extends up to the coast of Guinea (12°N) in April and 730	

begins to decrease in May where it is observed north of Cabo Verde peninsula (15°N), in agreement 731	
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with the observations reported by Farikou et al, (2015) and Demarcq and Faure, (2000). The UPSEN 732	

campaign results endorse the validity of the study of the Senegalo-Mauritanian upwelling region done 733	

with the 2S-SOM. 734	
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ANNEX 1 922	

 923	

A1  Cost function of the SOM 924	

Let us recall the following notation: 925	

	𝑫 = {𝒛O,⋯ , 𝒛0, ⋯ , 𝒛Q} the dataset composed of 𝐾 vectors 𝒛0	𝜖	ℝ3 926	

	𝑾 = {𝒘O,⋯ ,𝒘7,⋯ ,𝒘V} the set of weights 𝒘7	𝜖	ℝ3where 𝐶 = 𝑝 × 𝑞 is the size of the SOM. 927	

The 𝑤7	 of the SOM are estimated by minimizing a cost function of the form  928	

 929	

								𝐽]^_` (𝜒,𝑾) = ∑ ∑ 𝐾` b𝛿c𝑐, 𝜒(𝑧0)ef‖𝑧0 − 𝑤7‖i
j×k
7lO

Q
0lO ,	 	 	 	 	 	 (A.1)	930	

where c indices the neurons of the SOM map, 𝜒 is the allocation function that assigns each element zi 931	

of 𝑫 to its referent vector 𝑤7	 which is of the form 𝜒(𝒛0) = 	argmin7‖𝒛𝑖 − 𝒘𝑐‖i, 932	

𝛿c𝑐, 𝜒(𝒛0)e			is the discrete distance on the SOM between a neuron if index 𝑐 and the neuron allocated 933	

to observation 𝒛0 , and 𝐾`a kernel function parameterized by T that weights the discrete distance on 934	

the map and decreases during the minimization process. T acts as a regularization term (Kohonen, 2001, 935	

Niang et al, 2003). In the present case KT   is of the form : 936	

𝐾`(𝛿) = (1 𝑇)𝐾(𝛿/𝑇)⁄ , where K is the gaussian function of mean 0 and standard deviation 1. 937	

The cost function (A.1) takes into account the proper inertia of the partition of the data set D and 938	

ensures that its topology is preserved. 939	

 940	

A2  Definition of the Algorithm 2S-SOM 941	

The 2S-SOM algorithm is an extension of the Self-Organizing maps (SOM, Kohonen, 2001) based on 942	

the K-mean method (Ouattara et al., 2014,	 https://www.theses.fr/179489704). It automatically 943	

structures the variables having some common characters into conceptually meaningful and 944	

homogeneous blocks during the learning phase. The 2S-SOM takes advantage of this structuration of 945	

D and the variables into 𝐵 different blocks, which permits an automatic weighting of the influence of 946	

each block and consequently of each variable in the classification phase. The 2S-SOM is based on a 947	

modification of the cost function of the SOM algorithm. For a neuron of index c, we define the weights 948	

𝛼78	of each block b (b = 1, ..., B) and the weights 𝛽78x of the variables j (j = 1 , ..., Pb) in this block, 949	

where Pb  is the number of variable in the block indexed by b. The vectors of weighs are denoted 950	

𝜶 = {𝛼78}Oz7zV,Oz8z{ and 𝜷 = {𝛽78x}Oz7zV,Oz8z{,Ozxz}~  951	

The new cost function is:  952	
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𝐽i]�]^_` (𝜒,𝑾, 𝜶,𝜷) = ∑ b∑ b∑ 𝛼78�0∈� 𝐾` b𝛿c𝑐, 𝜒(𝑧0)ef𝑑��~(𝑖) + 	𝐽78f
{
8lO + 𝐼7f7 ,	  (A.2) 953	

with 954	

𝑑��~(𝑖) = ∑ 𝛽78x
}~
xlO (𝑧08

x − 𝑤08
x )i,         (A.3) 955	

where c indices the neurons of the 2S-SOM map.  956	

under the two constraints: 957	

� 𝛼78 = 1;
{

8lO
𝛼78 ∈ [0,1]	∀𝑐, 1 ≤ 𝑐 ≤ 𝐶																																											(A. 4) 958	

and 959	

� 𝛽78x = 1;
}~

xlO
𝛽78x ∈ [0,1],∀𝑐, 1 ≤ 𝑐 ≤ 𝐶;∀𝑏, 1 ≤ 𝑏 ≤ 𝐵. 960	

𝐼7 and 𝐽78 are used to regularize the weights a and b. They are defined as negative entropies weighted 961	

by 𝜇 for the blocks and 𝜂 for the variables of each block 962	

 963	

𝐼7 = 𝜇� 𝛼78𝑙𝑜𝑔(𝛼78)
}~

8lO
																																																																													(A. 6) 964	

and 965	

𝐽78 = 𝜂� 𝛽78x𝑙𝑜𝑔c𝛽78xe
{

xlO
																																																																								(A. 7) 966	

The topological conservation properties of 2S-SOM are influenced by the weights αcb and bcbj in the 967	

classification through the hyper-parameters µ, η and the neighborhood parameter T. 968	

The weights αcb and βcbj respectively indicate the relative importance of blocks and variables in the 969	

neurons. Thus, the greater the weight of a block b or a variable j, the more the block or the variable 970	

contributes to the definition of the class (or neuron) in the sense that it makes it possible to reduce the 971	

variability of the observations in the cell and in its close neighborhood. For a high value of η and a 972	

fixed one for µ, the βcbj in a block are equal to 1/Pb. In this case, only the blocks are modified according 973	

to their capacity to define the neurons. In this context, the 2S-SOM then makes possible to weight the 974	

different blocks for each neuron 975	
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- For high values of µ, Ic is large. The minimization of Jcb forces all its coefficients to become 976	

equal. For a fixed value of η, the αcb associated with the blocks are all equal to 1/B. In this case, 977	

only the βcbj of the variables inside the blocks weight the neurons 978	

- When µ and η tend to very large values, the blocks are equiprobable as well as the variables. 979	

Thus, the 2S-SOM algorithm is comparable to the SOM. 980	

 981	

A3 How the 2S-SOM algorithm works: 982	

For fixed µ and η, the learning of the 2S-SOM algorithm is as follows: 983	

- Step 0: Initialization with iteration of the algorithm SOM, by setting α and β to homogeneous 984	

values.  985	

The optimization of  𝐽i]�]^_`  is carried out through an iterative process composed of three steps (1, 2, 986	

and 3) presented below. 987	

- Step 1: The wc referents, the weights α and β are known and fixed, the observations are assigned 988	

to the neurons by respecting the assignment function: 989	

𝑐(𝑧𝑖) = 𝜒(𝑧0) = arg	min7∈V ��𝐾`c𝛿(𝑟, 𝑐)e ��𝛼78𝑑��~(𝑖)
{

8lO

�
$∈V

�							(A. 8) 990	

 991	

- Step 2: Updating the neuron centers (the wc referents) according to the formula of the SOM 992	

algorithm. 993	

 994	

- Step 3: the assignment function and the referents wc being fixed, α and β are determined 995	

according to the equations (A.9, A.10, A.11, A.12), by minimizing the cost function 996	

𝐽i]�]^_` 	with respect to α and β under the constraints (A.4) and (A.5). 997	

𝛼78 =
exp b−𝜓78𝜇 f

∑ exp b−𝜓78𝜇 f{
8lO

																																																																																					(A. 9) 998	

with 999	

𝜓78 = � 𝐾`c𝛿(𝜒(𝑧0), 𝑐)e𝑑��~(𝑖)
�0∈�

																																																																		(A. 10) 1000	

and  1001	
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𝛽78x =
exp ¡

−𝛷78x
𝜂 £

∑ exp ¡
−𝛷78x
𝜂 £j~

8lO

																																																																																	(A. 11) 1002	

with  1003	

𝛷78x = � 𝛼78𝐾`(𝜒(𝑧0), 𝑐)(𝑧08
x − 𝑤78

x )i
�0∈�

																																																					(A. 12) 1004	

 1005	

This algorithm is repeated by sampling the hyper-parameters µ and η until convergence.  1006	

Finally, at the convergence, the 2S-SOM provides on the one hand a topological map allowing to 1007	

visualize the data, and on the other hand a weight system for the neurons of the map allowing us to 1008	

interpret the role of the different variables and to choose those that are the most significant for the 1009	

classification and to neutralize those which are the least significant.  1010	

  1011	
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FIGURE CAPTION 1012	
	1013	
 1014	
 1015	
Figure 1 : Mauritania and Senegal coastal topography.  The land is in brown and the ocean depth is 1016	
represented in meters by the color scale on the right side of the figure. The UPSEN stations are shown 1017	
at the bottom left cartoon of the figure. 1018	
 1019	

Figure 2 : Geographic positions of the 515 in situ and satellite collocated measurements of the DPIG 1020	
database. 1021	
 1022	

Figure 3: Dispersion diagram of DPIG chl-a computed from the SeaWiFS observations using the 1023	
OC4V4 algorithm versus in situ chl-a. The coefficient of vraisemblance R2 and the RMSE (Root Mean 1024	
Square Error) were computed in mg m-3 1025	
 1026	

Figure 4: Flowchart of the method: top panel - Learning phase; bottom panel – operational phase 1027	
which consists in pigment retrieval and the determination of the 𝛼78 block parameters. 1028	
 1029	

Figure 5 : Flowchart of the cross-validation procedure for 30 partitions of the DPIG database. 1030	

 1031	

Figure 6 : 2S-SOM Map.  From left to right and top to bottom, values of the referent vectors for 𝜌#(490), 1032	
Ra(490), SeaWiFS chl-a, and fucoxanthin, peridinin, divinyl Ratios.  The number in each neuron 1033	
indicates the amount of DPIG data captured at the end of the learning phase, the values indicated by 1034	
the color bars are centered-reduced and non-dimensional values. 1035	
 1036	

Figure 7: 2S-SOM map.  Weights (𝛼78) of the four block parameters determined at the end of the 1037	
learning phase; from left to right and top to bottom: 𝜌#, 𝑅𝑎, Pigment, SeaWifs chl-a.  The color bars 1038	
show the % of the weight estimated by 2S-SOM, a value of 1 or 0 indicating that the data in the neuron 1039	
are assembled with respect to that block only. 1040	
 1041	

Figure 8 : A) chl-a concentration, (B) fucoxanthin ratio, (C) aerosol optical thickness, (D) peridinin 1042	
for 1 January 2003. Panels (B) and (D) show that a second-order information was retrieved, which is 1043	
correlated with the chl-a concentration (A) but not equivalent. The aerosol optical thickness (C) does 1044	
not seem to contaminate the estimated parameters (fucoxanthin and peridinin ratios). 1045	
 1046	

Figure 9 : SST for 2 January 2003.  Note the well-marked upwelling (cold temperature) north of 13°N. 1047	
 1048	

Figure 10 : (A) chl-a concentration, (B) fucoxanthin ratio, (C) aerosol optical thickness, (D) peridinin 1049	
for 6 January 2003. Panels (B) and (D) show that a second-order information was retrieved, which is 1050	
correlated with the chl-a concentration (A) but is not equivalent. It is found that the aerosol optical 1051	
thickness (C) does not contaminate the estimated parameters (fucoxanthin and peridinin ratios). 1052	
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 1053	

Figure 11 : (A)  chl-a concentration,  (B)  fucoxanthin ratio,  (C)  aerosol optical thickness,  1054	
(D)  Peridinin for 28 February 2003.  Panels (B) and (D) show that a second order information was 1055	
retrieved, which is correlated with the chl-a concentration (A) but is not equivalent.  It is found that 1056	
the aerosol optical thickness (C) does not contaminate the estimated parameters (fucoxanthin and 1057	
peridinin ratios). The position of the NSB and OFB boxes are figured out by black square boxes. 1058	
 1059	
Figure 12 : Reflectance spectra (in blue) captured the 28 February by six neurons whose referent 1060	
vector spectra are in yellow: top line, for pixels in the NSB region (long. [-20°, -18°], lat. [12°, 1061	
14°]); bottom line, for pixels in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 1062	
	1063	
Figure 13   Box plot of the weights of the selected neurons during the decoding of the 28 February 1064	

data. From left to right, weights of blocks B1, B2, B3, B4. Top panel, in the NSB region (long. [-20°, 1065	
-18°], lat. [12°, 14°]); bottom panel, in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 1066	
	1067	
Figure 14 : Monthly fucoxanthin concentration averaged for an 11- years (1998-2009) for December 1068	
(A), March (B) and May (C). 1069	
	1070	
Figure 15 : .  chl-a (in blue) and fucoxanthin (in green) concentrations for near-shore pixels (in the 1071	
NSB region). 1072	
 1073	
Figure 16 : For ship stations 1, 2, 3, 5a and 5b, we show  the averaged spectrum of the in situ 1074	
spectra of the UPSEN stations in blue; the spectrum of the referent vector (in red) of the 2S-SOM 1075	
neuron, which has captured the closest satellite observations to the UPSEN station; among the 1076	
different spectra constituting the referent spectrum, the spectrum of the learning database (DGIP) 1077	
that is the closest to the averaged satellite spectra is shown in black. In the rectangular cartoons, we 1078	
show the position of the UPSEN station, the number of the neuron of the 2S-SOM which has 1079	
captured the satellite observation, the Rfuco of the referent vector, the RfucoDGIP of the closest DGIP 1080	
and the in situ RfucoUPSEN. 1081	
 1082	
 1083	
Table Caption 1084	
 1085	
Table 1 : Pigments of the DPIG and their statistical characteristics: STD (Standard Deviation), MIN  1086	
(minimum value), MAX (maximum value). 1087	
 1088	
Table 2 : Statistical parameters (R2 coefficients, RMSE and P-values) of the cross validation between 1089	
the DPIG in situ pigments and the pigments given by the 2S-SOM averaged for the 30 2S-SOM 1090	
realizations 1091	
 1092	
Table 3 : For ship stations 1, 2, 3, 5a and 5b of the UPSEN campaign, we show the referent captured 1093	
by the VIIRS observations, the fucoxanthin-ratio associated with this referent (Rfuco-2S-SOM), the 1094	
fucoxanthin-ratio of the closest DPIG fucoxanthin-ratio captured by the neuron of the referent and the 1095	
fucoxanthin-ratio measured in situ during the UPSEN campaign. 1096	
 1097	
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Code/data availability  1105	

The satellite data (ocean color and SST) are available at the web site:  1106	

 http://poacc.locean-ipsl.upmc.fr/. 1107	

The DPIG data base was kindly provided by Dr. S. Alvain (Severine.alvain@univ-littoral.fr) 1108	

The UPSEN data are available at : alban.lazar@locean-ipsl.upmc.fr 1109	

The 2S-SOM code is available on request at:  carlos.mejia@locean-ipsl.upmc.fr 1110	

 1111	

 1112	

Short summary 1113	

The paper is a contribution to the study of the phytoplankton pigment climatology from satellite 1114	

ocean colour observations in the Sénégalo-Mauritanian upwelling, which is a very productive region 1115	

where in situ observations are lacking. We processed the satellite data with an efficient new neural 1116	

network classifier. We were able to provide the climatological cycle of diatoms. This study may have 1117	

an economic impact on fisheries thanks to a better knowledge of phytoplankton dynamics.  1118	
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