
Answers to reviewer n°1 
 
We first thank the reviewer for his helpful comments and suggestions that have helped us to 
improve the manuscript. In the following, we answer point by point using the following 
convention: 
The reviewer comments are in italic 
Our answers are in standard typo 
The changes we made according to the recommendation of reviewer 1 of are in yellow in the 
track document. 
 
1. The introduction can be written in a much more accurate way. I would check it phrase by 
phrase and sentence by sentence.   
We rewrote the introduction taking into account the remarks of the reviewer 
 
1.1. Line 50-52 For example, one limitation of microscopy is the difficulty in indentifying 
picoplankton  
1.2. The optical microscopy method is developing, for example the imaging flow cytometry 
(IFC). 
We rewrote these lines: “Microscopy is time-consuming and is unable to identify picoplankton. 
Imaging flow cytometry (IFC) has renewed microscopic methods, thanks to the speed at which 
they are able to characterize phytoplankton in a water sample (IOCCG report n°15, 2014)”. 
(Lines 49-52 in the revised version). 
 
1.3. Line 54-55: Mind the use of the terms PSC and PFT. PFT depends on how you define it. 
PSC is also a type of PFT definitions. 
Pigments allow estimating phytoplankton groups but not phytoplankton species. We withdrew 
this statement in the text. 
 
 1.4. Line 57-60: the conversion formula method is the so-called "Diagnostic Pigment 
Analysis". CHEMTAX uses matrix factorization to estimate PFT from pigments. 
We mentioned the so-called “Diagnostic Pigment Analysis” line 57 
1.5. Line 60: I am not sure with just marker pigments themselves the identification of 
phytoplankton can be achieved in species level. 
We agree and we, therefore, modified the text of the revised version  
 
1.6. In summary, please check IOCCG report 15 and related literature carefully. 
According to comments n°3, 4, 5, 6 we rewrote these lines which are now (Lines 52-61 in the 
revised version) taking into account the material in the IOCCG report 15: 
“An alternative method is the analysis of seawater samples by high-performance liquid 
chromatography (HPLC) which is widely used to categorize broad phytoplankton groups such 
as PFT or PSC (Jeffreys et al, 1997, Brewin et al, 2010, Hirata et al, 2011). HPLC enables 
identification of 25 to 50 pigments within a single analysis, which is much easier and faster to 
conduct than microscopic observations. Each phytoplankton group is associated with specific 
diagnostic pigments and a conversion formula can be derived to estimate the percentage of each 
group from the pigment measurements (Vidussi et al, 2001; Uitz et al, 2010). HPLC 
measurements are now recognized as the standard for calibrating and validating satellite-
derived chlorophyll-a concentration and for mapping groups of phytoplankton (IOCCG report 
n°15, 2014)”.  
 
 



 
 
 

2- 
 
2. Lines 139-140 Match-up procedure can be more detailed, for example, by adding the criteria 
of refusing data points and the reason why you choose 20km 
We rewrote these lines in the revised version of the manuscript (lines 138-151) 
“Matchup procedure between in situ and satellite observation is a crucial question to estimate 
remote sensing algorithms. If the parameters of the procedure are too severe, the number of 
collocated data is dramatically decreasing. If the parameters are too large, the accuracy of the 
matching is decreasing. We then chose some compromise. Usually, people use a matchup 
window of 3X3 pixels (Alvain et al, 2005) which corresponds to a distance somewhat less than 
20km between the satellite pixel and in situ measurement since we deal with level 3 satellite 
observations whose pixel is of the order of 9X9km. This criterium refers to the typical length 
of ocean variability (Levy et al, 2012; Levy, 2003)”  
 
3. Lines 150-160 and Figure 3. Please use more statistical metrics in addition to R-square and 
RMSE according to Brewin et al 2015. Please specify whether they are calculated in log scale 
or not. Brewin, Robert JW, et al. "The Ocean Colour Climate Change Initiative: III. A round-
robin comparison on in-water bio-optical algorithms." Remote Sensing of Environment 162 
(2015): 271-294  
Brewin et al (2015) give a large variety of statistical parameters because they compare a large 
number of models whose performances are close together, which implies the use of several 
criteria to separate them. In the present study, we only need to estimate the quality of our model, 
which can be done by standard statistical parameters as usual.  
Concerning the pigment concentrations, the statistical tests were done in mg.m-3. We included 
this information in the text (lines 181-183).  
 
In figure 3, we present the regression line between Chla- given by OC4V4 and in situ chl-a. 
The data are given in mg.m-3 and the statistical estimators were computed in mg.m-3 but the 
scale in figure 3 is log scales. 
 
4. Lines 288-289: you have said the same as Line 264-265.  
We insist on that point because it constitutes the original component of 2S-SOM. 
 
4. Table 2: often these statistics are done on log(pigments) - given their distribution and 
expected errors. 
Our strategy is to compute the statistical parameters in the physical space as most statisticians 
do and as did Brewin et al (2015) to facilitate the interpretation. The concentration values are 
normalized during the learning procedure of the SOM.  
 
5. Line 402: Unfortunately, it cannot be concluded that diatoms dominated because of high 
Fuco ratio and chl-a, without additional information on phytoplankton groups using e.g. 
microscopy. 
We do not have concomitant microscopy measurements. When analyzing the referent vectors 
presented in Fig 6, we strongly think that the bottom right region representing the neurons of 
the 2S-SOM may correspond to diatoms since high fucoxanthin is associated with high 
chlorophyll concentration and low peridinin. Besides, it is seen in Figures 8, 10 and 11 that high 
fucoxanthin geographical regions are situated near the coast where diatoms were observed in 



previous studies (Farikou et al., 2015; Blasco et al., 1980) while high peridinin geographical 
regions are situated in offshore regions. We changed our previous sentence in:  
‘Moreover, the bottom right region in the 2S-SOM may correspond to the diatoms with good 
confidence since high fucoxanthin is associated with high chlorophyll concentration and low 
peridinin. This is endorsed in section 5 by looking at the geographical location of the different 
pigment concentrations (figures 8, 10, 11)’. (Lines 352-356 of the revised version)  
 
6. Please spell MLP out in the Discussion section.  
MLP stands for Multi LayerPerceptron, it has been added on line 596  
 
7. Line 649-654: Can you summarize why SOM needs fewer data points than MLPs and other 
supervised learning? Why MLP cannot be trained with a total of ∼500 data points? 
This is a well-known property of SOM versus MLP. The main difference between MLP and 
SOM is in the learning process: MLP is a supervised algorithm while SOM uses unsupervised 
learning. Both have to estimate a large number of weights during a learning phase; the accuracy 
of the methods depends on the dimension of the input and output spaces, the number of data 
available and the number of weights to estimate. In SOM the weights are highly regularized by 
the neighborhood function, so the number of data needed for learning is less than for the MLP. 
In the present application, the MLP would have to approximate a highly non-linear function 
from the R11 input space (the remote sensing parameters) to the R6 output space that represents 
the pigments. Due to the highly non-linearity of the function, the 515 data available for the 
learning is too small to adequately sample the R11 space of the function. On the other hand, 
SOM is not a regressor but uses automatic clustering methods and provides more robust values. 
Moreover, the topological order prevents to make errors in interpolating between two clusters.  
We think this explanation is too long to be included in the present text and out of the scope of 
the present study. It would be relevant in a Text Book or a review paper dedicated to NN. We 
propose to escape this question and to withdraw the sentence at line 650: ‘which makes MLPs 
and classical supervised learning methods unusable’ The sentence is now:  
‘We used an unsupervised neural network classification method which is an extension of the 
SOM method well adapted to deal with a small database whose elements are very 
inhomogeneous’(lines 605-607 of the revised version)  
 
8. Is it possible to clarify the minimum threshold of pigment concentration of the applicability 
of 2S-SOM? 
The minimum and maximum values of a parameter are those of the learning data base. As the 
2S-SOM has 162 neurons, the interval between the minimum and maximum values is divided 
into 162 discrete values corresponding to the values captured by the referent vector associated 
with each neuron. Classification acts as a piecewise continuous model permitting the 
achievement of complex tasks. We get these discrete values empirically only by looking at the 
different referent vectors of the SOM.  
 
 
TECHNICAL CORRECTIONS 
 
1. The country Senegal has three versions of names in the manuscript, i.e. SeÌ ˛AneÌ ˛Agalo 
(title), Senegalo (context) and Senegal (Figure 1). Please keep the consistency.  
We homogenized the spelling of Senegal in the revised version 
 
2. line 41 The word “phytoplankton” is more often used as a plural 
modified (line40, 41, 49 of the revised version)  



  
 
3. Line 42-44: mind the subscript of CO2 
modified 
 
4. lines 43-44: I have not found the information of 30% in Behrenfield et al, 2005 
We put a more appropriate reference for the rate of CO2 captured by the ocean: “Le Quéré et 
al, 2018” (line 43) 
 
5. line 48: The description "fish grazing on phytoplankton" is not accurate. The effect of 
phytoplankton on fisheries is via marine food chain, i.e. zooplankton grazing on phytoplankton 
provide food source for some fish.  
We changed the sentence as: “and fisheries with a possible effect on fish grazing on 
phytoplankton via the marine food chain” (line 46-47 of the revised version) 
 
6. Line 56: Please add the citation: Sosik, H.M.; Sathyendranath, S.; Uitz, J.; Bouman, H.; 
Nair, A. In situ methods of measuring phytoplankton functional types. In Phytoplankton 
Functional Types from Space. Reports of the International Ocean-Colour Coordinating Group 
(IOCCG), No. 15; Sathyendranath, S., Ed.; IOCCG: Dartmouth, NS, Canada, 2014; pp. 21–38 
Done (line 56 in the revised version) 
 
7. Line 84: use the abbreviation of "PSC". Full name is not needed  
Done  
 
8. line 86: the term "PSC percentage" is inaccurate. It is the contributions of Chla from different 
phytoplankton size classes to total Chla concentration 
We modified the sentence as: ‘ These algorithms try to establish a relationship between the chl-
a concentration and the chl-a concentration fractions associated with each of the three PSC’ 
(lines 86-88 of the revised version)  
 
9. Line 105: the colour of the land is not red. 
We changed ‘red’ into ‘brown 
 
10. Line 111: delete "a".  
11. Line 112: "systems".  
12. Line 161: "wavelengths".  
13. Please define the abbreviation of a variable before using it (e.g. Table 1 and a lot of places).  
We implemented the suggested corrections. 
 
14. lines 181-182: this not a sentence 
We modified this line which is now ‘which is defined as the ratio of the diagnostic pigment 
(DP) versus the total chl-a’.(lines 178-179 of the revised version)  
 
15.  Line 182: typo: divinyl chl-a. Did you consider chlorophyllide-a as part of Tchl-a?  
We used the definition of Alvain et al (2005), where Chl-a is part of Tchl-a   
(Tchl-a= Chl-a+ Divinyl chlorophyll-a). (line 179) 
 
16. Line 186-190: you have mentioned these in Line 113-117 
We delete the sentence in lines 186-190 
 



17. Figure 4&5: Rrs is not defined.  
Rrs stands for rw(l), we made the change in figures 4 and 5 in the revised version 
 
The manuscript has been read and corrected by a native English-speaking person  
 
 
Added references  
Levy, M., Mesoscale variability of phytoplankton and of new production: Impact of the large-
scale nutrient distribution, J. Geophys. Res., 108(C11), 3358, doi:10.1029/2002JC001577, 
2003. 
 
M. Lévy, D. Iovino, L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, K. 
Takahashi, (2012) Large-scale impacts of submesoscale dynamics on phytoplankton: Local and 
remote effects, Ocean Modelling,77–93 
 
Le Quéré et al, (2018) Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141–2194, 
2018 ; https://doi.org/10.5194/essd-10-2141-2018 
 
Sosik, H.M.; Sathyendranath, S.; Uitz, J.; Bouman, H.; Nair, A. In situ methods of measuring 
phytoplankton functional types. In Phytoplankton Functional Types from Space. IOCCG report, 
No. 15; Sathyendranath, S., Ed.; IOCCG: Dartmouth, NS, Canada, pp. 21–38, 2014.  
 
	  



Answers to reviewer n°2 
 
We first thank the reviewer for his helpful comments and suggestions that have helped us to 
improve the manuscript. In the following, we answer point by point using the following 
convention: 
The reviewer comments are in italic 
Our answers are in standard typo 
The changes we made according to the recommendation of reviewer 2 of are in turquoise in the 
track document 
 
There is a lack of comparison with controls for the reader to appreciate the advantage 
of using this new model. At the minimum, there should be more comparison betweenscewise 
the new 2S-SOM model performance scores versus the standard SOM model scores. 
[The paper would be more interesting if the performance of 2S-SOM is also compared 
against standard supervised learning models such as multi-layer perceptrons or random 
forests.] 
 
We comment on the advantages/disadvantages of the different methods in the discussion 
section (line 594-609 of the revised version). An objective comparison of the different methods 
is out of the scope of the present paper as it would considerably increase the length of the 
present paper. In fact, it would deserve a full paper (see the paper of Brewin et all (2011) 
dedicated to a comparison of the different methods and also the paper of Bracher et al, 2017, 
Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future 
Development. Front. Mar. Sci. 4:55.). Besides to be conclusive, such a comparison should be 
done on a specific region where in situ measurements are more numerous than in the present 
region. We first used a SOM and then decided to use a 2S-SOM mainly by the information 
provided by the 2S-SOM on the role of the different variables in the classification process. 
The major advantage of the 2S-SOM compared with the SOM and other classification 
methods is to partition the different variables of the dataset under study into blocks and to 
affect weights to these blocks. The block weighting facilitates the clustering procedure by 
favoring the taking into account of the most pertinent variables.  This method is related to the 
research area developed in statistics under the designation of clusterwise method (Parson et all 
2004; Kriegel et all 2009) 
 

Parsons L, Haque E et Liu H : Subspace clustering for high dimensional data : a review. 
SIGKDD Explor. Newsl., pages 90105, 2004. ISSN 1931-0145. 73, 74, 80 
Kriegel H.-P, Kröger P et Zimek A : Clustering high-dimensional data : A survey on 
subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. 
Knowl. Discov. Data, 3(1):1 :11 :58, mars 2009. ISSN 1556-4681. 37, 73, 74, 80 

 
A high weight affected to a block means that the associated variables play a major role in the 
classification process; a small value means that the associated variable plays a minor role:  this 
information is of importance to identify the variables which control the process under study. 
Besides the block weighting provides useful information on the functioning of the classification 
by permitting to identify the variables which control it and allows us to better understand the 
dynamics of the phytoplankton communities. This is discussed in lines 371-376 of section 4-2 
Analysis of the topology of the 2S-SOM corresponding to the analysis of figure 7 showing 
the different weights affected to the neurons of the 2S-SOM also in lines 494-509 of section 5 
corresponding to the analysis of figure 13, and in line 622-627 of the discussion section. 
Moreover, we added the block weights 𝛼 as an output of 2S-SOM in figures 4 and 5 



On line 321, the choice of the elongated 2-dimensional grid of 9x18 is not obvious. Why is a 
more square grid (e.g. 12x12, 12x13 or 13x13) not used? 

The size of the map has been determined (line 275-276, added in the new version), by using the 
SOM software 
http://www.cis.hut.fi/projects/somtoolbox/download/,  assuming that the size of SOM and 2S-
SOM depend on the same criteria. We also checked other grid configuration and found that the 
most efficient is the 9x18 neurons 
 
The paper is very hard to read as there is a tendency to present many undefined symbols all at 
once, with the symbols remaining undefined until much later in the paper. For instance, Eq.(5) 
introduces a large number of symbols and terms all at once. The “block” is not explained in a 
concrete way until the next section (Sect. 3.3), so I had a misconception on how the data were 
blocked when reading Sect. 3.2. A much more logical order of presentation is to present the 
concept of blocking variables first, and try to explain as many of the symbols coming up in 
Eq.(5) before actually presenting the equation. Also around Eq.(5), there are numerous typos 
and inconsistent fonts (as listed later in this review). 
We have rewritten the sections 3.1 and 3.2 describing the functioning of the SOM and 2S-SOM. 
We put in Annex the mathematical description of that functioning. In the main text, we only 
describe the principle of the functioning of the 2S-SOM. 
We now explain all the symbols we used. The blocks are described in the main text (lines 255-
260) before the explanation of the functioning of the SOM and the 2S-SOM, which is in Annex. 
We also focused attention on the typos 
 
Line 22-23 Thanks to . . . new method. It primarily consists in. . .” is verbose. Simplify 
to “Our new method consists of . 
done (line 22) 
 
Line 25 “carried using” should be “carried out using”. 
done (line 24) 
 
Line 69 and throughout the manuscript: Bold fonts are for vectors and matrices (see the 
journal’s manuscript preparation guidelines), but here they are often used for scalars and units. 
There are many places where the font switches back and forth between bold and Roman and 
italics (e.g. lines 248-251 and line 272). 
We carefully read the manuscript and corrected the font errors 
 
Line 151: Need a reference for the OC4V4 algorithm. 
We give a reference for the OC4V4 algorithm (O’Reilly et al, 2001) – (line 154 in the revised 
version) 
 
Line 162 The last sentence of the paragraph and Table 1 need to be moved to after line 183. 
The table is currently placed before the terms in it are defined. 
Done 
 
 
 
 
 



Line 174: How can Ra be independent of chl-a if it is divided by rho_wref which is dependent 
on chl-a? 
Ra, which is defined as rW(l) / rWREF(l, chl-a)  is the key parameter of the Physat method 
(Alvain et al, 2005, 2012). rW(l) depends on secondary phytoplankton pigments + chl-a, while 
 rWREF(l, chl-a)  depends on chl-a only. The reasoning of Alvain et al (2005) is that the ratio 
rW(l)/ rWREF(l, chl-a) depends on secondary phytoplankton only since both depend on chl-a. 
 
Line 248: W is undefined. 
W is now defined in line 230 
 
Line 254: should give a specific reference on the kernel and temperature. 
References are given in lines 930, 931 of Annex (Kohonen, 2001, Niang et al, 2003) 
 
Line 276: How were B and Pb chosen? 
These variables are defined in lines 941 and 944: B is the number of blocks (B=4) and Pb is the 
number of variables in block b. According to the definition of blocks (lines 257-262), P1= 5, 
P2= 5, P3= 5, P4= 2. 
 
Line 278: “a” should be alpha. 
Corrected (line 953 in the new version) 
 
Line 282: Eta should be beta. 
Corrected (line 953 in the new version) 
 
Figure 4: For 2S-SOM, I can see long dash, short dash, space and no space variants. 
Figure 4.  We check the pdf output corresponding the figure 4. It seems ok in the modified 
version. Perhaps there was a software problem in the conversion of the original text written in 
Word into pdf. 
 
Line 420: Last sentence of paragraph: I have trouble understanding this sentence. 
We changed this sentence and gave more explanation on the description of the 2S-SOM 
neurons. The sentence is now (Line 381-384 in the new version): 
“These neurons correspond to very small chl-a concentrations, which are estimated with large 
errors. Besides, we remark that high a values for chl-a correspond to high chl-a concentration 
values (bottom right of the chl-a panel in figure 7 and figure 6 respectively). For these cases, 
the clustering assembled data that mainly depend on chl-a concentration”. 
 
Fig.13: Top right corner is slightly chopped off. 
Done. 
 
Line 542: “a” should be alpha. 
Done. We replaced ‘a weight’ by ‘a weight a’ which is clearer (line 497 of the new version) 
 
Fig.16: I don’t understand why the black curve tends to lie closer to the blue curve than the red 
curve is to the blue curve. I would have expected the red curve to lie closer to the blue curve. I 
might have misunderstood what the curves represent – please give more detailed explanation. 
A VIIRS sensor observation is captured by a neuron of the 2S-SOM whose associated referent 
spectrum is the red curve in figure 16. This referent spectrum is the mean of the different spectra 
captured by that neuron during the learning phase.  Among these different spectra, there is one 
(black curve in figure 16) which is the closest to the UPSEN spectrum (blue curve in figure 16). 



It is expected that the black curve is closer to the blue curve than the red curve which is flattened 
due to the averaging process. We reformulated this description in the text which was not clear 
in the first version. (line 539-546). 
 
Line 639: Replace “people” with “studies”. 
Done (line 596 of the revised version). 
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ABSTRACT 19	

We processed daily ocean-color satellite observations to construct a monthly climatology of 20	

phytoplankton pigment concentrations in the Senegalo-Mauritanian region. Thanks to the difficulty of 21	

the problem, we proposed a new method. Our new method primarily consists in associating, in well-22	

identified clusters, similar pixels in terms of ocean-color parameters and in situ pigment concentrations 23	

taken from a global ocean database. The association is carried out using a new Self Organized Map 24	

(2S-SOM). Its major advantage is to allow taking into account the specificity of the optical properties 25	

of the water by adding specific weights to the different ocean color parameters and the in situ 26	

measurements. In the retrieval phase, the pigment concentration of a pixel is estimated by taking the 27	

pigment concentration values associated with the 2S-SOM cluster presenting the ocean-color satellite 28	

spectral measurements, which are the closest to those of the pixel under study according to some 29	

distance. The method was validated by using a cross-validation procedure. We focused our study on 30	

the fucoxanthin concentration, which is related to the abundance of diatoms. We showed that the 31	

fucoxanthin starts to develop in December, presents its maximum intensity in March when the 32	

upwelling intensity is maximum, extends up to the coast of Guinea in April and begins to decrease in 33	



	
	

	

2	

May. The results are in agreement with previous observations and recent in situ measurements. The 34	

method is very general and can be applied in every oceanic region. 35	

 36	

 37	

1 - INTRODUCTION 38	

 39	

Phytoplankton are the basis of the ocean food web and consequently drive the ocean productivity. 40	

They also play a fundamental role in climate regulation by trapping atmospheric carbon dioxide (CO2) 41	

through gas exchanges at the sea surface, and consequently lowering the rate of anthropogenic increase 42	

in the atmosphere of CO2 concentration by about 25% (Le Quéré et al, 2018). With the growing interest 43	

in climate change, one may ask how the different phytoplankton populations will respond to changes 44	

in ocean characteristics (temperature, salinity, acidity) and nutrient supply, which presents an 45	

important societal impact with respect to both climate and fisheries, with a possible effect on fish 46	

grazing phytoplankton via the marine food chain.  47	

Methods for identifying phytoplankton have greatly progressed during the last two decades. 48	

Phytoplankton were first described by microscopy. Microscopy is time consuming and is unable to 49	

identify picoplankton. Imaging flow cytometry (IFC) has renewed microscopic methods, thanks to the 50	

speed at which they are able to characterize phytoplankton in a water sample (IOCCG report n°15, 51	

2014). An alternative method is the analysis of seawater samples by high-performance liquid 52	

chromatography (HPLC) which is widely used to categorize broad phytoplankton groups such as PFT 53	

or PSC (Jeffreys et al, 1997, Brewin et al, 2010, Hirata et al, 2011). HPLC enables the identification 54	

of 25 to 50 pigments within a single analysis, which is much easier and faster to conduct than 55	

microscopic observations (Sosik, H.M et al, 2014). Each phytoplankton group is associated with 56	

specific diagnostic pigments, and a conversion formula, the so-called “Diagnostic Pigment Analysis” 57	

can be derived to estimate the percentage of each group from the pigment measurements (Vidussi et 58	

al, 2001; Uitz et al, 2010). HPLC measurements are now recognized as the standard for calibrating 59	

and validating satellite-derived chlorophyll-a concentration and for mapping groups of phytoplankton  60	

(IOCCG report n°15, 2014). 61	

The use of satellite ocean color sensor measurements has permitted to map the ocean surface at a daily 62	

frequency. Satellite sensors measure the sunlight, at several wavelengths, backscattered by the ocean. 63	

The downwelling sunlight interacts with the seawater through backscattering and absorption in such a 64	

manner that the upwelling radiation transmitted to the satellite (‘water-leaving’ reflectance) contains 65	

information related to the composition of the seawater. The light transmitted to the satellite depends 66	



	
	

	

3	

on the phytoplankton cell shape (backscattering), its pigments (absorption), the dissolved matter (e.g. 67	

CDOM).  68	

This upwelling radiation, the so-called remotely sensed reflectance rw(l),	is determined by the spectral 69	

absorption a and backscattering (bb (m-1)) coefficients of the ocean (pure water and various particulate 70	

and dissolved matters) using the simplified formulation (Morel and Gentili, 1996): 71	

	72	

	 rw(l)	=	G	bb	(l)/(a(l)	+	bb(l))	 (1)	73	

	74	

where (a (m-1) ) is the sum of the individual absorption coefficients of water, phytoplankton pigments, 75	

colored dissolved organic matter, and detrital particles, (bb (m-1) ) depends on the shape of the 76	

phytoplankton species. G is a parameter mainly related to the geometry of the situation (sensor and 77	

solar angles) but also to environmental parameters (wind, aerosols). 78	

In the open ocean far from the coast (in case-1 waters), the light seen by the satellite sensor mainly 79	

contains information on phytoplankton abundance and diversity. Ocean-color measurements have 80	

been first used intensively to estimate chlorophyll-a concentration (chl-a in the following) in the 81	

surface waters of the ocean, marginal seas and lakes. (Longhurst et al., 1995; Antoine et al., 1996; 82	

Behrenfeld and Falkowski, 1997; Behrenfeld et al., 2005; Westberry et al., 2008).  83	

It has been shown that it is also possible to extract additional information such as phytoplankton size-84	

classes (PSC) by using some relationship between chlorophyll concentration and PSC (Uitz et al., 2006; 85	

Ciotti and Bricaud, 2006; Hirata et al., 2008; Mow and Yoder, 2010). These algorithms try to establish 86	

a relationship between the chl-a concentration and the chl-a concentration fractions associated with 87	

each of the three PSC. Some of them (Uitz et al, 2006; Aiken et al., 2009) break-down the chl-a 88	

abundance into several ranges for each of which a specific relationship is computed. Others (Brewin 89	

et al, 2010; Hirata et al, 2011) are based on a continuum of chl-a abundance. Studies have also been 90	

done to estimate the phytoplankton groups (PFT) by taking into account spectral information 91	

(Sathyendranath et al., 2004, Alvain et al., 2005, 2012; Hirata et al., 2011; Ben Mustapha et al, 2013; 92	

Farikou et al, 2015). This is of fundamental interest to the understanding of the phytoplankton behavior 93	

and to modeling its evolution. 94	

Due to highly non-linear relationship linking the multispectral ocean color measurements with the 95	

pigment concentrations, we proposed a neural network clustering algorithm (2S-SOM) able to deal 96	

with multi variables linked by complex relationships. The 2S-SOM algorithm is well adapted to this 97	

complex task by weighting the different inputs. The clustering algorithm was calibrated on a restricted 98	

database composed of remote sensed observations co-located with measurements taken in the global 99	

ocean. 100	
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In the present paper, we propose the retrieval of the major pigment concentrations from satellite ocean 101	

color multi-spectral sensors in the Senegalo-Mauritanian upwelling, which is an oceanic region off the 102	

coast of West Africa where a strong seasonal upwelling occurs (Figure 1).  103	

 104	

 105	
Figure 1: Mauritania and Senegal coastal topography.  The land is in brown and the ocean depth is 106	
represented in meters by the color scale on the right side of the figure. The UPSEN stations are shown 107	
at the bottom left cartoon of the figure. 108	
 109	

 110	

The Senegalo-Mauritanian upwelling is one of the most productive eastern boundary upwelling 111	

systems (EBUS) with strong economic impacts on fisheries in Senegal and Mauritania. Since the 112	

region has been poorly surveyed in situ, we have chosen to extract pertinent biological information 113	

from ocean-color satellite measurements. The region has been intensively studied by analysis of 114	

SeaWiFS ocean-color data and AVHRR sea-surface temperature as reported in Demarcq and Faure 115	

(2002), Sawadogo et al. (2009), Farikou et al. (2013, 2015), Ndoye et al, (2014) and more recently by 116	

Capet et al, (2017) with in situ observations.  117	

The paper is articulated as follows: in section 2, we present the data we used (in situ and remote sensing 118	

observations). The mathematical aspect of the clustering method (2S-SOM) is detailed in section 3. In 119	

section 4 we present the methodological results. The spatio-temporal variability of the fucoxanthin and 120	

chl-a concentration in the Senegalo-Mauritanian upwelling region are presented in section 5, as well 121	

as the results of the oceanic UPSEN campaigns. In section 6 we discuss the results and the method. A 122	

conclusion is presented in section 7.  123	
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2- MATERIALS 124	

 125	

In this study we used three distinct datasets: the first was used to calibrate the method, the second to 126	

conduct a climatological analysis of the Senegalo-Mauritanian upwelling region and the third was 127	

obtained during the oceanographic UPSEN campaign. These datasets are composed of satellite remote 128	

sensing observations and in-situ measurements. 129	

 130	

2.1 The calibration data base (DPIG) 131	

The calibration database (DPIG) comprises in situ pigment measurements co-located with satellite 132	

ocean-color observations done by the SeaWiFS (Sea-viewing, Wide-Field-of-view Sensor).  133	

This DPIG is composed of 515 matched satellite observations and in situ measurements made in the 134	

global ocean (mainly in the North Atlantic and the equatorial ocean; Ben Mustapha et al., 2014). The 135	

match-up criteria were quite severe: we used satellite pixel situated at a distance less than 20km from 136	

the in situ measurement in a time window of +/- 12h. The geographic distribution of the 515 coincident 137	

in situ and satellite measurements is shown in Fig. 2. Matchup procedure between in situ and satellite 138	

observation is a crucial question to estimate remote sensing algorithms. If the parameters of the 139	

procedure are too severe, the number of collocated data is 140	

 141	

 142	
 143	

Figure 2: Geographic positions of the 515 in situ and satellite collocated measurements of the 144	
DPIG database. 145	

 146	

dramatically decreasing. If the parameters are too large, it is the accuracy of the matching, which is 147	

decreasing. We accordingly chose some compromise. Usually people use a matchup window of 3X3 pixels 148	
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(Alvain et al, 2005) which corresponds to a distance less than 20km between the satellite pixel and in 149	

situ measurement, since we deal with level 3 satellite observations whose pixel is of the order of 9X9km. 150	

This criterium refers to the typical length of ocean variability (Levy et al, 2012; Levy, 2003) 151	

 152	

In Figure 3 we present the R2 coefficient between the in situ chl-a a and the SeaWiFS chl-a a computed 153	

by using the OC4V4 algorithm (O’Reilly et al, 2001) for the DPIG collocated observations. We remark 154	

that the two measurements are in good agreement at global scale. Each data of DPIG is a vector 155	

 156	

 157	

 158	
 159	

Figure 3: Dispersion diagram of DPIG chl-a computed from the SeaWiFS observations using the 160	

OC4V4 algorithm versus in situ chl-a. The coefficient of vraisemblance R2 and the RMSE (Root Mean 161	

Square Error) were computed in in mg m-3 162	

 163	

having 17 components	(five ocean reflectance (rw(l)	and Ra(l)	at five wavelengths (412, 443, 490, 164	

510 and 555nm), SeaWiFS chl-a, five in situ pigment ratios and  in  situ chl-a concentration). The in 165	

situ chl-a a concentration ranges between 0.007 and   3. mg m-3 (see Table 1).  166	

The five Ra(l) are defined following Alvain et al, (2012 : 167	

Ra(l)	=	rW(l)/ rWref(l, chl-a)	 	 	 	 	 (2)	168	

where the parameter	𝜌"#$%(𝜆, 𝑐ℎ𝑙,)	is an average reflectance depending on the chl-a concentration only 169	

which was computed according to the procedure reported in Farikou et al, 2015. Ra(l) is a non-170	
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dimensional parameter which is independent of the chl-a abundance and sensitive to the secondary 171	

pigments only (Alvain et al , 2012).  172	

 173	

The DPIG database thus provides information on the existing links between the pigment composition 174	

and the SeaWiFS measurements. The pigment composition are defined by the pigment ratios which 175	

are non-dimensional variables of the form in the present study: 176	

Pigment Ratio=DP/Tchl-a        (3) 177	

which is defined as the ratio of the diagnostic pigment (DP) versus the total chl-a  178	

(Tchl-a = chl-a +divinyl chl-a, according to Alvain et al., 2005). 179	

 180	

The pigments of the DPIG and their statistical characteristics are given in Table 1. The statistical tests 181	

presented in Figure 3 (R2 and RMSE) and in Table 1 (MEAN, STD, MIN, MAX) were computed in 182	

mg m-3. 183	

  184	

   185	
 186	

Table 1: Pigments of the DPIG and their statistical characteristics: :STD (Standard Deviation), MIN  187	
(minimum value), MAX (maximum value). 188	
 189	

2.2 The Senegalo-Mauritanian upwelling satellite data (DSAT) 190	

The satellite dataset we processed to retrieve the pigment concentration consist of five rw(l)	and	five 191	

Ra(l)	at five wavelengths (412, 443, 490, 510 and 555nm), and the SeaWiFS chl-a concentration 192	

observed in the Senegalo-Mauritanian upwelling region (8°N-24°N, 14°W-20°W; Figure 3) during 11 193	

years (1998-2009) by SeaWiFS. This data set is here below denoted DSAT.  194	

The satellite observations (rw(l)	and chl-a concentration) were provided by NASA with a resolution 195	

of nine kilometers. Due to the presence of Saharan dusts in this region, very few estimations of satellite 196	

rw(l)	and in situ chl-a were available, and some satellite estimations of chl-a could present strong over-197	

estimations (Gregg et al, 2004). For this reason, we reprocessed the rw(l)	and chl-a data with an 198	

atmospheric correction algorithm developed specifically for Saharan dust (Diouf et al, 2013,  199	

http://poac.locean-ipsl.upmc.fr) in order to improve the satellite observations. 200	



	
	

	

8	

 201	

2.3 The UPSEN database 202	

Recently, some HPLC measurements were made in the Senegalo-Mauritanian region during two 203	

oceanographic cruises (UPSEN campaigns) of the oceanographic ship “Le Suroit” from 7 to 17 March 204	

2012 and from 5 to 26 February 2013 as reported in Ndoye et al, (2014); Capet et al, (2017). The goal 205	

was to study the dynamics and the biological variability of the Senegalo-Mauritanian upwelling. 206	

During these campaigns, in-situ HPLC measurements were carried out. We expected to be able to co-207	

locate them with the ocean-color VIIRS (Visible Infra-red Imaging Radiometer Suite) sensor 208	

observations whose wavelengths are close to those of the SeaWiFS. Unfortunately, we were only able 209	

to process satellite observations made on 21 February 2013 due to the presence of clouds and Saharan 210	

aerosols the other days. We processed the satellite observations provided by the VIIRS sensor at four 211	

wavelengths (443, 490, 510, 555 nm) for pixels in the vicinity of the ship stations (within a distance 212	

of 20km) and observed in a time window of +/- 12h, and for which the satellite chl-a was less than      213	

3 mg m-3, which is the limit of validity of our method imposed by the range of chl-a observed in DGIP 214	

(mean of 0.52 mg m-3). Only five stations off Cabo Verde peninsula fitted these requirements (see 215	

Figure 1 for their positions). 216	

3 - THE PROPOSED METHOD (2S-SOM) 217	

Classification methods were applied for retrieving geophysical parameters from large databases in 218	

several studies including weather forecasting (Lorenz, 1969; Kruizinga and Murphy, 1983), short-term 219	

climate prediction (Van den Dool, 1994), downscaling (Zorita and von Storch, 1999), reconstruction 220	

of oceanic pCO2 (Friedrichs and Oschlies., 2009), and of chl-a concentration under clouds (Jouini et 221	

al, 2013). In the present study, we used a new neural network classifier, which is an extension of the 222	

SOM algorithms.  223	

3-1 The SOM clustering  224	

The SOM algorithms (Kohonen, 2001) constitute powerful nonlinear unsupervised classification 225	

methods. They are unsupervised neural classifiers, which have been commonly used to solve 226	

environmental problems (Cavazos, 1999; Hewitson et al, 2002; Richardson et al, 2003; Liu et al, 2005, 227	

2006; Niang et al, 2003, 2006; Reusch et al, 2007). The SOM aims at clustering vectors 𝒛/	𝜖	ℝ3of a 228	

multidimensional database 𝑫. Clusters are represented by a fixed network of neurons (the SOM map), 229	

each neuron c being associated with the so-called referent vector wc 𝜖	ℝ3  representing a cluster. The 230	

self-organizing maps are defined as an undirected graph, usually a rectangular grid of size p x q. This 231	
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graph structure is used to define a discrete distance (denoted by  𝛿) between two neurons of the p x q 232	

rectangular grid which presents the shortest path between two neurons. Each vector zi of D is assigned 233	

to the neuron whose referent wc is the closest, in the sense of the Euclidean distance: wc is called the 234	

projection of the vector zi  on the map. A fundamental property of a SOM is the topological ordering 235	

provided at the end of the clustering phase: close neurons on the map represent data that are close in 236	

the data space. The estimation of the referent vectors wc of a SOM and the topological order is achieved 237	

through a minimization process in which the referent vectors w are estimated from a learning data set 238	

(The DPIG data base in the present case).  The cost function is shown in Annex:  239	

The SOMs have frequently been used in the context of completing missing data (Jouini et al, 2013), 240	

so the projected vectors zi may have missing components. Under these conditions, the distance between 241	

a vector zi	Î	D	and the referent vectors wc of the map is the Euclidean distance that considers only the 242	

existing components (the Truncated Distance or TD hereinafter).  243	

	244	

3-2 The 2S-SOM Classifier 245	

In the present case, we used the 2S-SOM algorithm, which is a modified version of the SOM, very 246	

powerful in the case of a large number of variables. It automatically structures the variables having 247	

some common characters into conceptually meaningful and homogeneous blocks. The 2S-SOM takes 248	

advantage of this structuration of D and the variables into different blocks, which permits an automatic 249	

weighting of the influence of each block and consequently of each variable. The block weighting 250	

facilitates the clustering procedure by considering the most pertinent variables.  The vectors of DPIG 251	

defined in section 2 can be decomposed in four blocks. The essence of this decomposition in blocks is 252	

that each of the 17 components of the DPIG vectors gathered information with a different physical 253	

influence in the classification phase. The composition of each block is done as follows:  254	

First Block (B1) comprises the five pigment in-situ concentration ratios (divinyl chlorophyll-a, 255	

peridinin, fucoxanthin, 19'hexanoyloxyfucoxanthin, zeaxanthin concentration ratios). The pigment 256	

ratios are defined in Eq. 3. 257	

Second Block (B2) comprises the water-leaving reflectance rw(l)	at the five SeaWiFS wavelengths 258	

Third Block (B3) comprises the five Ra(l) , 259	

Fourth Block (B4) comprises two variables: The in situ and the SeaWiFS chl-a concentrations.   260	

 261	

The 2S-SOM is able to deal with a large quantity of variables, choosing those that are the most 262	

significant for the classification and neutralizing those which are the least significant. This is done by 263	
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estimating weights on the blocks and the variables. We fully describe the 2S-SOM algorithm in Annex. 264	

In the following we use a simplified version of 2S-SOM in which only the blocks are weighted. 	265	

 266	

3.3 The calibration phase 267	

Similarly to the standard SOM, the 2S-SOM is determined through a learning phase by using a more 268	

complex cost function (see Annex) that estimate for each neuron, in addition to the referent vector, a 269	

weight (a) for each block. For a neuron c, we define the weights 𝛼78of each block b (b = 1….4).  . 270	

At the end of the calibration phase, each element zi  of the dataset DPIG is associated with a referent 271	

wc whose components are partitioned into four blocks. In the present study, the 2S-SOM map is 272	

represented by a two-dimensional (9x18=162) grid that represents the partition of the DPIG dataset 273	

into different classes. Each class provided by the 2S-SOM is associated with a so-called referent vector 274	

wc with c Î	{1…..162}. The size of the map has been determined by using the procedure provided by 275	

the SOM software available at : http://www.cis.hut.fi/projects/somtoolbox/download/. 276	

	277	

3.4 The Pigment retrieval 278	

In the second phase, which is an operating phase, we estimated the pigment concentration ratios of a 279	

pixel 𝑃𝑋;	 from its satellite ocean-color sensor observations only. The 11 ocean color satellite 280	

observations (5 rw(l),	5	Ra(l), and chl-a ) of pixel 𝑃𝑋;	were projected onto the 2S-SOM using the 281	

Truncated Euclidian Distance (section 3.1). We select the neuron c associated with a referent vector 282	

whose the 11 ocean-color parameters are the closest to those observed by the satellite sensor. The 283	

pigment ratios of 𝑃𝑋;	are those associated with the neuron c. At the end of the assignment phase, each 284	

pixel 𝑃𝑋;	  of a satellite image is associated with a referent vector wc, which has 6 pigment 285	

concentration ratios among its 17 components. The flowcharts of the method (2S-SOM learning and 286	

pigment retrieval) are presented in Figure 4. 287	

 288	

 289	



	
	

	

11	

 290	
 291	

Figure 4: Flowchart	of	the	method:	top	panel	-	Learning	phase;	bottom	panel	–	operational	phase	292	

which	consists	in	pigment	retrieval	and	the	determination	of	the	𝛼78	block	parameters. 293	

 294	

4 - METHODOLOGICAL RESULTS 295	

 296	

4-1 Statistical validation of the method  297	

The validation of the method was focused on the retrieval of the fucoxanthin ratio, which is a 298	

characteristic of diatoms, but the same procedure could be applied to any pigment. The hyper-299	

parameter µ  (see Annex) was optimized in order to retrieve that ratio, while h was set constant since 300	

only the block were weighted in the present study. Due to the small amount of data in the DPIG, we 301	

estimated the accuracy of the fucoxanthin retrieval by a cross-validation procedure, which is a 302	

powerful procedure in statistics. The principle is the following: we learned 30 2S-SOM using 30 303	

different learning datasets Li constituted of 90% of DPIG taken at random, and then computed 304	

statistical estimator on the retrieved quantities using 30 test datasets (10% of DPIG). The algorithm 305	

was as follows:   306	

i=1 …. 30 307	

1. determination at random of a learning dataset Li (90% of DPIG) and a test dataset TLi (10% of 308	

DPIG) 309	

2. training of a 2S-SOM map Mi using Li (see section 3.2 and 3.3).  310	

3. Validation using TLi according to the procedure described in section 3.4 311	

4 Estimation of the RMSEi and R2i on TLi between the estimated and observed fucoxanthin ratios  312	

end 313	
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Computation of the mean RMSE and  R2   (𝑅2, RMSE = 1
30
∑ 𝑅2𝑖, 𝑅𝑀𝑆𝐸𝑖I=30
𝑖=1 )   314	

 315	

The flowchart of the cross-validation procedure is presented in Figure 5.    316	

 317	

 318	
 319	

Figure 5: Flowchart	of	the	cross-validation	procedure	for	30	partitions	of	the	DPIG	database. 320	

 321	

Statistical parameters (R2	coefficients, RMSE and P-values) of the cross validation between the DPIG 322	

in situ pigments and the pigments given by the 2S-SOM averaged for the 30 2S-SOM realizations, 323	

which are presented in table 2, show the good performance of the method.  324	

 325	

 326	

 327	
Table 2: Statistical parameters (R2 coefficients, RMSE and P-values) of the cross validation between 328	
the DPIG in situ pigments and the pigments given by the 2S-SOM averaged for the 30 2S-SOM 329	
realizations 330	
 331	
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 332	

4-2 Analysis of the topology of the 2S-SOM 333	

As explained in sections 3-2 and 3-3, the referent vector components (wc Î	R17 ), which are estimated 334	

during the learning phase, are partitioned in four blocks B1, B2, B3 and B4. The hyper parameters µ  335	

was tuned in order to favor the accuracy of the retrieval of the fucoxanthin ratio. We recall that all the 336	

pigment ratios are estimated during the calibration phase, but in the present paper attention was focused 337	

on the fucoxanthin ratio when selecting the parameter µ. In Figure 6, we 338	

 339	

 340	
 341	

Figure 6: 2S-SOM	Map.	 	From	left	to	right	and	top	to	bottom,	values	of	the	referent	vectors	for	𝜌"(490),	342	

Ra(490),	SeaWiFS	chl-a,	and	fucoxanthin,	peridinin,	divinyl	Ratios.		The	number	in	each	neuron	indicates	the	343	

amount	of	DPIG	data	captured	at	the	end	of	the	learning	phase,	the	values	indicated	by	the	color	bars	are	344	

centered-reduced	and	non-dimensional	values. 345	

 346	

present six of the referent vector components of the 2S-SOM map. These components are rw(490), 347	

Ra(490),	SeaWiFS chl-a, and the ratios of fucoxanthin, which is a specific diatom pigment, and of 348	
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peridinin	and		divinyl. They exhibit a coherent topological order, the components having close values 349	

being close together on the topological map. The remaining eleven components (not shown) exhibit 350	

the same coherent topological order. One can observe a very good topological order for the fucoxanthin 351	

ratio that was favored by the determination of the hyperparameter µ. Moreover, the bottom right region 352	

in the 2S-SOM map (Figure 6) may correspond to the diatoms with a good confidence since high 353	

fucoxanthin is associated with high chlorophyll concentration and low peridinin. This is endorsed in 354	

section 5 by looking at the geographical location of the different pigment concentrations (figures 8, 10, 355	

11). Another important remark is that the value of each component presents a large range of variation  356	

 357	

 358	
 359	

Figure 7: 2S-SOM	map.		Weights	(𝛼78)	of	the	four	block	parameters	determined	at	the	end	of	the	learning	360	
phase;	from	left	to	right	and	top	to	bottom:	𝜌" ,	𝑅𝑎,	Pigment,	SeaWifs	chl-a.		The	color	bars	show	the	%	of	361	
the	weight	estimated	by	2S-SOM,	a	value	of	1	or	0	indicating	that	the	data	in	the	neuron	are	assembled	with	362	
respect	to	that	block	only.	363	
 364	
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of the same order as the range of variation found in the DPIG variables. It means that the 2S-SOM 365	

map has captured most of the variability of the dataset. 366	

Figure 6 shows a strong link between the values of the referent vectors for fucoxanthin and chl-a (high 367	

fucoxanthin and chl-a values, at the bottom right of the 2S-SOM) while fucoxanthin is high and chl-a 368	

low for the referent vectors at the bottom left of the 2S-SOM. Additional information will be provided 369	

by the Ra(490) values when the fucoxanthin is less closely linked to the chlorophyll. 370	

Besides, for each neuron, the 2S-SOM provides a weight for each block (𝛼78) and each variable (bcbj ).	371	

For a given neuron c the weights (𝛼78) of the blocks are normalized, their sum being 1. A value of 1 372	

for one block (and therefore a value of 0 for the other blocks) indicates that the data in the neuron are 373	

gathered with respect to that block only because there is too much noise in the variables in the other 374	

blocks. By examining the weights on the map, one can see which block most influences the link 375	

between the satellite measurements and the pigment ratios.  376	

In Figure 7, we present the acb values estimated during the learning phase of the 4 blocks (B1, B2, B3, 377	

B4). For some neurons, only the blocks related to the reflectance and the reflectance ratio are used for 378	

the definition of the neuron, while the weights for the two other blocks (pigments and chl-a) are null, 379	

indicating that for these neurons, in situ observations and SeaWiFS chl-a are more noisy than the 380	

reflectance. These neurons correspond to very small chl-a concentrations, which are estimated with 381	

large error. Besides, we remark that high a values for chl-a corresponds to high chl-a concentration 382	

values (bottom right of the chl-a panel in figure 7 and figure 6 respectively). For these cases, the 383	

clustering assembled data that mainly depend on chl-a concentration. 384	

 385	

 386	

5 - GEOPHYSICAL RESULT 387	

 388	

In the present study, we apply the 2S-SOM (section 3), which explicitly makes a weighted use of the 389	

data according to their specificity (ocean-color signals or in situ observations) to retrieve the 390	

fucoxanthin concentration from remote sensed data in the Senegalo-Mauritanian upwelling region 391	

where in situ measurements are lacking. According to the good results of the cross-validation method 392	

as shown in section 4.1, we expect that the 2S-SOM will provide pertinent results in a region which 393	

has been poorly surveyed.   394	

 395	

 396	
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5-1 The pigment estimation from SeaWiFS observations in the Sénégalo-Mauritanian upwelling 397	

region 398	

We decoded the DSAT database (section 2-3) using the 2S-SOM for 11 years (1998-2009) of SeaWiFS 399	

data observed in the Senegalo-Mauritanian upwelling region (8°N-24°N, 14°W-20°W). This study was 400	

done according to the retrieval phase described in section 3.4. For each day, we projected the 11 401	

SeaWiFS observations (5 rw(l),	5 Ra(l) and chl-a) of each pixel 𝑃𝑋; on the 2S-SOM. At the end of 402	

the assignment phase, each pixel of a satellite image was associated with 6 pigment concentration 403	

ratios. The underlying assumption is that the link between the remote sensing information and the 404	

pigment ratios of a pixel is this provided by the selected referent wc. Thanks to the topological order 405	

provided by the 2S-SOM, we expect that the best neurons chosen during the retrieval would give 406	

accurate concentration ratios. In Figures 8, 10 and 11 we present the fucoxanthin concentration ratio 407	

restitution for three different days and the associated SeaWiFS Chlorophyll images (1 and 6 January, 408	

and 28 February 2003). Due to the limited size of the DPIG, the range of the ratio learned for the  409	

 410	

 411	

 412	

Figure 8: A) chl-a concentration, (B) fucoxanthin ratio, (C) aerosol optical thickness, (D) peridinin 413	
for 1 January 2003. Panels (B) and (D) show that a second-order information was retrieved, which is 414	
correlated with the chl-a concentration (A) but not equivalent. The aerosol optical thickness (C) does 415	
not seem to contaminate the estimated parameters (fucoxanthin and peridinin ratios). 416	
 417	
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the fucoxanthin is between 0.3% and 20% with a mean of 10% and the chl-a content is between 0.5 418	

mg m-3 and 3 mg m-3. The statistical estimator we used cannot extrapolate what has not been learned, 419	

 420	

 421	
Figure 9: SST	for	2	January	2003.		Note	the	well-marked	upwelling	(cold	temperature)	north	of	13°N.	422	

	423	

 424	

 425	

Figure 10: (A)	chl-a	concentration,	(B)	fucoxanthin	ratio,	(C)	aerosol	optical	thickness,	(D)	peridinin	for	6	426	
January	2003.	Panels	(B)	and	(D)	show	that	a	second-order	information	was	retrieved,	which	is	correlated	427	
with	the	chl-a	concentration	(A)	but	is	not	equivalent.	It	is	found	that	the	aerosol	optical	thickness	(C)	does	428	
not	contaminate	the	estimated	parameters	(fucoxanthin	and	peridinin	ratios).	429	
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and for that raison we flagged the pixels in the SeaWiFS images that have a chl-a concentration greater 430	

than 3.  mg m-3. 431	

 432	

 433	
 434	

Figure 11: (A)		chl-a	concentration,		(B)		fucoxanthin	ratio,		(C)		aerosol	optical	thickness,		(D)		Peridinin	for	435	
28	 February	 2003.	 	 Panels	 (B)	 and	 (D)	 show	 that	 a	 second	 order	 information	was	 retrieved,	which	 is	436	
correlated	 with	 the	 chl-a	 concentration	 (A)	 but	 is	 not	 equivalent.	 	 It	 is	 found	 that	 the	 aerosol	 optical	437	
thickness	 (C)	 does	 not	 contaminate	 the	 estimated	 parameters	 (fucoxanthin	 and	 peridinin	 ratios).	 The	438	
position	of	the	NSB	and	OFB	boxes	are	figured	out	by	black	square	boxes 439	
 440	

Regarding the images obtained for 1 January 2003 in the Senegalo-Mauritanian region  441	

(Fig 8A, B, C, D), we observe that the chl-a (Fig 8A) is very high at the coast and decreases offshore 442	

in accordance with the upwelling intensity as shown in the SST image (Fig 9). Moreover, we observed 443	

a persistent well-marked chl-a pattern south of the Cap Vert peninsula in form of a “W“, which is the 444	

signature of a baroclinic Rossby wave (Sirven et al, 2019).  445	

Except in the southern part of the region, the AOT (Aerosol Optical Thickness) is low, which means 446	

that the atmospheric correction of the reflectance is quite small, which gives confidence in the ocean-447	

color data products. The fucoxanthin concentration is maximum at the coast and decreases offshore as 448	

does the chl-a concentration, in agreement with the works of Uitz et al., (2006, 2010). Fucoxanthin 449	

presents coherent spatial patterns. Peridinin concentration is somewhat complementary to that of 450	
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fucoxanthin, with the low fucoxanthin concentration area corresponding to high peridinin 451	

concentration area (northern part of Figs 8B, D). This behavior is also observed in Figure 10 (6 January 452	

2003) and in Figure 11 (28 February, 2003) endorsing the analysis shown in Figure 8.  453	

For 28 February, we selected two square box regions (Fig. 11), one near the coast (NSB,  454	

long [-20°, -18°], lat [12°,14°]) and the other about 800 km offshore (OFB, long [-28°, -26°], lat 455	

[12°,14°]). NSB waters correspond to upwelling waters while OFB waters correspond to oligotrophic 456	

waters. We projected the eleven ocean color parameters of the NSB and OFB pixels on the 2S-SOM 457	

map.  458	

 459	

 460	
 461	

 462	

Figure 12: Reflectance spectra (in blue) captured the 28 February by six neurons whose referent vector 463	
spectra are in yellow: top line, for pixels in the NSB region (long. [-20°, -18°], lat. [12°, 14°]); bottom 464	
line, for pixels in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 465	
 466	

 467	

Figure 12 presents the reflectance spectra (in blue) captured by three neurons of the 2S-SOM 468	

corresponding to pixels located in the NSB region (top line) and those captured by three neurons 469	

corresponding to pixels located in the OFB region (bottom line). The reflectance spectra of the 470	

associated referent vectors w are in yellow. The satellite reflectance spectra match the referent vector 471	

spectra; moreover the fucoxanthin ratio varies inversely with the mean value of the spectrum: the 472	

higher the fucoxanthin ratio, the smaller the mean value of the spectrum. The pigment concentration 473	

is greater near the coast.  474	

We note a strong difference between the shape and the intensity of the near-shore (NSB) and offshore 475	

(OFB) spectra. The OFB spectra present mean values higher than those of the NSB spectra. This is 476	

due to the fact that NSB spectra were observed in a region where diatoms are abundant, as shown by 477	
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the high value of fucoxanthin concentration in this region (Figs 8, 10, and 11), which is a proxy for 478	

diatoms along with higher chl-a concentration. In Figure 12, we note the lower values of the coastal 479	

spectra at 443 nm, which can be interpreted as a predominant effect of spectral absorption by 480	

phytoplankton pigments and CDOM. The different spectra are close together in the OFB region and 481	

more disperse in the NSB region. This can be explained by the fact that the OFB region corresponds 482	

to Case-1 waters while the NSB region waters are close to Case-2 waters and are influenced by the 483	

variability of near shore process like turbidity or presence of dissolved matters, and dynamical 484	

instabilities.  485	

 486	

 487	
 488	

 Figure 13:   Box plot of the weights of the selected neurons during the decoding of the 28 February 489	
data. From left to right, weights of blocks B1, B2, B3, B4. Top panel, in the NSB region (long. [-20°, 490	
-18°], lat. [12°, 14°]); bottom panel, in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 491	
	492	
 493	

We analyzed the weights of the blocks for the neurons selected in the analysis of the costal (NSB) and 494	

offshore (OFB) boxes. Figure 13 presents the box plot of the weight acb corresponding to the neurons 495	

belonging to the four blocks (B1, B2, B3, B4), with the constrain that the sum of the weights of a 496	

neuron is 1; a weight a larger than 0.25 indicates the predominance of a block in the learning for the 497	

classification (see section 3.5). It is clear that the weights for pixels near the coast (Fig 13, top panel) 498	

are different from those for offshore pixels (Fig. 13, bottom panel). As already mentioned in section 499	

4.3 and also shown in Figure 7, the weights of the 2S-SOM play a significant role in the 2S-SOM 500	
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topology and consequently in the pigment retrieval. The weights of blocks B1 and B4 that take into 501	

account the influence of the pigment ratios and the chlorophyll content in the retrieval are very low for 502	

the offshore (OFB) oligotrophic region and more important for the coastal (NSB) region. The weights 503	

of the blocks B2 and B3, which take into account the influence of the reflectance (rw(l), Ra(l)), 504	

dominate for the offshore regions. In coastal waters, the weights of all the blocks are used, with a 505	

smaller influence of B3, which is associated with Ra. This gives information on the role played by the 506	

different variables on the classification in waters having different phytoplankton concentration and 507	

composition. Besides it shows the automatic adaptation of the 2S-SOM to the environment in order to 508	

optimize the clustering efficiency with respect to a classical SOM.  509	

 510	

 511	
Figure 14: Monthly fucoxanthin concentration averaged for an 11- years (1998-2009) for December 512	
(A), March (B) and May (C). 513	
 514	

In order to study the seasonal variability of the fucoxanthin concentration with some statistical 515	

confidence in the Senegalo-Mauritanian upwelling region, we constructed a monthly climatology for 516	

an 11-year period (1998–2009) of the SeaWiFS observations by summing the daily pixels of the month 517	

under study. The resulting climatology is presented in Figure 14 for December (Fig. 14a), March (Fig. 518	

14b), and May (Fig 14c), which correspond to the most productive period (Fig. 14c). The fucoxanthin 519	

concentration, and consequently the associated diatoms, presents a well-marked seasonality. 520	

Fucoxanthin starts to develop in December North of 19°N, presents its maximum intensity in March 521	

when the upwelling intensity is maximum, extends up to the coast of Guinea (12°N) in April and 522	

begins to decrease in May where it is observed north of Cabo Verde peninsula (15°N) in agreement 523	

with the observations reported by Farikou et al, (2015) and Demarcq and Faure, (2000). 524	

Figure 15 shows the fucoxanthin (in green) and the chl-a (in blue) concentrations computed from 525	

satellite observations for an 11-year period of SeaWiFS observations in the NSB region. There is a 526	

good correlation in phase between these two variables but not in amplitude (a good coincidence of 527	
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peak occurrence but weak correlation in peak amplitude) showing that the relationship between  528	

 529	

 530	
 531	

Figure 15: .  chl-a (in blue) and fucoxanthin (in green) concentrations for near-shore pixels (in the NSB 532	
region). 533	
 534	

fucoxanthin and chl-a is complex as mentioned by Uitz et al, (2006). In particular, there is a weak peak 535	

in fucoxanthin in October 2001, which is not correlated with a chl-a peak. 536	

 537	

5-2 Analysis of the UPSEN campaigns 538	

Figure 16 shows, for every UPSEN stations 1, 2, 3, 5a and 5b (see figure 1 for their geographical 539	

position), the averaged in-situ UPSEN spectrum (in blue), the referent spectrum (in red) of the 2S-540	

SOM neuron captured by the collocated satellite VIIRS sensor observations. The	referent	spectrum	541	

is	the	mean	of	the	different	spectra	captured	by	that	neuron	during	the	learning	phase.	Among	542	

these	different	spectra,	there	is	one	(black	curve	in	figure	16)	which	is	the	closest	to	the	UPSEN	543	

spectrum.	Obviously,	the	black	curve	is	closer	to	the	blue	curve	than	the	red	one	which	is	flatten	544	

due	to	the	averaging	process. These three spectra are close together showing the good functioning 545	

of the 2S-SOM.  546	

 547	
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 548	
 549	

 550	

Figure 16: For ship stations 1, 2, 3, 5a and 5b, we show  the averaged spectrum of the in situ spectra 551	
of the UPSEN station in blue; the spectrum of the referent vector (in red) of the 2S-SOM neuron, which 552	
has captured the closest satellite observations to the UPSEN station; among the different spectra 553	
constituting the referent spectrum, the spectrum of the learning database (DGIP) that is the closest to 554	
the averaged satellite spectra is shown in black. In the rectangular cartoons, we show the position of 555	
the UPSEN station, the number of the neuron of the 2S-SOM which has captured the satellite 556	
observation, the Rfuco of the referent vector, the RfucoDGIP of the closest DGIP and the in situ 557	
RfucoUPSEN  558	
 559	
 560	
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Their shapes are close to these observed in the NSB region (Figure 12) but their intensity is lower 561	

meaning that their waters are more absorbing than the NSB waters due to a higher pigment 562	

concentration. In fact, the UPSEN stations were located close to the coast (figure 1) in the Hann bight 563	

south off the Cap Verde peninsula, which is very rich in phytoplankton pigments. In table 3, we present 564	

the fucoxanthin ratios associated with the referent vectors (Rfuco2S-SOM), the closest DPIG fucoxanthin-565	

ratios captured by the neuron of the referents and the fucoxanthin-ratios measured during the UPSEN 566	

campaign. We note that the fucoxanthin ratios of the in-situ measurements are in the range of the DPIG 567	

(see table 1), which allows a good functioning of the 2S-SOM estimator. The pigment ratios obtained 568	

from ocean-color observations through the 2S-SOM are close to pigment concentrations measured at 569	

the ship stations, which confirms the validity of the method we have developed. We remark that the 570	

best 2S-SOM estimate of fucoxanthin ratio with respect to the UPSEN in-situ measurement is given 571	

at station 5b which is the farthest off the coast. These results endorse the climatological study of the 572	

Senegalo-Mauritanian upwelling region we have done with the 2S-SOM (section 5.1). 573	

 574	

 575	

 576	
 577	

Table 3: For ship stations 1, 2, 3, 5a and 5b of the UPSEN campaigns, we show the referent captured 578	
by the VIIRS observations, the fucoxanthin-ratio associated with this referent (Rfuco-2S-SOM), the 579	
fucoxanthin-ratio of the closest DPIG fucoxanthin-ratio captured by the neuron of the referent and the 580	
fucoxanthin-ratio measured in situ during the UPSEN campaign 581	
	582	
 583	

The 2S-SOM method gives pigment concentrations that are close to those obtained by in situ 584	

observations. The method could be applied to a large variety of other parameters in the context of 585	

studying and managing the planet Earth. The major constraint to obtaining accurate results is to deal 586	

with a learning data set that statistically reflects all the situations encountered in the observations 587	

processed. Due to its construction, the method cannot be used to find values beyond the range of the 588	

learning data set.  589	

  590	
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 591	

6 - DISCUSSION  592	

 593	

Machine learning methods are powerful methods to invert satellite signals as soon as we have adequate 594	

database to support the calibration. Several technics have been used for retrieving biological 595	

information from ocean color satellite observations. First, studies employed multilayer perceptrons 596	

(MLP), which are a class of neural networks suitable to model transfer function (Thiria et al, 1993). 597	

Gross et al, (2000, 2004) retrieved chl-a concentration from SeaWiFS, Bricaud et al, (2006) modeled 598	

the absorption spectrum with MLP, Raitsos et al, 2008 and Palacz et al, 2013 introduced additional 599	

environmental variables in their MLPs such as SST in the retrieval of PSC/PFT from SeaWiFS, which 600	

improved the skill of the inversion. Another suitable procedure was to embed NN in a variational 601	

inversion, which is a very efficient way when a direct model exists (Jamet et al, 2005; Brajard et al, 602	

2006a,b; Badran et al, 2008). Statistical analysis of absorption spectra of phytoplankton and of pigment 603	

concentrations were conducted by Chazottes et al, (2006, 2007), by using a SOM.  604	

In the present study, due to the fact that the learning dataset was quite small (515 elements), we used 605	

an unsupervised neural network classification method, which is an extension of the SOM method well 606	

adapted to dealing with a small database whose elements are very inhomogeneous. We clustered 607	

available satellite ocean-color reflectance at five wavelengths and their derived products, such as 608	

chlorophyll concentration, and the associated in situ pigment ratios. 609	

The major points of this study are as follows: 610	

- The clustering was carried out by developing a new neural classifier, the so-called 2S-SOM, which 611	

presents several advantages with respect to the classical SOM. As in the SOM, we defined clusters 612	

that assemble vectors, which are close together in terms of a specified distance. This classifier was 613	

learned from a worldwide database (DPIG) whose vectors are ocean-color parameters observed by 614	

satellite multi-spectral sensors and associated pigment concentrations measured in situ. In the 615	

operational phase, SeaWiFS images are decoded, allowing the estimation of the pigment 616	

concentration ratios. The major advantage of 2S-SOM with respect to the classical SOM is to cluster 617	

variables having similar physical significance in blocks having specific weights. The weights 618	

attributed to the four blocks are computed during the learning phase and vary with the quality of the 619	

variables and with respect to their location on the ocean (near the coast or offshore). This permits to 620	

modulate the variable influence in the cost function, which makes the clustering more informative 621	

than that provided by the SOM. The block decomposition provides useful scientific information. For 622	

offshore, the weight analysis allowed us to show that more influence is given to the reflectance ratios 623	

Ra(l)  and less to the chl-a and pigment concentrations; on the contrary near the coast the weights 624	
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indicate a more active use of the pigment composition and the chl-a concentration. Therefore, the 625	

resulting 2S-SOM clustering therefore at best takes into account the information that belongs to the 626	

specific water content.  627	

- The 2S-SOM decomposes the DPIG into a large number of significant ocean-color classes allowing 628	

reproduction of the different possible situations encountered in the dataset we analyze. Besides, we 629	

assume that the relationship between the pigment concentration and the remote sensed ocean-color 630	

observations is independent on the location, which is justifiable since the relationship depends on the 631	

optical properties of ocean waters through well-defined physical laws which are region-independent. 632	

This also endorses the fact that we used a global database to retrieve pigments in a definite region. 633	

On the contrary, the different phytoplankton species vary from one region to another making the 634	

relationship between pigment ratio and phytoplankton species strongly depending on the region. This 635	

justifies the fact we focused our study on the pigment retrieval rather than on the PSC or PFT, as 636	

mentioned above. Moreover, most of the recent phytoplankton in situ identifications have been made 637	

using pigment measurements with the HPLC method (Hirata et al, 2011). It is therefore more natural 638	

to retrieve the pigment concentrations, which is the quantity we measured, than the associated PSC 639	

or PFT, which are estimated from the pigment observations through complex non-linear and region-640	

dependent algorithms (Uitz et al, 2006). Due to the characteristics of the DPIG, the method can 641	

retrieve pigment concentration patterns over a large range (0.02 – 2 mg m-3). 642	

- We were able to analyze the pigment concentration in the Senegalo-Mauritanian region by processing 643	

satellite ocean color observations with the 2S-SOM. We found an important seasonal signal of 644	

fucoxanthin concentration with a maximum occurring in March. We evidenced a large offshore 645	

gradient of fucoxanthin concentrations, the near shore waters being richer than the offshore ones. We 646	

showed that the offshore region waters correspond to Case-1 waters, while the near shore waters are 647	

close to Case-2 waters and are influenced by the variability of near shore process like turbidity, or 648	

the presence of dissolved matters. The UPSEN measurements show that the pigment ratios of the 649	

Senegalo-Mauritanian region are in the range of the DPIG database used to calibrate the method, 650	

which justifies the use of the 2S-SOM algorithm to investigate this region.  651	

- We used daily satellite observations to construct a monthly climatology of pigment concentrations 652	

of the Senegalo-Mauritanian upwelling region, which has been poorly surveyed by oceanic cruises. 653	

Due to the highly non-linear character of the algorithms for determining the pigment concentrations 654	

from satellite measurements, it is mathematically more rigorous to apply these algorithms to daily 655	

satellite data and to average this daily estimate for the climatology period under study, than to 656	

estimate them from the satellite data climatology, as many authors have done (Uitz et al., 2010; 657	

Hirata et al., 2011). We found that Fucoxanthin starts developing in December North of 19°N, 658	
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presents its maximum intensity in March when the upwelling intensity is maximum, extends up to 659	

the coast of Guinea (12°N) in April and begins to decrease in May 660	

 661	

Another important aspect of our study concerns the validity of our results. The 2S-SOM method has 662	

been validated by focusing the retrieval accuracy on the fucoxanthin ratio, by using a cross-validation 663	

procedure. These results were qualitatively confirmed by two other independent studies. 664	

- We first applied a cross validation procedure (see section 4.1), which is powerful technique for 665	

validating models (Kohavi, 1995; Varma and Simon, 2006). We learned 30 different 2S-SOM using 666	

30 different learning dataset determined at random from the DPIG dataset (each learning dataset 667	

representing 90% of DPIG) and 30 test datasets (10% of DPIG). By averaging the results, we found 668	

that the 2S-SOM method retrieves the fucoxanthin concentration with a good score (see the 669	

statistical parameters in table 2) which confirms the pertinence of the method. 670	

- We then found that our fucoxanthin climatology is in agreement with in situ observations of 671	

phytoplankton reported in Blasco et al. (1980) in March to May 1974 off the coast of Senegal during 672	

the JOINT I experiment. These authors analyzed 740 water samples collected with Niskin bottles 673	

at 136 stations extending along a line at 21°40’N (in the northern part of the studied region) from 0 674	

to 100 km offshore. The samples were taken at several depths (mostly at 100, 50, 30, 15, 5 m). 675	

Phytoplankton cells were counted and identified by the Utermohl inverted microscope technique 676	

(Blasco, 1977). These authors found that diatoms reach their maximum concentration in April–May 677	

and are the most abundant group in that period, whereas the other cells predominate in March. 678	

Similar microscope observations have been reported in the ocean area south of Dakar by A. Dia 679	

(1985) during several ship surveys in February–March 1982–1983.  680	

- Our method is also in agreement with the monthly eleven years climatology presented in Farikou et 681	

al, (2015) who used a modified PHYSAT method to retrieve the PFT in the Senegalo-Mauritanian 682	

region.   683	

- The pigment concentrations provided by the 2S-SOM from the VIIRS sensor observations are in 684	

qualitative agreement with the in-situ measurements done at five stations during the two UPSEN 685	

campaigns in 2012 and 2013, showing that the method is able to function in waters where the 686	

pigment concentrations are quite high (fucoxanthin ratios of the order 0.4). 687	

 688	

 689	

 690	

 691	

                                       692	
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7 - CONCLUSION  693	

 694	

We developed a new neural network clustering method, the so-called 2S-SOM algorithm to retrieve 695	

phytoplankton pigment concentration from satellite ocean color multi spectral sensors. The 2S-SOM 696	

algorithm is a SOM specifically designed to deal with a large number of heterogeneous components 697	

such as optical and chemical measurements. The major advantage of 2S-SOM with respect to the 698	

classical SOM is to cluster variables having similar significance in blocks having specific weights. 699	

The weights attributed to the blocks during the learning phase vary with the quality of the variables in 700	

the classification. This permits to modulate the variable influence in the cost function, which makes 701	

the clustering more informative than that provided by the SOM. Besides, the block weighting provides 702	

useful information on the functioning of the classification by permitting to identify the variables which 703	

control it. It also allows us to better understand the dynamics of the phytoplankton communities.  704	

The 2S-SOM method is efficient and rapid as soon as the calibration is done, since it uses elementary 705	

algebraic operations only. The 2S-SOM method is like a piecewise regression that takes advantage of 706	

the unsupervised classification of the SOM. We decomposed the DPIG database into quite a large 707	

number of partitions (9x8=162) when comparing our study to other studies (Uitz et al, 2006, 2012). 708	

The validity of the method has been controlled through a cross validation procedure and confirmed by 709	

three qualitative studies. Statistical parameters (R2	coefficients, RMSE and P-values) of the cross-710	

validation between the DPIG in situ pigments and the pigments given by the 2S-SOM averaged for the 711	

30 2S-SOM realizations presented in table 2, show the good performance of the method. It must be 712	

noticed that the performance mainly depends on the size of the learning set used to calibrate the 2S-713	

SOM. This set must include all the situations encountered in the pigment retrieval. The larger the 714	

learning set, the better the method performs. Due to its generic character and its flexibility, the method 715	

could be used to determine a large variety of measures done with satellite remote sensing  716	

observations.  717	

In this work, the method was applied to study the seasonal variability of the fucoxanthin concentration 718	

in Senegalo-Mauritanian upwelling region. We showed a large offshore gradient of fucoxanthin, the 719	

higher concentration being situated near the shore. We were able to construct a monthly climatology 720	

for an 11-year period (1998–2009) of the SeaWiFS observations by summing the daily pixels of the 721	

month under study in a region which was poorly surveyed by oceanic cruises. The fucoxanthin 722	

concentration, and consequently the associated diatoms, present a well-marked seasonality (Figure 10). 723	

Fucoxanthin starts developing in December North of 19°N, presents its maximum intensity in March 724	

when the upwelling intensity is maximum, extends up to the coast of Guinea (12°N) in April and 725	

begins to decrease in May where it is observed north of Cabo Verde peninsula (15°N), in agreement 726	
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with the observations reported by Farikou et al, (2015) and Demarcq and Faure, (2000). The UPSEN 727	

campaign results endorse the validity of the study of the Senegalo-Mauritanian upwelling region done 728	

with the 2S-SOM. 729	
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ANNEX 1 917	

 918	

A1  Cost function of the SOM 919	

Let us recall the following notation: 920	

	𝑫 = {𝒛O,⋯ , 𝒛/, ⋯ , 𝒛Q} the dataset composed of 𝐾 vectors 𝒛/	𝜖	ℝ3 921	

	𝑾 = {𝒘O,⋯ ,𝒘7,⋯ ,𝒘V} the set of weights 𝒘7	𝜖	ℝ3where 𝐶 = 𝑝 × 𝑞 is the size of the SOM. 922	

The 𝑤7	 of the SOM are estimated by minimizing a cost function of the form  923	

 924	

								𝐽]^_` (𝜒,𝑾) = ∑ ∑ 𝐾` b𝛿c𝑐, 𝜒(𝑧/)ef‖𝑧/ − 𝑤7‖i
j×k
7lO

Q
/lO ,	 	 	 	 	 	 (A.1)	925	

where c indices the neurons of the SOM map, 𝜒 is the allocation function that assigns each element zi 926	

of 𝑫 to its referent vector 𝑤7	 which is of the form 𝜒(𝒛/) = 	argmin7‖𝒛𝑖 − 𝒘𝑐‖i, 927	

𝛿c𝑐, 𝜒(𝒛/)e			is the discrete distance on the SOM between a neuron if index 𝑐 and the neuron allocated 928	

to observation 𝒛/ , and 𝐾`a kernel function parameterized by T that weights the discrete distance on 929	

the map and decreases during the minimization process. T acts as a regularization term (Kohonen, 2001, 930	

Niang et al, 2003). In the present case KT   is of the form : 931	

𝐾`(𝛿) = (1 𝑇)𝐾(𝛿/𝑇)⁄ , where K is the gaussian function of mean 0 and standard deviation 1. 932	

The cost function (A1) takes into account the proper inertia of the partition of the data set D and ensures 933	

that its topology is preserved. 934	

 935	

A2  Definition of the Algorithm 2S-SOM 936	

The 2S-SOM algorithm is an extension of the Self-Organizing maps (SOM, Kohonen, 2001) based on 937	

the K-mean method (Ouattara et al., 2014,	 https://www.theses.fr/179489704). It automatically 938	

structures the variables having some common characters into conceptually meaningful and 939	

homogeneous blocks during the learning phase. The 2S-SOM takes advantage of this structuration of 940	

D and the variables into 𝐵 different blocks, which permits an automatic weighting of the influence of 941	

each block and consequently of each variable in the classification phase. The 2S-SOM is based on a 942	

modification of the cost function of the SOM algorithm. For a neuron of index c, we define the weights 943	

𝛼78	of each block b (b = 1, ..., B) and the weights 𝛽78x of the variables j (j = 1 , ..., Pb) in this block, 944	

where Pb  is the number of variable in the block indexed by b. The vectors of weighs are denoted 945	

𝜶 = {𝛼78}Oz7zV,Oz8z{ and 𝜷 = {𝛽78x}Oz7zV,Oz8z{,Ozxz}~  946	

The new cost function is:  947	
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𝐽i]�]^_` (𝜒,𝑾, 𝜶,𝜷) = ∑ b∑ b∑ 𝛼78�/∈� 𝐾` b𝛿c𝑐, 𝜒(𝑧/)ef𝑑��~(𝑖) + 	𝐽78f
{
8lO + 𝐼7f7 ,	  (A.2) 948	

with 949	

𝑑��~(𝑖) = ∑ 𝛽78x
}~
xlO (𝑧/8

x − 𝑤/8
x )i,         (A.3) 950	

where c indices the neurons of the 2S-SOM map.  951	

under the two constraints: 952	

� 𝛼78 = 1;
{

8lO
𝛼78 ∈ [0,1]	∀𝑐, 1 ≤ 𝑐 ≤ 𝐶																																											(𝐴. 4) 953	

and 954	

� 𝛽78x = 1;
}~

xlO
𝛽78x ∈ [0,1],∀𝑐, 1 ≤ 𝑐 ≤ 𝐶;∀𝑏, 1 ≤ 𝑏 ≤ 𝐵. 955	

𝐼7 and 𝐽78 are used to regularize the weights a and b. They are defined as negative entropies weighted 956	

by 𝜇 for the blocks and 𝜂 for the variables of each block 957	

 958	

𝐼7 = 𝜇� 𝛼78𝑙𝑜𝑔(𝛼78)
}~

8lO
																																																																													(𝐴. 6) 959	

and 960	

𝐽78 = 𝜂� 𝛽78x𝑙𝑜𝑔c𝛽78xe
{

xlO
																																																																								(𝐴. 7) 961	

The topological conservation properties of 2S-SOM are influenced by the weights αcb and bcbj in the 962	

classification through the hyper-parameters µ, η and the neighborhood parameter T. 963	

The weights αcb and βcbj respectively indicate the relative importance of blocks and variables in the 964	

neurons. Thus, the greater the weight of a block b or a variable j, the more the block or the variable 965	

contributes to the definition of the class (or neuron) in the sense that it makes it possible to reduce the 966	

variability of the observations in the cell and in its close neighborhood. For a high value of η and a 967	

fixed one for µ, the βcbj in a block are equal to 1/Pb. In this case, only the blocks are modified according 968	

to their capacity to define the neurons. In this context, the 2S-SOM then makes possible to weight the 969	

different blocks for each neuron 970	
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- For high values of µ, Ic is large. The minimization of Jcb forces all its coefficients to become 971	

equal. For a fixed value of η, the αcb associated with the blocks are all equal to 1/B. In this case, 972	

only the βcbj of the variables inside the blocks weight the neurons 973	

- When µ and η tend to very large values, the blocks are equiprobable as well as the variables. 974	

Thus, the 2S-SOM algorithm is comparable to the SOM. 975	

 976	

A.3 How the 2S-SOM algorithm works: 977	

For fixed µ and η, the learning of the 2S-SOM algorithm is as follows: 978	

- Step 0: Initialization with iteration of the algorithm SOM, by setting α and β to homogeneous 979	

values.  980	

The optimization of  𝐽i]�]^_`  is carried out through an iterative process composed of three steps (1, 2, 981	

and 3) presented below. 982	

- Step 1: The wc referents, the weights α and β are known and fixed, the observations are assigned 983	

to the neurons by respecting the assignment function: 984	

𝑐(𝑧𝑖) = 𝜒(𝑧/) = arg	min7∈V ��𝐾`c𝛿(𝑟, 𝑐)e ��𝛼78𝑑��~(𝑖)
{

8lO

�
#∈V

�							(𝐴. 8) 985	

 986	

- Step 2: Updating the neuron centers (the wc referents) according to the formula of the SOM 987	

algorithm. 988	

 989	

- Step 3: the assignment function and the referents wc being fixed, α and β are determined 990	

according to the equations (A.9, A.10, A.11, A.12), by minimizing the cost function 991	

𝐽i]�]^_` 	with respect to α and β under the constraints A.4 and A.5. 992	

𝛼78 =
exp b−𝜓78𝜇 f

∑ exp b−𝜓78𝜇 f{
8lO

																																																																																					(𝐴. 9) 993	

with 994	

𝜓78 = � 𝐾`c𝛿(𝜒(𝑧/), 𝑐)e𝑑��~(𝑖)
�/∈�

																																																																		(𝐴. 10) 995	

and  996	
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𝛽78x =
exp ¡

−𝛷78x
𝜂 £

∑ exp ¡
−𝛷78x
𝜂 £j~

8lO

																																																																																	(𝐴. .11) 997	

with  998	

𝛷78x = � 𝛼78𝐾`(𝜒(𝑧/), 𝑐)(𝑧/8
x − 𝑤78

x )i
�/∈�

																																																					(𝐴. 12) 999	

 1000	

This algorithm is repeated by sampling the hyper-parameters µ and η until convergence.  1001	

Finally, at the convergence, the 2S-SOM provides on the one hand a topological map allowing to 1002	

visualize the data, and on the other hand a weight system for the neurons of the map allowing us to 1003	

interpret the role of the different variables and to choose those that are the most significant for the 1004	

classification and neutralizing those which are the least one.  1005	

  1006	
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FIGURE CAPTION 1007	
	1008	
 1009	
 1010	
Figure	1:	Mauritania	and	Senegal	coastal	topography.		The	land	is	in	brown	and	the	ocean	depth	1011	

is	represented	in	meters	by	the	color	scale	on	the	right	side	of	the	figure.	The	UPSEN	stations	are	1012	

shown	at	the	bottom	left	cartoon	of	the	figure	1013	

 1014	

Figure 2: Geographic positions of the 515 in situ and satellite collocated measurements of the DPIG 1015	

database. 1016	

 1017	

Figure 3: Dispersion diagram of DPIG chl-a computed from the SeaWiFS observations using the 1018	

OC4V4 algorithm versus in situ chl-a. The coefficient of vraisemblance R2 and the RMSE (Root Mean 1019	

Square Error) were computed in in mg m-3 1020	

 1021	

Figure 4: Flowchart of the method: top panel - Learning phase; bottom panel – operational phase 1022	

which consists in pigment retrieval and the determination of the 𝛼78 block parameters. 1023	

 1024	

Figure 5: Flowchart of the cross-validation procedure for 30 partitions of the DPIG database. 1025	

 1026	

Figure 6: 2S-SOM Map.  From left to right and top to bottom, values of the referent vectors for 𝜌"(490), 1027	

Ra(490), SeaWiFS chl-a, and fucoxanthin, peridinin, divinyl Ratios.  The number in each neuron indicates the 1028	

amount of DPIG data captured at the end of the learning phase, the values indicated by the color bars are 1029	

centered-reduced and non-dimensional values. 1030	

 1031	

Figure 7: 2S-SOM map.  Weights (𝛼78) of the four block parameters determined at the end of the learning 1032	

phase; from left to right and top to bottom: 𝜌", 𝑅𝑎, Pigment, SeaWifs chl-a.  The color bars show the % of the 1033	

weight estimated by 2S-SOM, a value of 1 or 0 indicating that the data in the neuron are assembled with respect 1034	

to that block only. 1035	

 1036	

Figure 8: A) chl-a concentration, (B) fucoxanthin ratio, (C) aerosol optical thickness, (D) peridinin 1037	

for 1 January 2003. Panels (B) and (D) show that a second-order information was retrieved, which is 1038	

correlated with the chl-a concentration (A) but not equivalent. The aerosol optical thickness (C) does 1039	

not seem to contaminate the estimated parameters (fucoxanthin and peridinin ratios). 1040	

 1041	

Figure 9: SST for 2 January 2003.  Note the well-marked upwelling (cold temperature) north of 13°N. 1042	
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 1043	

 1044	

Figure 10: (A) chl-a concentration, (B) fucoxanthin ratio, (C) aerosol optical thickness, (D) peridinin for 6 1045	

January 2003. Panels (B) and (D) show that a second-order information was retrieved, which is correlated with 1046	

the chl-a concentration (A) but is not equivalent. It is found that the aerosol optical thickness (C) does not 1047	

contaminate the estimated parameters (fucoxanthin and peridinin ratios). 1048	

 1049	

Figure 11: (A)  chl-a concentration,  (B)  fucoxanthin ratio,  (C)  aerosol optical thickness,  (D)  Peridinin for 1050	

28 February 2003.  Panels (B) and (D) show that a second order information was retrieved, which is correlated 1051	

with the chl-a concentration (A) but is not equivalent.  It is found that the aerosol optical thickness (C) does not 1052	

contaminate the estimated parameters (fucoxanthin and peridinin ratios). The position of the NSB and OFB 1053	

boxes are figured out by black square boxes 1054	

 1055	

Figure 12: Reflectance spectra (in blue) captured the 28 February by six neurons whose referent 1056	

vector spectra are in yellow: top line, for pixels in the NSB region (long. [-20°, -18°], lat. [12°, 1057	

14°]); bottom line, for pixels in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 1058	

	1059	

Figure 13:  Box plot of the weights of the selected neurons during the decoding of the 28 February 1060	

data. From left to right, weights of blocks B1, B2, B3, B4. Top panel, in the NSB region (long. [-20°, 1061	

-18°], lat. [12°, 14°]); bottom panel, in the OFB region (long. [-28°, -26°], lat. [12°, 14°]). 1062	

	1063	

Figure 14: Monthly fucoxanthin concentration averaged for an 11- years (1998-2009) for December 1064	

(A), March (B) and May (C). 1065	

	1066	

Figure 15: .  chl-a (in blue) and fucoxanthin (in green) concentrations for near-shore pixels (in the NSB 1067	

region). 1068	

 1069	

Figure	16:	For	ship	stations	1,	2,	3,	5a	and	5b,	we	show		the	averaged	spectrum	of	the	in	situ	1070	

spectra	of	the	UPSEN	station	in	blue;	the	spectrum	of	the	referent	vector	(in	red)	of	the	2S-SOM	1071	

neuron,	which	has	captured	the	closest	satellite	observations	to	the	UPSEN	station;	among	the	1072	

different	spectra	constituting	the	referent	spectrum,	the	spectrum	of	the	learning	database	1073	

(DGIP)	that	is	the	closest	to	the	averaged	satellite	spectra	is	shown	in	black.	In	the	rectangular	1074	

cartoons,	we	show	the	position	of	the	UPSEN	station,	the	number	of	the	neuron	of	the	2S-SOM	1075	

which	has	captured	the	satellite	observation,	the	Rfuco	of	the	referent	vector,	the	RfucoDGIP	of	the	1076	

closest	DGIP	and	the	in	situ	RfucoUPSEN	1077	
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 1078	

 1079	

Table Caption 1080	

 1081	

Table 1: Pigments of the DPIG and their statistical characteristics: :STD (Standard Deviation), MIN  1082	

(minimum value), MAX (maximum value). 1083	

 1084	

Table 2: Statistical parameters (R2 coefficients, RMSE and P-values) of the cross validation between 1085	

the DPIG in situ pigments and the pigments given by the 2S-SOM averaged for the 30 2S-SOM 1086	

realizations 1087	

 1088	

Table 3: For ship stations 1, 2, 3, 5a and 5b of the UPSEN campaigns, we show the referent captured 1089	

by the VIIRS observations, the fucoxanthin-ratio associated with this referent (Rfuco-2S-SOM), the 1090	

fucoxanthin-ratio of the closest DPIG fucoxanthin-ratio captured by the neuron of the referent and the 1091	

fucoxanthin-ratio measured in situ during the UPSEN campaign 1092	

	1093	

 1094	
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