Reply to Review of manuscript os-2019-1

"The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Eastern Tropical South Pacific" by Lennartz et al.

We thank the referee for the thorough and detailed feedback that helped us clarify some aspects in our argumentation. Please find our replies in blue font below the corresponding comments (page and line numbers refer to the old manuscript, in order to be consistent with the comments of the reviewer).

1. General comments

This manuscript presents a comprehensive set of results from a cruise into the Peruvian upwelling area. Observational data are of high quality and unique in that the report OCS and CS2 concentrations together with a wider range of complementary information such as dissolved organic sulfur (DOS), DOM optical characteristics and diapycnal diffusivities. This comprehensive data set is complemented by applications of 1D models of trace gas biogeochemistry and mixed layer dynamics. This approach can allow for near synoptic interpretation although there are of course limitations arising from our incomplete understanding of underlying production mechanisms. The manuscript is clearly appropriate for publication in Ocean Science, not least due the unique combination of comprehensive data and modeling applications. However, I do have some concerns about presentation, and about some aspects of data interpretation and modeling results.

Title: The term ‘Eastern Tropical South Pacific’ used in the title suggests a study area much larger than that covered in the actual cruise track. I therefore suggest replacing ETSP with ‘Peruvian upwelling’.

Corrected as suggested (also replaced ETSP throughout the manuscript).

OCS photoproduction: Interestingly the manuscript reports that OCS photoproduction is well correlated with colored dissolved organic matter (CDOM) characteristics such as humic-like fluorescence emission but not with DOS. This leads authors to speculate that the sulfur needed for OCS production may come from its hydrolysis product H2S and not from organic fractions. However, there are several issues the authors neglect to discuss. Firstly, the absence of a correlation between sulfur from the DOS pool and OCS photo production per se does not exclude that DOS fractions are involved in OCS production. Reported DOS concentrations exceed OCS concentrations 1000-fold (see figure 2 in MS). Therefore, only a tiny DOS fraction is required as the source of OCS sulfur. This tiny fraction might not necessarily correlate with bulk DOS. Secondly, although laboratory experiments showed that both H2S and free sulfurbearing amino acids such as cysteine may act as OCS precursors, precursor concentrations in these experiments were unrealistically high (10 µM) (Pos et al., 1998). S-OCS may well be derived from DOM itself given that irradiations of both unaugmented seawater and solutions of reconstituted DOM produced OCS (Zepp and Andreae, 1994; Pos et al., 1998). Thirdly, regarding H2S, available data suggest concentration levels of free sulfide below 100 pM (see e.g. Andreae et al., 1991). Although this may be similar to OCS concentrations, it is unrealistic sulfide to OCS. Clearly formation of the thermodynamically stable end product sulfate would be favored here. And finally, although the authors state that sulfurbearing amino acids ‘are rare’ (p 17, lines 9-11), they are still likely to occur at levels high enough to sustain picomolar OCS
levels. I recommend that the authors rewrite the corresponding sections in the light of my comments above.

We thank the referee for pointing these issues out. The significant correlation to FDOM C2 indicates a tight connection to optically active DOM. This correlation would be less strong, if a rare sulfur bearing part of the DOM pool would be the limiting factor, unless this precursor fraction of the DOS pool covaried strongly with the FDOM fraction. We added this as a possible scenario in the text.

For clarity, we rewrote the paragraph in the Discussion:

p. 15, l.10: An interesting finding is the significant correlation of the photoproduction rate constant p with FDOM C2 (humic-like FDOM), but not with DOS_{SPE}, given a reported correlation of OCS and DOS in the Sargasso Sea where much higher DOS concentrations of ca. 0.4 µmol S L$^{-1}$ were present (Cutter et al., 2004). It should be noted that the method to extract DOS_{SPE} in our study does not recover all DOS compounds, and we cannot exclude the possibility that this influences the missing correlation between p and DOS. In the studied area, OCS photoproduction is apparently not limited by the bulk organic sulfur, but rather by humic substances. The humic-like FDOM component C2 is an abundant fluorophore in marine (Catalá et al., 2015; Jørgensen et al., 2011), coastal (Cawley et al., 2012) and freshwater (Osburn et al., 2011) environments. This FDOM component seems to be especially abundant in the deep ocean (Catalá et al., 2015), which might be the reason for higher C2 surface concentrations in regions of upwelling, as evident in our study (Fig. 2) and reported by Jørgensen et al. (2011). The significant correlation of p with humic-like fluorophores in our study highlights the importance of upwelling and coastal regions for OCS photoproduction.

A significant correlation (i.e., a limitation) of OCS photoproduction with humic-like substances, but not with bulk DOS_{SPE} can be explained by two scenarios: Under the assumption that only organic sulfur is used to form OCS, the limiting factor is contained in the humic-like C2 fraction of the FDOM pool. The sulfur demand (75.8 pmol L$^{-1}$, the orange area in Fig. 7b) would need to be covered entirely by organic, sulfur-containing precursors. The limiting driver of this process is either organic molecules acting as photosensitizers or a sulfur-containing fraction of the DOM pool that correlates with FDOM C2, but not bulk DOS_{SPE}. In that scenario, FDOM C2 can be used as a proxy for the OCS photoproduction rate constant. More data from other regions would help to quantify such a relationship. In a second possible scenario under the assumption that both organic and inorganic sulfur can act as a precursor, the sulfur demand could theoretically be covered by the sulfur generated by hydrolysis of OCS (i.e. 85.8 pmol L$^{-1}$, Fig. 7). In this case, FDOM C2 would only be limiting as long as enough organic or inorganic sulfur is present, for example when temperatures are high enough to recycle sulfur directly from OCS, or when other inorganic sulfur sources are present.

Incubation experiments have shown that inorganic sulfur is a precursor for OCS (Pos et al., 1998). It is not clear whether the mechanism proposed therein occurs under environmental conditions, because sulfide concentrations were higher than in most marine areas, but also yielded much higher OCS production rates in the magnitude of nM hr$^{-1}$ compared to the magnitude of pM hr$^{-1}$ under natural conditions. Furthermore, the conversion of sulfide to sulfate, rather than to OCS, is thermodynamically favored. Based on our data, we cannot resolve the question about the role of inorganic sulfur in OCS photoproduction, but our results are consistent with the reaction
mechanism suggested by Pos et al. (1998). Incubation experiments at environmentally relevant sulfide concentrations, as well as p-DOS relationships across different temperature and DOM regimes will help to resolve this issue.

We also changed the following in the conclusion:

p. 19, l. 26: The absence of a correlation of the photoproduction rate constant with bulk DOS_{SPE} is not conclusively answered. Possible scenarios involve either a sulfur-containing precursor in a constant ratio FDOM C2, or an excess of sulfur via allocation from OCS hydrolysis. In both cases, FDOM C2 is a promising proxy on regional scales, and in case of scenario 1 also on global scales. A possible explanation for the lack of correlation between the photoproduction rate constant and DOSS_{SPE} might be that OCS hydrolysis generates enough sulfide to recycle back to OCS during photoproduction. This cycle might be especially active in the ETSP, where warm temperatures increase the hydrolysis rate and, thus, the generation of sulfide, and abundant humic-like molecules further enhance 30 photoproduction.

We deleted the corresponding sentence in the abstract:

The lack of correlation between OCS production and DOSS_{SPE} may be explained by the active cycling of sulfur between OCS and dissolved inorganic sulfide via OCS photoproduction and hydrolysis.

OCS dark production: The manuscript presents OCS dark production rates derived using a steady state assumption (methods, p 8). I agree that a steady state assumption may be made for samples “below the euphotic zone” or better for samples collected from below the MLD because sea surface OCS shows a pronounced diel cycle. However, I am not entirely convinced that “early morning” samples always reflect steady state. Half lives of OCS with respect to hydrolysis removal range from > 80 hours at 5°C to ~3 hours at 30°C (Elliott et al., 1989). For most of the cruise track half-lives were likely in the order of 10 hours. Given that OCS concentrations peak in the afternoon, and that early morning sampling will occur less than 2 half-lives later, OCS levels are likely biased i.e. more than 25% higher than ‘steady state’ assuming that hydrolysis is the main removal process. According to equation (2) artificially high OCS levels directly translate into artificially high dark production rates. Therefore, I would welcome some additional detail on sample selection, and some quantitative considerations of possible bias in section 2.8.

We changed and added the following:

p. 8, l. 7: Dark production rates were determined from hourly averaged measured seawater concentrations at nighttime shortly before sunrise (i.e. ca. 12-14 hours after concentration maximum of the previous day) or at depths below the euphotic zone.

p.8, l. 10: To ensure steady state conditions, we averaged the concentrations one hour before sunrise and compared to the average of the previous hour. We only considered instances when the concentration before sunrise deviated less than 1 pmol L^{-1} from the previous hour for further calculation.

p.8, l.28: Biases can potentially be introduced in two ways: 1) neglecting other sinks like air-sea exchange can lead to underestimations of the production rate. With wind speeds of 8 m s^{-1} and MLD on the order of 20-40m, life times due to air-sea exchange are in the order of days to weeks,
and hence negligible. 2) Sampling less than two half lives after the maximum concentrations can lead to overestimations of the production rate. For the 11 and 12 October, samples considered for calculation of dark production rates were taken less than two half lives after the concentration maximum of the previous day. Since the concentration changed less than 1 pmol L\(^{-1}\) within two hours prior to this sampling, we consider the bias as within the range of the given uncertainty.

CS\(_2\) vertical profiles: On p 13 ff the authors present CS\(_2\) depth profiles which are then further discussed on p 17 line 22 ff together with modeled profiles. Unfortunately, the full set of profiles is only shown in the supplement, although these are clearly needed to support the results and discussion section. I therefore recommend moving figure S2 into the main paper.

We include the figure in the main text and updated the figure numbering.

I also have some issues with the modeling results shown both in figures 6 and S2. All simulations in S2 and most in Fig 6 show MLD concentrations below those in underlying waters. To me this seems to indicate that photoproduction in the MLD (the only source term used here) is lower than air sea gas exchange losses. However, if photoproduction is the only source term, why do these profiles indicate increasing concentrations with increasing depth across the thermocline? The modeled profiles in S2 all suggest a CS\(_2\) flux from below the TC into the mixed layer, although photoproduction should clearly be constrained to the MLD. Do these profiles show a non-steady state solution? Is it possible that the 1D model was initiated with a homogenous CS\(_2\) depth distribution rather than with CS\(_2\) free water? I think here the manuscript needs to give a much more detailed explanation of the modeling setup and a more cogent explanation of the resulting profiles.

For clarification, we added the following:

p. 10, l.9: Profiles were initialized with the lowest subsurface concentration of the respective measured profile: low enough to be able to assess whether in-situ photoproduction can explain concentration peaks below the mixed layer, but high enough to keep diapycnal fluxes out of the mixed layer in a reasonable range (in contrast to initializing with 0 pmol L\(^{-1}\)). The same conditions that occurred on the day of measurement were repeated for 21 days, i.e. “2-3 times longer than the lifetime due to air-sea exchange.

As stated, we only assess the modelled shape of the profile, not the actual magnitude. A longer simulation where photoproduction occurs below the mixed layer would then accumulate even more CS\(_2\).

I am also not entirely convinced of the authors’ idea that ‘deep’ photoproduction below the MLD may have caused the observed subsurface maxima at stations 5 and 18. The statement on p 17 lines 34-5 “substantial production takes place at higher wavelengths penetrating deeper into the water column” needs to be put into context: based on apparent quantum yields used (Xie et al., 1998), light levels and KD, what is the depth dependence of CS\(_2\) photoproduction? How much of the total occurs below the MLD?

Please note that these sensitivity tests only refer to station 5, as described in Tab. 1. For clarification, we added:

p. 17, l.22 : More detailed simulations were performed for station 5, because at this station, the photic zone extended below the mixed layer.
The statement on p 17, l.34-5 strictly refers to the scenario named at the beginning of the sentence/the previous sentence, i.e. the wavelength-integrated approach and not the wavelength-resolved approach by Xie et al. For clarity, we rewrote:

p. 17, l. 32: In our simulation ‘pfit’, a wavelength-integrated approach was adopted (eq. 6). Photoproduction is calculated with the integrated irradiation (300-400nm) and one rate constant, representing a wavelength-integrated AQY. In this simulation, photoproduction occurring at higher wavelengths, that are penetrating deeper into the water column, is higher compared to the wavelength-resolved simulation.

We include a new figure in the supplement, showing the photoproduction of CS2 in different model runs:

![Graph showing CS2 photoproduction in different model runs](image)

p. 14, l. 8: Photoproduction rates for these simulations are shown in S-Fig. 3 (see supplementary material).

I wonder how this likely very small source term would compare to diapycnal transfer, and I very much doubt that it could sustain the elevated CS2 levels below the MLD.

The point that we want to make here is that even a small source term can potentially accumulate, because the production occurs without the influence from air-sea gas exchange below the pycnocline (see p. 17, l. 34). Please note that the model already accounts for the diapycnal flux.
Of course, the limited understanding of CS$_2$ cycling hinders the modeling here. However, the treatment of CS$_2$ depth profiles is rather unbalanced, with some data shown only in the supplement and not fully discussed, while Figure 6 only shows results for one station. The authors might want to consider rebalancing the reporting of their CS$_2$ results.

The seemingly unbalanced reporting results from 2 reasons:

1) Only four stations had additional parameters such as FDOM and DOS$_{spe}$ to compare with concentrations and, more importantly,

2) Station 5 was the only station where the photic zone extended below the mixed layer and was thus chosen to assess photoproduction without the sink of air-sea exchange, since the mixed layer acts as a barrier.

Also in response to another comment below, we have changed:

p. 10, l. 17:

For the second test, demonstrating the sensitivity of the subsurface peak, we chose station 5. This station provides the unique opportunity to assess a profile where the photic zone reaches below the ML, hence photoproduction might occur at depths where the sink of air-sea exchange is absent due to the bottom of the mixed layer acting as a barrier. Where photochemical production still occurs below the mixed layer, but the major sink of air-sea exchange is absent.

In the discussion, p. 18, l. 13:

CS$_2$ was still detectable below 200 m, in concentrations around 5-10 pmol L$^{-1}$ in shelf regions and around 20 pmol L$^{-1}$ in open ocean regions (except station 1). This pattern reflects the spatial variation of surface concentrations, which were higher at the open ocean than at the shelf. The vertically relatively uniform concentration profiles suggest low degradation rates, and the travel distance of the water between the stations is too short to explain the concentration difference only by in-situ degradation. A Lagrangian approach would be helpful to resolve this issue.

Some profiles display small local maxima in the region of the oxycline (not shown), but due to unconstrained subsurface source and sink processes, no conclusion can be drawn on whether a chemical or a physical process is responsible. The rather homogeneous concentrations below 200 m depth suggest slow in-situ degradation rates. As a result, physical processes resulting from currents, eddies or shelf processes might gain a higher importance for the distribution of CS$_2$ in the subsurface compared to the shorter lived gas OCS. With sinks potentially acting on long timescales, CS$_2$ could possibly be transported from sources located further away, e.g. from contact to the sediment in shelf regions or subducted from the surface. Our results clearly show the limits of interpreting 1D concentration profiles for long lived compounds with both subsurface sinks and source unconstrained. Incubation experiments using isotopically labelled CS$_2$ would be helpful to constrain source and sink processes independently.

2. Specific and editorial comments

Abstract:
The abstract is rather vague, does not give details on time period, sample numbers, and areal extent of the study area, and avoids any quantitative statements. Please rewrite.

We changed the abstract to:

Oceanic emissions of the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS$_2$) are a major source to their atmospheric budget. Their current and future emission estimates are still uncertain due to incomplete process understanding and, therefore, inexact quantification across different biogeochemical regimes. Here we present the first concurrent measurements of both gases together with related fractions of the dissolved organic matter (DOM) pool, i.e. solid-phase extractable dissolved organic sulfur (DOS$_{\text{SPE}}$, $n=24$, 0.16±0.04 µmol L$^{-1}$), chromophoric (CDOM, $n=76$, 0.152±0.03) and fluorescent dissolved organic matter (FDOM, $n=35$) from the Peruvian upwelling region (Guayaquil, Ecuador to Antofagasta, Chile, October 2015). OCS was measured continuously with an equilibrator connected to an off-axis integrated cavity output spectrometer at the surface (29.8±19.8 pmol L$^{-1}$) and at four profiles ranging down to 136 m. CS$_2$ was measured at the surface ($n=143$, 17.8±9.0 pmol L$^{-1}$) and below, ranging down to 1000 m (24 profiles). These observations were used to estimate in-situ production rates and identify their drivers. We find different limiting factors of marine photoproduction: while OCS production is limited by the humic-like DOM fraction that can act as a photosensitizer, high CS$_2$ production coincides with high DOS$_{\text{SPE}}$ concentration. Quantifying OCS photoproduction using a specific humic-like FDOM component as proxy, together with an updated parameterization for dark production, improves agreement with observations in a 1D biogeochemical model. Our results will help to better predict oceanic concentrations and emissions of both gases on regional and, potentially, global scales.

Introduction

Page 2 lines 26-7: “[CDOM...] and contains the photosensitizers that absorb light and form radicals for photochemical reactions”. This statement should be revised: not all reactive species formed during irradiation of natural water DOM are ‘radicals’ (e.g. singlet oxygen, triplet states, solvated electrons) nor does CDOM act solely as a photosensitizer given that it undergoes photodegradation itself.

We revised the statement:

Chromophoric DOM (CDOM) is the fraction that absorbs light in the UV and visible range. CDOM contains photosensitizers that absorb light and facilitate photochemical reactions, and can undergo photodegradation itself (Coble, 2007).

Page 2 lines 31-2: “The method favors the retention of polar molecules, which comprise approximately 40% of the total dissolved organic carbon (DOC) in marine waters”. Please add supporting reference.

We added the following reference: Dittmar et al. (2008)

Page 3 lines 5 ff: “the CDOM absorption 5 coefficient at 350 nm (a350) can serve as a proxy for both photoexcitable carbonyl-groups and organic sulfur precursors making the overall photoproduction rate second-order dependent on a350 (von Hobe et al., 2003)”.

(i) a350 may be a proxy for DOM but not specifically for carbonyl groups and DOS. Simple carbonyls show absorption maxima well below
350 nm (e.g. aceton: ~265 nm). (ii) Relationships between OCS photoproduction and a350 were initially proposed by Uher and Andreae (1997) and subsequently applied to a global model by Preiswerk and Najjar (2000). This should be reflected here. (iii) It would be worth clarifying that ‘second order’ here should not be understood in terms of chemical kinetics. Instead, this statement refers to the dual roles of CDOM in light absorption and photochemistry.

The reviewer is correct that the "second-order dependence of OCS photoproduction on the concentration of CDOM" stated in von Hobe et al. (2003) was not meant in the sense of an accurate kinetic rate law. Although based on known relationships with a solid physical and chemical reasoning, the p vs. aCDOM relationships in that paper were derived empirically (therefore, we consider the results semi-empirical), and we believe that they do at least broadly reflect the chemical kinetics at play. Also note that in that earlier paper aCDOM absorbance was explicitly measured at different wavelengths between 297 and 365 nm.

In the current paper, we have now
1. stated more clearly that a350 here is used as a proxy for CDOM concentration and that both photosensitizers and organic sulfur compounds are expected to broadly correlate with CDOM concentration
2. Clarified that the relationship should not be understood as an exact chemical rate parameterization (stressing the word "proxy")
3. Mention the historical background with citations of Uher and Andreae (1997) as well as Preiswerk and Najjar (2000)

p. 3, l. 5: Indeed, the amount of OCS produced has been shown to depend on CDOM, more specifically the absorption coefficient at 350 nm (a350), and a variety of organic sulfur-containing precursors, such as methionine or glutathione (Zepp and Andreae, 1994; Flöck et al., 1997). a350 has been used as a proxy to calculate photochemical production of OCS previously (Preiswerk and Najjar, 2000). In addition, von Hobe et al. (2003) suggested a relationship between the photoproduction rate constant and a350, making the overall photoproduction rate quadratic with respect to a350. This dependency is based on the assumption that a350 can serve as a proxy for both photosensitizers and organic sulfur precursors on large spatial scales.

Page 3 lines 20 ff: Preiswerk and Najjar (2000) should be added here.

Added as suggested

Page 3 lines 31 ff, CS2 lifetime: Please clarify if this ‘CS2 sink’ should be airsea gas exchange or an additional unknown process. Gas exchange would have a matching lifetime in the order of weeks.

We changed to:

In addition to the known sink, namely air-sea exchange, hydrolysis and oxidation, Kettle (2000) proposed a sink with a lifetime on the order of weeks, to match observed concentrations with a surface box model.

Methods
Page 4 lines 23 ff, OCS calibration: Please provide a quantitative comparison of calibrations before and after the cruise. Why is the stated LOD (180 pptv) 12 times higher than the stated precision? What did you mean by “NOAA scale”?

The precision is given for the two minute-averages (this is stated more clearly in Lennartz et al., 2017) and was experimentally determined (running a standard for > 60 minutes). Because the instrument internally analyses 1-second spectra, the LOD is determined by the 1-second precision, which is close to 180 pptv.

NOAA scale is the gaseous OCS standard used as a reference for NOAA time series stations. The instrument used for our measurements has been independently checked against a NOAA reference standard (Lennartz et al., 2017; Montzka et al., 2007).

Page 4 line 29: Does “ca. 35 m” refer to the height of the inlet above sea level? It would also be interesting to see atmospheric OCS mixing ratios reported somewhere.

We added “above sea level” to this statement.

This paper focuses on the processes in the water column, emissions based on the concentration gradient between surface water and atmospheric mixing ratios were already reported previously. We added the following statement:

p. 4, l. 30: Resulting emissions are reported in Lennartz et al. (2017).

Page 5 lines 26 ff: Replace “spectrophotometer” with “spectrofluorometer”. I suspect your statement in line 29 refers to photomultiplier voltage? Please state this clearly. Explain why you list two conversion factors for conversion between QSU and Raman units. How did you apply the QSU scale to fluorophores that do not show significant overlap with quinine sulphate emission?

Spectrofluorometer and photomultiplier were corrected as suggested.

The two conversion factors originate from two different calibrations, carried out before and after the change in photomultiplier voltage. The QSU scale is a result of the PARAFAC analysis and was applied as described in Murphy et al. (2013). We added an explanatory sentence to p. 6, l. 4:

FDOM concentrations are reported here in quinine sulfate units (QSU, Murphy et al. (2013)), the conversion factor between QSU and Raman units is 0.3540 and 0.4256, for each of the QS calibration (i.e. before and after the change in photomultiplier voltage), respectively.

Page 6 line 30: “downwelling irradiance profiles were corrected for incident sunlight”. This statement is worded incorrectly. I suspect you adopted the profile from station 6 after normalization to sea surface irradiance? Please clarify.

The correction was applied to all profiles, and means the correction of the irradiance measured in the water column to changes at the surface, e.g. due to clouds. We have inserted a linebreak after discussion of profile No. 6 to clarify this, and changed “the downwelling irradiance profiles” to “all downwelling irradiance profiles” in the following sentence. We also inserted “...were corrected for incident sunlight (e.g. changing due to varying cloud cover) using simultaneously obtained....”
Page 7 line 7: Reference to equation 1 is incorrect. Equation 1 refers to diapycnal flux, not to underwater irradiance. Please insert appropriate equation and update equation numbering.

The unnecessary equation reference was deleted.

Page 7 lines 23-25: Please add a supporting reference.

The supporting references are the references given in the sentence starting “Details in the methodology…” after we describe the microstructure sonde. To clarify this, we changed the order of these two sentences.

Page 8 lines 1-2, dark OCS production: Please spell out the units used in equations (2) and (5).

Units for equation 2 were given in 8, l. 11-12 (i.e. in the sentence explaining the equation directly before the actual equation). We added the units for P_D again for equation 8, as well as the units for the coefficients a and b.

Page 10 lines 13-15: Given MLDs in the order of 30-40 m and piston velocities of maybe 1-2 m d$^{-1}$, CS$_2$ lifetimes with respect to ventilation losses should be in the order of weeks not days. Please revise your statement.

changed as suggested

Page 10 lines 17-19: Explain why “air-sea gas exchange is absent” at station 5.

For clarification, we added:

For the second test, demonstrating the sensitivity of the subsurface peak, we chose station 5. This station provides the unique opportunity to assess a profile where the photic zone reaches below the ML, hence photoproduction might occur at depths where the sink of air-sea exchange is absent due to the bottom of the mixed layer acting as a barrier where photochemical production still occurs below the mixed layer, but the major sink of air-sea exchange is absent.

Results

Page 10 lines 28ff, description of results in figure 2: Your statement that “DOM showed strong spatial variability in FDOM, but less in the DOSSPE concentration and CDOM absorbance” is not supported by data in figure 2. All three variables vary roughly 3-fold during your cruise, including FDOM component 2, particularly if highest & lowest FI were excluded from analysis. Unfortunately, however, mean±stddev are not reported for component 2 (nor for any other components). You stated that DOS decreased with depth but did not quantify this. Please rewrite this section and include the required statistical and quantitative information.

We have now included the mean, standard deviation and coefficient of variation for all FDOM compounds. Given that FDOM coefficients of variations are in the range of 0.74 to 1.74, and those of DOSSPE and a_{350} 0.31 and 0.2, respectively, we consider the statement concerning the spatial variation as correct.

We also added a quantification of the subsurface concentrations of DOSSPE, p. 11, l. 10:
Concentrations decreased from 0.76 (5 m depth) to 0.33 μmol L$^{-1}$ in 100 m at station 7, from 0.62 (25 m) to 0.49 μmol L$^{-1}$ (125 m) at station 7 and from 0.49 (20m) to 0.28 μmol L$^{-1}$ (115m) at station 18. At station 2, concentrations of 0.89-0.91 μmol L$^{-1}$ were measured at a depth of 50-100 m; no surface data is available.

Page 11, OCS distribution: The authors should clearly state here and in their introduction that OCS sea surface concentrations from this cruise were already published in Lennartz et al (2017).

We included a statement in the introduction and the discussion:

p.4 l. 1: Surface concentrations and emissions to the atmosphere from the cruise presented here are discussed in (Lennartz et al., 2017). Here, we focus on processes in the water column.

p. 11 l. 15: Surface concentrations as well as emissions to the atmosphere are described in detail in (Lennartz et al., 2017).

Page 12, OCS photoproduction, lines 12 ff: It is interesting that OCS production rates only covary with humic-like fluorescence but not with a350. Please give further details of your analysis: how did you bin C2 and a350 data into days? Did you only use samples obtained between sunrise & sunset? Figure 6 only shows data for 6 days. How many days were available to test for pOCS – a350 correlations? Given that your experiment was not Lagrangian, how could changes in CDOM characteristics during diurnal cycles have affected your relationships? I would also be interested to see if a350 and C2 fluorescence were correlated with each other as they usually

We have added the missing statistics on DOM covariation:

p. 12, l.15: Measurements of FDOM (and a350) during the period used for optimization of the photoproduction rate constant p (i.e. daylight period) were averaged for this correlation.

p. 12, l.20: The correlation with a350 only explains a variance of $R^2=0.01$ (n=7, i.e. 7, 8, 9, 10, 12, 13, 16 October 2015). R^2 increases to 0.3, when the respective days for FDOM C2 correlations are considered (p>0.25). C2 and a350 were not significantly correlated during these days (p>0.2, $R^2=0.36$), but showed a similar spatial trend all over the cruise track (Fig. 2). Although our experiment was not strictly Lagrangian, a350 only changed <0.05 m$^{-1}$ within each respective fitting period. For FDOM C2, only 1-2 measurements per daylight period were available during the days when photoproduction rate constants were fitted, but variations of only 0.003 QSU per day were encountered during high frequency sampling towards the end of the cruise. This relationship thus carries some uncertainties, and will benefit from additional data from other regions.

Discussion

Page 14, Carbonyl sulfide, lines 11-12: “[profiles] do not indicate any connection to a significant redox-sensitive process”. This should be expected given that OCS photoproduction was found to be independent of dissolved oxygen concentration (Zepp and Andreae, 1994; Uher and Andreae, 1997). Please refer to previous work.

We added:

p. 14, l. 13: The independence from dissolved oxygen concentrations is in line with previous findings by (Zepp and Andreae, 1994; Uher and Andreae, 1997).
Page 14, line 17: Please remove reference to Ulshöfer et al. (1995) because they did not report dark production rates.

Deleted as suggested

Page 14, “radical production pathway”, lines 25 ff: “A strong similarity across different biogeochemical regimes favors the hypothesis of a radical production pathway, which would be indifferent to the prevailing biological community”. This statement is simply wrong and should be removed together with other associated statements. Available evidence clearly shows that rate constants of reactive radical species with DOM can vary significantly as a function of DOM source / composition (see e.g. McKay et al., 2011). Furthermore, DOM and its colored fraction are indirectly derived from primary production and therefore reflect its distribution pattern (see e.g. Carder et al., 1989), although not necessarily short terms variations. This unsupported speculation should be replaced by appropriate references to previous work. Kamyshny et al. (2003) for example, proposed a mechanism for dark production of OCS. That aside, possible differences in dark production rates between stations inside & outside the OMZ more likely reflect DOM compositional differences related to the microbial food web.

Because of the rate constant varying as a function of DOM source, as the reviewer correctly states, we already normalized the rate constant of dark production by a_{350} (see methods, e.g. equation 5). Normalizing by other parameters than a_{350} does not improve the explained variation of the Arrhenius-dependency, as we describe in p. 14, l. 26ff. Our point is that abiotic parameters (i.e. a_{350} and temperature), are better predictors for the dark production rate across very different biogeochemical regimes than biotic parameters. Of course, the microbial food web has a high impact on the local DOM composition, but this seems to be an indirect effect for OCS dark production, since it is best described using abiotic parameters.

To clarify this point, we changed:

p. 14, l. 26: A strong similarity across different biogeochemical regimes favors the hypothesis of a radical production pathway, which would be indifferent to the prevailing biological community. The fit in the Arrhenius-dependency could not be improved by other parameters than a_{350}, and showed no influence to dissolved O$_2$. The characteristics that make a molecule part of the CDOM pool, i.e. unsaturated bonds and non-bonding orbitals, also favor radical formation. OCS dark production is thus best described using abiotic parameters such as a_{350} and temperature, than biologically sensitive parameters such as dissolved O$_2$ or apparent oxygen utilization as a proxy for remineralisation. This independence from biotic parameters supports the radical production pathway.(…)

The results are in line with findings by Pos et al. (1998) showing that these molecules can form radicals in the absence of light e.g. mediated by metal complexes, and by Kamyshny et al. (2003) showing a positive correlation of dark production rate and temperature.

Page 15, line 5: “[…] internal waves led to high diffusivities”. Explain how you arrived at this conclusion. What is the evidence?

We have changed the sentence to:
There, high diffusivities were observed using the microstructure probe, which most likely result from high internal wave activity as indicated by vertical water displacements of up to 30m during four CTD casts.

Page 15, correlations, lines 10 ff: see my previous comments on correlation results section 3.2.4.

We have made the changes described above for clarification.

Lines 18-20: give references supporting your statement regarding covariation of humic like fluorescence and a350.

We changed:

On global scales, where p varies on a broader range than within the area covered by this study, a350 might still be an adequate, but not perfect predictor for this variation (Lennartz et al., 2017). On local scales, humic-like substances and CDOM a350 covary more strongly than on regional scales. Hence, the parameterization for p based on a350 can be improved using FDOM C2.

Page 15, lines 21 ff: see my previous comments regarding H2S as a possible substrate or OCS production.

We made the changes described above in the general comments section to clarify our point.

Page 16, lines 7 ff: This discussion of 1D model results refers to ‘scaling factors’ for AQYs. Note that AQYs cannot be assumed to be ‘constant’. There is now clear evidence that AQY can vary with CDOM absorbance, presumably due to changes in DOM composition reflected by optical properties. See for example Gali et al. (2016) and Stubbins et al. (2011). The authors’ own pOCS-CDOM relationships do reflect this as well. Establishing AQY-CDOM relationships for OCS would be useful and should be discussed in this section.

This is exactly our point, so we clarified this further by adding/changing:

Our simulation X98 at stations 2, 5, 7 and 18 underestimates mixed layer CS2 concentrations, indicating that the AQY most likely has to be scaled to match local conditions spatial variations of the AQY, most likely due to changes in the DOM composition, as previously found for other gases (OCS: see above, carbon monoxide (Stubbins et al., 2011), DMS (Galí et al., 2016)). These results corroborate findings by Kettle (2000) and Kettle et al. (2001), who showed that the photoproduction of CS2 was underestimated in some regions by the AQY from Xie et al. (1998). The scaling factor was on the order of 1-10 in Kettle’s studies, which is in line with our results (factor 2-4). In future model approaches, this photoproduction rate constant (expressing an integrated AQY) would need to be parameterized, and our results suggest that such parameterizations may rely on DOS or, on a global scale, DOC (since DOS covaries globally with DOC).

Page 16, CS2 vs SST, lines 30 ff: Report the CS2 vs SST relationship in your data and compare this to Xie et al (1999).

We added to the Result section:
p. 13, l. 6: Surface temperatures T [°C] and concentrations of CS$_2$ [pmol L$^{-1}$] were binned for daily averages, and yielded the following relationship (p=0.0026, $R^2=0.61$) of (eq. 10):

$$[\text{CS}_2] = 2.3 T - 27.2 \quad (10)$$

And added to the Discussion:

p 16, l. 26: The significant relationship between surface temperature and CS$_2$ concentrations corroborates previous findings. Xie et al. (1999) found a positive correlation between CS$_2$ concentration and SST for the Pacific and the North Atlantic with a linear relationship of $[\text{CS}_2] = 0.39 t + 7.2$ (t=temperature in °C). Daily averages of our data close to the shelf (n=8, from 12 Oct onwards) between 15 and 20 °C fall within this relationship. However, daily averaged concentrations were higher than predicted according to this relationship further away from the coast at the beginning of our cruise at temperatures between 20 and 30°C (n=4). Overall, we confirm that CS$_2$ concentrations increase with increasing temperatures, but the exact relationship varies spatially. Reasons for this relationship could result from e.g. temperature-driven decay of precursor molecules, but remain speculative. The results are in line with findings by Gharehveran and Shah (2018), who found increased CS$_2$ formation with increasing temperatures in incubation experiments.

Pages 17-18, CS2 photoproduction: see my previous comments regarding CS2 production and vertical profiles.

We made the changes described above in the general comments section to clarify our point.

Page 18, lines 7-9: Sustained subsurface maxima cannot be caused by ‘downward mixing’ because the CS2 gradient would cause transfer into the surface layer. Please remove this statement.

We replaced “downward mixing” by “physical downward transport”, since we are not referring to diapycnal mixing depending on the concentration gradient here (note that this process is already accounted for by the 1D model).

We added:

p.18, l. 9: Slow sinks below the ML would conserve high concentrations from surface waters due to the absence of air-sea exchange in the subsurface.

Editorial:

The wording could be improved by careful editing.

References

End of review

References of Reply

https://www.nature.com/articles/ncomms6986#supplementary-information, 2015.

We thank Dr. Cutter for his review, and reply to the comments below.

Given interest in the global radiation balance in a changing world, this manuscript examines the production of carbonyl sulfide and related gas carbon disulfide in waters off Chile using a combined field and modeling approach. It is a relevant and needed compilation for ocean and atmospheric scientists. One of the issues driving any recent examination of sulfur gas fluxes from the ocean is the apparent imbalance between known/established source fluxes, the atmospheric inventories, and residences times—the known fluxes cannot account for the measured inventories. In this respect, this Discussion paper doesn’t solve the problem, but in fact they also missed the papers by Cutter and Radford-Knoery (Mar. Chem., 43: 225-233, 1993) that clearly demonstrate the importance of coastal OCS fluxes, and another by Zhang and Cutter (Mar. Chem., 61:127-142, 1998) that shows coastal sediments are a large source to the water column of OCS via sulfate reduction and enhance the sea-air flux. Another interesting feature in this 1998 paper is that low depth-resolution bottle sampling that have acquired OCS depth profiles to date, and that used here with a pump, may be missing large subsurface maxima in OCS that would then radically change the calculated fluxes. These same features could be present for CS2 as well.

We are aware that such a comprehensive, but locally constrained study cannot solve the problem on global emissions alone, but we believe that increased process understanding and testing of model parameterizations in different biogeochemical regimes helps to improve global modeling approaches and, hence, global emission estimates.

Concerning emission estimates: Emission estimates that are derived from modelling approaches (i.e. not simply scaling oceanic OCS measurements to the global ocean area) already account for elevated OCS emissions at the coasts, because they take into account input data with e.g. elevated a_{350} in coastal areas (Lennartz et al., 2017). Coastal emissions, although important, are unlikely to account for the whole missing source of 400-600 Gg S yr^{-1}.

We thank Dr. Cutter for pointing us to the studies, and we include them in the following.

p. 3, l. 1: OCS is produced in the surface ocean by interaction of UV radiation with CDOM (Uher and Andreae, 1997), making coastal and shelf regions a hot spot for OCS production (Cutter and Radford-Knoery, 1993).

p. 14, l. 15: Profiles at station 7 and 18 reached down to the sediment, but did not show increased concentrations towards the bottom. Increased sediment inputs, as e.g. reported from estuarine regions (Zhang et al., 1998), apparently do not play a large role in the studied region, and fluxes to the atmosphere are not affected.

P 14, l. 15ff: The latter study also raises the question of near surface gradients, suggesting that our shallowest measurement depth of 5 m in both profile and underway sampling might underestimate the flux of OCS. On the other hand, strong near surface stratification acts as a barrier for air-sea exchange (Fischer et al., 2019) and could lead to a bias of the OCS flux, if the
sampling depth is below the barrier. Since it is difficult to perform underway sampling at shallower depths than a few meters, we cannot fully resolve this issue. However, given the low a_{350} compared to coastal and estuary regions as in Zhang et al. (1998), irradiation likely penetrates deeper into the water column in our study region than in the estuary in their study. Hence, photochemical production likely extended further down into the water column, which reduces the problem of underestimating the flux.

In these authors’ computations of photochemical and dark production, it would have been beneficial to examine the carefully measured and calculated rates in the Sargasso Sea (Cutter et al., 2004). In this respect, the Sargasso Sea dark production not only depends on the abundance of particulate organic matter, but also is ca. 3x higher than those reported here. Since they have endeavored to compare their results with others, this bears mentioning.

We added a paragraph to discuss these results:

p. 14, l. 18: Only incubation experiments in the Sargasso Sea showed higher production rates than reported here, ranging between 4-7 pmol L$^{-1}$ h$^{-1}$ (Cutter et al., 2004). Therein, the authors concluded that particulate organic matter heavily influences dark production. Although no sample-to-sample comparison to particulate organic carbon (POC) is possible for our OCS data, the general range of POC during our cruise was 12.1±6.1 µmol L$^{-1}$ (145.2 µg L$^{-1}$), which is much higher than the POC (ca. 41 µg L$^{-1}$) reported from the Sargasso Sea (Cutter et al., 2004). We thus cannot confirm the influence of POC on dark production in the Peruvian upwelling, and do not find a direct biotic influence.

Interestingly, their photochemical model using Weiss et al.’s 1995 Apparent Quantum Yields is 3-6 times lower than required based on field data (p. 12, line 22), but the Cutter et al. (2004) AQY parameters would nicely fit their field results. Thus, expanding their search for parameterizations would have solved some of their problems.

We added:

Methods:

p. 10, l. 4: We use the AQY by Weiss et al., since they were measured at the location closest to our study region (i.e. South Pacific). We assume they reflect the DOM composition in our study region best due to their similarity in a_{350}. We note other observed AQYs (Zepp and Andreae, 1994; Cutter et al., 2004), which vary by up to two orders of magnitude.

Discussion:

p. 16, l. 11: Photoproduction rates based on the wavelength-resolved simulation W95 underestimated observed concentrations in all cases. Other AQYs were not tested, but can be interpreted in a relatively straightforward way, since the AQYs of a given spectral shape is proportional to the OCS production and concentration (in steady state). Higher wavelength-resolved AQY as reported by Zepp and Andreae (1994) from the North Sea and the Golf of Mexico, as well as by Cutter et al. (2004) ranged from twofold to up to two magnitudes higher than the ones reported by Weiss et al. (1995). These differences in magnitude were attributed to the composition of the DOM pool. To reflect this influence of the DOM composition, Lennartz et al. (2017) parameterized the photoproduction rate constant (corresponding to an integrated AQY) to
following the suggestion by von Hobe et al. (2003) that a$_{350}$ can be used as a proxy for OCS precursors on larger spatial scales. Using this parameterization for photochemical production in the 1D water column model (simulation L19) yielded simulated concentrations closer to, but higher than, observations (Fig. 3). Although the absolute concentrations for the AQY W95 did not match observations due to the reasons outlined above, the shape of the profile fits observations well. The simulations thus support the experimental findings in most of the previously published AQY work, i.e. the highest OCS yield at UV wavelengths for in-situ conditions.

Finally, their speculation on p. 15 that dissolved H2S in the surface ocean could maintain OCS abundances is interesting, but in fact the major pathway for oxic H2S production is phytoplankton emissions coupled to assimilatory sulfate reduction, not OCS hydrolysis, and most of the resulting H2S is complexed with trace metals such as zinc (Walsh et al., Limnol. Oceanogr.,39: 941-948, 1994; Radford-Knoery [NOTE CORRECT SPELLING] and Cutter, 1994; Cutter et al., Deep-Sea Res. II, 46: 991-1010, 1999).

We have rewritten the whole paragraph for clarity:

An interesting finding is the significant correlation of the photoproduction rate constant p with FDOM C2 (humic-like FDOM), but not with DOS$_{SPE}$, given a reported correlation of OCS and DOS in the Sargasso Sea where much higher DOS concentrations of ca. 0.4 µmol S L$^{-1}$ were present (Cutter et al., 2004). It should be noted that the method to extract DOS$_{SPE}$ in our study does not recover all DOS compounds, and we cannot exclude the possibility that this influences the missing correlation between p and DOS. In the studied area, OCS photoproduction is apparently not limited by the bulk organic sulfur, but rather by humic substances. The humic-like FDOM component C2 is an abundant fluorophore in marine (Catalá et al., 2015; Jørgensen et al., 2011), coastal (Cawley et al., 2012) and freshwater (Osburn et al., 2011) environments. This FDOM component seems to be especially abundant in the deep ocean (Catalá et al., 2015), which might be the reason for higher C2 surface concentrations in regions of upwelling, as evident in our study (Fig. 2) and reported by Jørgensen et al. (2011). The significant correlation of p with humic-like fluorophores in our study highlights the importance of upwelling and coastal regions for OCS photoproduction.

A significant correlation (i.e., a limitation) of OCS photoproduction with humic-like substances, but not with bulk DOS$_{SPE}$ can be explained by two scenarios: Under the assumption that only organic sulfur is used to form OCS, the limiting factor is contained in the humic-like C2 fraction of the FDOM pool. The sulfur demand (75.8 pmol L$^{-1}$, the orange area in Fig. 7b) would need to be covered entirely by organic, sulfur-containing precursors. The limiting driver of this process is either organic molecules acting as photosensitizers or a sulfur-containing fraction of the DOM pool that correlates with FDOM C2, but not bulk DOS$_{SPE}$. In that scenario, FDOM C2 can be used as a proxy for the OCS photoproduction rate constant. More data from other regions would help to quantify such a relationship. In a second possible scenario under the assumption that both organic and inorganic sulfur can act as a precursor, the sulfur demand could theoretically be covered by the sulfur generated by hydrolysis of OCS (i.e. 85.8 pmol L$^{-1}$, Fig. 7). In this case, FDOM C2 would only be limiting as long as enough organic or inorganic sulfur is present, for example when temperatures are high enough to recycle sulfur directly from OCS, or when other inorganic sulfur sources are present.

Incubation experiments have shown that inorganic sulfur is a precursor for OCS (Pos et al., 1998). It is not clear whether the mechanism proposed therein occurs under environmental conditions,
because sulfide concentrations were higher than in most marine areas, but also yielded much higher OCS production rates in the magnitude of nM hr$^{-1}$ compared to the magnitude of pM hr$^{-1}$ under natural conditions. Furthermore, the conversion of sulfide to sulfate, rather than to OCS, is thermodynamically favored. Based on our data, we cannot resolve the question about the role of anorganic sulfur in OCS photoproduction, but our results are consistent with the reaction mechanism suggested by Pos et al. (1998). Incubation experiments at environmentally relevant sulfide concentrations, as well as p-DOS relationships across different temperature and DOM regimes will help to resolve this issue.

We have corrected the spelling mistake.

References

https://www.nature.com/articles/ncomms6986#supplementary-information, 2015.

The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS$_2$) in the Eastern Tropical South Pacific Peruvian upwelling

Sinikka T. Lennartz1,a, Marc von Hobe2, Dennis Booge1, Henry Bittig3, Tim Fischer1, Rafael Gonçalves-Araujo4,5, Kerstin B. Ksionzek4,6, Boris P. Koch4,7,8, Astrid Bracher4,8, Rüdiger Röttgers9, Birgit Quack1, Christa A. Marandino1

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
2Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-7), Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
3Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119 Rostock
4Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
5Aarhus University, Department of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
6MARUM Center for Marine Environmental Sciences, Leobener Straße, D-28359 Bremen, Germany.
7University of Applied Sciences, An der Karlstadt, 27568 Bremerhaven
8Institute of Environmental Physics, University of Bremen, 28334 Bremen, Germany
9Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany

anow at: Insitute for Biology and Chemistry of the Marine Environment, University of Oldenburg, Oldenburg

Abstract. Oceanic emissions of the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS$_2$) are a major source to their atmospheric budget. Their current and future emission estimates are still uncertain due to incomplete process understanding and, therefore, inexact quantification across different biogeochemical regimes. Here we present the first concurrent measurements of both gases together with related fractions of the dissolved organic matter (DOM) pool, i.e. solid-phase extractable dissolved organic sulfur (DOS$_{SPE}$, n=24, 0.16±0.04 µmol L$^{-1}$), chromophoric (CDOM, n=76, 0.152±0.03) and fluorescent dissolved organic matter (FDOM, n=35) from the Eastern Tropical South Pacific (ETSP) Peruvian upwelling region (Guayaquil, Ecuador to Antofagasta, Chile, October 2015). OCS was measured continuously with an equilibrator connected to an off-axis integrated cavity output spectrometer at the surface (29.8±19.8 pmol L$^{-1}$) and at four profiles ranging down to 136 m. CS$_2$ was measured at the surface (n=143, 17.8±9.0 pmol L$^{-1}$) and below, ranging down to 1000 m (24 profiles). These observations were used to estimate in-situ production rates and identify their drivers. We find different limiting factors of marine photoproduction: while OCS production is limited by the humic-like DOM fraction that can act as a photosensitizer, high CS$_2$ production coincides with high DOS$_{SPE}$ concentration.

Quantifying OCS photoproduction using a specific humic-like FDOM component as proxy, together with an updated parameterization for dark production, improves agreement with observations in a 1D biogeochemical model. The lack of correlation between OCS production and DOS$_{SPE}$ may be explained by the active cycling of sulfur between OCS and dissolved inorganic sulfide via OCS photoproduction and hydrolysis. In addition, the only existing parameterization for OCS
dark production is validated and updated with new rates from the ETSP and the Indian Ocean. Our results will help to better predict oceanic concentrations and emissions of both gases on regional and, potentially, global scales.

1 Introduction

Oceanic emissions play a dominant role in the atmospheric budget of the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS₂) (Chin and Davis, 1993; Kremser et al., 2016). OCS is the most abundant sulfur gas in the atmosphere, and CS₂ is its most important precursor. Both gases influence the climate directly (OCS) or indirectly (CS₂ by oxidation to OCS in the atmosphere), as OCS is a major supplier of stratospheric aerosols (Brühl et al., 2012; Crutzen, 1976), which exert a cooling effect on the atmosphere and can foster ozone depletion (Junge et al., 1961; Kremser et al., 2016). Furthermore, OCS has been suggested as a proxy to constrain global terrestrial gross primary production (Campbell et al., 2008; Montzka et al., 2007; Berry et al., 2013). The oceanic emissions of both gases have recently gained interest because they are suggested to account for a missing source of atmospheric OCS (Berry et al., 2013; Kuai et al., 2015; Glatthor et al., 2015; Launois et al., 2015). In-situ measurements of OCS in surface seawater are still limited, but those available suggest that oceanic emissions are too low to fill the proposed gap of 400-600 Gg S yr⁻¹ in the atmospheric budget (Lennartz et al., 2017). Still, oceanic emission estimates are associated with high uncertainties (ca. 50%) (Kremser et al., 2016; Whelan et al., 2018). Reducing these uncertainties for present and future emission estimates requires i) increasing the existing field data across various biogeochemical regimes and ii) increasing process understanding and quantification in the whole water column to facilitate model approaches.

Most of the in-situ observations of OCS and CS₂ in seawater were reported from the Atlantic Ocean and adjacent seas, and mainly represent surface ocean measurements (see Whelan et al. (2018) for an overview). Here we report the first concurrent measurements in the surface ocean and the water column for both gases from the Peruvian upwelling Eastern Tropical South Pacific (ETSP). This region e ETSP is one of the most biologically productive regions in the global ocean, due to the upwelling of nutrient rich water. The upwelling influences the pool of dissolved organic matter (DOM) exposed to sunlight by transporting DOM from the deep ocean to the surface. The DOM pool is relevant in this context, because it contains the precursors and photosensitizers for the photochemical production of OCS and CS₂ (Pos et al., 1998; Flöck et al., 1997; Uher and Andreae, 1997). Here we show measurements of chromophoric and fluorescent DOM as well as solid-phase extractable dissolved organic sulfur (DOS_SPE), in order to further specify drivers of production processes and improve parameterizations of production rates in biogeochemical models.

Chromophoric DOM (CDOM) is the fraction that absorbs light in the UV and visible range, and contains the photosensitizers that absorb light and form radicals for facilitate photochemical reactions, and can undergo photodegradation itself (Coble, 2007). A part of the CDOM fraction fluoresces (FDOM), i.e. emits absorbed light at a shifted wavelength. Distinct groups of molecules have a specific fluorescence pattern, enabling the molecule classes such as humic substances or
proteins (FDOM components) to be differentiated (Coble, 2007; Murphy et al., 2013). DOS\textsubscript{SPE} is operationally defined as the dissolved organic sulfur retained by solid-phase extraction (Dittmar et al., 2008). The method favors the retention of polar molecules, which comprise approximately 40% of the total dissolved organic carbon (DOC) in marine waters (Dittmar et al., 2008). Due to the operational definition, no direct comparison to the CDOM and FDOM pools is possible (Wünsch et al., 2018).

OCS is produced in the surface ocean by interaction of UV radiation with CDOM (Uher and Andreae, 1997), making coastal and shelf regions a hot spot for OCS production (Cutter and Radford-Knoery, 1993). A reaction pathway through an acylradical intermediate in addition to a thiyl (organic RS-) or sulphydryl (inorganic SH-, from bisulfide) radical pathway has been proposed by Pos et al. (1998) based on incubation experiments. Indeed, the amount of OCS produced has been shown to depend on CDOM, more specifically the absorption coefficient at 350 nm (a_{350}), and a variety of organic sulfur-containing precursors, such as methionine or glutathione (Zepp and Andreae, 1994; Flöck et al., 1997). a_{350} (Uher and Andreae, 1997a) has been used as a proxy to calculate photochemical production of OCS previously (Preiswerk and Najjar, 2000). In addition, von Hobe et al. (2003) suggested a relationship between the photoproduction rate constant and a_{350}, making the overall photoproduction rate quadratic with respect to a_{350}. This dependency is based on the assumption that a_{350} can serve as a proxy for both photosensitizers and organic sulfur precursors on large spatial scales. On larger spatial scales, the CDOM absorption coefficient at 350 nm (a_{350}) can serve as a proxy for both photoexcitable carbonyl groups and organic sulfur precursors, making the overall photoproduction rate second-order dependent on a_{350} (von Hobe et al., 2003). Accordingly, a global parameterization for photochemical production was developed based on a_{350}, by integrating data from the Atlantic, Pacific and Indian ocean (Lennartz et al., 2017). To improve this parameterization on a regional scale, we tested whether the precursors can be further specified by an easily measurable fraction of the DOM pool (FDOM components, DOS\textsubscript{SPE}), without performing costly and potentially incomplete analysis on the molecular level. In addition, OCS is produced in a light-independent reaction termed dark production (Flöck and Andreae, 1996; Von Hobe et al., 2001). Two hypotheses exist to date: an abiotic reaction involving thiyl radicals formed by O\textsubscript{2} or metal complexes (Pos et al., 1998; Flöck et al., 1997; Flöck and Andreae, 1996), and a coupling to microbial processes during organic matter remineralization (Radford-Knoery and Cutter, 1994). Dark production is parameterized based on temperature and a_{350} derived from field data in the Atlantic Ocean and the Mediterranean Sea (Von Hobe et al., 2001). It is yet unclear whether this parameterization is valid on a global scale. Furthermore, OCS is degraded by hydrolysis yielding CO\textsubscript{2} and hydrogen sulfide (H\textsubscript{2}S) or bisulfide (SH-), in the following summarized as sulfide. The hydrolysis degradation rate increases strongly with temperature, and has been well quantified by a comprehensive laboratory study over a wide temperature range (Elliott et al., 1989) and by seawater incubation studies (Radford-Knoery and Cutter, 1994). Oceanic OCS concentrations have been modelled using surface box models on regional (von Hobe et al., 2003) and global scales (Lennartz et al., 2017), in the water column (von Hobe et al., 2003) as well as with a global 3D circulation model (Preiswerk and Najjar, 2000; Launois et al., 2015) based on the same or similar parameterizations as described above. Here we test whether subsurface concentrations can be numerically simulated by coupling the box model to a physical 1D water column host model.
Production and loss processes for CS$_2$ are less well constrained. Photochemical incubation studies indicate that the photoproduction of CS$_2$ has a similar wavelength-dependence (spectrally resolved apparent quantum yield, AQY), but only a quarter of the magnitude compared to OCS (Xie et al., 1998). It is currently unclear whether in-situ photoproduction rates of both gases co-vary on larger spatial scales. A covariation is expected only when identical drivers limit the production for both gases. Evidence for biological production comes from incubation studies (Xie et al., 1999), indicating varying CS$_2$ production for different phytoplankton species. Outgassing to the atmosphere appears to be the most important sink for CS$_2$ in the mixed layer (Kettle, 2000). Although CS$_2$ is hydrolyzed and oxidized by H$_2$O$_2$, the corresponding lifetimes are too long to rival emission to the atmosphere at the surface (Elliott, 1990). Additional In addition to the known sinks, namely air-sea exchange, hydrolysis and oxidation, Kettle (2000) proposed a sink with a lifetime on the order of weeks, to match observed concentrations with a surface box model. No underlying mechanism for such a sink is currently known, hampering further model approaches.

The goal of this study is to quantify production rates for both gases in the Peruvian upwelling ETSP and to further specify their drivers. Surface concentrations and emissions to the atmosphere from the cruise presented here are discussed in Lennartz et al. (2017). Here, we focus on processes in the water column. We use the comprehensive dataset together with simple biogeochemical models to increase the understanding and quantification of the cycling of both gases in the water column and to improve model capability to predict OCS and CS$_2$ seawater concentrations.

2 Material and Methods

2.1 Study area

The cruise ASTRA-OMZ on RV SONNE started in Guayaquil, Ecuador, on 05.10.2015 and reached Antofagasta on 22.10.2015 (Fig. 1). It covered several regimes from the open ocean to the coastal shelf between 5°N and 17°S. The hydrographic conditions encountered during this cruise have been described elsewhere (Stramma et al., 2016). The area off Peru belongs to one of the four major global eastern boundary upwelling systems (Chavez et al., 2008). A large oxygen minimum zone expands into the Pacific Ocean at depths between 100 and 900 m, resulting from weak ventilation and strong respiration (Karstensen et al., 2008). The cruise covered areas of open ocean with warm sea surface temperatures (SST) between 22-27°C (stations 1-6), and regions with colder SSTs below 20°C closer to the coast (stations 7-18). Upwelling occurred at the southernmost transects indicated by the lowest SSTs (15-18°C) encountered during that cruise (stations 15-18).

2.2 Measurement of trace gases

Carbonyl sulfide concentrations were determined with an off-axis integrated cavity output spectrometer (OA-ICOS, Los Gatos Inc., USA) coupled to a Weiss-type equilibrator (Lennartz et al., 2017). The Weiss-type equilibrator was supplied with 2-4 L min$^{-1}$ of seawater from the hydrographic shaft of the ship 5 m below the surface. The sample gas stream from the
headspace of the equilibrator was filtered (Pall Acro Filter, 0.2 µm) and dried (Nafion® dryer, Gasmet Perma Pure) before entering the cavity of the OCS analyzer. The outlet of the OCS analyzer was connected to the Weiss-equilibrator, as this recirculation method kept the concentration gradient between the water and gas phases small, enabling rapid equilibration. OCS calibrations using standards from permeation tubes (Fine Metrology, Italy) were performed before and after the cruise, showing good agreement. Details on the OA-ICOS spectrometer can be found in Schrade (2011). The precision of this set-up is 15 ppt, and the limit of detection is 180 ppt (corresponding to 4 pmol L\(^{-1}\) at 20°C). Additionally, independent samples for comparison measured with GC-MS (Schauffler et al., 1998; de Gouw et al., 2009) reflected <2% difference between the NOAA scale and the perm tube standards. A corrected calibration led to a minor change in absolute concentrations of OCS compared to (Lennartz et al., 2017), which was on average +2 pmol L\(^{-1}\). Marine boundary layer air was measured every hour for 10 min by pumping air from the ship’s deck (ca. 35 m above sea level) through a metal tube (Decabon) with a chemically inert pump (KNF Neuberger). Resulting emissions are reported in (Lennartz et al., 2017).

OCS depth profiles were obtained using a newly developed submersible pumping system. A rotary pump (Lowara, Xylem) connected to a 1” PTFE hose supplied the Weiss-equilibrator with 2-4 L seawater min\(^{-1}\). The pump inlet was held at a constant depth for 10-15 min to ensure full equilibration at 4-6 depths during each profile. CS\(_2\) was measured with a purge and trap system attached to a gas chromatograph and mass spectrometer (GC/MS; Agilent 7890A/Agilent 5975C; inert XL MSD with triple axis detector) running in single-ion mode (Lennartz et al., 2017). 50 mL samples were taken in 1 to 3 hour intervals from the same underway system as for continuous OCS measurements. After purging for 15 min with helium (70 mL min\(^{-1}\)), the gas stream was dried with a Nafion® membrane drier (Gasmet Perma Pure) and trapped with liquid nitrogen for preconcentration. Hot water was used to heat the trap and inject CS\(_2\) into the GC/MS. The retention time for CS\(_2\) (\(m/z=76, 78\)) was 4.9 min. The analyzed data were calibrated daily using gravimetrically prepared liquid CS\(_2\) standards in ethylene glycol. During purging, 500 µL gaseous deuterated DMS (d3-DMS) and isoprene (d5-isoprene) were added to each sample as an internal standard to account for possible sensitivity drift between calibrations. The limit of detection was 1 pmol L\(^{-1}\). Discrete samples from depth profiles were obtained from the rosette sampler connected to a CTD. Note that OCS and CS\(_2\) profiles were not obtained at the same time, but up to seven hours apart. The stations were defined by geographical location and not by a Lagrangian experiment following the same water mass, which explains temperature changes between OCS and CS\(_2\) profiles for example at station 2 (see Fig. 2c, S-Table 2).

2.3 Chromophoric dissolved organic matter (CDOM)

The spectral absorption coefficient of CDOM (\(a_{350}\)) was determined for samples collected from the CTD’s Niskin bottles or from the underway system, here in a 3-hour interval. The sampled water was filtered through a sample-washed, 0.2 µm membrane (GWSP, Millipore) after pre-filtration through a combusted glass-fiber filter (GFF, Whatman). The optical density of the CDOM in the filtrate was analyzed using a spectrophotometric setup with a liquid waveguide capillary cell (LWCC, WPI; path length: 2.5 m) (Miller et al., 2002). Spectra were recorded for wavelengths between 270 to 700 nm at 2
nm spectral resolution for the sample filtrate and purified water as the reference, with sample and reference at room temperature. The absorption coefficient is determined from the obtained optical density using the Lambert-Beer law and corrected for salinity effect (see (Lefering et al., 2017) for details).

2.4 Fluorescent dissolved organic matter (FDOM)

Fluorescent dissolved organic matter (FDOM) was recorded in Excitation-Emission-Matrices (EEMs) with a UV-vis-spectrofluorometer (Hitachi F2700) from filtered seawater samples (0.2 µm, <200 mbar below atmospheric pressure) directly onboard. Excitation wavelengths ranged from 220 nm to 550 nm with a resolution of 10 nm. Emission wavelengths were recorded from 250 nm to 550 nm in 1 nm resolution at a photomultiplier voltage of 400 or 800 V, due to a change of method during the campaign (from 10 Oct 2015 onwards). For both voltages, calibration curves with quinine sulfate (5 to 30 ppb) in sulfuric acid were measured with R² of 0.9991 and 0.9971, respectively. EEMs were blank subtracted and Raman normalized (Murphy et al., 2013). The values are reported here in quinine sulfate QS units (QSU). A parallel factor analysis (PARAFAC) was performed using the drEEM Toolbox (Murphy et al., 2013; Stedmon and Bro, 2008) to separate the superimposed optical signals of different fluorophores (‘components’) in the EEMs. FDOM concentrations are reported here in quinine sulfate units (QSU, Murphy et al. (2013)), the conversion factor between QSU units and Raman units was 0.3540 and 0.4256, for each of the QS calibration (i.e. before and after the change in photomultiplier voltage), respectively. The components were compared to the database OpenFluor (Murphy et al., 2014) to identify similar components from previous studies in other environments.

2.5 Solid-phase extractable dissolved organic sulfur (DOS_SPE)

DOS_SPE was sampled from the underway system or from submersible pump profiles directly into glass bottles and filtered through pre-combusted GF/F filters (Whatman, 450°C for >5h) at maximum 200 mbar below atmospheric pressure. 450 mL of each filtered samples were acidified to pH 2 (hydrochloric acid, suprapur, Merck), extracted according to Dittmar et al. (2008) (PPL, 1 g, Mega Bond Elut, Varian) and stored at -20°C until further analysis. For analysis, the PPL-cartridges were eluted with 5 mL of methanol (LiChrosolv, Merck). DOS_SPE was quantified with an inductively coupled plasma optical emission spectrometer (ICP-OES, iCAP 7400, Thermo Fisher Scientific). 100 µL of the extract was evaporated with N₂ and redissolved in 1 mL nitric acid (1 M, double distilled, Merck). 1 mL of Yttrium (2 µg L⁻¹ in the spike solution) was added as internal standard. The sulfur signal was detected at a wavelength of 182.034 nm. Nitric acid (1 M, double distilled, Merck) was used for analysis blank. Calibration standards were prepared from a stock solution (1000 mg L⁻¹ sulfur ICP-standard solution, Carl Roth). To assess the accuracy and precision of the method, the SLRS-5 reference standard was analyzed five times during the run. Although sulfur is not certified for SLRS-5, a previous study (Yeghicheyan et al., 2013) reported S concentrations of 2347 – 2428 µg S L⁻¹, which is in agreement with our findings. The limit of detection (according to German industry standard DIN 32645) was 1.36 µmol L⁻¹ S corresponding to 0.015 µmol L⁻¹ DOS_SPE in original seawater (average enrichment factor of 89.4).
2.6 Shortwave radiation in the water column

Underwater shortwave radiation was assessed through downwelling irradiance profiles obtained with the hyperspectral radiometer RAMSES ACC-VIS (TriOS GmbH, Germany). This instrument covers a wavelength range of 318 nm to 950 nm with an optical resolution of 3.3 nm and a spectral accuracy of 0.3 nm. Measurements were collected with sensor-specific automatically adjusted integration times (between 4 ms and 8 s). Radiometric profiles were collected down to the maximum where light could be recorded prior or after CDOM/FDOM sampling except at Station 7 where sampling took place at night only. Short wave radiation was approximated at this station with the shortwave radiation profile at station 6, which had similar properties in chlorophyll \(a \) distribution in the water column.

Following the NASA protocols (Mueller et al., 2003), all the downwelling irradiance profiles were corrected for incident sunlight (e.g. changing due to varying cloud cover) using simultaneously obtained downwelling irradiance at the respective wavelength, measured above the surface with another hyperspectral RAMSES irradiance sensor. Finally, these data were interpolated on discrete intervals of 1 m.

As surface waves strongly affect measurements in the upper few meters, deeper measurements that are more reliable can be further extrapolated to the sea surface. Each profile was checked and an appropriate depth interval was defined (ranging from 4-25 for Station 2 and 2-25 m for the other three stations) to calculate the vertical attenuation coefficients for downwelling irradiance, \([\text{K}_d(\lambda, z')]\) for the upper surface layer. With \(\text{K}_d(\lambda, z') \) the subsurface irradiance \(E_d^{-1}(\lambda, 0 \text{ m}) \) were extrapolated from the profiles of \(E_d(\lambda, z) \) within the respective depth interval. Finally, short wave radiation \(\text{rad}(z) \) and photosynthetic active radiation \(\text{PAR}(z) \) was calculated as the integral over \(E_d^{-1}(\lambda, z) \) for \(\lambda = 318 \text{ to } 398 \text{ nm} \) and for \(\lambda = 400 \text{ to } 700 \text{ nm} \), respectively, using equation 1 for the depths above the lower limit of the respective depth interval and the originally measured \(E_d^{-1}(\lambda, z) \) for the depths below. Finally the euphotic depth \(Z_{eu} \) at each station was calculated from the in-situ PAR profiles as the 1% light depth where \(\text{PAR}(z) \) 0.01 of \(\text{PAR}(z=0\text{ m}) \).

2.7 Determination of gas diffusivity with microstructure profiles

Diapycnal diffusive gas fluxes, i.e. fluxes of dissolved gas compounds caused by turbulent mixing in direction perpendicular to the stratification, were calculated for the four stations 2, 5, 7 and 18. The diapycnal diffusive flux of a compound, \(\Phi_{dia} \) [pmol m\(^{-2}\) s\(^{-1}\)], is estimated as

\[
\Phi_{dia} \approx \rho \cdot \text{K}_p \cdot \frac{\partial c}{\partial z}
\]

(1)

where \(\frac{\partial c}{\partial z} \) [pmol kg\(^{-1}\) m\(^{-1}\)] is the vertical gradient of gas concentration across a layer of ideally constant stratification and constant diffusivity, \(\text{K}_p \) [m\(^2\) s\(^{-1}\)] is the diapycnal turbulent diffusivity, and \(\rho \) [kg m\(^{-3}\)] is the water density. Fluxes can be estimated for depth ranges that are limited above and below by concentration measurements, and that do not vary systematically in stratification and turbulent mixing within. Particular focus is on fluxes to/from the mixed layer (ML), which however cause particular issues because of the sudden changes in stratification and mixing intensity at the mixed layer depth (MLD). That is why we approximate ML fluxes by fluxes through a transition zone at 5 to 15 m below the MLD,
following Hummels et al. (2013), because stratification there is typically strong and relatively constant. MLD was defined here as the depth where the density has increased by an amount equivalent to a 0.5 K temperature decrease compared to the surface (Schlundt et al., 2014). The diapycnal turbulent diffusivity K_ρ was estimated from the average dissipation rate of turbulent kinetic energy, which in turn was estimated from profiles of velocity microstructure. The microstructure profiles were obtained with a tethered profiler (type MSS 90D of Sea & Sun Technology). Details on the methodology to estimate diapycnal fluxes of dissolved substances from microstructure measurements and concentration profiles can be found in Fischer et al. (2013) and Schlundt et al. (2014). The microstructure profiles were obtained with a tethered profiler (type MSS 90D of Sea & Sun Technology).

The depths where fluxes could be estimated were then used as upper and lower bounds of budget volumes. The difference of the diapycnal fluxes in and out of each volume determines convergence or divergence of the diapycnal flux. If other transport processes are negligible and if steady state is assumed, sources/sinks to compensate for the flux divergence/convergence can be determined.

Uncertainties of fluxes have been calculated by error propagation from measurement uncertainties of the gas concentrations and of the average K_ρ values. There are additional uncertainties not quantified, e.g. from the approximation of the average gas gradient, or from the neglect of other gas transport processes than diapycnal mixing. It should be noted that the diffusivity profile only represents current conditions during profiling, and can change on a daily basis due to varying stratification, surface winds etc.

2.8 Determination of OCS dark production rates

Dark production rates were determined from hourly averaged measured seawater concentrations at nighttimeshortly before sunrise (i.e. ca. 12-14 hours after concentration maximum of the previous day) or at depths below the euphotic zone. Concentration data from this study and a previous study from the Indian Ocean (Lennartz et al., 2017) were used to calculate dark production rates. The determination of dark production rates relies on the principle that in the absence of light, an equilibrium between dark production and loss by hydrolysis results in stable concentrations (Von Hobe et al., 2001). To ensure approximately steady state conditions, we averaged the concentrations one hour before sunrise and compared to the average of the previous hour. We only considered instances when the concentration before sunrise deviated less than 1 pmol L$^{-1}$ from the previous hour for further calculation. These conditions were met at the beginning of the cruise (7 Oct to 12 Oct), when water temperatures ranged between 21-26°C and corresponding e-folding lifetimes of OCS due to hydrolysis 6 (7 Oct) -12 h (12 Oct). In steady state (early morning or below euphotic zone), dark production $P_D [\text{pmol L}^{-1} \text{s}^{-1}]$ equals loss by hydrolysis $L_H [\text{pmol L}^{-1} \text{s}^{-1}]$, the latter being the product of the steady-state concentration $[\text{OCS}] [\text{pmol L}^{-1}]$ and the rate constant $k_h [\text{s}^{-1}]$ according to eq. 2:

$$P_D = L_H = [\text{OCS}] \cdot k_h$$

(2)
The rate constant for hydrolysis, $k_h [s^{-1}]$, was calculated according to Elliott et al. (1989), eq. 3 and 4:

$$k_h = e^{(24.3 \cdot \frac{10450}{T})} + e^{(22.8 - \frac{60^40}{T})} \cdot \frac{K_w}{a[H^+]} \quad (3)$$

$$-log_{10} K_w = \frac{3046.7}{T} + 3.7685 + 0.0035486 \cdot \sqrt{S} \quad (4)$$

with temperature T, salinity S, $a[H^+]$ the proton activity and K_w the ion product of seawater (Dickinson and Riley, 1979).

The temperature dependency of the reaction rate $P_D [pmol \ L^{-1} \ s^{-1}]$ can be described with an Arrhenius-relationship, resulting in the following equation (eq. 5) in its linearized form:

$$\ln\left(\frac{P_D}{a_{350}}\right) = \frac{a}{T} + b \quad (5)$$

with a_{350} being the absorption coefficient of CDOM at 350 nm [m$^{-1}$], T the temperature [K] and a and b coefficients describing the temperature dependency of the reaction [-]. The production rate P_D is normalized to a_{350} (von Hobe et al., 2001). The parameters a and b in eq. 5 were derived from P_D (eq. 5) in the Arrhenius-plot to obtain a parameterization for dark production rate in relation to temperature and a_{350}.

Biases can potentially be introduced in two ways: 1) neglecting other sinks like air-sea exchange can lead to underestimations of the production rate. With wind speeds of 8 m s$^{-1}$ and MLD on the order of 20-40m, life times due to air-sea exchange are in the order of days to weeks, and hence negligible. 2) Sampling less than two half lives after the maximum concentrations can lead to overestimations of the production rate. For the 11 and 12 October, samples considered for calculation of dark production rates were taken less than two half lives after the concentration maximum of the previous day. Since the concentration changed less than 1 pmol L$^{-1}$ within two hours prior to this sampling, we consider the bias as within the range of the given uncertainty.

2.9 Surface box models to estimate photoproduction rate constants

The surface box model for OCS has already been used in Lennartz et al. (2017) to estimate OCS photoproduction rate constants. The model consists of parameterizations for the four processes hydrolysis (Elliott et al., 1989), dark production (Von Hobe et al., 2001), photoproduction (Lennartz et al., 2017) and air-sea exchange (Nightingale et al., 2000). *In-situ* measurements of meteorological, physical and biogeochemical parameters are used as model forcing. Photochemical production was calculated according to eq. 6:

$$\frac{dc_{\text{photo}}}{dt} = \int_{MLD}^{0} UV \cdot a_{350} \cdot p \quad (6)$$

with $\frac{dc_{\text{photo}}}{dt}$ being the change in concentration due to photoproduction [pmol L$^{-1}$ s$^{-1}$], UV the irradiance in the UV range [W m$^{-2}$], a_{350} the absorption coefficient of CDOM at 350 nm [m$^{-1}$] and the photoproduction rate constant p [pmol J$^{-1}$]. The model
was set up in an inverse mode constrained by time series of OCS measurements \(\frac{dc}{dt} \) to optimize the photoproduction rate constant \(p \) during each daylight period (13:00 to 23:00 h UTC) with a Levenberg-Marquardt-routine (MatLab version 2015a, Mathworks, Inc.). The scaling of the rate constant \(p \) can be seen as the contribution of the precursors varying in concentration, as detailed in von Hobe et al. (2003).

An analogous model set-up was developed for CS\(_2\), including only the processes of air-sea exchange and photoproduction. The estimated production rate hence compensates the sink of air-sea exchange. Processes without known parameterizations, such as possible biotic production and a potential (chemical) sink are excluded at this stage (see discussion). More information on the model forcing parameters can be found in the supplementary material (S-Tab 1 and 2).

2.10 1D water column modules for OCS and CS\(_2\)

The Framework for Aqueous Biogeochemical Modelling (FABM) was used to couple the box model to a 1D water column model (Bruggeman and Bolding, 2014) and compare simulated concentrations to observations at stations 2, 5, 7 and 18. FABM provides the frame for a physical host model and a biogeochemical model, wherein the physical host is responsible for tracer transport and the biogeochemical model provides local source and sink terms. The physical host used here is the General Ocean Turbulence Model (GOTM), which is a 1D water column model simulating hydrodynamic and thermodynamic processes related to vertical mixing (Umlauf and Burchard, 2005). GOTM derives solutions for the transport equations of heat, salt and momentum.

In-situ measurements of radiation, temperature, salinity, CDOM and meteorological parameters were used as model forcing to represent conditions under which the concentration profiles were taken. Diurnal radiation cycles and constant meteorological conditions, salinity and water temperature were repeated for 5 days for OCS to obtain stable diurnal concentration cycles and 21 days for CS\(_2\) due to its longer lifetime.

The same process parameterizations as for the box models were used as local source and sink terms in the 1D water column modules for OCS and CS\(_2\) in FABM. Photochemical production was calculated in the wavelength-integrated approach (300-400 nm) described above in eq. 6, and in addition in a wavelength-resolved approach. For this purpose, we used in-situ measured, wavelength resolved downwelling irradiance profiles together with in-situ wavelength-resolved CDOM absorption coefficients to model the photoproduction of both gases in the water column based on previously published apparent quantum yields (AQY) by Weiss et al. (1995) for OCS and by Xie et al. (1998) for CS\(_2\). We use the AQY by Weiss et al., since they were measured at the location closest to our study region (i.e. South Pacific). We assume they reflect the DOM composition in our study region best due to their similarity in \(a_{350}\). We note other observed AQYs (Zepp and Andreae, 1994; Cutter et al., 2004), which vary by up to two orders of magnitude. In addition, the photoproduction rate constant \(p \) of OCS in eq. 6 was calculated based on the relationship with FDOM component 2 developed in this study.

In addition, sensitivity tests were performed to further constrain production and consumption processes for CS\(_2\). Here we assessed the sensitivity of the general shape of the profiles and did not focus on exact production rates, since both sink and
source processes are too poorly constrained to derive reaction rates from single concentration profiles. Profiles were initialized with the lowest subsurface concentration of the respective measured profile: low enough to be able to assess whether in-situ photoproduction can explain concentration peaks below the mixed layer, but high enough to keep diapycnal fluxes out of the mixed layer in a reasonable range (in contrast to initializing with 0 pmol L\(^{-1}\)). The same meteorological conditions that occurred on the day of measurement were repeated for 21 days, i.e. ~2-3 times longer than the lifetime due to air-sea exchange. These sensitivity tests demonstrate 1) the sensitivity of surface CS\(_2\) concentrations against diurnal mixed layer variations (simulations X98, X98d, X98s), and 2) the sensitivity of the subsurface CS\(_2\) peak against the photoproduction rate constant and wavelength resolution (simulations X98x2, pfit, psfit). To test the sensitivity against diurnal mixed layer variations is important because the surface CS\(_2\) concentrations depend on the amount of photochemical production occurring within the mixed layer. Air-sea exchange as the major sink for CS\(_2\) within the mixed layer led to a relatively long lifetimes on the order of days to weeks during this cruise, so that the conditions during the days prior to the CS\(_2\) profile measurements become important. Simulations with adjusted temperature and salinity profiles with a diurnally varying mixed layer between 10m-25m (‘shallow’ simulation X98s) and 25-50m (‘deep’ simulation X98d) were performed. For the second test, demonstrating the sensitivity of the subsurface peak, we chose station 5. This station provides the unique opportunity to assess a profile where the photic zone reaches below the ML, hence photoproduction might occur at depths where the sink of air-sea exchange is absent due to the bottom of the mixed layer acting as a barrier. We used two scenarios to assess the subsurface concentrations with one photoproduction rate constant \(p\) across the profile, which is consistent with surface concentrations: 1) a scenario during which the AQY by Xie et al. (1998) is scaled by a factor of 2 to match the surface concentration in a wavelength-resolved approach, and 2) a scenario where \(p\) is fitted with a wavelength-integrated approach (eq. 6) with (simulation psfit) and without (simulation pfit) allowing for an additional chemical first-order sink.

An overview of the model experiments is listed in Table 1, more information on the model forcing and set-up can be found in the supplementary material (S-Table 2).

3 Results

3.1 CDOM, FDOM and DOS\(_{SPE}\)

DOM showed strong spatial variability in FDOM, but less in the DOS\(_{SPE}\) concentration and CDOM absorbance. CDOM, here shown as the absorption coefficient at 350 nm, was on average \(a_{350} = 0.15 \pm 0.03 \text{ m}^{-1}\) (coefficient of variation, c.o.v.: 0.2 m\(^{-1}\)). Highest absorption coefficients were found closest to the continent and in the upwelling-influenced region between 17-20\(^\circ\)S (Fig. 2e), as expected in upwelling regions (Nelson and Siegel, 2013). This spatial pattern was consistent with the monthly composite of satellite data (Fig. 1).
Four different components of FDOM, representing groups of similarly fluorescing molecules, were isolated and validated with PARAFAC analysis. Components C1 \((\text{average±standard deviation 0.015±0.0119 QSU, c.o.v.: 0.79})\) and C4 \((0.0091±0.0158 QSU, c.o.v.: 1.74)\) have their fluorescence peak in the UV part of the EEM (see supplements, S-Fig. 1). They resemble the naturally occurring amino acids tryptophane and tyrosine (Coble, 2007). Components C2 \((0.0032±0.0027 QSU, c.o.v.: 0.84)\) and C3 \((0.0032±0.0158 QSU, c.o.v.: 0.91)\) fluoresce in the visible range (VIS-FDOM) of the EEM. Their fluorescence pattern showed characteristics of humic-like substances, and were abundant especially in the southern part of the cruise, closer to the continent and upwelling region (C2 in Fig. 2f, S-Fig. 1).

Surface DOS\(_{\text{SPE}}\) only showed minor variations along the cruise track with concentrations of 0.16±0.05 µmol L\(^{-1}\) \((\text{c.o.v.: 0.31})\). Highest surface DOS\(_{\text{SPE}}\) concentrations were found in the 16°S transect connected to an active upwelling cell and in the open ocean part of the cruise (Fig. 2g). DOS\(_{\text{SPE}}\) concentrations in the water column (not shown) decreased with depth, as also found in the eastern Atlantic Ocean and the Sargasso Sea (Ksionzek et al., 2016). Concentrations decreased from 0.76 (5 m depth) to 0.33 µmol L\(^{-1}\) in 100 m at station 7, from 0.62 (25 m) to 0.49 µmol L\(^{-1}\) (125 m) at station 7 and from 0.49 (20m) to 0.28 µmol L\(^{-1}\) (115m) at station 18. At station 2, concentrations of 0.89-0.91 µmol L\(^{-1}\) were measured at a depth of 50-100m; no surface data is available.

3.2 Carbonyl Sulfide (OCS)

3.2.1 Horizontal and vertical distribution

OCS surface water concentrations ranged from 6.4 to 144.1 pmol L\(^{-1}\) (average 30.5 pmol L\(^{-1}\)) with strong diurnal cycles as described in Lennartz et al. (2017). Surface concentrations increased towards shelf and coast, and were highest along a shelf transect from 8° to 12° S and connected to a fresh upwelling patch around 16°S (Fig. 2a). Surface concentrations as well as emissions to the atmosphere are described in detail in Lennartz et al. (2017). The concentrations in the water column decreased with depth at stations 2, 7 and 18 to ca. 10 pmol L\(^{-1}\) below the euphotic zone with varying gradients. Profiles at stations 7 and 18 ranged down to the oxygen minimum zone, but the concentration profiles did not show any corresponding discontinuity. The shape of the concentration profile for station 5 differed from the other stations: here the profile had a convex shape down to 75 m, and it was the only station where a subsurface concentration peak was recorded at a depth of 136 m (Fig. 3).

3.2.2 Dark production

The dark production rates at the surface varied between 0.86 and 1.81 pmol L\(^{-1}\) h\(^{-1}\) along the northern part of the cruise track, and between 0.16 and 0.81 pmol L\(^{-1}\) h\(^{-1}\) in the four depth profiles below 50 m. The Arrhenius-type temperature dependency showed significantly increasing dark production rates with increasing temperature (Pearson’s test, \(p=5.66 \times 10^{-10}\)). Dark production \(P_D\) both at the surface and at depth along the cruise track (Fig. 4) is described by the following Arrhenius-equation:
\[P_D = a_{350} \cdot \exp \left(-\frac{15182}{T} + 53.1 \right) \] \hspace{1cm} (7)

The Arrhenius-fit could not be improved using FDOM, DOS\textsubscript{SPE} or O\textsubscript{2} instead of \(a_{350} \) (not shown). At station 5, the dark production rates at 50 and 136 m were larger than predicted for the temperature and the \(a_{350} \) present (Fig. 4).

The parameterization for dark production previously including only dark production rates from the North Atlantic, Mediterranean and North Sea (Von Hobe et al., 2001) was updated with the data from the Peruvian upwelling\textsubscript{ETSP} and the Indian Ocean, and yields the following semi-empirical equation (eq. 8) (Fig. 4):

\[P_D = a_{350} \cdot \exp \left(-\frac{16692}{T} + 58.5 \right) \] \hspace{1cm} (8)

3.2.3 Diapycnal fluxes

The diapycnal fluxes of OCS within the water column were derived from measured concentration and diffusivity profiles. OCS that was produced at the surface was mixed downwards in all four profiles. Diapycnal fluxes out of the mixed layer were always two or three orders of magnitude smaller than emissions to the atmosphere at stations 2, 5 and 7 with diapycnal fluxes of \(8.2 \times 10^{-4}, 2.4 \times 10^{-4} \) and \(3.8 \times 10^{-3} \) pmol s\(^{-1}\) m\(^{-2}\). An exception is station 18, where diapycnal fluxes (0.48 pmol s\(^{-1}\) m\(^{-2}\)) were almost half of the air-sea flux (-1.0 pmol s\(^{-1}\) m\(^{-2}\)).

3.2.4 Photoproduction

The photoproduction rate constants according to equation (6) were previously derived from a surface box model and have already been discussed in Lennartz et al. (2017). For days with concurrent measurements of FDOM (7, 8, 9, 10, 13, 16 October 2015), the correlation between photoproduction rate constant and humic-like FDOM C2 was significant (Pearson’s test, \(p=0.014, R^2=0.81 \), Fig. 5a). Measurements of FDOM (and \(a_{350} \)) during the period used for optimization of the photoproduction rate constant \(p \) (i.e. daylight period) were averaged for this correlation. The relationship was quantified by the following empirical equation (9):

\[p = 85.8 \cdot [\text{FDOM C2}] + 828.76 \] \hspace{1cm} (9)

with the photoproduction rate constant \(p \) [pmol J\(^{-1}\)] and the concentration of the FDOM component C2 [QSU]. The correlation with \(a_{350} \) only explained a variance of \(R^2=0.01 \) (\(n=7 \), i.e. 7, 8, 9, 10, 12, 13, 16 October 2015). \(R^2 \) increases to 0.3, when the respective days for FDOM C2 correlations are considered (\(p>0.25 \)). C2 and \(a_{350} \) were not significantly correlated during these days (\(p>0.2, R^2=0.36 \)), but showed a similar spatial trend all over the cruise track (Fig. 2). Although our experiment was not strictly Lagrangian, \(a_{350} \) only changed <0.05 m\(^{-1}\) within each respective fitting period. For FDOM C2, only 1-2 measurements per daylight period were available during the days when photoproduction rate constants were fitted, but variations of only 0.003 QSU per day were encountered during high frequency sampling towards the end of the cruise. This relationship thus carries some uncertainties, and will benefit from additional data from other regions.
OCS concentrations in the water column were simulated with the new module in the model environment of GOTM/FABM. While the AQY of Weiss et al. (1995) yielded surface concentrations of a factor 3-6 too small compared to observations, the L17 simulation overestimated concentrations in all cases up to twofold (Fig. 3). Deviations between simulation and measurements were reduced by using the updated dark production rate of this study and the linear correlation between FDOM C2 and p shown in Fig. 5a (eq. 9, see section 3.2.2). At station 18, surface concentrations were simulated lower than observed. The shapes of the concentration profiles were well reflected in the simulations except at station 5, where the subsurface concentration peaks at 55 m and 136 m were not adequately reproduced. Despite the different magnitude of the wavelength-resolved (W95) and wavelength-integrated (L17, L19) approaches, the shape of the photoproduction profile in the water column did not show major differences.

3.3 Carbon Disulfide (CS$_2$)

3.3.1 Horizontal and vertical distribution

The surface concentration of CS$_2$ during ASTRA-OMZ was in the lower picomolar range with an average of 17.8 ±8.9 pmol L$^{-1}$ and displayed diurnal cycles only on some (e.g. 7 Oct 2015), but not at the majority of days (Fig. 3). The spatial pattern of sea surface concentrations was opposite to that of OCS, with highest concentrations distant from the shelf and lowest closer to the shore. Highest surface concentrations of CS$_2$ coincided with warm temperatures (Fig. 2b and 2c). Surface temperatures T [°C] and concentrations of CS$_2$ [pmol L$^{-1}$] were binned for daily averages, and yielded the following relationship ($p=0.0026$, $R^2=0.61$) of (eq. 10):

\[
[CS_2] = 23 T - 27.2
\]

The concentration profiles of CS$_2$ did not show a steep decrease with depth like OCS, but were more homogeneous (Fig. 6S-Fig. 3) apart from subsurface peaks below the mixed layer that occurred for example at stations 2, 5 and 18. The concentration in CS$_2$ profiles down to about 200m was distinctly higher in profiles where upwelling did not occur (stations 1 to 13, ~20 pmol L$^{-1}$) compared to stations in the Southern part of the cruise track (stations 15 to 18, ~10 pmol L$^{-1}$). This difference in concentrations throughout the water column reflected the pattern observed at the surface, where high concentrations coincide with high temperatures.

3.3.2 Diapycnal fluxes

The diapycnal fluxes of CS$_2$ within the water column revealed highest production at the surface except for station 18. Within the water column, CS$_2$ was redistributed downwards. Small in-situ sinks (stations 2, 7, and 18) and in-situ sources at different water depths (stations 2 and 18) within the water column were required to maintain convergences/divergences under a steady state assumption. Fluxes out of the ML were 7.6×10^{-4}, 3.3×10^{-4}, 1.9×10^{-3} and 0.98 pmol s$^{-1}$ m$^{-2}$ at stations
2, 5, 7 and 18 and thus 1-3 orders of magnitude smaller than fluxes to the atmosphere. At station 18, diapycnal fluxes out of the ML and emissions to the atmosphere were at a similar magnitude (0.98 and -1.0 pmol s$^{-1}$ m$^{-2}$ respectively).

3.3.3 Photoproduction of CS$_2$

Photoproduction rate constants for CS$_2$ were determined using an inverse set up of the surface box model analogous to OCS, but including only photoproduction and air-sea exchange as source and sink terms. The resulting photoproduction rate constants were between 5 to 70 times smaller than those of OCS. Opposite to OCS, the rate constants did not covary significantly with any FDOM component ($p>>0.05$). A weak trend was detected for DOS$_{SPE}$ ($p=0.08$, Spearman’s $r^2=0.44$, $n=8$, Fig. 5), all other tested parameters did not show any correlation (FDOM C1-C4, CDOM).

The shape of the CS$_2$ concentration profiles was modelled for four stations (S-Fig. 2, supplements) with the scenarios described in Table 1. Concentrations in the mixed layer of stations 2, 5 and 7 using the wavelength resolved AQY from Xie et al. (1998) yielded concentrations 4-6 times lower than observed (simulation X98).

The influence of mixed layer depth variations was tested in simulations X98d and X98s. Surface concentrations differed from the reference simulation X98 by <2.5 pmol L$^{-1}$ (Fig. 76). The shape of the concentration profile, however, was sensitive to mixed layer variations, as indicated by the sensitivity simulations X98d and X98s. In these artificially created test scenarios, concentrations accumulated below the bottom of the deepest mixed layer during the simulation period.

The subsurface concentration peak was investigated with 1) simulation X98x2 with the wavelength-dependent AQY by Xie et al. (1998) scaled by a factor of 2 so that it matches CS$_2$ concentrations in the mixed layer, and 2) simulation pfit and psfit where a photoproduction rate constant in an integrated wavelength-approach (eq. 6) was fitted to observed profiles (corresponding to an evenly distributed AQY across wavelengths from 300-400 nm). Simulation X98x2 does not reproduce the subsurface peak, whereas simulations ‘pfit’ and ‘psfit’ are two possible scenarios to reproduce the observed peak (Fig. 76). **Photoproduction rates for these simulations are shown in S-Fig. 3 (see supplementary material).**

4 Discussion

4.1 Carbonyl Sulfide

The four profiles at stations 2, 5, 7 and 18 represent the first observations of OCS profiles in the upwelling area off PeruETSP. They do not indicate any connection to a significant redox-sensitive process, as most profiles show a continuous decreasing shape as expected for photochemically produced compounds with a short lifetime in seawater. **The independence from dissolved oxygen concentrations is in line with previous findings** (Zepp and Andreae, 1994; Uher and Andreae, 1997).

Station 5 was the only profile, which differed in shape. This profile was measured in an eddy where downward mixing occurred (Stramma et al., 2016), which may explain the increased concentrations at 55 m. **Profiles at station 7 and 18 reached down to the sediment, but did not show increased concentrations towards the bottom. Increased sediment inputs, as**
e.g. reported from estuarine regions (Zhang et al., 1998), apparently do not play a large role in the studied region, and fluxes to the atmosphere are not affected. The latter study also raises the question of near surface gradients, suggesting that our shallowest measurement depth of 5 m in both profile and underway sampling might underestimate the flux of OCS. On the other hand, strong near surface stratification acts as a barrier for air-sea exchange (Fischer et al., 2019), and could lead to a bias of the OCS flux if the sampling depth is below the barrier. Since it is difficult to perform underway sampling at shallower depths than a few meters, we cannot fully resolve this issue. However, given the low a_{350} compared to coastal and estuary regions as in Zhang et al. (1998), irradiation likely penetrates deeper into the water column in our study region than in the estuary in their study. Hence, photochemical production likely extended further down into the water column, which reduces the problem of underestimating the flux.

Dark production rates of up to 1.81 pmol L$^{-1}$ h$^{-1}$ in our study were at the upper end of the range of previously reported rates in the open ocean (Von Hobe et al., 2001; Ulshöfer et al., 1996; Flöck and Andreae, 1996; Von Hobe et al., 1999), but similar to those from the Mauritanian upwelling region (Von Hobe et al., 1999). Only incubation experiments in the Sargasso Sea showed higher production rates than reported here, ranging between 4-7 pmol L$^{-1}$ h$^{-1}$ (Cutter et al., 2004). Therein, the authors concluded that particulate organic matter heavily influences dark production. Although no sample-to-sample comparison to particulate organic carbon (POC) is possible for our OCS data, the general range of POC during our cruise was 12.1±6.1 µmol L$^{-1}$ (145.2 µg L$^{-1}$), which is much higher than the POC (ca. 41 µg L$^{-1}$) reported from the Sargasso Sea (Cutter et al., 2004). We thus cannot confirm the influence of POC on dark production in the Peruvian upwelling, and do not find a direct biotic influence.

Our results together with these previous studies show that tropical upwelling areas are globally important regions for OCS dark production, likely due to the combination of high a_{350} and moderate temperatures (15-18°C). The temperature dependency of the dark production (eq. 7 and 8) is very similar to the one found by Von Hobe et al. (2001) in the North Atlantic, North Sea and Mediterranean (Fig. 4). The similarity points towards a ubiquitous process across different biogeochemical regimes, as the dependence of the production rate on temperature and a_{350} is very similar for an oligotrophic region like the Sargasso Sea (Von Hobe et al., 2001) or the Indian Ocean during the OASIS cruise (Lennartz et al., 2017) and a nutrient rich and biologically very productive region such as the studied upwelling area ETSP. A strong similarity across different biogeochemical regimes favors the hypothesis of a radical production pathway, which would be indifferent to the prevailing biological community. The radical pathway hypothesis is also supported by the fact that the fit in the Arrhenius-dependency could not be improved by other parameters than a_{350}, and showed no influence to dissolved O$_2$. The characteristics that make a molecule part of the CDOM pool, i.e. unsaturated bonds and non-bonding orbitals, also favor radical formation. OCS dark production is thus best described using abiotic parameters such as a_{350} and temperature, than biologically sensitive parameters such as dissolved O$_2$ or apparent oxygen utilisation as a proxy for remineralisation. This independence from biotic parameters supports the radical production pathway. The results are in line with findings by Pos et al. (1998) showing that these molecules can form radicals in the absence of light e.g. mediated by metal complexes, and by
Kamyshny et al. (2003) showing a positive correlation of dark production rate and temperature. However, the profile at station 5 provides some evidence that an additional process occurs in the subsurface. The concentration peak was visible in the up- and the downcast, but since we only observed it only once, we cannot conclusively rule out that the OCS peak at 136 m is an artefact. Still, similar subsurface peaks have been reported from stations in the North Atlantic by Cutter et al. (2004). They concluded that dark production is connected to remineralization.

Diapycnal fluxes at stations 2, 5, 7 and 18 indicate downward mixing from the surface to greater depths in all profiles. However, fluxes were several orders of magnitude smaller than emissions to the atmosphere, except for station 18. There, high diffusivities were observed using the microstructure probe, which most likely result from high internal wave activity as indicated by vertical water displacements of up to 30 m during four CTD. internal waves led to high diffusivities, which increased the flux at that station. Diapycnal fluxes will change diurnally with the shape of the concentration profile and mixed layer variations, hence, the measurements here only represent a snapshot. Still, the difference in magnitudes between air-sea exchange and diapycnal fluxes seems to be valid at varying times of the days and regions in the ETSP studied area. Hence, neglecting diapycnal fluxes when calculating OCS concentrations in mixed layer box models leads only to minor overestimations of the concentrations.

An interesting finding is the significant correlation of the photoproduction rate constant \(p \) with FDOM C2 (humic-like FDOM), but not with \(\text{DOS}_{\text{SPE}} \), given a reported correlation of OCS and DOS in the Sargasso Sea where much higher DOS concentrations of ca. 0.4 \(\mu \text{mol S L}^{-1} \) were present (Cutter et al., 2004). It should be noted that the method to extract \(\text{DOS}_{\text{SPE}} \) in our study does not recover all DOS compounds, and we cannot exclude the possibility that this influences the missing correlation between \(p \) and DOS. In the studied area, OCS photoproduction is apparently not limited by the bulk organic sulfur source but rather by humic substances. The humic-like FDOM component C2 is an abundant fluorophore in marine (Catalá et al., 2015; Jørgensen et al., 2011), coastal (Cawley et al., 2012) and freshwater (Osburn et al., 2011) environments. This FDOM component seems to be especially abundant in the deep ocean (Catalá et al., 2015), which might be the reason for higher C2 surface concentrations in regions of upwelling, as evident in our study (Fig. 2) and reported by Jørgensen et al. (2011). The significant correlation of \(p \) with humic-like fluorophores in our study highlights the importance of upwelling and coastal regions for OCS photoproduction.

A significant correlation (i.e., a limitation) of OCS photoproduction with humic-like substances, but not with bulk \(\text{DOS}_{\text{SPE}} \) can be explained by two scenarios: Under the assumption that only organic sulfur is used to form OCS, the limiting factor is contained in the humic-like C2 fraction of the FDOM pool. The sulfur demand (75.8 pmol L\(^{-1}\), the orange area in Fig. 7b) would need to be covered entirely by organic, sulfur-containing precursors. The limiting driver of this process is either organic molecules acting as photosensitizers or a sulfur-containing fraction of the DOM pool that correlates with FDOM C2, but not bulk \(\text{DOS}_{\text{SPE}} \). In that scenario, FDOM C2 can be used as a proxy for the OCS photoproduction rate constant. More data from other regions would help to quantify such a relationship. In a second possible scenario under the assumption that both organic and inorganic sulfur can act as a precursor, the sulfur demand could theoretically be covered by the sulfur generated by hydrolysis of OCS (i.e. 85.8 pmol L\(^{-1}\), Fig. 7). In this case, FDOM C2 would only be limiting as long as enough
organic or inorganic sulfur is present, for example when temperatures are high enough to recycle sulfur directly from OCS, or when other inorganic sulfur sources are present.

Incubation experiments have shown that inorganic sulfur is a precursor for OCS (Pos et al., 1998). It is not clear whether the mechanism proposed therein occurs under environmental conditions, because sulfide concentrations were higher than in most marine areas, but also yielded much higher OCS production rates in the magnitude of nM hr\(^{-1}\) compared to the magnitude of pM hr\(^{-1}\) under natural conditions. Furthermore, the conversion of sulfide to sulfate, rather than to OCS, is thermodynamically favored. Based on our data, we cannot resolve the question about the role of inorganic sulfur in OCS photoproduction, but our results are consistent with the reaction mechanism suggested by Pos et al. (1998). Incubation experiments at environmentally relevant sulfide concentrations, as well as \(p\)-DOS relationships across different temperature and DOM regimes will help to resolve this issue.

Our results show that FDOM C2 is a good candidate for a proxy for OCS photoproduction, but its sampling coverage is insufficient for global model approaches at the moment. On global scales, where \(p\) varies on a broader range than within the area covered by this study, \(a_{350}\) might still be an adequate, but not perfect predictor for this variation (Lennartz et al., 2017). On local scales, humic-like substances and CDOM \(a_{350}\) covary more strongly than on regional scales. Hence, the parameterization for \(p\) based on \(a_{350}\) can be improved using FDOM C2 on the regional level.

In addition, we used parameterizations from previously reported 0D box models and from this study to assess their applicability to biogeochemical models coupled to a 1D physical host model. It should be noted, however, that the surface data shown here have been used, along with other data, to derive the parameterization for the photoproduction rate constant in Lennartz et al. (2017).

Photoproduction rates based on the wavelength-resolved simulation W95 underestimated observed concentrations in all cases. Other AQYs were not tested, but can be interpreted in a relatively straightforward way, since the AQYs of a given spectral shape is proportional to the OCS production and concentration (in steady state). Higher wavelength-resolved AQY as reported by Zepp and Andreae (1994) from the North Sea and the Gulf of Mexico, as well as by Cutter et al. (2004) ranged from twofold to up to two magnitudes higher than the ones reported by Weiss et al. (1995). These differences in magnitude were attributed to the composition of the DOM pool. Zepp and Andreae (1994) Cutter et al. (2004) Weiss et al. (1995) Cutter et al., 2004) To reflect this influence of the DOM composition Lennartz et al. (2017) parameterized the photoproduction rate constant (corresponding to an integrated AQY) to \(a_{350}\), following the suggestion by von Hobe et al. (2003) that \(a_{350}\) can be used as a proxy for OCS precursors on larger spatial scales. A scaling factor for the AQY would be needed to explain observations. Using this parameterization for photochemical production in the 1D water column model (simulation L19) Such a scaling factor is implemented in the wavelength integrated parameterization in Lennartz et al. (2017, simulation L17), yielding simulated concentrations closer to, but higher than, observations (Fig. 3). Although the absolute concentrations for the AQY W95 did not match observations due to the reasons outlined above, the shape of the profile fits observations well. The simulations thus support the experimental findings in most of the previously published AQY work, i.e. the highest OCS yield at UV wavelengths for in-situ conditions.
The simulation using the updated dark production rate and scaling p with FDOM C2 (this study, L19) led to simulated concentrations closest to observations. Remaining deviations between simulated and observed profiles occur e.g. at station 5, possibly due to the reasons discussed above for dark production rates. At station 18, vertical water displacements of up to 350 m during one day four subsequent CTD casts were observed, most likely due to internal waves. This displacement could violate assumptions inherent to the 1D approach, i.e. influence of horizontal water transport. In general, our results show that simulating OCS concentrations in the water column is possible by applying surface box model parameterizations as local source and sink terms to a physical host model in the upwelling area off Peru ETSP with its specific DOM conditions. The approach is similar to the 1D model by von Hobe et al. (2003) for the Sargasso Sea, but the updated parameterizations yield a higher agreement in shape and actual concentrations of model simulation and observation.

4.2 Carbon Disulfide

The CS$_2$ concentrations measured in this study ETSP were higher than those observed during an Atlantic transect (Kettle et al., 2001, average 10.9 pmol L$^{-1}$, n=744), and in the North Atlantic (13.4 pmol L$^{-1}$) and the Pacific (14.6 pmol L$^{-1}$) (Xie and Moore, 1999), but lower than those reported in a more recent transect through the Atlantic (Lennartz et al., 2017). High concentrations of CS$_2$ coincided with elevated temperatures at the surface in our and in previous studies. The significant relationship between surface temperature and CS$_2$ concentrations corroborates previous findings. Xie et al. (1999) found a positive correlation between CS$_2$ concentration and SST for the Pacific and the North Atlantic with a linear relationship of $[\text{CS}_2] = 0.39t + 7.2$ ($t=$temperature in $^\circ\text{C}$). Daily averages of our data close to the shelf (n=8, from 12 Oct onwards) between 15 and 20 $^\circ\text{C}$ fall within this relationship. However, daily averaged concentrations were higher than predicted according to this relationship further away from the coast at the beginning of our cruise at temperatures between 20 and 30$^\circ\text{C}$ (n=4).

Overall, we confirm that CS$_2$ concentrations increase with increasing temperatures, but the exact relationship varies spatially. Reasons for this relationship could result from e.g. temperature-driven decay of precursor molecules, but remain speculative. The results are in line with findings by Ghareshveran and Shah (2018), who found increased CS$_2$ formation with increasing temperatures in incubation experiments.

The surface box model to determine photoproduction rate constants of CS$_2$ is set-up as a very simple case, including only the processes of photoproduction and air-sea exchange. The rate constant p was only fitted for the increase in concentration during daylight, when photoproduction is expected to be much larger than potential other unknown, continuously acting sources or sinks. The photoproduction rate constant of CS$_2$ was highest when high DOS$_{\text{SPE}}$ was present, indicating that the sulfur source might be limiting for this process. Organic sulfur is required to form CS$_2$ even if one S-atom originates from an inorganic S source (like possibly for OCS). A potential mechanism could include a precursor with an existing C-S double or single bond that reacts with either another organic sulfur radical or sulfide. This mechanism would rationalize the correlation with DOS being present for CS$_2$ and not for OCS. Laboratory studies showed that the organic sulfur compounds cystine, cysteine and (to a lesser extent) methionine are precursors for CS$_2$ photochemistry (Xie et al., 1998). Such organic sulfur-containing molecules are rare in the marine environment (Ksionzek et al., 2016), which can explain the overall lower
photoproduction rate constant of CS\textsubscript{2} compared to OCS. We found higher DOS\textsubscript{SPE} concentrations in the upwelling area off Peru\textsubscript{ETSP} compared to other regions, but similar to DOS\textsubscript{SPE} concentrations in the Mauretanian upwelling reported by Ksionzek et al. (2016). There, elevated CS\textsubscript{2} concentrations were reported as well (Kettle et al., 2001). This spatial pattern suggests that upwelling regions might be hot spots for CS\textsubscript{2} photoproduction. It should be considered, however, that the extraction method used cannot recover all DOS compounds in seawater, so that the correlation between CS\textsubscript{2} and DOS\textsubscript{SPE} may be influenced by the DOM composition.

Our simulation X98 at stations 2, 5, 7 and 18 underestimates mixed layer CS\textsubscript{2} concentrations, indicating that the AQY most likely has to be scaled to match local conditions spatial variations of the AQY, most likely due to changes in the DOM composition, as previously found for other gases (OCS: see above, carbon monoxide (Stubbins et al., 2011), DMS (Galí et al., 2016)). These results corroborate findings by Kettle (2000) and Kettle et al. (2001), who showed that the photoproduction of CS\textsubscript{2} was underestimated in some regions by the AQY from Xie et al. (1998). The scaling factor was on the order of 1-10 in Kettle’s studies, which is in line with our results (factor 2-4). In future model approaches, this photoproduction rate constant (expressing an integrated AQY) would need to be parameterized, and our results suggest that such parameterizations may rely on DOS or, on a global scale, DOC (since DOS covaries globally with DOC).

More detailed simulations were performed for station 5, because at this station, the photic zone extended below the mixed layer. The wavelength-dependence of the photochemical production is assessed with a 1D modelling approach, where the simulations ‘X98x2’ and ‘pfit’/’psfit’ reproduce surface concentrations, but differ in their wavelength-dependence of the photoproduction. In the simulation ‘X98x2’, the wavelength-dependent AQY was scaled to match surface concentrations, but failed to reproduce the observed subsurface peak at station 5, because photoproduction at wavelengths ~400 nm, that penetrate below the ML was too low. In this scenario, another production process is needed to reproduce the observed profile. Similar conclusions were drawn by Xie et al. (1998). They suggested biological production, as the peaks coincided with the peak of chlorophyll a. However, we did neither find any correlation with chlorophyll a nor with marker pigments representing various phytoplankton functional types (data source described in Booge et al. (2018)). A potential other dynamic process, e.g. downward mixing, that influences both gases cannot be ruled out, as concentrations for OCS were also higher than predicted around 50 m.

In our simulation ‘pfit’, a wavelength-integrated approach was adopted (eq. 6). Photoproduction is calculated with the integrated irradiation (300-400nm) and one rate constant, representing a wavelength-integrated AQY. In this simulation, photoproduction occurring at higher wavelengths, that are penetrating deeper into the water column, is higher compared to the wavelength-resolved simulation (see also S-Fig. 3) and leads to the accumulation of CS\textsubscript{2} below the mixed layer. In our simulation ‘pfit’, a wavelength-integrated approach was adopted (eq. 6). It represents a scenario where photoproduction occurred below the mixed layer, since substantial production takes place at higher wavelengths penetrating deeper into the water column. The accumulation occurred because the production is detached from the air-sea exchange sink. In this simulation, a period of 6 days was needed to accumulate enough CS\textsubscript{2} below the mixed layer to reproduce observed concentrations. This period highly depended on the actual production at wavelengths around 400 nm and can thus vary. With
allowing for an additional sink process below the mixed layer (psfit) corresponding to an additional degree of freedom, observations can also be reproduced. Hence, it is possible to explain observed subsurface peaks by 1) photoproduction alone, if higher production is assumed at wavelength around 400 nm, the peak maximum depending on accumulation time and potential additional sink processes, or 2) via an additional production process only occurring shortly below the ML barrier, such as the biological production suggested by (Xie et al., 1999), or 3) by physical downward mixing-transport processes related to mixed layer dynamics (given the long CS$_2$ lifetime, such processes could be either slow but continuous mixing processes or strong one-time events such as storms). Sinks below the ML would conserve potential higher concentrations advected from surface waters due to the absence of air-sea exchange in the subsurface. The process leading to the observed profiles thus remains inconclusive. Our results highlight the importance of Lagrangian experiments following the same water mass for compounds with a lifetime on the order of days. Information on the conditions prior to the profile measurements are needed to conclusively interpret the location and accumulation of subsurface peaks.

CS$_2$ was still detectable below 200 m, in concentrations around 5-10 pmol L$^{-1}$ in shelf regions and around 20 pmol L$^{-1}$ in open ocean regions (except station 1). This pattern reflects the spatial variation of surface concentrations, which were higher in the open ocean than at the shelf. The vertically relatively uniform concentration profiles suggest low degradation rates, and the travel distance of the water between the stations is too short to explain the concentration difference only by in-situ degradation. A Lagrangian approach would be helpful to resolve this issue. Some profiles display small local maxima in the region of the oxycline (not shown), but due to unconstrained subsurface source and sink processes, no conclusion can be drawn on whether a chemical or a physical process is responsible. The rather homogeneous concentrations below 200 m depth suggest slow in-situ degradation rates. As a result, physical processes resulting from currents, eddies or shelf processes might gain a higher importance for the distribution of CS$_2$ in the subsurface compared to the shorter lived gas$_2$ OCS. With sinks potentially acting on long timescales, CS$_2$ could possibly be transported from sources located further away, e.g. from contact to the sediment in shelf regions or subducted from the surface. Our results clearly show the limits of interpreting 1D concentration profiles for long lived compounds, with both subsurface sinks and source unconstrained. Incubation experiments using isotopically labelled CS$_2$ would be helpful to constrain source and sink processes independently.

5 Summary and conclusion

We show concurrent measurements of the gases OCS and CS$_2$ together with sulfur-containing and optically active fractions of the DOM pool in the upwelling area off PeruETSP. The results indicate how the quality and composition of DOM influences the production processes of both gases, with implications for predicting their concentrations on regional and, potentially, global scales.

A parameterization for dark production of OCS is updated, resulting in a slight downward correction of the previously established parameterization. The photoproduction rate constant of OCS co-varies regionally with humic-like FDOM, and, most likely as a precursor in a radical reaction mechanism. More observations of OCS with humic-like DOM could help to
improve parameterizations of OCS photoproduction. The absence of a correlation of the photoproduction rate constant with bulk DOS_{SPE} is not conclusively answered. Possible scenarios involve either a sulfur-containing precursor in a constant ratio FDOM C2, or surplus of sulfur via allocation from OCS hydrolysis. In both cases, FDOM C2 is a promising proxy on regional scales, and in case of scenario 1 also on global scales. A possible explanation for the lack of correlation between the photoproduction rate constant and DOS_{SPE} might be that OCS hydrolysis generates enough sulfide to recycle back to OCS during photoproduction. This cycle might be especially active in the ETSP, where warm temperatures increase the hydrolysis rate and, thus, the generation of sulfide, and abundant humic-like molecules further enhance photoproduction. In contrast to OCS, the availability of organic sulfur might be a limiting factor for the photochemical production of CS₂. These different limitations of photochemical production of both gases have implications for the expected spatial pattern of their marine surface concentrations. Both, OCS dark and photochemical production, correlate with optically active parts of the DOM pool, which are abundant at high latitudes, coastal and upwelling regions. Also, OCS is degraded by hydrolysis most efficiently in warm regions such as the tropics, resulting in longer lifetimes in high latitudes. Highest concentrations are thus expected in coastal regions of high latitudes, which is in line with observations. Increasing CS₂ photoproduction with increasing DOS_{SPE} concentrations suggests highest surface concentrations in tropical and subtropical regions, where highest DOC and DOS concentrations are expected. This spatial pattern is in line with the limited measurements available (Kettle et al., 2001). Regarding the tropical missing source of atmospheric OCS, the spatial pattern of oceanic emissions would then favour oxidation of emitted CS₂ to OCS as a potential candidate to fill the gap in the atmospheric budget. Our measurements likely represent CS₂ concentrations from the upper end of the range of tropical concentrations, since they were performed in a region with high DOS abundance. As an upper limit, a sulfur flux calculated with average values from this cruise (T=20.2°C, S=35, u10=7.3 m s⁻¹, CS₂=17.8 pmol L⁻¹) assumed for the whole tropical ocean (30°N-30°S, 1.95 x10¹⁴ m²) results in an annual emissions of 268 Gg S as OCS. This flux, which represents an additional 140 Gg S to the global sulfur flux of CS₂ reported by Lennartz et al. (2017) is still too low to sustain a missing source of additional 400-600 Gg S yr⁻¹ (800-1000 Gg S⁻¹ yr⁻¹ total oceanic OCS emissions).

Overall, we show that processes to model OCS distributions are well known and quantified and that the lifetime is sufficiently short to extend the parameterizations of the box model to a 1D water column model. OCS process understanding is better than for CS₂, for which sufficient process understanding to conclusively model subsurface concentrations is still lacking. Our results emphasize the importance of vertical dynamics for longer lived compounds such as CS₂ compared to the short lived OCS.

This study highlights the need for more in-situ measurements of OCS and CS₂ below the mixed layer in various biogeochemical regimes together with fractions of the DOM pool, to improve the suggested quantitative relationships across larger DOM variations. Subsurface processes, especially for CS₂, remain elusive and require concerted experimental and field studies.
Author contributions

Acknowledgements

We acknowledge the help of the co-chief scientist, Damian Grundle and the crew and captain of the RV Sonne during ASTRA-OMZ to perform our measurements. We thank M. Lomas for providing data on particulate organic carbon. This work was supported by the German Federal Ministry of Education and Research through the project ROMIC-THREAT (BMBF- FK01LG1217A and 01LG1217B), ROMIC- SPITFIRE (BMBF- FKZ: 01LG1205C) and SOPRAN, the DFG grants GR4731/2-1 and MA6297/3-1, as well as a PhD grant within the DFG-Research Centre/Cluster of Excellence “The Ocean in the Earth System”. Additional funding for C.A.M. and S.T.L. came from the Helmholtz Young Investigator Group of C.A. M., TRASE-EC (VH-NG-819), from the Helmholtz Association through the President’s Initiative and Networking Fund and the GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. This work was co-funded by a PhD Miniproposal granted to S.T.L. from the Integrated School of Ocean Sciences (ISOS) of the Cluster of Excellence "The Future Ocean" at Kiel University, Germany, as well as GEOMAR Seedfunding. We thank NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group for providing access to satellite data of CDOM from Aqua MODIS. We thank C. Schlundt for her help in analyzing CS$_2$ samples and I. Stimac for her help in analyzing DOS$_{SPE}$ samples.

References

https://www.nature.com/articles/ncomms6986#supplementary-information

Flöck, O. R., and Andrae, M. O.: Photochemical and non-photochemical formation and destruction of carbonyl sulfide and methyl mercaptan in ocean waters, Marine Chemistry, 54, 11-26, 1996.

Figure 1: Cruise track of ASTRA-OMZ with stations 1-18 (in black circles: stations where OCS profiles were taken). The cruise track shows sea surface temperature (SST) measured onboard. For visualization only, the background is Aqua MODIS satellite data for the absorption of CDOM and detritus corrected from 443 nm to 350 nm with the mean slope of our in-situ measurements (0.0179, 300-450 nm, Aqua MODIS composite for October 2015). Note: As a monthly composite does not necessarily reflect the exact conditions during the cruise, in-situ measurements are illustrated in Fig. 2e. White areas: not satellite data available.
Figure 2: Time series of a) OCS, b) CS₂, c) SST and SSS, d) I₀ and wind speed at 10m, e) absorption coefficient of CDOM at 350 nm, f) humic-like FDOM component 2, and g) DOS_{SPE} sampled from the underway system along the cruise track of ASTRA-OMZ from 5 to 23 October 2018. Vertical lines indicate stations of ASTRA-OMZ for comparison with location (see Fig. 1).
Figure 3: Profile measurements of OCS concentrations and 1D model results for the OCS model experiments described in Table 1.
Figure 4: Arrhenius-plot of dark production rates from ASTRA-OMZ (this study, red and blue markers), data from the Indian Ocean (OASIS cruise, Lennartz et al. (2017)) and previously published rates (von Hobe et al., 2001, grey markers, note that P_D was converted from original units of pmol m$^{-3}$ s$^{-1}$ to pmol L$^{-1}$ h$^{-1}$, for reconversion subtract 1.28). The red linear fit and equation shows the parameterization for ASTRA-OMZ only, whereas the black fit and equation is an updated parameterization including dark production rates from this and previous studies (see Von Hobe et al. (2001)).
Figure 5: Correlations of the photoproduction rate constant from inverse surface box modelling for a) OCS and FDOM component C2 and b) CS$_2$ and DOS$_{SPE}$.
Fig. 6: Concentration depth profiles for discrete measurements of CS$_2$ for open ocean regions (stations 1-5, blueish colors) and stations closer to the shelf (stations 6-13, green/yellow colors).
Figure 76: Observation and model sensitivity simulations at station 5. AQY=apparent quantum yield, MLD=mixed layer depth, chem. Simulation names in brackets refer to Table 1. Dashed lines indicate confidence interval of AQY as reported in Xie et al. (1998).
Figure 87: a) Rate of sulfide production due to OCS hydrolysis as a function of temperature and OCS concentration, calculated with eq. (3)-(4). b) Average consumption of S (organic or inorganic sulfide) by OCS photoproduction and production of sulfide during hydrolysis of ASTRA-OMZ (average 7 October – 14 October).
Table 1: Model experiments with 1D GOTM/FABM Modules for OCS and CS$_2$. AQY=apparent quantum yield.

<table>
<thead>
<tr>
<th>Carboxyl Sulfide (OCS)</th>
<th>Photoproduction</th>
<th>Dark prod.</th>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W95</td>
<td>AQY Weiss et al. (1995)</td>
<td>this study</td>
<td>2,5,7,18</td>
<td>wavelength resolved photoproduction, mixed layer constant</td>
</tr>
<tr>
<td>L17</td>
<td>Lennartz et al. (2017)</td>
<td>von Hobe et al. (2001)</td>
<td>2,5,7,18</td>
<td>wavelength integrated photoproduction, mixed layer constant</td>
</tr>
<tr>
<td>L19</td>
<td>This study (p based on FDOM C2)</td>
<td>this study</td>
<td>2,5,7,18</td>
<td>Wavelength integrated photoproduction, mixed layer constant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon disulfide (CS$_2$)</th>
<th>Photoproduction</th>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X98</td>
<td>AQY Xie et al. (1998)</td>
<td>5</td>
<td>wavelength resolved photoproduction, mixed layer depth constant, no chemical sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,7,18 in supplement</td>
<td></td>
</tr>
<tr>
<td>X98d</td>
<td>AQY Xie et al. (1998)</td>
<td>5</td>
<td>wavelength resolved photoproduction, deep diurnal mixed layer variation 25-50m, no chemical sink</td>
</tr>
<tr>
<td>X98s</td>
<td>AQY Xie et al. (1998)</td>
<td>5</td>
<td>wavelength resolved photoproduction, shallow diurnal mixed layer variation 10-25m, no chemical sink</td>
</tr>
<tr>
<td>X98x2</td>
<td>AQY Xie et al. (1998) x2</td>
<td>5</td>
<td>wavelength resolved photoproduction, mixed layer depth constant, no chemical sink</td>
</tr>
<tr>
<td>pfit</td>
<td>fitted, inverse</td>
<td>5</td>
<td>wavelength-integrated (300-400 nm), test for simulation length of subsurface peak, optimized photoproduction rate constant p (eq. 6), no chemical sink</td>
</tr>
<tr>
<td>psfit</td>
<td>fitted, inverse</td>
<td>5</td>
<td>wavelength-integrated (300-400 nm), optimized photoproduction rate constant p (eq. 6) and first-order chemical sink.</td>
</tr>
</tbody>
</table>