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We’d like to thank the Dr. S. Losa for her useful comments to further improve our 

manuscript. Our responses are in blue. 

I propose excluding all the equations (1-7) from Part 2.2 and equation 8 from Part 4 
from the text since they were already published by Pham et al. and the presented 
manuscript is not on the method.  

As an alternative, the authors might want to move them in an Appendix.  

1) According the reviewer’s comment, we moved the text according to the equations 1-

7 from Part 2 to the appendix.  The corresponding text has been changed to: 

“The LSEIK filter produces the correction for the model state by weighting the 

difference between the observations and the model state estimation. The weight 

coefficients are constructed by the model error covariance matrix and observation error 

covariance matrix. Similar as other ensemble data assimilation methods, the LSEIK 

filter uses the spread of sample ensemble to estimate the uncertainties of the model 

state. Further, a forgetting factor � is introduced to parameterize the imperfect model 

by amplifying the already existing modes of the background error (Pham et al. 1998; 

Pham, 2001). Furthermore, the LSEIK filter is based on an explicit low-rank 

approximation of the model error covariance matrix. A second-order exact sampling 

method is used to initialize the LSEIK filter (Pham, 2001).” 

 

2)  We also removed the equation 8. The texts associated  with equation 9 is changed 

to  

“… according to the observation time by � = 0.4 × exp	(−0.15∆�), here ∆� is the 

absolute time difference between observation time and DA time.” 

 

-Lines 13 - 14: the sentence "We use ... (LSEIK) filter to characterize correlation scales 
in the coastal regions" could be rewritten in a way that... the authors use a Kalman-type 
filtering to assimilate the data..., and they use a low rank approximation of the 
stationary background error covariance metrics used at the analysis steps.  
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In revision, we changed the text to “We use a Kalman-type filtering to assimilate the 

observations in the coastal regions. Further, a low rank approximation of the stationary 

background error covariance metrics is used at the analysis steps.” 

 

- Lines 230 - 232: accounting for the representation error is indeed important. Please see 
Janjić et al 2017 (the study also addresses the terminology issue). 

Janjić, T. , Bormann, N. , Bocquet, M. , Carton, J. A., Cohn, S. E., Dance, S. L., Losa, 
S. N., Nichols, N. K., Potthast, R. , Waller, J. A. and Weston, P. (2017), On the 
representation error in data assimilation. Q.J.R. Meteorol. Soc.. . doi:10.1002/qj.3130 

 

We added some texts to account for the measurement error and observation error in the 

Section 3.2: 

“The error for an observation used in data assimilation mainly includes the 

representation error and the measurement error. The measurement error arises 

primarily from the measuring instruments, the temporary reading error and imperfect 

retrieval algorithm. According to Janjić et al. (2017), the representation error in data 

assimilation comprises the error due to unsolved scales or processes, the pre-

processing error and the observation-operator error.” 

 

- Lines 266 - 267: the correct references with respect to forgetting factor are Pham et al. 
(1998a,b) and Pham 2001.  

 

Thank you. We updated the references to Pham et al. 1998b and Pham 2001 as 

suggested.  

Pham, D. T., Verron, J. and L. Gourdeau, 1998a: Filtres de Kalman singuliers évolutif 
pour l’assimilation de données en océnographie. Compt. Rend. Acad. Sci. Terre 
Planètres,326, 255–260.  

Pham, D. T., Verron, J. and M. C. Roubaud, 1998b: A singular evolutive extended 
Kalman filter for data assimilation in oceanography. J. Mar. Syst.,16, 323–340 
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Abstract.  We assess the impact of assimilating the satellite sea surface temperature (SST) data on 10 

the Baltic forecast, practically on the forecast of ocean variables related to SST. For this purpose, a 11 

multivariable DA system has been developed based on a Nordic version of the Nucleus for European 12 

Modelling of the Ocean (NEMO-Nordic). We use a Kalman-type filtering to assimilate the observa-13 

tions in the coastal regions. Further, a low rank approximation of the stationary background error co-14 

variance metrics is used at the analysis steps. High resolution SST from OSISAF is assimilated to 15 

verify the performance of DA system. The assimilation run shows very stable improvements of the 16 

model simulation as compared with both independent and dependent observations. The SST prediction 17 

of NEMO-Nordic is significantly enhanced by the DA system. Temperatures are also closer to obser-18 

vation in the DA system than the model results in the water above 100 m in the Baltic Sea. In the 19 

deeper layers, salinity is also slightly improved. Besides, we find that Sea level anomaly (SLA) is 20 

improved with the SST assimilation. Comparison with independent tide gauge data show that overall 21 

root mean square error (RMSE) is reduced by 1.8% and overall correlation coefficient is slightly in-22 

creased. Moreover, the sea ice concentration forecast is improved considerably in the Baltic proper, 23 

the Gulf of Finland and the Bothnian Sea during the sea ice formation period, respectively.  24 

 25 
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1. Introduction 26 

          Monitoring the marine status of the Baltic Sea with relevant resolution and accuracy is a key 27 

requirement to serve the marine policy for detecting the influence of human activities on the environ-28 

ment and better understanding the response of ocean to accelerating global climate change. The Baltic 29 

Sea is one of the largest brackish seas in the world. It is a semi-enclosed basin, whose hydrography is 30 

highly variable and influenced by large-scale atmospheric processes and significant influx of freshwa-31 

ter from rivers runoff and precipitation (Leppäranta and Myrberg, 2009). In addition, the water ex-32 

change between the North Sea and Baltic Sea through the Danish straits is hindered by shallow topo-33 

graphic restrictions in the transition zone (Fig. 1). 34 

  A characteristic feature of numerical forecast in the Baltic Sea is in itself a major challenge 35 

because of complex topography and rich dynamics. A number of ocean forecasting systems for the 36 

Baltic Sea have been developed using hydrological model by operational agencies around this region. 37 

Traditionally, these models have a horizontal resolution of 1–5 km and approximately 20–100 layers 38 

in vertical structure (Omstedt et al. 2014). Due to the geographic location and conditions of the Baltic 39 

Sea, even higher resolutions are often needed to better understand the circulation dynamics. However, 40 

even ocean circulation models with a particularly high spatial resolution (e.g. 1 km) cannot resolve all 41 

dynamically important physical processes in the ocean (Malanotte-Rizzoli and Tziperman, 1996). In 42 

general, the forecast quality for a numerical model depends on initial conditions, boundary conditions 43 

(lateral, open boundaries as well as meteorological forcing and bathymetry) and a robust numerical 44 

model itself. As an operational forecasting agency, the Swedish Meteorological and Hydrological In-45 

stitute's (SMHI) needs to issue well-informed forecasts and warnings for decision making by other 46 

authorities during e.g. severe weather events, but also to the public. To improve the forecast quality, 47 

the core three-dimensional dynamic model of the SMHI operational forecast system has recently mi-48 

grated to the Nordic version of the Nucleus for European Modelling of the Ocean (NEMO-Nordic).  49 

          In additional to model development, an extended observational network has been established by 50 

the joint efforts of the countries surrounding the Baltic Sea. The observation platforms include vessels, 51 

buoys, coastal stations, satellite, etc. Specially, the observations from satellite have dominated the 52 
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coverage of SST observational networks in the Baltic Sea (She et al. 2007). Among satellite products, 53 

the SST is most popularly and widely used for the operational forecast, reanalysis or validation of the 54 

model because of both its coverage and properties. SST acts as a medium between atmospheric and 55 

oceanic variations through activation of coupling mechanisms. SST is also a key ocean variable to link 56 

many processes that occur in the upper ocean, for example, air-sea exchange of energy, primary 57 

productivity, and formation of water masses (Tranchant et al., 2008). 58 

  A realistic forecast of SST is essential to an ocean forecasting system. SST is especially im-59 

portant for the Baltic Sea that the average water depth is only 56 m and its surface water is directly 60 

related to the bottom water by the mixing in the shallow sub-basins. Recently, the applications of SST 61 

for forecasting and analyzing the status of the North Sea and Baltic Sea have received particular atten-62 

tion. In the short-term forecast, Losa et al. (2012, 2014) investigated the systematic model uncertain-63 

ties for forecasting the North and Baltic Seas by assimilating the Advanced Very High Resolution 64 

Radiometer (AVHRR) SST data. Nowicki et al. (2015) applied SST observed from Aqua Moderate 65 

Resolution Imaging Spectroradiometer (MODIS) into 3D coupled ecosystem model of the Baltic Sea 66 

with the Cressman analysis scheme. O’Dea et al. (2016) enhanced the SST prediction skill of the oper-67 

ational system by assimilating both in-situ data and level 2 SST data provided by the Global Ocean 68 

Data Assimilation Experiment High-Resolution SST (GHRSST) into a European North-West shelf 69 

operational model. Moreover, SST has been used in the long-term analysis in this region. For instance, 70 

Stramska and Bialogrodzka (2015) analyzed spatial and temporal variability of SST in the Baltic sea 71 

based on 32-years of satellite data, which indicate that there is a statistically significant trend of in-72 

creasing SST in the entire Baltic sea. However, these long-term SST data haven’t been used to verify 73 

the application of sophisticated DA methods for hydrography model in the Baltic profiles simulation, 74 

especially at the Baltic deep water regions. Another important question is: what amount of satellite 75 

SST can improve long-term forecast of ocean variables related to SST in the Baltic Sea.  76 

         The objective of this study is to address the impact of assimilating a high resolution SST product 77 

on the forecast of the Baltic Sea, particularly the forecast of SST related variables like sea level and 78 

sea ice. It is also the first time that satellite SST from the Ocean and Sea Ice Satellite Application Fa-79 

cility (OSISAF) was assimilated into NEMO-Nordic model (NEMO variant for the North Sea and 80 
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Baltic Sea). For operational forecast, the SST from OSISAF is the most important dataset in the Baltic 81 

Sea because it differs from hindcast analyzed product like OSTIA (Operational SST and Sea Ice Anal-82 

ysis) data. As a level 2 product, the OSISAF SST has both good temporal and spatial coverage in the 83 

Baltic Sea. As there is no hindcast information included in the OSISAF SST, we are able to assess 84 

direct impacts of assimilating SST observations. Therefore, exploring the potential of this product is 85 

critically important to further improving the new operational forecast system. In addition, our study 86 

will enrich the reanalysis database of the Baltic Sea. In this study, we use the Singular Evolutive Inter-87 

polated Kalman (SEIK) filter (Pham, 2001) to account for the model uncertainties arising from a wide 88 

range of spatial and temporal scales (Haines, 2010). One of our focuses is the impact of SST on the 89 

modeled sea level and the sea ice in the Baltic Sea. For the whole Baltic Sea, how the SST assimila-90 

tion influences the temperature and salinity (T/S) on the different depth is another focus of this study.  91 

           The outline of the paper is as follows: the model configuration and SEIK scheme are described 92 

in Section 2. An overview of the observations used in this study is presented in Section 3. The imple-93 

mentation of DA experiment is given in section 4 together with the sampling of ensemble and localiza-94 

tion. Results are compared with observations for temperature, salinity, sea level anomaly and sea ice in 95 

Section 5. In this section, the impact of data assimilation on the forecasts is also investigated. Conclu-96 

sions and discussions are given in section 6. 97 

 98 

2. Methodology 99 

2.1 NEMO-Nordic 100 

         NEMO (Nucleus for European Modelling of the Ocean; Madec, 2008) has been set up at SMHI 101 

for the North Sea and the Baltic Sea, a configuration called NEMO-Nordic (Hordoir et al., 2015) (Fig. 102 

1). Open boundaries are implemented in northern North Sea between Scotland and Norway and in the 103 

English Channel between Brittany and Cornwall, respectively (Hordoir et al., 2013).  In this study, 104 

NEMO-Nordic employs a horizontal resolution of 2 nautical miles (3.7 km) and 56 vertical levels, and 105 

with a vertical resolution of 3 m close to the surface, decreasing to 22 m at the bottom of the deepest 106 

part of the Norwegian trench. NEMO-Nordic uses a fully nonlinear explicit free surface (Adcroft and 107 
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Campin, 2004). A bulk formulation is used for the surface boundary condition (Large and Yeager, 108 

2004). The ocean model is coupled to the Louvain-la-Neuve Sea Ice Model (LIM3) sea ice model 109 

(Vancoppenolle et al., 2008) with a constant value of 10-3 PSU for the sea-ice salinity. A time-splitting 110 

approach is used to compute a barotropic and a baroclinic mode, as well as the interaction between 111 

them. A Tidal Inversion Model is used to define the barotropic mode at the open boundary conditions 112 

(Egbert and Erofeeva, 2002). 11 tidal harmonics are defined for sea level and barotropic tidal veloci-113 

ties. In addition, a coarse resolution barotropic storm surge model covering a large area of the North-114 

ern Atlantic basin provides wind-driven sea level that is added to the tidal contribution. The T/S data 115 

at the open boundary are provided by the Levitus climatology (Levitus and Boyer, 1994). Radiation 116 

conditions are applied to calculate baroclinic velocities at these boundaries. A quadratic friction is 117 

applied with a constant bottom roughness of 3 cm, and the drag coefficient is computed for each bot-118 

tom grid cell. NEMO-Nordic uses a TVD advection scheme with a modified leapfrog approach that 119 

ensures a very high degree of tracer conservation (Leclair and Madec, 2009). Unresolved vertical tur-120 

bulence is parameterized with κ-ε scheme (Umlauf and Burchard, 2003). In addition, Galperin pa-121 

rameterization is used to obtain a stable long-term stratification for the Baltic Sea (Galperin et al., 122 

1988). 123 

         A Laplacian isopycnal diffusion is used for both momentum and tracers with a diffusion parame-124 

ter that is constant in time, but varies in space. Additional strong isopycnal diffusion is used close to 125 

the Neva river inflow (Gulf of St. Petersburg) in order to avoid negative salinities. The bottom bound-126 

ary layer is parameterized to ease the propagation of saltwater inflows between the Danish Straits and 127 

the deepest layers of the Baltic Sea (Beckmann and Doscher, 1997). A free-slip option is used for lat-128 

eral boundaries. 129 

     The model is forced by meteorological forcing derived from a downscaled run of Euro4M reanaly-130 

sis (Dahlgren et al., 2014). The downscaling is based on the regional atmospheric model RCA4 (Sam-131 

uelsson et al., 2011) which uses the reanalysis data as boundary conditions. A runoff database provides 132 

the river flow to NEMO-Nordic (Donnelly et al. 2016); it includes inter-annual variability for the Bal-133 

tic Sea basin and is based on climatological values for the North Sea basin. The salinity of the river 134 

runoff is set to a constant value of 10-3 PSU, which is the same value used for the sea-ice to avoid any 135 
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negative salinity. 136 

 137 

2.2 Local Sigular Evolutive Interpolated Kalman (LSEIK) filter 138 

          The method used to assimilate SST into NEMO-Nordic is the Local Singular Evolutive Interpo-139 

lated Kalman (LSEIK) filter (Pham et al., 2001, Nerger et al. 2006). This is a sequential data assimila-140 

tion scheme, which is an error subspace extend Kalman filter that uses a minimum number of ensem-141 

ble members to reduce the prohibitive computation burden (Pham, 2001). The LSEIK filter produces 142 

the correction for the model state by weighting the difference between the observations and the model 143 

state estimation. The weight coefficients are constructed by the model error covariance matrix and 144 

observation error covariance matrix.  Similar as other ensemble-based data assimilation methods, the 145 

LSEIK filter uses the spread of sample ensemble to estimate the uncertainties of the model state. Fur-146 

ther, a forgetting factor � is introduced to parameterize the imperfect model by amplifying the already 147 

existing modes of the background error (Pham et al. 1998; Pham, 2001). Furthermore, the LSEIK filter 148 

is based on an explicit low-rank approximation of the model error covariance matrix. A second-order 149 

exact sampling method is used to initialize the LSEIK filter (Pham, 2001). Localization was also used 150 

to remove the unrealistic long-range correlation with a quasi-Gaussian function and a uniform hori-151 

zontal correlation scale (Liu et al. 2013). It was performed by neglecting observations that were be-152 

yond correlation distance from an analyzed grid point. In other words, only data located in the “neigh-153 

borhood” of an analyzed grid point should contribute to the analysis at this point (Liu et al. 2009; Jan-154 

jić et al. 2011).   155 

 156 

3. Observations 157 

3.1 Satellite observations  158 

         The satellite SST used in DA was provided by OSISAF (http://osisaf.met.no/p/sst/index.html). 159 

OSISAF aim is to produce, control and distribute operationally in near real-time products using avail-160 

able satellite data. The satellite datasets product used here includes the observations from polar orbit-161 

ing satellites (the EUMETSAT MetOp-A and NOAA-18, -19) with the AVHRR instrument. The SST 162 
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product has a resolution of 5 km and is produced twice daily at 00 UTC and 12 UTC. It covers the 163 

Atlantic Ocean from 50°N to 90°N. The SST observations are thermal infrared observations from the 164 

AVHRR instrument and are therefore limited by cloud cover (Kilpatrick et al. 2001). The cloud mask 165 

in use is based on a multi-spectral thresholding algorithm by SMHI. The products were retrieved using 166 

a nonlinear split window algorithm (Walton et al. 1998). The coefficients in the retrieval algorithm are 167 

determined through regression toward in situ observations, and the dataset thus represents the subskin 168 

temperature of the oceans. Further, subskin observations are subject to diurnal warming effects, which 169 

can be significant in the Baltic Sea. Here only the subskin SST at night (00 UTC), which is compara-170 

ble to in situ (buoy) measurement, is used to minimum this effect. The SST is controlled with the cli-171 

matology check. A quality level from 0 to 5 is associated with every pixel. The higher level value, the 172 

better the quality of the observations (Brisson et al., 2001). Observations with quality level 4 (good) or 173 

5 (excellent) are collected for the analysis and low quality observations were removed. By applying 174 

the above quality control processes, only a subset of the original OSISAF products is kept in this 175 

study. Based on the former validation, a bias value of 0.5oC is given for this product.  176 

       Further, the IceMap from a sea ice concentration dataset with a high spatial resolution of 5 km 177 

(http://www.smhi.se/oceanografi/iceservice/is_prod_en.php) is used to validate the DA results. It is 178 

produced by SMHI and originates from digitized ice charts. An advantage of this data is that the ice 179 

charts are quality checked manually. However, the drawback is that they include some subjective 180 

steps. The temporal resolution of the IceMap SST is twice a week in the experiment period. Sea ice 181 

occurs most frequently in the Bay of Bothnia, with up to 100 ice covered days per year. However, sea 182 

ice can occur in all parts of the Baltic Sea and Danish straits, demonstrating the need for careful treat-183 

ment of sea ice in the SST analysis.  184 

 185 

3.2 In situ data  186 

         The observations from the German Maritime and Hydrographic Agency (BSH) moored buoy 187 

stations were collected as independent dataset to validate the assimilation results. The observations 188 

have high temporal resolution and long continuous record. The second dataset was downloaded from 189 

the Swedish Oceanographic Data Centre -SHARK database (http://sharkweb.smhi.se). SHARK mainly 190 
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contains low-resolution CTD data from a list of predefined standard stations in the Baltic Sea, as well 191 

as in Kattegat and Skagerrak. Only observations that have passed gross quality control procedures are 192 

collected into the SHARK database.  This procedure includes, for example, location checks and local 193 

stability checks. In addition, validating data records from tide gauges are also used. The sea level 194 

anomaly measurements from tide gauges (sea level stations) are measured in a local height system and 195 

values are presented relative to theoretical mean sea level, a level calculated from many years of annu-196 

al means, which takes into account the effect of land uplift and sea level rise. The values are averaged 197 

over one hour period.  198 

        Not all the available observations from satellite, moored buoys, CTDs, tide gauges were included 199 

in this study. To obtain the high assimilation quality results, another quality control was applied for 200 

these data before they were used into assimilation and validation. These controls include examination 201 

of forecast observation differences by excluding those observations for which the difference between 202 

the forecast and the measurement exceeded given standard maximum deviations. The criteria were set 203 

up empirically based on past validation results of the model (Liu et al. 2013). Furthermore, stations 204 

located on land, according to the NEMO-Nordic grid, were excluded. We also removed the duplicate 205 

records of these data.  206 

           The accuracy of observation error is difficult to be defined for all water points. The observation 207 

is commonly assumed to be spatially irrelevant, which results in an error covariance matrix that is 208 

time-invariant diagonal and its diagonal elements equal the variance of observation error. The error for 209 

an observation used in data assimilation mainly includes the representation error and the measurement 210 

error. The measurement error arises primarily from the measurement device alone, the temporary read-211 

ing error and imperfect retrieval algorithm. According to Janjić et al. (2017), the representation error 212 

in data assimilation comprises the error due to unsolved scales or processes, the pre-processing error 213 

and the observation-operator error. In this study, the observation error was estimated to one value as 214 

the sum of all observation uncertainties used in the analysis. Besides, the uncertainties of satellite SST 215 

varies from coast to the open sea, i.e. higher uncertainties in the coast region relative to the open sea.  216 

We used a constant standard deviation value of 0.4oC based on the standard deviation of satellite SST, 217 

which ranged from the ~0.1oC to ~0.5 oC in the Baltic Sea (She et al. 2007, Høyer et al. 2016). 218 
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 219 

4. Configuration of LSEIK in the experiment  220 

         As above mentioned, the initialization of the filter requires an initial analyzed state and a low 221 

rank approximation of the corresponding estimation of error covariance matrix. The data assimilation 222 

process was initialized by a free model simulation. First the model was spinning up 20 years to reach a 223 

statistically steady state. Then a further (free-run) integration covered the period 2006-2009 was car-224 

ried out to generate a historical sequence of model state. To reduce the calculation cost, we took a 225 

snapshot in every 6 days and saved 183 state vectors, which includes sea level, temperature and salini-226 

ty, in total to describe the model variability because successive states are quite similar. The initial en-227 

semble provided an estimate of the initial model state and its uncertainty before the assimilation of 228 

SST observations. The quantity of the model variability was expected to be reasonably comparable 229 

with the forecast error, which was dominated by misplacement of mesoscale features and varies in 230 

location and intensity seasonally. Further, the very high frequencies of model variability were also 231 

unfavourable in an ensemble of state vectors for SST data assimilation (Oke et al., 2005). Therefore, a 232 

band-pass filter was used to remove the unwanted frequency of model variability. To initial low rank 233 

error covariance matrix, a multivariable Empirical Orthogonal Functions (EOF) analysis was applied 234 

on the 183 state vectors of model variables (sea level, temperature and salinity). In the North Sea and 235 

Baltic Sea, error covariances of different variables are not uniform and strongly dependent on whether 236 

the variable resides in the open sea or coastal zone. Each state variable was then normalized by the 237 

inverse of its spatially averaged variance at every model level. At last, 34 leading EOF modes were 238 

kept and they explained 85% overall variability. Then the initial error covariance matrix was estimated 239 

by ������ ≈ 	�
�	�� , where the 	� is composited by the leading EOF modes and 
� is diagonal 240 

matrix with the corresponding eigenvalues on its diagonal.  We used a time-invariant sample ensemble 241 

to approximate the background error covariance during the experimental period (Korres et al, 2004; 242 

Liu et al. 2017).  This stationary ensemble affords a good approximation of the ocean’s background 243 

error covariance. Meanwhile, it is computationally efficient for our objective. 244 

       The localization scale is another import factor to the assimilation system, especially at the coastal 245 
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region. Large correlation scale may transfer artificial increments to the positions far away from the 246 

analysis observation during the DA process. However, small correlation scale is prone to cause the 247 

singularity of ocean state around analyzed observation and break the continuity of the ocean state. 248 

Hence, an unreasonable scale causes the instability of the model integration or degrades the assimila-249 

tion quality.  Unfortunately, the accuracy length for the correlation is unknown for the North Sea and 250 

Baltic Sea. The correlation length scale is to some extent dependent on the Rossby radius of defor-251 

mation (Losa et al., 2012), which varies from ~ 200 km in the barotropic mode to ~ 10 km or even less 252 

in the baroclinic mode (Fennel et al., 1991; Alenius et al, 2003). According to the former researches 253 

like Liu et al. (2013, 2017), a length scale of 70 km was specified for both the North Sea and Baltic 254 

Sea in this study.  Not that this value may be not perfect and more accurate correlation length needs to 255 

be tested for LSEIK. For example, spatially variable length scales are the next step for the regional DA 256 

simulations.  257 

        To define the forgetting factor, a one-month simulation experiment with varying the factor � was 258 

done in January 2010. At last, a factor � = 0.3  resulted in the best assimilation performance. Further, 259 

we define a two-day assimilation window in assimilation experiment. As a result, the observations in 260 

the two days before the assimilation time were used to calculate the innovation with observation oper-261 

ator. When we calculated the innovation we also changed the observation error according to the obser-262 

vation time by � = 0.4 × exp	�−0.15∆��, here ∆� is the absolute time difference between observation 263 

time and DA time.   264 

 265 

5. Results 266 

In the following sub-sections, we conducted two runs with and without assimilation of the 267 

SST observations from the OSISAF database, both runs with the above setup of the analysis system. 268 

Accordingly, the runs with and without assimilation are called ASSIM and FREE, respectively. We 269 

considered the evolution of SST based on 48-hourly local analysis from 1 January 2010 to 31 Decem-270 

ber 2010. The 48-hourly forecast SST from two runs was assessed with observations from different 271 

dataset. Then we analyzed the impact of the data assimilation on the profile simulation of T/S. At last, 272 
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we evaluated the system performance with respect to sea surface anormaly and sea ice, respectively. 273 

 274 

5.1 Comparison with satellite data 275 

 First, we presented two cases to show the ocean state before and after the assimilation of the 276 

OSISAF SST data in Fig. 2. The first case was given at 11 January 2010, a date with clear weather and 277 

many observations available. The model has obvious difficulties in reproducing the observed SST. 278 

The cold biases in the forecast were found in the Skagerrak, west coast of the Baltic proper and the 279 

Bothnian Bay, respectively.  However, the warm biases appeared in the interior of the Baltic Sea and 280 

the Kattegat.  The largest deviation in the FREE reached 2.2 oC at the Skagerrak. Apparently, tempera-281 

ture by assimilation analysis agreed with the satellite-derived data much better. This correction at the 282 

analysis step has allowed us to reduce the deviation of the SST forecast from the observations. The 283 

DA system simulation was also verified at 2 June 2010, which has also many available OSISAF ob-284 

servations. The biases on 2 June 2010 were obviously different from that on 11 January 2010. Moreo-285 

ver, it was found they had a roughly opposite bias signal. For example, relative to the OSISAF SST at 286 

the Baltic proper, Bothnian Sea and Bothnian Bay, FREE produced relatively warmer water at January 287 

11 and colder water at 2 June (Fig. 2), respectively. After data assimilation, the analysis increments 288 

were appropriately added to the model field. In general, the SST DA has improved the simulated SST 289 

in both cases (Fig. 2).              290 

      Maps of annual averaged RMSE of SST from two runs relative to the IceMap observation are 291 

shown in Fig. 3.  Obviously, the RMSE in FREE and ASSIM had different distribution in the Baltic 292 

Sea. In general, FREE had smaller error in the Skagerrak, eastern the Kattegat and the interior of the 293 

Bothnian Sea relative to other subbasin of the Baltic Sea.  The largest RMSE was found at the connec-294 

tion region between the Baltic proper and the Bothnian Sea. This could be caused by the shallow wa-295 

ter, complicated bathymetry and large observation biases in this area. It was also noted that the RMSE 296 

was larger in the coast region compared to its interior in the Baltic proper and Bothnian Sea. After the 297 

assimilation, the SST has been significantly improved. The RMSE of SST from ASSIM was generally 298 

smaller than 1.0 oC. However, there were still some regions where the improvements were relatively 299 

small and the RMSE of SST was greater than 1.0 oC. These large errors were predominantly located at 300 
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the edge of the Baltic Sea and the Danish straits. For instance, the RMSE of SST was greater than 1.2 301 

oC at both the entrance of the Gulf of Finland and the west coast of the Bothnian Sea. The relatively 302 

small improvements were regularly caused by the rare observations or the less accurate observations 303 

near the coast water. 304 

           The overall daily averaged SST errors against the IceMap observations have been estimated 305 

(Fig. 4). The observations had better coverage in summer and autumn than in winter and spring. The 306 

variability of the number of observation directly affected the assessment of DA results. The model 307 

biases had pronounced seasonal variability, which had small values in spring and winter. In general, 308 

the assimilation provided better SST estimations. The free run had a RMSE of 1.47 oC. After the as-309 

similation, the RMSE was reduced to 1.03 oC, whereas the bias was reduced by 0.73 oC. An interesting 310 

feature was that the SST error reduction due to the assimilation was almost consistent with the varia-311 

bility of the number of IceMap observations. For example, the improvement became large with in-312 

creasing the number of IceMap observations from March to June 2010. However, the number of ob-313 

servations was kept constant during the period June-November 2010 and the improvement shown in 314 

both the bias and RMSE of SST did not exhibit large variability, which meant reliable performance of 315 

the DA system.  316 

 317 

5.2 Comparison with independent in-situ data 318 

           The time series of T/S were compared with independent observations located at Arkona station 319 

(13.87oE, 54.88oN) in the Arkona Basin and at BY15 (20.05 oE, 57.33 oN) in the Eastern Gotland Ba-320 

sin, respectively. These two stations were selected to verify the experiment results because of their 321 

relatively completed observation records for the experiment period. In the Arkona Basin, the water 322 

depth was shallow and the water column can be well mixed between surface and bottom water. Thus, 323 

the bottom T/S was largely affected by the surface dynamic (Liu et al. 2014). Relative to observations, 324 

the model had warm biases at this station (Fig. 5). At a depth of 25m, the observed temperature 325 

showed the largest variability, which was a good representation of the bottom characteristics of the 326 

mixed layer. In mid-August, the temperature was abruptly increased by 10oC at a depth of 25m and 327 

slightly decreased at surface, respectively. The reason is that the surface water suddenly sinks to deep-328 
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er layers, which warm the deep water. However, this dynamic process hasn’t reached to Arkona bot-329 

tom and it didn’t cause the obvious bottom temperature variability (Fig. 9). Both FREE and ASSIM 330 

had reproduced this process, whereas FREE showed larger temperature biases. To the salinity at the 331 

Arkona station, the surface observations were missing, the comparison at 7 m depth verified the sub-332 

surface simulations. The observations showed larger salinity variability in winter relative to summer. 333 

This pronounced seasonal variation is associated with the variation of fresh river runoff and net E–P 334 

(Evaporation–Precipitation) flux (Fu et al, 2012). At a depth of 7 m, salinity was obviously underesti-335 

mated from April to September and overestimated after November although the ASSIM had slightly 336 

better results compared to FREE. The DA also provided better simulation of salinity at 25 m depth. 337 

For example, the salinity bias in the October was reduced by 3 psu by DA. At a depth of 40 m, the 338 

saltwater inflows were observed, resulting in sudden increases of salinity. For instance, the salinity 339 

was increased by 3.5 psu in February followed by a decreasing trend. The variations were reproduced 340 

in both FREE and ASSIM, whereas the intensity of the decreased process is weakly simulated with a 341 

difference of 3 psu and the inflow in March was not strong enough relative to the observed one. Ob-342 

servations also showed a large salinity variability amounts to 4–8 psu in the autumn. Although FREE 343 

and ASSIM had shown these changes, their magnitude was obvious weaker than observations. The 344 

possible reason was that the model’s resolution was inadequate to well resolve the topography and 345 

eddies in this area. Both the large runoff and the complicated bathymetry posed challenges for the 346 

model to tackle the small-scale dynamic process in such a shallow basin. A higher resolution model 347 

perhaps was more preferable to study this dynamic process.  348 

           The Eastern Gotland Basin has deeper water depth compared to the Arkoan Basin, in which the 349 

water column is permanently stratified and the halocline lies at about 60–80 m (Fu et al, 2012). The 350 

mixing and sinking of T/S are hindered by the strong stratification. Unlike observations in the Arkona 351 

Basin (Fig. 5), the CTD observations at BY15 had lower temporal resolution with almost one observa-352 

tion per month. In the mixing layer, it can be seen model had overestimated the temperature (Fig. 6). 353 

At a depth of 10 m, ASSIM has remarkably improved the simulation of temperature relative to FREE. 354 

The bias has been reduced by 3oC in the spring of 2010. At 175 m depth, observed temperature 355 

showed very small variation. The reason was that the main source for deep water ventilation is the 356 
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saltwater inflows which are suppressed by runoff within a depth range of 75–135 m in the Eastern 357 

Gotland Basin (Vali et al. 2013). As a result, updating the bottom water is very slow. Both FREE and 358 

ASSIM overestimated the temperature in the spring and the beginning of summer of 2010. Further, 359 

ASSIM has increased the temperature bias after mid-summer relative to FREE.  This result might be 360 

explained by that the strong correlation isn’t expected between surface and layers bellow the halocline 361 

because of the strong stratification in this basin, which perhaps yield the artificial correction. There-362 

fore, the improvement of the surface temperature cannot guarantee its positive influence on the bottom 363 

temperature. To the salinity, the model had less accurate simulation with generally low salinity biases 364 

at 10 m depth. ASSIM provided better salinity simulation compared to FREE. At 70 m depth, the 365 

small variation of salinity was found after DA. Moreover, at 175 m depth, the observation had very 366 

small variability about 0.1 psu. In general, both experiments have reproduced these variations. How-367 

ever, FREE increased salinity by 0.2 psu from March to April relative to the observation, which 368 

caused the overall salinity overestimated amount to 0.2 psu. This increasing process wasn’t shown in 369 

observations and the reason remained unclear. The DA has shown slight improvement, but it still salt-370 

er than the observations.  371 

        The mixed layer depth (MLD) was calculated at the Arkona and BY15 station and compared with 372 

the SHARK observation in Fig. 7. We used the temperature criterion to define the MLD, i.e., the depth 373 

at which the temperature deviated from the surface value by 0.5 oC (Fu et al., 2012). Figure 7 shows 374 

that the MLD at Arkona had larger variability relative to the MLD at BY15. The reason contributed to 375 

this feature is that the deeper water at Arkona is easy affected by wind forcing because of the shallow 376 

bathymetry and well mixing, whereas the temperature variation in upper water at BY15 difficulty in-377 

fluences the deeper water because of the strong stratification. Both runs had reproduced the MLD var-378 

iability feature similar as the observations. For example, the minimum MLD appeared in summer, 379 

which was about several meters. The assimilation of satellite SST caused strong changes in the MLD 380 

at both stations, especially in winter. One explanation was that the Baltic Sea was largely affected by 381 

wind forcing and the winter wind was much stronger than the summer wind. Further, strong heating in 382 

summer promoted stratification in summer and shoaled the MLD. 383 

        Further, the temporal and spatial distribution of the SHARK observations is shown in Fig.8. 384 
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These observations were unevenly distributed in the Baltic Sea. In the Skagerrak, the observations 385 

appeared at the Danish and Swedish coast. However, in the Bornholmn Basin, Kattegat, and Baltic 386 

proper, the observations mainly were found in the central and the Swedish coast side. There were also 387 

many observations in the Bothnian Sea and rare observations in the central of the Bothnian Bay. It 388 

must be noticed that there aren’t SHARK observations in both the Gulf of Finland and Gulf of Riga 389 

during the experiment period. Moreover, these SHARK profiles in the first four months were mainly 390 

located from the Skagerrak to the Baltic proper, which are relatively rare in the northern Baltic Sea. In 391 

the Bothnian Bay, the observations are mainly in the winter period.   392 

Figure 9 shows the change of overall bias and RMSE of T/S with depth against the SHARK 393 

dataset. In the Baltic Sea, DA had large impact on the temperature forecast in the water above 100 m. 394 

The RMSE showed that the forecast of temperature was obviously improved from surface to thermo-395 

cline in the ASSIM and the improvements generally decreased with depth. Above 100 m, the overall 396 

RMSE of temperature in ASSIM was decreased by 21.38% (from 1.59 to 1.25 oC). It was also found 397 

the temperature error had similar variability as the warm biases in two runs. In the transition zone, the 398 

RMSE in the ASSIM was reduced by 5.59% and -20.31% above and below 100 m relative to the 399 

FREE, respectively. Below 90 m, the temperature was also over-adjusted, which changed the warm 400 

bias to cold bias. It is worth noting that the number of the deeper water observation in the transition 401 

zone is substantially less than that in the Baltic Sea. For the salinity, both RMSE and bias of the AS-402 

SIM showed very minor changes relative to the FREE inside the Baltic Sea. For the water above 100 403 

m, the total RMSE of salinity was increased by 3.48% (from 1.15 psu in the FREE to 1.19 psu in the 404 

ASSIM) in the transition zone and 1.04% (from 0.96 psu in the FREE to 0.97 psu in the ASSIM) in 405 

the Baltic Sea. 406 

 407 

5.3 Sea Level Anomaly  408 

SLA represents a vertically integrated effect of the T/S variations over the whole water col-409 

umn. The accurate simulation of SLA is thus a good indicator of the model performance. Therefore, 410 

validating the impact of SST assimilation on the simulation of SLA is very important to the Baltic Sea 411 

forecast. The observations from the 24 tide gauge stations were used. These gauge stations are mainly 412 
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located at the Swedish coast (see Fig.8b). Since only the SST is assimilated in this study, the SLA 413 

observations are completely independent. 414 

     We calculated the RMSE and correlation coefficients for both the FREE and ASSIM against the 415 

observations from tide gauges (Fig. 10). The overall RMSE was reduced by 1.8% and the correlation 416 

coefficients were slightly increased. Among these stations, RMSE at the Oskarshamn was decreased 417 

by 5.6%, which is larger than that in other station. The minimum RMSE change of SLA was seen at 418 

the Klagshamn. For the correlation coefficient, improvement on the SLA by the DA is very small. 419 

Simrishamn station showed the biggest change of correlation coefficient, which is 1.1%. The RMSE 420 

and correlation comparison demonstrated that the SST DA has generally positive effects on the fore-421 

cast of the SLA.  422 

 In addition, the time series of the SLA error discrepancy (ASSIM minus FREE) in two runs at 423 

four stations were selected to evaluate the simulation results (Fig. 11). These four stations were select-424 

ed to represent the model performance at different positions of the Swedish coast. Two runs showed 425 

evidently different performance in these four stations. The variability of the SLA difference between 426 

two experiments at the Smogen station had higher frequency compared to other stations. The reason 427 

was that the Smogen station was located at the transition zone where the water had higher frequency 428 

variations caused by the brackish Baltic in/outflowing relative to other three stations. At these four 429 

stations, the improvements were mainly in later spring and summer, whilst the degraded simulations 430 

were mostly happened after Mid-September, respectively. The SST assimilation had less impact in late 431 

winter and early spring compared to other seasons. Besides, the impact of SST assimilation on SLA 432 

simulation was not same in the four positions. For instance, during the period from Mid-November to 433 

Mid-December, the SLA in ASSIM was improved at Simrishamn and degraded at both the Ratan and 434 

LandsortNorra stations, respectively. This phenomenon was possibly caused by the imperfect correla-435 

tion between SST and SLA in the stationary samples. Further, these steric small changes of SLA by 436 

DA were what we expected because only SST was assimilated into Nemo-Nordic.  437 

 438 

5.4 Sea ice 439 

Sea ice in the Baltic Sea occurs primarily in its north region and influences the Baltic climate. 440 
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Accurate detecting the sea ice is very useful to the northern Baltic living because too much or too little 441 

sea ice can be a problem for wildlife and people. Sea ice concentration (SIC) and Sea ice extent (SIE) 442 

are two important and common indicator to modeling sea ice environment. We assessed the SIC and 443 

SIE from simulations against the IceMap observations in Fig. 12-13. Differ from the daily evaluation 444 

in Losa et al. (2014), the monthly mean SIC was used to represent the general status of sea ice in the 445 

Baltic Sea. Besides, SIC in January, February and December showed the variation of the sea ice in 446 

winter.  447 

  In January 2010, the observations showed large ice coverage in the Bothnian Bay and the Gulf 448 

of Finland and small SIC in the Gulf of Riga, respectively. Model generally reproduced this distribu-449 

tion of sea ice. However, FREE simulated too much sea ice in the Gulf of Finland and the eastern 450 

coast of the Baltic proper relative to observations. For example, SIC from FREE almost to 30% higher 451 

than observations along the Estonia coastline. It could be seen that the SST DA reduced these biases. 452 

The reason is the SST DA modified the thermal expansion by providing the well temperature fields 453 

above the thermocline. The temperature in February became colder relative to January in the Baltic 454 

Sea. As a result, the sea ice in February extended to the Bothnian Sea and the whole Gulf of Riga. 455 

Observation also showed small SIC in Kattegat and Skagerrak. Model simulated higher SIC in the 456 

Bothnian Sea with largest biases along the Swedish and Finnish coast. As an example, the observed 457 

ice in the Bothnian Sea was characterized by concentrations mainly smaller than 0.5, whereas modeled 458 

ice in FREE had concentration greater than 0.9 in the shallow region of the Bothnian Sea. FREE also 459 

had smaller ice coverage with lower SIC in the transition zone between the North Sea and the Baltic 460 

Sea relative to IceMap. After the SST assimilation, ASSIM reduced SIC in the Bothnian Bay and the 461 

west coast of the Baltic Sea, which was closer to the observations. The ice in ASSIM didn’t have ob-462 

vious variation in Kattegat and Skagerrak yet. ASSIM also reduced too much ice at the southern of the 463 

Bothhomn Basin. The reason is that the satellite SST observations had limited accuracy near the coast 464 

and they could bring artificial information into the modeling. In March, compared to observation, the 465 

FREE produced low SIC in the western coast of the Bothnian Sea, Gulf of Finland, Gulf of Riga and 466 

the connect zone between the Bothnian Sea and Gulf of Finland. However, the model SIC in the FREE 467 

was higher than IceMap in the interior the Bothnian Bay. For instance, the SIC from FREE in the 468 
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western Bothnian Sea was 40% higher than observation. In the south coast of the Arkona basin and 469 

Baltic proper, the FREE failed to reproduce the sea ice as in observation. After the DA, the high SIC 470 

was decreased in western Bothnian Sea and closer to that in IceMap in Bothnian Sea. In the Gulf of 471 

Finland and Gulf of Riga, the SIC error was increased in the ASSIM. In April, the large SIC error in 472 

the FREE was shown in the Bothnian Sea, the Bothnian Bay, Gulf of Rig and Gulf of Finland, where 473 

no clear improvements were seen in the ASSIM. In December, sea ice coverage was smaller because 474 

of relatively warm temperature compared to that in other winter month. Most of the sea ice with high 475 

concentration was observed at the edge of the Bothnian bay. Nevertheless, high concentration ice in 476 

FREE also happened at the transition zone between the Bothnian Sea and Bothnian bay. Relatively, 477 

ASSIM reduced the high concentration biases of sea ice. By contrast, both ASSIM and FREE had 478 

lower concentration ice than observation in the eastern coast of the Bothnian Sea. The SIC from AS-479 

SIM was relatively lower than that from FREE in the northern Finish coast, whereas the observations 480 

had high concentration ice there.  481 

        The daily SIE from FREE and ASSIM was compared with observations in Fig.13. The observed 482 

SIE was generally increased from January to February and reached the maximum in mid-February. 483 

During the period of March-May, SIE was decreased as temperature was increasing. SIEs in both the 484 

FREE and ASSIM experiments were generally underestimated by comparison with the observation in 485 

2010, especially in the period from Mid-March to early April. The SIE bias in both runs was roughly 486 

increased from January to early April. In early April, the maximum negative bias of SIE was found to 487 

be 105000 km2 for ASSIM and 10000 km2 for FREE. The impact of SST assimilation on the SIE was 488 

positive during the phase of sea ice formation. For example, the SIE bias was reduced 25000 km2 at 489 

end of February and in the Mid-December. However, during the phase of sea ice melting (March to 490 

April), the SIE error was increased in ASSIM even with the error of SST decreased. For example, the 491 

SIE bias in ASSIM was increased by 42000 km2 relative to FREE in the early March. These increased 492 

SIE error in March mainly happened in the Gulf of Riga and Gulf of Finland (Fig.11). 493 

  494 

6. Conclusion and discussions 495 
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A DA system based on a LSEIK filter has been coupled to the NEMO circulation model of the 496 

North and Baltic Seas. The method was successfully applied for assimilating high resolution satellite 497 

SST data. We demonstrated that, over the period of 2010, the agreement of the SST forecast with the 498 

independent satellite observation was improved by ~ 29.93% in comparison with the regular forecast 499 

without DA. The assimilation quality is directly related to the number of observation. 500 

Compared with independent in-situ data from SHARK, the RMSE of temperature was reduced 501 

by 21.38% and 5.59% for the water above 100 m inside and outside of the Baltic Sea, respectively. 502 

However, in the deeper layers, the temperature was slightly degraded in the Baltic Sea. This is partial-503 

ly caused by the artificial correlation between surface layer and deeper layers. The improvement of 504 

temperature by SST DA can’t guarantee corresponding improvement of the salinity. The statistics 505 

displays the salinity RMSE was increased by 1.04% and 3.48% in the transition zone and the Baltic 506 

Sea, respectively. Both ASSIM and FREE have captured the main dynamic process in the Baltic Sea, 507 

for example, the inflow and the sink.  However, ASSIM is closer to the observed one relative to 508 

FREE.   509 

 The forecast results were further validated with the independent SLA observations. The result 510 

shows that all RMSEs and correlations for all 21 stations are smaller than 0.12 m and greater than 511 

0.86, respectively. After DA, the SLAs at these stations have been slightly improved. In general, the 512 

RMSE was reduced by 1.8% and correlation coefficients were slightly increased, respectively. Fur-513 

ther, the model-observation comparison at selected four stations indicates that these improvements are 514 

mainly in later of spring and summer. The comparisons also denote the SST assimilation has less im-515 

pact in the late winter and early spring relative to other seasons.  516 

When compared with monthly mean observations of SIC, both assimilation run and free run 517 

reproduced main spatial distributions of sea ice in the Baltic Sea. During the sea ice formation period, 518 

the SST assimilation has improved the results of SIC from FREE in the Gulf of Finland, the Bothnian 519 

Sea and eastern coast of the Baltic proper. However, minor improvements were found in Kattegat and 520 

Skagerrak. Besides, over the sea ice melting period, the SIE comparison showed the SST assimilation 521 

increased the SIE error, especially in the Gulf of Finland and Gulf of Riga.  522 

The daily MLD from two runs has been compared with the observations at Arkona and BY15 523 
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stations. Model could capture the variability features of the MLD. Similar as Fu et al.(2012),  it was 524 

found that SST assimilation had less impact on the MLD in summer than that in winter. In general, the 525 

SST DA produced less influences on the MLD in the deeper region (BY15) relative to that in the shal-526 

low region (Arkona). 527 

          Further, the reliability of the DA system is worth being assessed. In Rodwell et al.(2006), a per-528 

fect reliable system error variance for ensemble assimilation was calculated by the sum of the variance 529 

of the sample ensemble, the square of innovation(misfit between observation and model) and the vari-530 

ance of observation at assimilation time. In this study, we used a constant observation error similar to 531 

Rodwell et al. (2016) because our DA design is different from that paper. The major difference be-532 

tween these two studies is that we estimate the background error covariance from stationary ensemble 533 

and avoid the perturbation of observation error. Therefore, the variance of the sample ensemble and 534 

observation is univariate and the diagnostic of the assimilation stability can be directly obtained from 535 

the forecast error like the RMSE in Fig.4. 536 

  The results of the SST assimilation are encouraging and the assimilation helps to ameliorate 537 

some model deficiencies such as the simulation of sea ice in the Gulf of Finland. However, some prob-538 

lems need to be further addressed in the SST DA in the future: firstly, the SST assimilation has worse 539 

influence on the simulation of salinity in the upper layers and temperature in the deeper layers. Losa et 540 

al.(2012) denoted that the salinity simulation quality crucially depends on the assumptions about the 541 

model and data error statistics. Here a stationary ensemble sample was used to represent the correla-542 

tion between T/S and between surface and deep water. These relationships could be changed with the 543 

varying dynamics and forcing conditions. More sophisticated assumption should be used in the DA of 544 

Baltic Sea. Secondly, the SHARK observations in this study are absent at the Gulf of Finland and Gulf 545 

of Riga. This denotes the validation results with SHARK observation didn’t include the evaluation of 546 

the simulation of T/S in deep water of these two basins. Thirdly, the univariate localization scale used 547 

in this study could be another problem. The spreading of observation information strongly depended 548 

on the correlation scale. The large localization scale can introduce the artificial information, which 549 

could degrade the assimilation quality. A flow-dependent background error covariance with varying 550 

correlation scale may be more appropriate for the Baltic Sea with complex bathymetry and rich dy-551 
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namics. Fourthly, the remote sensing observations near the coast could have large bias because of the 552 

limit of the instrument itself. More strict quality controlling method needed to be used for the satellite 553 

coastal observations before their assimilation.  554 

 555 

Appendix 556 

Here, we describe the details of the mathematical formulation used in the forecast and correction 557 

(analysis) steps of the LSEIK filter: 558 

1. Forecast: the analysis state �� at time ���� is integrated forward to the time of the next available 559 

observations �� to compute the forecast state  ��, 560 

������ =  �����, �����������              (1), 561 

where   denotes the nonlinear dynamic model operator that integrates a model state from time ����  562 

to time �� . The superscript '#' and '$' denote the forecast and analysis. The corresponding error covar-563 

iance matrix can be expressed as:  564 

%����� = &�[�( + 1�*�*]��&�
� + ,�      (2), 565 

&� = ������*                                               (3), 566 

with ,� being the covariance matrix of model uncertainties and ( + 1 is the minimum number of 567 

sample ensemble members for error covariance matrix. The superscript '-' denotes the transpose of 568 

matrix. The full rank matrix * has a dimension of �( + 1� × ( with zero column sums and & is a full 569 

rank �( + 1� × ( matrix which implicitly represents the model variability.  570 

2. Correction: when the observation is available at time ��, the LSEIK filter merged the information 571 

from model and observation to produce the analysis state with the formula: 572 

������ = ������ + .�[/0���� − HHHH�������]             (4). 573 

Here /0 is a vector of observations. The gain matrix ., which linearly interpolates between the obser-574 

vations and the forecast, is given by 575 

.� = %�
�HHHH�
�2HHHH�%�

�HHHH�
� +3�4

��
= &�5��HHHH�&���3�

��     (5), 576 

where HHHH� denotes the linearization of observation operator, which mapping the model space to the 577 
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observation space. 3 is the observation error covariance matrix. The matrix 5� is updated according to  578 

5�
�� = ��( + 1�*�* + &�

�HHHH�
�3�
��HHHH�&�                  (6). 579 

Here ρ is A forgetting factor. 580 

         A second-order exact sampling is used to initialize the LSEIK filter. At time ����, a analysis 581 

state �������� and its corresponding error covariance matrix %�������, in the factorized form 582 

&���5���&���
�  , are available. The samples can be given by the following formular: 583 

                      �7
������� = �$888��9−1� + √( + 1&���2;7,���<���4

�
                         (7). 584 

For 1≤ > ≤ ( + 1, the <��� is the Cholesky decomposition of 5���
��  and ?��� is a �( + 1� × ( ma-585 

trix with orthonormal columns and zero column sums, where ;7,��� denotes the >@A row of ;���.  ��8888 586 

is the average of the analysis state. 587 
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 771 

Figure 1. Geographical domain and bathymetry (in m) of the NEMO-Nordic configuration. 772 
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 788 

Figure 2. Map of SST from FREE (a,e), OSISAF (b, f),  ASSIM (c, g) and the assimilation increments 789 

(d, h) on 11 January 2010 (first row) and 2 June 2010 (second row), respectively. 790 
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 806 

Figure 3. Map of the RMSE of SST from ASSIM (left panel) and FREE (right panel) calculated 807 

against IceMap SST in 2010, respectively. 808 
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 827 

Figure 4. The evolution of basin-averaged bias and RMSE of SST from FREE and ASSIM relative to 828 

IceMap SST and the number of IceMap observation in 2010.  829 
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 843 

Figure 5. The time series of temperature (left panel) at a depth of 0, 25 and 40 m and salinity (right 844 

panel) at a depth of 7, 25 and 40 m at the Arkona station (13.87oE, 54.88oN ), respectively.  845 
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 860 

Figure 6. The time series of temperature (left panel) and salinity (right panel) at the BY15 station 861 

(20.05oE, 57.33oN ) at a depth of 10,  70 and 175 m, respectively.  862 
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 873 

Figure 7. The time series of mixed layer depth at Arkona and BY15 station.  874 
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 887 

Figure 8. (a) Map of the temperature and salinity profiles from SHARK database in 2010. The colors 888 

show the observations months.(b) The tide gauges station along the Swedish coast.   889 
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 902 

Figure 9. The overall RMSE and bias of temperature (up panel) and salinity (down panel) from FREE 903 

and ASSIM relative to observations as a function of water depth inside (b,d) and outside (a,c) of the 904 

Baltic Sea.  905 
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 910 

Figure 10. The improvement (%) of correlation and RMSE for the SLA at the tide gauges stations. The 911 

station position is in the Figure 8b.   912 
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 922 

Figure 11. The variation of SLA biases in ASSIM relative to FREE against observations as a function 923 

of time. The station position is shown in the Figure 8b.  924 
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 929 

Figure 12. The monthly mean sea ice concentrations in FREE (left panel), ASSIM (middle panel) and 930 

IceMap (right panel), respectively.  931 
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 935 

Figure 13. The daily sea ice extent from FREE, ASSIM and IceMap and the sea ice extent bias (mod-936 

elled minus observed field), respectively.  937 
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