We’'d like to thank the Dr. S. Losa for her usefohmuments to further improve our

manuscript. Our responses are in blue.

| propose excluding all the equations (1-7) fromtR&2 and equation 8 from Part 4
from the text since they were already publishe®bgm et al. and the presented
manuscript is not on the method.

As an alternative, the authors might want to mdnaart in an Appendix.
1) According the reviewer's comment, we moved the &dording to the equations 1-
7 from Part 2 to the appendix. The correspondxtthas been changed to:
“The LSEIK filter produces the correction for the dab state by weighting the
difference between the observations and the motié ®stimation. The weight
coefficients are constructed by the model erroraci@nce matrix and observation error
covariance matrixSimilar as other ensemble data assimilation methtios LSEIK
filter uses the spread of sample ensemble to eitie uncertainties of the model
state. Further, a forgetting factgr is introduced to parameterize the imperfect model
by amplifying the already existing modes of thekemund error (Pham et al. 1998;
Pham, 2001). Furthermore, the LSEIK filter is based an explicit low-rank
approximation of the model error covariance matmx.second-order exact sampling

method is used to initialize the LSEIK filter (Ph&001):

2) We also removed the equation 8. The texts assaciatith equation 9 is changed
to
“... according to the observation time lky= 0.4 X exp(—0.15At), here At is the

absolute time difference between observation tinte@A time.”

-Lines 13 - 14: the sentence "We use ... (LSEIK8ifto characterize correlation scales
in the coastal regions" could be rewritten in a \wegt... the authors use a Kalman-type
filtering to assimilate the data..., and they usanarank approximation of the
stationary background error covariance metrics aselde analysis steps.



In revision, we changed the text tdVé use a Kalman-type filtering to assimilate the
observations in the coastal regions. Further, a fanwk approximation of the stationary

background error covariance metrics is used atdhalysis step$

- Lines 230 - 232: accounting for the representegisor is indeed important. Please see
Janji et al 2017 (the study also addresses the ternggagsue).

Janji, T., Bormann, N. , Bocquet, M. , Carton, J. Aoh@, S. E., Dance, S. L., Losa,
S. N., Nichols, N. K., Potthast, R. , Waller, J.alhd Weston, P. (2017), On the
representation error in data assimilation. Q.J.Btadrol. Soc.. . do0i:10.1002/q;.3130

We added some texts to account for the measuregnemtand observation error in the
Section 3.2:

“The error for an observation used in data assirtida mainly includes the
representation error and the measurement error. Theasurement error arises
primarily from the measuring instruments, the terapp reading error and imperfect
retrieval algorithm. According to Jajiet al. (2017), the representation error in data
assimilation comprises the error due to unsolvedles or processes, the pre-

processing error and the observation-operator ertor

- Lines 266 - 267: the correct references with eespo forgetting factor are Pham et al.
(1998a,b) and Pham 2001.

Thank you. We updated the references to Pham e1%8I8b and Pham 2001 as

suggested.

Pham, D. T., Verron, J. and L. Gourdeau, 1998#&édsilde Kalman singuliers évolutif
pour I'assimilation de données en océnographie. gEoRend. Acad. Sci. Terre
Planetres,326, 255-260.

Pham, D. T., Verron, J. and M. C. Roubaud, 1998bingular evolutive extended
Kalman filter for data assimilation in oceanographyMar. Syst.,16, 323—-340
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Abstract. We assess the impact of assimilating the sataléite surface temperature (SST) data on
the Baltic forecast, practically on the forecastoo&an variables related to SST. For this purpase,

multivariable DA system has been developed baseal Mordic version of the Nucleus for European

Modelling of the Ocean (NEMO-Nordic). We us&alman-type filtering to assimilate the observa-

tions in the coastal regions. Further, a low rapgraximation of the stationary background error co-

variance metrics is used at the analysis stejigh resolution SST from OSISAF is assimilated to

verify the performance of DA system. The assinolatrun shows very stable improvements of the
model simulation as compared with both independadtdependent observations. The SST prediction
of NEMO-Nordic is significantly enhanced by the Bfstem. Temperatures are also closer to obser-
vation in the DA system than the model resultshie water above 100 m in the Baltic Sea. In the
deeper layers, salinity is also slightly improv&#sides, we find that Sea level anomaly (SLA) is
improved with the SST assimilation. Comparison viittiependent tide gauge data show that overall
root mean square error (RMSE) is reduced by 1.88bcaerall correlation coefficient is slightly in-
creased. Moreover, the sea ice concentration fstresamproved considerably in the Baltic proper,

the Gulf of Finland and the Bothnian Sea duringsba ice formation period, respectively.
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1. Introduction

Monitoring the marine status of the Rallea with relevant resolution and accuracy isya ke
requirement to serve the marine policy for detecthre influence of human activities on the environ-
ment and better understanding the response of doesstelerating global climate change. The Baltic
Sea is one of the largest brackish seas in thedwibils a semi-enclosed basin, whose hydrography i
highly variable and influenced by large-scale afphesic processes and significant influx of freshwa-
ter from rivers runoff and precipitation (Leppéamar@nd Myrberg, 2009). In addition, the water ex-
change between the North Sea and Baltic Sea thrihwggBanish straits is hindered by shallow topo-
graphic restrictions in the transition zone (Fig. 1

A characteristic feature of numerical forecasthie Baltic Sea is in itself a major challenge
because of complex topography and rich dynamicaudber of ocean forecasting systems for the
Baltic Sea have been developed using hydrologicalehby operational agencies around this region.
Traditionally, these models have a horizontal netsmh of 1-5 km and approximately 20—100 layers
in vertical structure (Omstedt et al. 2014). Du¢hi® geographic location and conditions of the iBalt
Sea, even higher resolutions are often neededtter bmderstand the circulation dynamics. However,
even ocean circulation models with a particulaiyhhspatial resolution (e.g. 1 km) cannot resolve a
dynamically important physical processes in theaoc@Malanotte-Rizzoli and Tziperman, 1996). In
general, the forecast quality for a numerical matigdends on initial conditions, boundary conditions
(lateral, open boundaries as well as meteorolodaaing and bathymetry) and a robust numerical
model itself. As an operational forecasting agetiog, Swedish Meteorological and Hydrological In-
stitute's (SMHI) needs to issue well-informed fasts and warnings for decision making by other
authorities during e.g. severe weather eventsalsat to the public. To improve the forecast quality
the core three-dimensional dynamic model of the Siperational forecast system has recently mi-
grated to the Nordic version of the Nucleus fordpgan Modelling of the Ocean (NEMO-Nordic).

In additional to model development, ateaged observational network has been established b
the joint efforts of the countries surrounding Badtic Sea. The observation platforms include vissse

buoys, coastal stations, satellite, etc. Speciallg, observations from satellite have dominated the
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coverage of SST observational networks in the 8&g&a (She et al. 2007). Among satellite products,
the SST is most popularly and widely used for tperational forecast, reanalysis or validation &f th
model because of both its coverage and propeigs. acts as a medium between atmospheric and
oceanic variations through activation of couplingamanisms. SST is also a key ocean variable to link
many processes that occur in the upper ocean,Xamgle, air-sea exchange of energy, primary
productivity, and formation of water masses (Tramtlet al., 2008).

A realistic forecast of SST is essential to aeamcforecasting system. SST is especially im-
portant for the Baltic Sea that the average waggthdis only 56 m and its surface water is directly
related to the bottom water by the mixing in thalsiw sub-basins. Recently, the applications of SST
for forecasting and analyzing the status of thetiN&ea and Baltic Sea have received particulan-atte
tion. In the short-term forecast, Losa et al. (202@214) investigated the systematic model uncertain
ties for forecasting the North and Baltic Seas bgirailating the Advanced Very High Resolution
Radiometer (AVHRR) SST data. Nowicki et al. (20Hpplied SST observed from Aqhdoderate
Resolution Imaging Spectroradiometer (MODIS) infd» Gupled ecosystem model of the Baltic Sea
with the Cressman analysis scheme. O’Dea et ala2énhanced the SST prediction skill of the oper-
ational system by assimilating both in-situ datd &vel 2 SST data provided by the Global Ocean
Data Assimilation Experiment High-Resolution SSTHESST) into a European North-West shelf
operational model. Moreover, SST has been usdtkifong-term analysis in this region. For instance,
Stramska and Bialogrodzka (2015) analyzed spatidlteamporal variability of SST in the Baltic sea
based on 32-years of satellite data, which inditiaét there is a statistically significant trendiof
creasing SST in the entire Baltic sea. Howeveisdheng-term SST data haven’t been used to verify
the application of sophisticated DA methods forreghaphy model in the Baltic profiles simulation,
especially at the Baltic deep water regions. Anothgortant question is: what amount of satellite
SST can improve long-term forecast of ocean vagmbtlated to SST in the Baltic Sea.

The objective of this study is to addrggsimpact of assimilating a high resolution SS@doict
on the forecast of the Baltic Sea, particularly finecast of SST related variables like sea levdl a
sea ice. It is also the first time that satelli®&TSrom the Ocean and Sea Ice Satellite Applicafian

cility (OSISAF) was assimilated into NEMO-Nordic del (NEMO variant for the North Sea and

3
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Baltic Sea). For operational forecast, the SST f@BISAF is the most important dataset in the Baltic
Sea because it differs from hindcast analyzed mtdike OSTIA (Operational SST and Sea Ice Anal-
ysis) data. As a level 2 product, the OSISAF SST bi@th good temporal and spatial coverage in the
Baltic Sea. As there is no hindcast informatioriuded in the OSISAF SST, we are able to assess
direct impacts of assimilating SST observationseréfore, exploring the potential of this product is
critically important to further improving the nevperational forecast system. In addition, our study
will enrich the reanalysis database of the Balda.3n this study, we use the Singular Evolutivtern
polated Kalman (SEIK) filter (Pham, 2001) to acdoilan the model uncertainties arising from a wide
range of spatial and temporal scales (Haines, 2@0¢ of our focuses is the impact of SST on the
modeled sea level and the sea ice in the Baltic B@athe whole Baltic Sea, how the SST assimila-
tion influences the temperature and salinity (TU&}the different depth is another focus of thisigtu

The outline of the paper is as follotv& model configuration and SEIK scheme are desdrib
in Section 2. An overview of the observations usethis study is presented in Section 3. The imple-
mentation of DA experiment is given in section gdther with the sampling of ensemble and localiza-
tion. Results are compared with observations fmperature, salinity, sea level anomaly and seaice
Section 5. In this section, the impact of dataragation on the forecasts is also investigated. clion

sions and discussions are given in section 6.

2. M ethodology

2.1 NEMO-Nordic

NEMO (Nucleus for European Modelling oétB®cean; Madec, 2008) has been set up at SMHI
for the North Sea and the Baltic Sea, a configanatialled NEMO-Nordic (Hordoir et al., 2015) (Fig.
1). Open boundaries are implemented in northernbiN®ea between Scotland and Norway and in the
English Channel between Brittany and Cornwall, eesipely (Hordoir et al., 2013). In this study,
NEMO-Nordic employs a horizontal resolution of Ziheal miles (3.7 km) and 56 vertical levels, and
with a vertical resolution of 3 m close to the asgd, decreasing to 22 m at the bottom of the deepes

part of the Norwegian trench. NEMO-Nordic uses liyfoonlinear explicit free surface (Adcroft and
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Campin, 2004). A bulk formulation is used for theface boundary condition (Large and Yeager,
2004). The ocean model is coupled to the LouvaiNdave Sea Ice Model (LIM3) sea ice model
(Vancoppenolle et al., 2008) with a constant vaiti&0® PSU for the sea-ice salinity. A time-splitting
approach is used to compute a barotropic and alb@momode, as well as the interaction between
them. A Tidal Inversion Model is used to define bagotropic mode at the open boundary conditions
(Egbert and Erofeeva, 2002). 11 tidal harmonicsdafened for sea level and barotropic tidal veloci-
ties. In addition, a coarse resolution barotropicra surge model covering a large area of the North
ern Atlantic basin provides wind-driven sea levelttis added to the tidal contribution. The T/Sadat
at the open boundary are provided by the Levitusatblogy (Levitus and Boyer, 1994). Radiation
conditions are applied to calculate baroclinic e#les at these boundaries. A quadratic friction is
applied with a constant bottom roughness of 3 ard, the drag coefficient is computed for each bot-
tom grid cell. NEMO-Nordic uses a TVD advection acte with a modified leapfrog approach that
ensures a very high degree of tracer conservatiecldir and Madec, 2009). Unresolved vertical tur-
bulence is parameterized withe scheme (Umlauf and Burchard, 2003). In additioa|p&rin pa-
rameterization is used to obtain a stable long-tstratification for the Baltic Sea (Galperin et, al.
1988).

A Laplacian isopycnal diffusion is used fmth momentum and tracers with a diffusion parame
ter that is constant in time, but varies in spaaitional strong isopycnal diffusion is used cldee
the Neva river inflow (Gulf of St. Petersburg) irder to avoid negative salinities. The bottom beund
ary layer is parameterized to ease the propagafisaltwater inflows between the Danish Straits and
the deepest layers of the Baltic Sea (BeckmanrDarstther, 1997). A free-slip option is used for lat-
eral boundaries.

The model is forced by meteorological forcdegived from a downscaled run of Euro4M reanaly-
sis (Dahlgren et al., 2014). The downscaling issHam the regional atmospheric model RCA4 (Sam-
uelsson et al., 2011) which uses the reanalys&ssataboundary conditions. A runoff database praevide
the river flow to NEMO-Nordic (Donnelly et al. 206t includes inter-annual variability for the Bal
tic Sea basin and is based on climatological valaeshe North Sea basin. The salinity of the river

runoff is set to a constant value ofIBSU, which is the same value used for the setriesoid any
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negative salinity.

2.2 Local Sigular Evolutive Interpolated Kalman (L SEIK) filter

The method used to assimilate SST intMENordic is the Local Singular Evolutive Interpo-
lated Kalman (LSEIK) filter (Pham et al., 2001, Ner et al. 2006). This is a sequential data assimil
tion scheme, which is an error subspace extend &aliifter that uses a minimum number of ensem-

ble members to reduce the prohibitive computatiordén (Pham, 2001Yhe LSEIK filter produces

the correction for the model state by weighting difference between the observations and the model

state estimation. The weight coefficients are aoiegstd by the model error covariance matrix and

observation error covariance matrix. Similar dsxeotensemble-based data assimilation methods, the

LSEIK filter uses the spread of sample ensembkstonate the uncertainties of the model state. Fur-

ther, a forgetting factge is introduced to parameterize the imperfect mbogehmplifying the already

existing modes of the background error (Pham et988; Pham, 2001). Furthermore, the LSEIK filter

is based on an explicit low-rank approximation lef tnodel error covariance matrix. A second-order

exact sampling method is used to initialize the IKSfilter (Pham, 2001). bcalization wassoused

to remove the unrealistic long-range correlatiothvé quasi-Gaussian function and a uniform hori-
zontal correlation scale (Liu et al. 2013). It weesformed by neglecting observations that were be-
yond correlation distance from an analyzed grichpdn other words, only data located in the “neigh
borhood” of an analyzed grid point should contrébtd the analysis at this poifttiu et al. 2009; Jan-

ji¢ etal. 2011).

3. Observations

3.1 Satellite obser vations

The satellite SST used in DA was provitlgdOSISAF http://osisaf.met.no/p/sst/index.himl

OSISAF aim is to produce, control and distributeragionally in near real-time products using avail-
able satellite data. The satellite datasets progset here includes the observations from polat-orb

ing satellites (the EUMETSAT MetOp-A and NOAA-189) with the AVHRR instrument. The SST
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product has a resolution of 5 km and is produceadetwlaily at 00 UTC and 12 UTC. It covers the
Atlantic Ocean from 50°N to 90°N. The SST obsenvadiare thermal infrared observations from the
AVHRR instrument and are therefore limited by clauer (Kilpatrick et al. 2001). The cloud mask
in use is based on a multi-spectral thresholdiggrihm by SMHI. The products were retrieved using
a nonlinear split window algorithm (Walton et a®9B). The coefficients in the retrieval algorithre a
determined through regression toward in situ oleems, and the dataset thus represents the subskin
temperature of the oceans. Further, subskin obsemgaare subject to diurnal warming effects, which
can be significant in the Baltic Sea. Here only shbskin SST at night (00 UTC), which is compara-
ble to in situ (buoy) measurement, is used to mummthis effect. The SST is controlled with the cli-
matology check. A quality level from 0 to 5 is asised with every pixel. The higher level valueg th
better the quality of the observations (Brissoalgt2001). Observations with quality level 4 (gpbod

5 (excellent) are collected for the analysis and ¢pality observations were removed. By applying
the above quality control processes, only a subkéhe original OSISAF products is kept in this
study. Based on the former validation, a bias vafu@5C is given for this product.

Further, the IceMap from a sea ice concéntradataset with a high spatial resolution of 5 km
(http://www.smhi.se/oceanografi/iceservicel/is_premalphp) is used to validate the DA results. It is
produced by SMHI and originates from digitized @w®arts. An advantage of this data is that the ice
charts are quality checked manually. However, trevback is that they include some subjective
steps. The temporal resolution of the IceMap SSfivise a week in the experiment period. Sea ice
occurs most frequently in the Bay of Bothnia, wifhto 100 ice covered days per year. However, sea
ice can occur in all parts of the Baltic Sea andiBlastraits, demonstrating the need for careéalttr

ment of sea ice in the SST analysis.

3.2In situ data

The observations from the German Maritiamel Hydrographic Agency (BSH) moored buoy
stations were collected as independent datasealidate the assimilation results. The observations
have high temporal resolution and long continuaeord. The second dataset was downloaded from

the Swedish Oceanographic Data Centre -SHARK dagaftp://sharkweb.smhi.3eSHARK mainly
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contains low-resolution CTD data from a list of ¢gg&ned standard stations in the Baltic Sea, at wel
as in Kattegat and Skagerrak. Only observatiorishiege passed gross quality control procedures are
collected into the SHARK database. This procedhckides, for example, location checks and local
stability checks. In addition, validating data retfrom tide gauges are also used. The sea level
anomaly measurements from tide gauges (sea laterst) are measured in a local height system and
values are presented relative to theoretical mearievel, a level calculated from many years otuann
al means, which takes into account the effectrd laplift and sea level rise. The values are awstag
over one hour period.

Not all the available observations fromefiié, moored buoys, CTDs, tide gauges were iragud
in this study. To obtain the high assimilation dyatesults, another quality control was applied fo
these data before they were used into assimilatohvalidation. These controls include examination
of forecast observation differences by excludingsthobservations for which the difference between
the forecast and the measurement exceeded givattastmaximum deviations. The criteria were set
up empirically based on past validation resultshef model (Liu et al. 2013). Furthermore, stations
located on land, according to the NEMO-Nordic grigtre excluded. We also removed the duplicate
records of these data.

The accuracy of observation error ifidift to be defined for all water points. The obsdion

iIs commonly assumed to be spatially irrelevant,ciiriesults in an error covariance matrix that is
time-invariant diagonal and its diagonal elemenjisa¢ the variance of observation erréhe error for

an observation used in data assimilation mainluohes the representation error and the measurement

error. The measurement error arises primarily floenmeasurement device alone, the temporary read-

ing error and imperfect retrieval algorithm. Accioigito Janjé et al. (2017), the representation error

in data assimilation comprises the error due t@lves scales or processes, the pre-processing error

and the observation-operator errior.this study, the observation error was estimatedne value as

the sum of all observation uncertainties used énathalysis. Besides, the uncertainties of sat&ig&
varies from coast to the open sea, i.e. higherrtaioges in the coast region relative to the opea.
We used a constant standard deviation value 6€(hésed on the standard deviation of satellite SST,

which ranged from the ~0Q to ~0.5°C in the Baltic Sea (She et al. 2007, Hgyer 2G16).
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4. Configuration of LSEIK in the experiment

As above mentioned, the initializationtbé filter requires an initial analyzed state ankbva
rank approximation of the corresponding estimatberror covariance matrix. The data assimilation
process was initialized by a free model simulatkinst the model was spinning up 20 years to reach
statistically steady state. Then a further (fre@}rintegration covered the period 2006-2009 was car
ried out to generate a historical sequence of metdge. To reduce the calculation cost, we took a
shapshot in every 6 days and saved 183 state geuthich includes sea level, temperature and salini
ty, in total to describe the model variability besa successive states are quite similar. Thelieiia
semble provided an estimate of the initial modatestand its uncertainty before the assimilation of
SST observations. The quantity of the model valitgbivas expected to be reasonably comparable
with the forecast error, which was dominated bypiaisement of mesoscale features and varies in
location and intensity seasonally. Further, theyJsgh frequencies of model variability were also
unfavourable in an ensemble of state vectors fdr &8a assimilation (Oke et al., 2005). Therefare,
band-pass filter was used to remove the unwanezpiémcy of model variability. To initial low rank
error covariance matrix, a multivariable Empiri€athogonal Functions (EOF) analysis was applied
on the 183 state vectors of model variables (sesl,leemperature and salinity). In the North Sed an
Baltic Sea, error covariances of different variakdee not uniform and strongly dependent on whether
the variable resides in the open sea or coasta. Z6ach state variable was then normalized by the
inverse of its spatially averaged variance at eveogel level. At last, 34 leading EOF modes were
kept and they explained 85% overall variability efitthe initial error covariance matrix was estirdate
by P%(ty) =~ LoU,LY , where thel, is composited by the leading EOF modes Hgds diagonal
matrix with the corresponding eigenvalues on itgydhal. We used a time-invariant sample ensemble
to approximate the background error covariancendutie experimental period (Korres et al, 2004,
Liu et al. 2017). This stationary ensemble affaadgood approximation of the ocean’s background
error covariance. Meanwhile, it is computationaifficient for our objective.

The localization scale is another importdado the assimilation system, especially at thastal
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region. Large correlation scale may transfer aréfiincrements to the positions far away from the
analysis observation during the DA process. Howeserall correlation scale is prone to cause the
singularity of ocean state around analyzed observatnd break the continuity of the ocean state.
Hence, an unreasonable scale causes the instatfilitye model integration or degrades the assimila-
tion quality. Unfortunately, the accuracy lengtin the correlation is unknown for the North Sea and
Baltic Sea. The correlation length scale is to s@xtent dependent on the Rossby radius of defor-
mation (Losa et al., 2012), which varies from ~ R@0in the barotropic mode to ~ 10 km or even less
in the baroclinic mode (Fennel et al., 1991; Alsnat al, 2003)According to the former researches
like Liu et al. (2013, 2017), a length scale ofkf was specified for both the North Sea and Baltic
Sea in this study. Not that this value may bepaswstect and more accurate correlation length needs
be tested for LSEIK. For example, spatially vargaleingth scales are the next step for the regibAal
simulations.

To define the forgetting factor, a one-ntosimulation experiment with varying the facmpmwas
done in January 2010. At last, a fagtor= 0.3 resulted in the best assimilation performancetheny
we define a two-day assimilation window in assitibla experiment. As a result, the observations in
the two days before the assimilation time were ueeazhlculate the innovation with observation oper-
ator. When we calculated the innovation we alsoghd the observation error according to the obser-
vation time bye = 0.4 X exp(—0.15At), hereAt is the absolute time difference between obsematio

time and DA time.

5. Results

In the following sub-sections, we conducted twosruvith and without assimilation of the
SST observations from the OSISAF database, both with the above setup of the analysis system.
Accordingly, the runs with and without assimilatiare called ASSIM and FREE, respectively. We
considered the evolution of SST based on 48-hdadgl analysis from 1 January 2010 to 31 Decem-
ber 2010. The 48-hourly forecast SST from two raas assessed with observations from different

dataset. Then we analyzed the impact of the datendation on the profile simulation of T/S. At tas

10
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we evaluated the system performance with respesgdsurface anormaly and sea ice, respectively.

5.1 Comparison with satellite data

First, we presented two cases to show the ocedm Iséfore and after the assimilation of the
OSISAF SST data in Fig. 2. The first case was gatelil January 2010, a date with clear weather and
many observations available. The model has obwvibffigulties in reproducing the observed SST.
The cold biases in the forecast were found in tkeg8rrak, west coast of the Baltic proper and the
Bothnian Bay, respectively. However, the warm &sagppeared in the interior of the Baltic Sea and
the Kattegat. The largest deviation in the FREAEhed 2.2C at the Skagerrak. Apparently, tempera-
ture by assimilation analysis agreed with the Betalerived data much better. This correctionhat t
analysis step has allowed us to reduce the deniatidhe SST forecast from the observations. The
DA system simulation was also verified at 2 Jun&@®@@vhich has also many available OSISAF ob-
servations. The biases on 2 June 2010 were obyidifé¢rent from that on 11 January 2010. Moreo-
ver, it was found they had a roughly opposite kigaal. For example, relative to the OSISAF SST at
the Baltic proper, Bothnian Sea and Bothnian B&®EE produced relatively warmer water at January
11 and colder water at 2 June (Fig. 2), respegtivéiter data assimilation, the analysis increments
were appropriately added to the model field. Inegah the SST DA has improved the simulated SST
in both cases (Fig. 2).

Maps of annual averaged RMSE of SST from twus relative to the IceMap observation are
shown in Fig. 3. Obviously, the RMSE in FREE an8SAM had different distribution in the Baltic
Sea. In general, FREE had smaller error in the &kak, eastern the Kattegat and the interior of the
Bothnian Sea relative to other subbasin of thei@8ka. The largest RMSE was found at the connec-
tion region between the Baltic proper and the Biathisea. This could be caused by the shallow wa-
ter, complicated bathymetry and large observatiasds in this area. It was also noted that the RMSE
was larger in the coast region compared to itgimtén the Baltic proper and Bothnian Sea. Aftee t
assimilation, the SST has been significantly impbvlhe RMSE of SST from ASSIM was generally
smaller than 1.6C. However, there were still some regions whereitigrovements were relatively

small and the RMSE of SST was greater tharf@.(hese large errors were predominantly located at
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the edge of the Baltic Sea and the Danish stfatsinstance, the RMSE of SST was greater than 1.2
°C at both the entrance of the Gulf of Finland amel west coast of the Bothnian Sea. The relatively
small improvements were regularly caused by the odiservations or the less accurate observations
near the coast water.

The overall daily averaged SST erroraireg the IlceMap observations have been estimated
(Fig. 4). The observations had better coverageaimnser and autumn than in winter and spring. The
variability of the number of observation directlifezted the assessment of DA results. The model
biases had pronounced seasonal variability, whadh dmall values in spring and winter. In general,
the assimilation provided better SST estimatiorie free run had a RMSE of 1.4C. After the as-
similation, the RMSE was reduced to 1°G3 whereas the bias was reduced by 0CZ3n interesting
feature was that the SST error reduction due tassemilation was almost consistent with the varia-
bility of the number of lceMap observations. Foamwle, the improvement became large with in-
creasing the number of IceMap observations fromdido June 2010. However, the number of ob-
servations was kept constant during the period-lowember 2010 and the improvement shown in
both the bias and RMSE of SST did not exhibit largegability, which meant reliable performance of

the DA system.

5.2 Comparison with independent in-situ data

The time series of T/S were comparedh witdependent observations located at Arkona statio
(13.87E, 54.88N) in the Arkona Basin and at BY15 (20.t5, 57.33°N) in the Eastern Gotland Ba-
sin, respectively. These two stations were seletdeckrify the experiment results because of their
relatively completed observation records for thpeginent period. In the Arkona Basin, the water
depth was shallow and the water column can be migktd between surface and bottom water. Thus,
the bottom T/S was largely affected by the surfageamic (Liu et al. 2014). Relative to observations
the model had warm biases at this station (Fig.Ab)a depth of 25m, the observed temperature
showed the largest variability, which was a goagaresentation of the bottom characteristics of the
mixed layer. In mid-August, the temperature wasuptly increased by £C at a depth of 25m and

slightly decreased at surface, respectively. Theae is that the surface water suddenly sinks eép-de
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er layers, which warm the deep water. However, digizamic process hasn’t reached to Arkona bot-
tom and it didn’t cause the obvious bottom tempeeavariability (Fig. 9). Both FREE and ASSIM
had reproduced this process, whereas FREE showgpet lemperature biases. To the salinity at the
Arkona station, the surface observations were mgsghe comparison at 7 m depth verified the sub-
surface simulations. The observations showed lasglmity variability in winter relative to summer.
This pronounced seasonal variation is associatéd tive variation of fresh river runoff and net E-P
(Evaporation—Precipitation) flux (Fu et al, 2012}.a depth of 7 m, salinity was obviously underesti
mated from April to September and overestimatedr dflovember although the ASSIM had slightly
better results compared to FREE. The DA also pexvidetter simulation of salinity at 25 m depth.
For example, the salinity bias in the October wetuced by 3 psu by DA. At a depth of 40 m, the
saltwater inflows were observed, resulting in sudaereases of salinity. For instance, the salinity
was increased by 3.5 psu in February followed bgereasing trend. The variations were reproduced
in both FREE and ASSIM, whereas the intensity efdlecreased process is weakly simulated with a
difference of 3 psu and the inflow in March was stwong enough relative to the observed one. Ob-
servations also showed a large salinity variabdityounts to 4—8 psu in the autumn. Although FREE
and ASSIM had shown these changes, their magnitadeobvious weaker than observations. The
possible reason was that the model’s resolution inadequate to well resolve the topography and
eddies in this area. Both the large runoff and dbmplicated bathymetry posed challenges for the
model to tackle the small-scale dynamic processuth a shallow basin. A higher resolution model
perhaps was more preferable to study this dynanoicess.

The Eastern Gotland Basin has deepesrvdaipth compared to the Arkoan Basin, in which the
water column is permanently stratified and the ¢lale lies at about 60—-80 m (Fu et al, 2012). The
mixing and sinking of T/S are hindered by the sretratification. Unlike observations in the Arkona
Basin (Fig. 5), the CTD observations at BY15 hagdotemporal resolution with almost one observa-
tion per month. In the mixing layer, it can be sesrdel had overestimated the temperature (Fig. 6).
At a depth of 10 m, ASSIM has remarkably improvee simulation of temperature relative to FREE.
The bias has been reduced B 3n the spring of 2010. At 175 m depth, observeagerature

showed very small variation. The reason was thatntlain source for deep water ventilation is the
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saltwater inflows which are suppressed by runothimi a depth range of 75-135 m in the Eastern
Gotland Basin (Vali et al. 2013). As a result, uptathe bottom water is very slow. Both FREE and
ASSIM overestimated the temperature in the sprimg) the beginning of summer of 2010. Further,
ASSIM has increased the temperature bias aftersemamer relative to FREE. This result might be
explained by that the strong correlation isn’'t eotpd between surface and layers bellow the haeclin
because of the strong stratification in this basihich perhaps yield the artificial correction. Tée
fore, the improvement of the surface temperatunma@guarantee its positive influence on the bottom
temperature. To the salinity, the model had lessirate simulation with generally low salinity biase
at 10 m depth. ASSIM provided better salinity siatidn compared to FREE. At 70 m depth, the
small variation of salinity was found after DA. Maver, at 175 m depth, the observation had very
small variability about 0.1 psu. In general, bodperiments have reproduced these variations. How-
ever, FREE increased salinity by 0.2 psu from Ma@hApril relative to the observation, which
caused the overall salinity overestimated amoutft20psu. This increasing process wasn’'t shown in
observations and the reason remained unclear. Phiead shown slight improvement, but it still salt-
er than the observations.

The mixed layer depth (MLD) was calculag¢dhe Arkona and BY15 station and compared with
the SHARK observation in Fig. 7. We used the tempee criterion to define the MLD, i.e., the depth
at which the temperature deviated from the surfatee by 0.5°C (Fu et al., 2012). Figure 7 shows
that the MLD at Arkona had larger variability rélat to the MLD at BY15. The reason contributed to
this feature is that the deeper water at Arkoreasy affected by wind forcing because of the shallo
bathymetry and well mixing, whereas the temperavargtion in upper water at BY15 difficulty in-
fluences the deeper water because of the stroatifisaition. Both runs had reproduced the MLD var-
iability feature similar as the observations. Fgaraple, the minimum MLD appeared in summer,
which was about several meters. The assimilatiosatdllite SST caused strong changes in the MLD
at both stations, especially in winter. One expfi@mawas that the Baltic Sea was largely affected b
wind forcing and the winter wind was much strontjam the summer wind. Further, strong heating in
summer promoted stratification in summer and slibdde MLD.

Further, the temporal and spatial distrdoutof the SHARK observations is shown in Fig.8.
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These observations were unevenly distributed inBakic Sea. In the Skagerrak, the observations
appeared at the Danish and Swedish coast. Howievéte Bornholmn Basin, Kattegat, and Baltic
proper, the observations mainly were found in thietial and the Swedish coast side. There were also
many observations in the Bothnian Sea and rarengditsans in the central of the Bothnian Bay. It
must be noticed that there aren’'t SHARK observationboth the Gulf of Finland and Gulf of Riga
during the experiment period. Moreover, these SHARiles in the first four months were mainly
located from the Skagerrak to the Baltic propericilare relatively rare in the northern Baltic Sea.
the Bothnian Bay, the observations are mainly @wvtimter period.

Figure 9 shows the change of overall bias and RMSES with depth against the SHARK
dataset. In the Baltic Sea, DA had large impacthentemperature forecast in the water above 100 m.
The RMSE showed that the forecast of temperatuseob&iously improved from surface to thermo-
cline in the ASSIM and the improvements generaigrdased with depth. Above 100 m, the overall
RMSE of temperature in ASSIM was decreased by 24.@8m 1.59 to 1.25C). It was also found
the temperature error had similar variability as warm biases in two runs. In the transition zéhe,
RMSE in the ASSIM was reduced by 5.59% and -20.3%ve and below 100 m relative to the
FREE, respectively. Below 90 m, the temperature alas over-adjusted, which changed the warm
bias to cold bias. It is worth noting that the nembf the deeper water observation in the tramsitio
zone is substantially less than that in the B&&a. For the salinity, both RMSE and bias of the AS
SIM showed very minor changes relative to the FRisitle the Baltic Sea. For the water above 100
m, the total RMSE of salinity was increased by 3o4@om 1.15 psu in the FREE to 1.19 psu in the
ASSIM) in the transition zone and 1.04% (from O in the FREE to 0.97 psu in the ASSIM) in

the Baltic Sea.

5.3 Sea Level Anomaly

SLA represents a vertically integrated effect & TS variations over the whole water col-
umn. The accurate simulation of SLA is thus a golicator of the model performance. Therefore,
validating the impact of SST assimilation on thawdation of SLA is very important to the Baltic Sea

forecast. The observations from the 24 tide gatafgoss were used. These gauge stations are mainly
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located at the Swedish coast (see Fig.8b). Sinbetba SST is assimilated in this study, the SLA
observations are completely independent.

We calculated the RMSE and correlation coefficientsidoth the FREE and ASSIM against the
observations from tide gauges (Fig. 10). The oV/&BISE was reduced by 1.8% and the correlation
coefficients were slightly increased. Among thesgiens, RMSE at the Oskarshamn was decreased
by 5.6%, which is larger than that in other statibhe minimum RMSE change of SLA was seen at
the Klagshamn. For the correlation coefficient, ioy@ment on the SLA by the DA is very small.
Simrishamn station showed the biggest change oélation coefficient, which is 1.1%. The RMSE
and correlation comparison demonstrated that the [38 has generally positive effects on the fore-
cast of the SLA.

In addition, the time series of the SLA error digiancy (ASSIM minus FREE) in two runs at
four stations were selected to evaluate the simomaesults (Fig. 11). These four stations weredel
ed to represent the model performance at diffgpesitions of the Swedish coast. Two runs showed
evidently different performance in these four stasi. The variability of the SLA difference between
two experiments at the Smogen station had higleguency compared to other stations. The reason
was that the Smogen station was located at theiti@m zone where the water had higher frequency
variations caused by the brackish Baltic in/outiloyvrelative to other three stations. At these four
stations, the improvements were mainly in lateingpand summer, whilst the degraded simulations
were mostly happened after Mid-September, respagtiThe SST assimilation had less impact in late
winter and early spring compared to other seaddesides, the impact of SST assimilation on SLA
simulation was not same in the four positions. iRetance, during the period from Mid-November to
Mid-December, the SLA in ASSIM was improved at Sshamn and degraded at both the Ratan and
LandsortNorra stations, respectively. This phenanenas possibly caused by the imperfect correla-
tion between SST and SLA in the stationary samtasther, these steric small changes of SLA by

DA were what we expected because only SST was atschinto Nemo-Nordic.

5.4 Seaice

Sea ice in the Baltic Sea occurs primarily in ibsth region and influences the Baltic climate.
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Accurate detecting the sea ice is very useful éontbrthern Baltic living because too much or tdibeli

sea ice can be a problem for wildlife and peopésa e concentration (SIC) and Sea ice extent (SIE)
are two important and common indicator to modeBeg ice environment. We assessed the SIC and
SIE from simulations against the IceMap observationFig. 12-13. Differ from the daily evaluation

in Losa et al. (2014), the monthly mean SIC wasluseaepresent the general status of sea ice in the
Baltic Sea. Besides, SIC in January, February aacdeBber showed the variation of the sea ice in

winter.

In January 2010, the observations showed lageaogerage in the Bothnian Bay and the Gulf
of Finland and small SIC in the Gulf of Riga, resipeely. Model generally reproduced this distribu-
tion of sea ice. However, FREE simulated too mueh ise in the Gulf of Finland and the eastern
coast of the Baltic proper relative to observatidrar example, SIC from FREE almost to 30% higher
than observations along the Estonia coastlineoutccbe seen that the SST DA reduced these biases.
The reason is the SST DA modified the thermal egjenby providing the well temperature fields
above the thermocline. The temperature in Febrbaoame colder relative to January in the Baltic
Sea. As a result, the sea ice in February extetmé¢ide Bothnian Sea and the whole Gulf of Riga.
Observation also showed small SIC in Kattegat aka&rak. Model simulated higher SIC in the
Bothnian Sea with largest biases along the SwealishFinnish coast. As an example, the observed
ice in the Bothnian Sea wabaracterized by concentrations mainly smaller thénhwhereas modeled
ice in FREE had concentration greater than 0.@énshallow region of the Bothnian Sea. FREE also
had smaller ice coverage with lower SIC in the ditton zone between the North Sea and the Baltic
Sea relative to IceMap. After the SST assimilatid8SIM reduced SIC in the Bothnian Bay and the
west coast of the Baltic Sea, which was closehéabservations. The ice in ASSIM didn’t have ob-
vious variation in Kattegat and Skagerrak yet. AB&lso reduced too much ice at the southern of the
Bothhomn Basin. The reason is that the satellif€ &%ervations had limited accuracy near the coast
and they could bring artificial information intoethmodeling. In March, compared to observation, the
FREE produced low SIC in the western coast of ththBan Sea, Gulf of Finland, Gulf of Riga and
the connect zone between the Bothnian Sea andoGkihland. However, the model SIC in the FREE

was higher than IceMap in the interior the Bothnigay. For instance, the SIC from FREE in the
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western Bothnian Sea was 40% higher than obsenvdtiothe south coast of the Arkona basin and
Baltic proper, the FREE failed to reproduce theiseaas in observation. After the DA, the high SIC
was decreased in western Bothnian Sea and clogkatidn IceMap in Bothnian Sea. In the Gulf of
Finland and Gulf of Riga, the SIC error was incegas the ASSIM. In April, the large SIC error in
the FREE was shown in the Bothnian Sea, the BathBay, Gulf of Rig and Gulf of Finland, where
no clear improvements were seen in the ASSIM. Indb®er, sea ice coverage was smaller because
of relatively warm temperature compared to thabtimer winter month. Most of the sea ice with high
concentration was observed at the edge of the Bothray. Nevertheless, high concentration ice in
FREE also happened at the transition zone betweeBothnian Sea and Bothnian bay. Relatively,
ASSIM reduced the high concentration biases ofiseaBy contrast, both ASSIM and FREE had
lower concentration ice than observation in théezascoast of the Bothnian Sea. The SIC from AS-
SIM was relatively lower than that from FREE in therthern Finish coast, whereas the observations
had high concentration ice there.

The daily SIE from FREE and ASSIM was conegawith observations in Fig.13. The observed
SIE was generally increased from January to Fepraad reached the maximum in mid-February.
During the period of March-May, SIE was decreaseteaperature was increasing. SIEs in both the
FREE and ASSIM experiments were generally undeneséid by comparison with the observation in
2010, especially in the period from Mid-March talgapril. The SIE bias in both runs was roughly
increased from January to early April. In early Bghe maximum negative bias of SIE was found to
be 105000 krhfor ASSIM and 10000 kAfor FREE. The impact of SST assimilation on thE s
positive during the phase of sea ice formation. &ample, the SIE bias was reduced 25000 &m
end of February and in the Mid-December. Howevarjng) the phase of sea ice melting (March to
April), the SIE error was increased in ASSIM eveithwhe error of SST decreased. For example, the
SIE bias in ASSIM was increased by 42000 katative to FREE in the early March. These incrdase

SIE error in March mainly happened in the Gulf ad&Rand Gulf of Finland (Fig.11).

6. Conclusion and discussions
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A DA system based on a LSEIK filter has been cailippethe NEMO circulation model of the
North and Baltic Seas. The method was succesddplhied for assimilating high resolution satellite
SST data. We demonstrated that, over the peri@Ddd, the agreement of the SST forecast with the
independent satellite observation was improved 29:93% in comparison with the regular forecast
without DA. The assimilation quality is directlylaged to the number of observation.

Compared with independent in-situ data from SHARte, RMSE of temperature was reduced
by 21.38% and 5.59% for the water above 100 m énsitd outside of the Baltic Sea, respectively.
However, in the deeper layers, the temperaturesligistly degraded in the Baltic Sea. This is p&rtia
ly caused by the artificial correlation betweenface layer and deeper layers. The improvement of
temperature by SST DA can’t guarantee corresponitimgyovement of the salinity. The statistics
displays the salinity RMSE was increased by 1.04fb 2148% in the transition zone and the Baltic
Sea, respectively. Both ASSIM and FREE have cagttire main dynamic process in the Baltic Sea,
for example, the inflow and the sink. However, M@Ss closer to the observed one relative to
FREE.

The forecast results were further validated wiith independent SLA observations. The result
shows that all RMSEs and correlations for all 2dtishs are smaller than 0.12 m and greater than
0.86, respectively. After DA, the SLAs at thesdistes have been slightly improved. In general, the
RMSE was reduced by 1.8% and correlation coefftsiamre slightly increased, respectively. Fur-
ther, the model-observation comparison at seldciadstations indicates that these improvements are
mainly in later of spring and summer. The compassalso denote the SST assimilation has less im-
pact in the late winter and early spring relativether seasons.

When compared with monthly mean observations of, 8ith assimilation run and free run
reproduced main spatial distributions of sea icthinBaltic Sea. During the sea ice formation krio
the SST assimilation has improved the results 6f f&dm FREE in the Gulf of Finland, the Bothnian
Sea and eastern coast of the Baltic proper. Howeviaor improvements were found in Kattegat and
Skagerrak. Besides, over the sea ice melting pett@dSIE comparison showed the SST assimilation
increased the SIE error, especially in the Gulfiofand and Gulf of Riga.

The daily MLD from two runs has been compared whih observations at Arkona and BY15
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stations. Model could capture the variability feetiof the MLD. Similar as Fu et al.(2012), it was
found that SST assimilation had less impact orMhB® in summer than that in winter. In general, the
SST DA produced less influences on the MLD in teepkr region (BY15) relative to that in the shal-
low region (Arkona).

Further, the reliability of the DA systésnworth being assessed. In Rodwell et al.(208¢)er-
fect reliable system error variance for ensembdénakation was calculated by the sum of the var@anc
of the sample ensemble, the square of innovatiafifnbietween observation and model) and the vari-
ance of observation at assimilation time. In thiglg, we used a constant observation error similar to
Rodwell et al. (2016) because our DA design iseddht from that paper. The major difference be-
tween these two studies is that we estimate thkgbaend error covariance from stationary ensemble
and avoid the perturbation of observation erroreréfore, the variance of the sample ensemble and
observation is univariate and the diagnostic ofakgimilation stability can be directly obtainedrfr
the forecast error like the RMSE in Fig.4.

The results of the SST assimilation are encongagnd the assimilation helps to ameliorate
some model deficiencies such as the simulatioeafice in the Gulf of Finland. However, some prob-
lems need to be further addressed in the SST DAdruture: firstly, the SST assimilation has worse
influence on the simulation of salinity in the uppeyers and temperature in the deeper layers. ebsa
al.(2012) denoted that the salinity simulation guatrucially depends on the assumptions about the
model and data error statistics. Here a statioeasemble sample was used to represent the correla-
tion between T/S and between surface and deep .\Vildtese relationships could be changed with the
varying dynamics and forcing conditions. More ssfibated assumption should be used in the DA of
Baltic Sea. Secondly, the SHARK observations is #tudy are absent at the Gulf of Finland and Gulf
of Riga. This denotes the validation results wihARK observation didn’t include the evaluation of
the simulation of T/S in deep water of these twsitm Thirdly, the univariate localization scaleds
in this study could be another problem. The spreadi observation information strongly depended
on the correlation scale. The large localizatioalescan introduce the artificial information, which
could degrade the assimilation quality. A flow-degent background error covariance with varying

correlation scale may be more appropriate for thi®Sea with complex bathymetry and rich dy-
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namics. Fourthly, the remote sensing observati@as the coast could have large bias because of the
limit of the instrument itself. More strict qualitontrolling method needed to be used for the Igatel

coastal observations before their assimilation.

Appendix

Here, we describe the details of the mathematimahdlation used in the forecast and correction

(analysis) steps of the LSEIK filter:

1. Forecast: the analysis stX® at timet;_,_is integrated forward to the time of the next lae

observationg; to compute the forecast sta¥d ,

X7 (t) = M(ti—q, t)X%(tim1) (1),

whereM denotes the nonlinear dynamic model operator titagiates a model state from tie,

to timet; . The superscrigf' and'a’ denote the forecast and analysis. The correspgmdior covar-

iance matrix can be expressed as:

P/(¢) =L[r+DT'T] 'L + Q;__ (2),

L; =X ()T (3),

with Q;_being the covariance matrix of model uncertaintiedr + 1_is the minimum number of

sample ensemble members for error covariance mathi@ superscriptl”’ denotes the transpose of

matrix. The full rank matrix@ has a dimension dfr + 1) X r_with zero column sums ardis a full

rank (r + 1) X r_matrix which implicitly represents the model véiléy.

2. Correction: when the observation is availabléme t;, the LSEIK filter merged the information

from model and observation to produce the anabtsi® with the formula:

X4(t) = X (&) + K [YO(t) —HX (e)]__ (4.

HereY? is a vector of observations. The gain maKixwhich linearly interpolates between the obser-

vations and the forecast, is given by

1
K; = P/H](H;P/H] +R;) = LU;(HL)R*__(5),

where H; denotes the linearization of observation operatdnich mapping the model space to the
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observation spac® is the observation error covariance matrix. Therixai; is updated according to

U7'=pr+ DTTT+LIHIR;'HL,_ (6).

Herep is A forgetting factor.

A second-order exact sampling is usediiialize the LSEIK filter. At timet;_;, a analysis

state X*(t;_,)_and its corresponding error covariance maPik(t;_,), in the factorized form

Li—1Ui—1L7i1—1 , are available. The samples can be given byditenfing formular:

— T
Qtiiq) = X*(tiiy) +Vr + 1Li_1(Qp;-1Ci_4) (7).

For 1< k < r + 1, theC;_,_is theCholesky decomposition &%, and;_, is a(r + 1) X r_ma-

trix with orthonormal columns and zero column sumisere}; ; _, denotes th&‘" row of Q;_;. X@

is the average of the analysis state.

Acknowledgment
The research presented in this study was fundetidoswedish Space Board within the project ‘As-
similating SLA and SST in an operational ocean dasting mode for the North Sea and Baltic Sea

using satellite observations and different methogiels’ (grant no.172/13We thank Dr. Svetlana

Losa and one anonymous reviewer for their valuablements that helped improve the manuscript.

References

Adcroft, A., and Campin, J. M.: Re-scaled heighbrdinates for accurate representation of free-

surface flows in ocean circulation model, Ocean #iod7, 269-284, 2004.

Alenius, P. A., Nekrasov, A., and Myrberg, K.: \&bility of the baroclinic Rossby radius in the Gulf

of Finland, Cont. Shelf Res., 23 (6), 563-573, 2003

Beckmann, A., and Déscher, R.: A method for imptbkepresentation of dense water spreading over

topography in geopotential-coordinate models, §sP@®ceanogr., 27, 581-591, 1997.

22



604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

Brisson, A., Le Borgne, P., and Marsouin, A.: Resaf one year of preoperational production of sea

surface temperatures from GOES-8, J. Atmos. Ocdatbnol., 19(10), 1638-1652, 2002.

Dahlgren, P., Kallberg, P., Landelius, T. and Und&n EURO4M Project Report, D 2.9 Comparison
of the Regional Reanalyses Products with Newly el and Existing State-of-the Art Systems.

Technical Report, Online dtitp://www.euro4m.eu/Deliverables.ht2014.

Donnelly, C., Andersson, J. C., and Arheimer, Bsing flow signatures and catchment similarities to
evaluate the E-HYPE multi-basin model across Euréfyelrological Sciences Journal, 61, 255-273,

2016.

Egbert, G. D., and Erofeeva, S. Y.: Efficient irs@modeling of barotropic ocean tides, J. Atmos.

Oceanic Technol., 19(2), 183—-204, doi: 10.1175/1%226, 2002.

Fennel, W., Seifert, T., and Kayser, B.: Rossbyitaid phase speeds in the Baltic Sea. Cont. Shelf

Res., 11(1), 23-26, 1991.

Fu, W.W., She, J., and Dobrynin, M.: A 20-year agsis experiment in the Baltic Sea using

three-dimensional variational (3DVAR) method. Oc&an, 8, 827-844, 2012.

Galperin, B., Kantha, L. H., Hassid, S., and Ro&atiA quasi-equilibrium turbulent energy model for

geophysical flows, J. Atmos. Sci., 45, 55-62, 1988.

Haines, K.: Ocean data assimilation. In: Data Adalion: Making Sense of Observations. . Springer-

Verlag, Berlin Heidelberg, pp. 517-548. ISBN 9788847024, 2010.

Hordoir, R., Axell, L., Loptien, U., Dietze, H., drkuznetsov, I.: Influence of sea level rise on the

23



632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

dynamics of salt inflows in the Baltic Sea, J. Gagp Res. Oceans, 120, doi:10.1002/2014JC010642,

2015.

Hordoir, R., Dieterich, C., Basu, C., Dietze, thdaVeier M.: Freshwater outflow of the Baltic Sea

and transport in the Norwegian current: A statitiorrelation analysis based on a numerical experi

ment, Cont. Shelf Res., 64, 1-9, doi:10.1016/2€4r3.05.006, 2013.

Hoyer J.L., and Karagali, I.: Sea Surface TempeeaClimate Data Record for the North Sea and

Baltic Sea. JOURNAL OF CLIMATE. 29, 2529-2541, 2016

Janji, T., Nerger, L., Albertella, A., Schréter, J., 8kko, S. On domain localization in ensemble

based Kalman filter algorithms. Monthly Weather Rewy 136 (7), 2046—2060, 2011.

Janji, T. , Bormann, N. , Bocquet, M. , Carton, J. Aoh@, S. E., Dance, S. L., Losa, S. N., Nichols,

N. K., Potthast, R. , Waller, J. A. and Weston, ®x the representation error in data assimilation.

0Q.J.R. Meteorol. Soc.. doi:10.1002/qj.3130, 2017.

Kilpatrick, K. A., Podesta, G. P., and Evans, Rvefdiew of the NOAA/NASA Advanced Very High
Resolution Radiometer Pathfinder algorithm for sedace temperature and associated matchup data-

base, J. Geophys. Res., 106(C5), 9179-9197, dbd29/1999JC000065, 2001.

Large, W. G., and Yeager, S.: Diurnal to decadabal forcing for ocean and sea-ice models: The

data sets and flux climatologies, NCAR Tech. NMEAR/TN-4601STR, CGD Div. of the Natl.

Cent. for Atmos. Res., 2004.

Leclair, M., and Madec, G.: A conservative leapftioge stepping method, Ocean Modell., 30, 88-94,

doi:10.1016/j.ocemod.2009.06.006, 2009.

24



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

Lepparanta, M., and Myrberg, K.: The Physical Ooggaphy of the Baltic Sea, pp. 378, Springer-

Verlag, Berlin-Heidelberg, New York, 2009.

Levitus, S., and Boyer, T. P.: Salinity, in World¢€an Atlas 1994, NOAA Atlas NESDIS, vol. 3, 99

pp., U.S. Gov. Print. Off., Washington, D. C., 1994

Liu, Y., Zhu, J., She, J., Zhuang, S. Y., Fu, W.ehd Gao, J.D.: Assimilating temperature and salini
ty profile observations using an anisotropic reimar§ilter in a coastal ocean model. Ocean Mode). 3

75-87, 20009.

Liu, Y., Meier, H. E. M., and Axell, L.: Reanalygyriemperature and salinity on decadal time scales
using the ensemble optimal interpolation data aksion method and a 3-D ocean circulation model

of the Baltic Sea. J. Geophys. Res.Oceans., 1B85- 5554, 2013.

Liu, Y., Meier, H. E. M., and Eilola, K.: Improvinthe multiannual, high-resolution modelling of bio-
geochemical cycles in the Baltic Sea by using dassimilation, Tellus A, 66, 24908,
doi:10.3402/tellusa.v66.24908, 2014.

Liu, Y., Meier, H. E. M., and Eilola, K.: Nutrientansports in the Baltic Sea — results from a 38-ye

physical-biogeochemical reanalysis. Biogeoscierbbgs2113-2131, 2017.

Losa S.N., Danilov, S., Schroter, J., Nerger, LgBMann, S., and Janssen, F.: Assimilating NOAA
SST data into the BSH operational circulation mddelthe North and Baltic Seas: Inference about

the data. Journal of Marine Systems, 105-108,152-2@12.

Losa S.N., Danilov, S., Schréter, J., Janjic, &rdér, L., and Janssen, F.: Assimilating NOAA SST

data into the BSH operational circulation model tfoe North and Baltic Seas: Part 2. Sensitivity of

the forecast's skill to the prior model error stits. Journal of Marine Systems, 259-270, 2014.

25



688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715

Madec, G.: NEMO ocean engine, version 3.3, Noté®dale de modélisation de I'Inst. Pierre-Simon

Laplace 27, Inst. Pierre-Simon Laplace, Paris. {labée athttp://www.nemo-ocean.el/2010.

Malanotte-Rizzoli, P, and Tziperman, E.: The ocgaaphic data assimilation problem: overview,
motivation and purposes. In Modern Approaches ttaPessimilation in Ocean Modeling, Amster-

dam: Elsevier, 3—-17, 1996.

Nerger, L., Danilov, S., Hiller, W., and Schrétér, Using sea level data to constrain a finitenglet

primitive-equation ocean model with a local SEIKeifi. Ocean Dynamics 56, 634-649, 2006.

Nowicki, A., Dzierzbicka-Gtowacka, L., Janecki, Mind Katas, M.: Assimilation of the satellite SST

data in the 3D CEMBS model. Oceanologia, 57, 172045.

ODea E. J., Arnold, A. K., Edwards, K. P., Furn&., Hyder, P., Martin, M. J., Siddorn, J. R,
Storkey, D., While, J., Holt, J. T., and Liu H.: Aaperational ocean forecast system incorporating
NEMO and SST data assimilation for the tidally énvEuropean North-West shelf, Journal of Opera-

tional oceanography, 5(1), 3-17, 2012.

Oke, P. R., Schiller, A., Griffin, D. A., and Brasgton, G. B.: Ensemble data assimilation for an ed

dy-resolving ocean model of the Australian Regi@nJ. Roy. Meteorol. Soc. 131, 3301-3311, 2005.

Omstedt, A., Elken, J., Lehmann,A., Lepparanta, Mejer, H.E.M., Myrberg, K., and Rutgersson,

A.: Progress in physical oceanography of the Baltic @a#&ng the 2003—-2014 period. Progress in

Oceanography, 128, 139-171, 2014.

Pham, D.T.: Stochastic methods for sequential dssamilation in strongly nonlinear systems. Mon.

Weather Rev. 129, 1194-1207, 2001.

26



716
717
718
719
720
721
122
723
724
725
726
127
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

743

Pham, D. T., Verron, J. and M. C. Roubaud: A siagelolutive extended Kalman filter for data as-

similation in oceanography. J. Mar. Syst.,16, 328-3.998.

Rodwell, M. J., Lang, S. T. K., Ingleby, B., Bormann, N., Hélm, E., Rabier, Richard-
son, D. S., and Yamaguchi, M.: Reliability in eméde data assimilation, Q. Roy. Meteor. Soc.,

142, 443-454, doi:10.1002/qj.2663, 2016.

Samuelsson, P., Jones, C., Willen, U., Ullerstig, afd co-authors.: The Rossby Centre Regional

Climate model RCAS3: model description and perforoga TellusA, 63, 4-23, 2011.

She, J, Hayer, J. L., and Larsen, J.: Assessmesgaoburface temperature observational networks in

the Baltic Sea and North Sea. Journal of Marinde®ys 65, 314—-335, 2007.

Stramska, M., and Biatogrodzka, J.: Spatial andptead variability of sea surface temperature in the

Baltic Sea based on 32-years (1982—2013) of dateliita. Oceanologia, 57, 223-235, 2015.

Tranchant B., Reffray, G., Greiner, E., Nugroho, Koch-Larrouy, A., and Gaspar, P.: Evaluation of
an operational ocean model configuration at 4/%patial resolution for the Indonesian seas

(NEMO2.3/INDO12) —Part 1: Ocean physics. Geosad®l Dev., 9, 1037-1064, 2016.

Umlauf, L., and Burchard, H.: A generic length-gcafjuation for geophysical turbulence models, J.

Mar. Syst., 61, 235-265, 2003.

Vancoppenolle, M., Fichefet, T., Goosse, H., BouiJlS., Madec, G., and Maqueda, M. A. M.: Simu-
lating the mass balance and salinity of arctic Anthrctic sea ice, Ocean Modell., 27(1-2), 33-53,

doi:10.1016/j.ocemod.2008.10.005, 2008.

vali, G., Meier, H. E. M., and Elken, J.: Simulatedlocline variability in the Baltic Sea and its-im

27



744 pact on hypoxia during 1961-2007, J. Geophys. Resan., 118, 6982-7000,
745  doi:10.1002/2013JC009192, 2013.

746

747 Walton, C. C., Pichel, W. G., Sapper, F. J., ang,NIa A.: The development and operational applica-
748 tion of nonlinear algorithms for the measurementse& surface temperatures with NOAA polar-
749  orbiting environmental satellites, J. Geophys. Res.103(C12), 27,999-28,012,
750 doi:10.1029/98JC02370, 1998.

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

28



770
771
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807  Figure 3. Map of the RMSE of SST from ASSIM (leéinel) and FREE (right panel) calculated

808 against IceMap SST in 2010, respectively.
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