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The marine status of the Baltic Sea is highly y@eand influenced by the forcirfigom
atmosphere and freshwater influx due to shallowgogphy and semi-enclosesktriction. As

a stable observatigource, the high-resolution SST from satelliteather important to

improve the ocean operational forecast to serv@#tigc industryneeds. The article of
“Assimilating High-resolution Sea Surface Temgtere Datdmproves the Ocean Forecast
in the Baltic Sea” use a localized Singuauolutivelnterpolation Kalman (SEIK) filter to
assimilate the OSISAF SST during one yea2@f0. Compared with dependent and
independent observations, #ealuation of thenodel runs with and without assimilating the
SST shows the SST modeling has biegproved clearly. This study is suitable for pahtion

in OS, but there are still sorsdvious defects like the experimental illugtatis not clear,

lack of conclusions analysis methods to inspire the readers.

We appreciate the referee for the good commentgjwveefinitely contributes to the

improvement of this study. Our responses are ia.blu
The main comments are listed as follow:

1) In this study, only to assimilate the OSISAF 3&1he Baltic sea. In fact, theage more

SST candidates with equivalent high-resolution &ITA (CMEMS) andRTG_SST_HR
(http://polar.ncep.noaa.gov/sst/rtg_high_res/)if @ssimilating one otwo additional SST
products, the related results will be more helprdasler to welunderstand about them. On the
other word, the special features about the OSISSF in the Baltic Sea have not been

highlighted at current, which looks not to suppbg study focused on it.

We thank the reviewer for this comment. We usedaB¢SAF in this study for a couple of

reasons. First, it is level 2 product and is rggtedirectly from the satellite, which means there



is no hind-analysis information included; Secoh& ®SISAF has a high resolution in the

Baltic Sea, which makes it more suitable for ougragional forecast system.
In the revised manuscript, we added a few sentenadarify:

“For operational forecast, the SST from OSISAFis tnost important dataset in the Baltic Sea
because it differs from hindcast analyzed prodiket OSTIA (Operational SST and Sea Ice
Analysis) data. As a level 2 product, the OSISAFT $fas both good temporal and spatial
coverage in the Baltic Sea. As there is no hindcéstmation included in the OSISAF SST, we

are able to assess direct impacts of assimilat8ig &servations”

2) Lines 163-165, this SST product from AVHRR isiable twice daily. It is not cledrow to
assimilate in the experiment. Thssimilation time window is daily? How talculate the

innovation, is it asynchronous?

In section 3.1, we mention “only the subskin SSmight, which is comparable to in situ (buoy)

measurement, is used ...".

In the revision, we clarified how to calculate theovation: “Further, we define a two-day
assimilation window in the assimilation experimeid.a result, the observations in the two
days before the assimilation time were used tautatie the innovation with observation
operator. When we calculated the innovation we elfsmged the observation error according to

the observation time by
e = 0.4 X exp(—0.15At)  (9),
hereAt is the absolute time difference between obsemdime and DA time.”

3) In the first paragraph of 3.1, the assimilat&I Bias been filtered by the qualiBut it is not
clear how to consider the sea ice. Do you usedhecg concentration @SISAF to mask the

SST product, and how to do?

We didn’t use the sea ice concentration of OSISAmask the SST product. By the quality
filter, we checked observation position, innovatietative to model result and the quality flag

provided by OSISAFIf the model is covered by sea ice, the SST afasien will be excluded.



4) The observation error for the OSISAF SST is ingod for this study, is it a constawit0.5
degree used? As a good consistence check, someodisgabout the assimilation stability like

Rodwell et al. (2016) is beneficial to understamel $ystem reliabilitynd the observation error.

Rodwell, M. J., Lang, S. T. K., Ingleby, B., Bormann, N., Hélm, E., Rabier, F.,
Richardson, D. S., and Yamaguchi, M.: Reliabilityensemble data assimilation, ) Roy.

Meteor. Soc., 142, 443454, doi:10.1002/qj.2663,620

We agree that consistency check and assimilatadilisy are important for operational forecast
systems with DA. We used a constant observatiar emilar to Rodwell et al. (2016) in this
study, but our DA design is different from that paprhe major difference between these two
studies is that we estimate the background erngaircance from stationary ensembles and avoid
the perturbation of observation error. Therefdne,diagnostic of the assimilation stability can
be directly obtained from the forecast error, like RMSE, in Fig.4, which shows comparable

bias and RMSE in the assimilation and free forecast

In the revision, we cited the Rodwell et al. (2046} discussed the assimilation stability in

section 6.
The corresponding text are added:

“Further, the reliability of the DA system is worlieing assessed. In Rodwell et al. (2006), a
perfect reliable system error variance for enseraBmilation was calculated by the sum of
the variance of the sample ensemble, the squarmo¥ation (misfit between observation and
model), the variance of observation at assimilatiome. In this study, we used a constant
observation error similar to Rodwell et al. (20b@cause our DA design is different from that
paper. The major difference between these two esudithat we estimate the background error
covariance from stationary ensembles and avoid pgheurbation of observation error.
Therefore, the variance of the sampled ensemble abségrvation is univariate and the
diagnostic of the assimilation stability can beedily obtained from the forecast error like the

RMSE in Fig.4.”



5) The IceMap has been used for ewmo as one independent SST observation.
It is not objective and only twice rfmne week. In fact, another surface ewat
temperature data set from SMHI collectbyg Ferry
(http://www.smhi.se/hfa_coord/BOOS/Ferrybox/BSNINBSNtemp.png) is more useful and

independent for this study.

We agree that Ferrybox data is a very good sowrcenddel evaluation. In this study, we aim to
evaluate the overall impact of OASIF SST producttenmodel forecast in the Baltic Sea. In

this sense, the IceMap data is more preferablediie spatial coverage and quality while the
Ferrybox data has limited spatial coverage. Atsthime time, we have also used the independent
in situ SHARK observations to verify the experimeggults. The Ferrybox data may

corroborate our conclusions but we think it is aafitical factor for our evaluation and

conclusions.

6) The two in situ observations at Arkona and BYdSuper case to show the impact of
assimilating SST only. It is valuable to do moredfic analysis by diagnosing dynamic
variables. Firstlyinvestigating the mixed layer depth in the two roas clearly showhe
mixing strength for Fig.5 and Fig.6. Secondly, tdp/salinity misfits in verticadan be

shown and mutual authentication with the SHARK ltssu

We thank the reviewer for this important commert.afidress the reviewer's comment, we
compared the mixed layer depth in the two runs.(Fign the revised manuscript. We also used
the SHARK data to examine the misfits of tempetmnd salinity at both inside and outside of

the Baltic Sea(Fig.9).
In section 5.2, we added

“The mixed layer depth (MLD) was calculated at #kikona and BY15 station and compared
with the SHARK observation in Fig. 7. We used temperature criterion to define the MLD,
i.e., the depth at which the temperature deviateoh fthe surface value by 0°%& (Fu et al.,
2012). Figure 7 shows that the MLD at Arkona hadda variability relative to the MLD at
BY15. The reason contributed to this feature i$ tha deeper water at Arkona is easy affected

by wind forcing because of the shallow bathymetmg avell mixing, whereas the temperature
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variation in upper water at BY15 difficulty influeas the deeper water because of the strong
stratification. Both runs had reproduced the MLaiability feature similar as the observations.
For example, the minimum MLD appeared in summerclvlwas about several meters. The
assimilation of satellite SST caused strong chamgeise MLD at both stations, especially in
winter. One explanation was that the Baltic Sea laegely affected by wind forcing and the
winter wind was much stronger than the summer wkakther, strong heating in summer

promoted stratification in summer and shoaled thé®M

7) Based on the current results, it indicates éti@isy looks no remarkable improvement.
However, the salinity peak in Sep 2010 at 7 m @areduced by assimilati@ven this model
run has an underestimation before. This evennisacase to explomghich factor contributes

that positive correction.

We appreciate the reviewer's comment, but it isitarattribute the improvement in September
2010 to a specific factor. There are a couple asoes for this: firstly, at the depth of 7 m, the
model salinity was strongly affected by the simiolaof advection, mixing and E-P flux. Bias

in any of these factors could contribute to thgdabias especially after mid-September. In other
words, any improvement of these factors also help@edrrect the salinity bias. Secondly, the
salinity at 7 m is generally decreased irrespeaiiviie model bias, suggesting that the method
is stable. Therefore, it is very likely that thepimvement is a cumulative effect of our data
assimilation, including the effect of the changgsikculation and mixing (shown in the mixed

layer depth in Fig. 7).

8) Fig8 shows the vertical impact for temp/salhis better to separate into two pdrteernal

and out of Baltic sea.

We separate the Bias and RMSE calculation in tlweregions now. The figure caption of Fig.

8 was changes as Fig. 9.
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Figure 9. The overall RMSE and bias of temperatupepanel) and salinity (down panel) from
FREE and ASSIM relative to observations as a fonotif water depth inside (b,d) and outside

(a,c) of the Baltic Sea.
The corresponding text are changed:

“Figure 9 shows the change of overall bias and RMSE/S with depth against the SHARK
dataset. In the Baltic Sea, DA had large impacthentemperature forecast in the water above
100 m. The RMSE showed that the forecast of tenperavas obviously improved from
surface to thermocline in the ASSIM and the improgats generally decreased with depth.
Above 100 m, the overall RMSE of temperature in AbSvas decreased by 21.38% (from
1.59 to 1.25°C). It was also found the temperature error hadlainvariability as the warm

biases in two runs. In the transition zone, the ENtSthe ASSIM was reduced by 5.59% and -



20.31% above and below 100 m relative to the FREESpectively. Below 90 m, the

temperature was also over-adjusted, which chanlgedvarm bias to cold bias. It is worth

noting that the number of the deeper water observat the transition zone is substantially less
than that in the Baltic Sea. For the salinity, bBIMSE and bias of the ASSIM showed very
minor changes relative to the FREE inside the B&ga. For the water above 100 m, the total
RMSE of salinity was increased by 3.48% (from 1w in the FREE to 1.19 psu in the
ASSIM) in the transition zone and 1.04% (from 08U in the FREE to 0.97 psu in the

ASSIM) in the Baltic Sea.”

9) The impact on SLA looks very small so | suggeptacing the related figure atable by a

short paragraph.

We thank your good comment. We removed the Tabledladded a Figure to show the

variation by DA.

“We calculated the RMSE and correlation coeffickefur both the FREE and ASSIM against
the observations from tide gauges (Fig. 10). Therall RMSE was reduced by 1.8% and the
correlation coefficients were slightly increasean@ng the stations, RMSE at the Oskarshamn
was decreased by 5.6%, which is larger than thathetr station. The minimum RMSE change
of SLA was seen at the Klagshamn. For the cormelatpefficient, improvement on the SLA by
the DA is very small. Simrishamn station showedlilggiest change of correlation coefficient,
which is 1.1%. The RMSE and correlation comparis@monstrated that the SST DA has

generally positive effects on the forecast of th&.3
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Figure 10. The improvement (%) of correlation cimééiht and RMSE for the SLA at 10 tide

gauges stations. The positions are shown in Fig. 8b

Further, we also replaced the old figure 9 by Féglt to show the bias variation after data

assimilation.
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Figure 11. The difference of SLA biases between INS&hd FREE against observations as a

function of time at four observing stations.



10) Fig. 10 shows an improvement by assimilatin@.38it the quantitatively comparison with
the OSISAF concentration in the time series isfaklp know the impact imifferent sea ice

seasons.

We added a new figure showing the comparison ofthtprmean sea ice concentration in

March and April and we also added the time seri¢lBesea ice extent (SIE).
In the manuscript, we revised the text as:

“In March, compared to observation, the FREE predulmw SIC in the western coast of the
Bothnian Sea, Gulf of Finland, Gulf of Riga and twnnect zone between the Bothnian Sea
and Gulf of Finland. However, the model SIC in tRREE was higher than IceMap in the
interior the Bothnian Bay. For instance, the SIGrFREE in the western Bothnian Sea was
40% higher than observation. In the south coaghefArkona basin and Baltic proper, the
FREE failed to reproduce the sea ice as in obdenvaiAfter the DA, the high SIC was
decreased in western Bothnian Sea and closer tinthaeMap in Bothnian Sea. In the Gulf of
Finland and Gulf of Riga, the SIC error was inceza@ the ASSIM. In April, the large SIC
error in the FREE was shown in the Bothnian Sea Bbthnian Bay, Gulf of Rig and Gulf of

Finland, where no clear improvements were seendASSIM.”

“The daily SIE from the FREE and ASSIM wasnpared with observations in Fig.13. The
observed SIE was generally increased from JanwaRebruary and reached the maximum in
mid-February. During the period of March-May, SlIEasvdecreased as temperature was
increasing. SIEs in both the FREE and ASSIM expenit® were generally underestimated by
comparison with the observation in 2010, especiglyhe period from Mid-March to early
April. The SIE bias in both runs was increased fidanuary to early April. In early April, the
maximum negative bias of SIE was found to be 10308bfor the ASSIM and 10000 Knfor
the FREE. The impact of SST assimilation on the \B#s positive during the phase of sea ice
formation. For example, the SIE bias was reduc@®@%nf at the end of February and in the
Mid-December. However, during the phase of searietting (March to April), SIE error was

increased in the ASSIM even with the error of S&trdased. For example, the SIE bias in the



ASSIM was increased by 42000 krelative to FREE in the early March. These incrdaSH

error in March mainly happened in the Gulf of Ragad Gulf of Finland (Fig.11).”
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Figure 13. The daily sea ice extent from FREE, AB8hd IceMap and the sea ice extent bias

(modelled minus observed field), respectively.

Other small issues:

1) Line 137, the operator of Li in Eq. 3 has nogtration.

We added the line for the operatoillustration.

2) Line 159, “OSISAF product” is it means more gah@roducts or only SST?

To clarify, we delete “ products are using in pitiothe European Meteorological satellites
METEOSAT and MetOp and also several American staslbperated by NOAA, DMSP and

NASA. Its”

3) Line 229, “model layer” replaced by “model |évkecause the model is not a layersddel.
It was corrected.

4) Line 233, the forgotten factor is constant, owtto be defined?

We add a sentence “ To define the forgetting fagane-month simulation experiment with
varying the factop was done in January 2010. At last, a fapter 0.3 resulted in the best

assimilation performance.” At the end of Section 4
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5) Line 257, the evolution of SST based on 48-holadal analysis. Does it mean all the SST

comparison afterward use the 48 hourly forecash filve model?

Yes, we use the 48-hour forecast SST in the allpawison with observation.

6) Fig 1, the text is hard to identify. It is bette show the rivers involved in the model.
The two stations of Arkona and BY15 can be showfign 1 (or Fig. 7).

We add the Neva River and the position of Arkoné BN 15 in Fig.1

7) Fig 6, the observed temperature at 70ooks missing at Nov 2014, especially
compared with other two depths or the salinity.

This temperature at 70 at BY15 station hasn't olzg@mn value at Nov 2010 in SHARK

database.

8) Line 289, the obvious improvement in the GulfFailand. However, based on the snapshot

of the observed SST distribution in Fig. 2 there @@ observations.

The OSISAF observation at a specific basin may issing like the Figure 2. Our Figure 3 is

based on annual averaged IceMap SST comparisdiilih 2

9) Line 278, “The model SST forecasts in both wirated summer (Fig2)”. It is n@brrected
to say SST forecast in Fig. 2 because they ordydhe analyzed fieldand the related

increments, which not supports this conclusion.

Thank you. We changed it to “the SST DA has imptothe simulated SST in both cases
(Fig.2)"
10) Line 311, “The temperatures differ by about2P%: between summer and wintés”

confused. Does it mean the seasonal variabiligbgervation?

We intended to show the seasonal variability. Simeenly done one-year simulation, we
delete the sentence “The temperatures differ bytati®-22°C between summer and winter.”

to avoid confusion.

11) Line 314, “The reason perhaps this kind of illustrations in this study regeisome proofs

like MLD diagnosing or others.

11



We add the mixed layer depth analysis, which wiigort our conclusion.
12) Section 5.1, which mean ssh fields are usetidergauges and the model simulations?

Since the mean SSH fields may be different fronhexdber in the model and observation we do
the comparison of SLA in this study. We calculateslmean SSH by directly averaging the tide

gauges or model fields.
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We'd like to thank the referee (S. Losa) for her useful comments and suggestions,
which helps to greatly improve the quality of our manuscript. Our responses are in

blue.

Interactive comment on “Assimilating High-resolution Sea Surface Temperature Data
Improves the Ocean Forecast in the Baltic Sea” by Ye Liu and Weiwei Fu

S. Losa (Referee)

svetlana.losa@awi.de

Received and published: 9 April 2018

This paper describes an experience in assimilating a high-resolution satellite sea surface
temperature (SST) product into a NEMO-based numerical model of the Baltic Sea. There is no
doubt that the Baltic Community urgently requires a good quality forecast of the Baltic Sea
hydrography. And there is no doubt that any forecasting system would definitely benefit from
assimilating observational information. These circumstances provide a strong motivation for
the study discussed. | am, however, not sure that this data assimilation experience is sufficient
enough to be documented in a peer-reviewed publication (at least with respect to improving
forecast, as stated). In its present form, | cannot recommend the manuscript for publication.
Below | list my comments the authors might want to consider.

We thank the referee for reviewing our manuscript, acknowledging the importance of our
topic, and for her suggestions on how to improve the manuscript.

General comments

The Title does not correctly reflect the subject/results of the paper. My concern is the
statement “Improves the Ocean Forecast”: 1) because of the use of atmospheric reanalysis
(not the forecast) as the forcing; and 2) since it is not clear from the text whether the authors

evaluate the system state after the LSEIK analysis or in the forecast phase (just before the



analysis). Same is to the statements in lines 20 — 21, 86, 278, 440. “the Ocean Forecast in the
Baltic Sea” sounds a bit odd.

1) We changed the title a bit to “Assimilating High-resolution Sea Surface Temperature Data
Improves the Ocean Forecast Potential in the Baltic Sea”. We think the new title more
correctly reflect the subject as our main focus is to demonstrate the potential impact of SST
assimilation on the model predictions of the NEMO-Nordic, which aims for operational
forecast. We believe that the reanalysis forcing will not impair this objective of our paper. In
this study, we intended to showcase how useful the DA method and SST dataset are within the
framework of NEMO-Nordic. One advantage of the reanalysis forcing is to reduce the
uncertainty/bias of results arising from NWP forcing. We chose the atmospheric reanalysis to
force the model, which, we thought, may reduce the intervention of the atmospheric errors

regarding the analysis of the experiment results.

2) In the revision, we clarified this issue by pointing out that the system evaluation was done in
the forecast phase after the LSEIK filter analysis (Fig.2). In this study, we firstly verified the
system with two cases in two different seasons. Then we assess the impact of the SST data
assimilation on Baltic forecast based on 48-hours forecast.

In the first paragraph of section 5, we added

“We considered the evolution of SST based on 48-hourly local analysis from 1 January 2010 to
31 December 2010. The 48-hourly forecast of SST from two runs was assessed with

observations from different dataset (see Fig. 2 for details).”

There is a lack of detailed information on the data assimilation set up: whether the ensemble
error statistics (or ensemble of model trajectories) dynamically evolve(s) in time or there is just
one model trajectory and at the analysis step (every 48 hours) a constant (as it looks like given
the expression “a stationary ensemble sample” in line 465, the suggestion on “a flow-

dependent background error covariance” in line 472) covariance matrix represents the model



error statistics: The SEIK and LSEIK are normally considered as ensemble-based data
assimilation methods. It would be nice if the authors clearly emphasize what is
different/distinct in their application and why they use (L)SEIK for the analysis while they do
not use any ensemble at all. Why do the authors not use the flow-dependent background error
covariance? Do the authors really “use a localized Singular Evolutive Interpolated Kalman
(SEIK) filter” just only “to characterize correlation scales in the coastal regions”? Please
describe the model variables used to construct the multivariate error covariance matrix and

included in the state vector.

According the reviewer’s comment, we added more details to clarify these points. we used a
stationary ensemble to statistically estimate the background error covariance. We did not use
time-varying ensemble based on a couple of considerations: 1) firstly, the stationary ensemble
is computationally efficient as we don’t need to integrated many model states like the EnKF.
Secondly, the time-invariant ensemble was shown to be able to mimic the signature of
circulation in the background error covariance (Fu et al., 2011; Liu et al., 2013). Time-varying vs
time-invariant ensemble is an interesting topic with respect to approximating the background
error covariance (Korre et al. 2004). However, the major objective of this study is to validate
the assimilation of high resolution SST data. Given the number of ensemble samples used in
this study and our previous study, we are confident that the stationary ensemble can produce

robust analysis (Liu et al. 2013).

We added the text in the revision:” We used a time-invariant sample ensemble to approximate
the background error covariance during the experimental period (Korres et al, 2004, Liu et al.
2013, 2017). This stationary ensemble affords a good approximation of the ocean’s

background error covariance. Meanwhile, it is computationally efficient for our objective.”

We described the LSEIK in more details in the revised manuscript.



Similar to other ensemble data assimilation EnOl or EnKF, the SEIK filter method includes both
the global and local analysis based on different consideration. We used local analysis version of
SEIK (LSEIK) with domain localization in this study (Neger et al. 2007). We used a localization
scale of 70km for the Baltic and North Sea. Now we moved the following text from Section 4 to
Section 2.2:

“Localization was used to remove the unrealistigtoange correlation with a quasi-Gaussian
function and a uniform horizontal correlation sceleiu et al. 2013). It was performed by
neglecting observations that were beyond corretatitstance from an analyzed grid point. In
other words, only data located in the “neighborhdad an analyzed grid point contribute to

the analysis at this poirit

We stated that the state vector includes the sea level, temperature and salinity. The same
model variables (sea level, temperature and salinity) were also used in the multivariable EOF

analysis.

To further clarify the DA setup, we also added the text about the observation error and forget
factor: “To define the forgetting factor, a one-month simulation experiment with varying the
factor p was done in January 2010. At last, a factor p = 0.3 resulted in the best assimilation
performance. Further, we define a two-day assimilation window in assimilation experiment. As
a result, the observations in the two days before the assimilation time were used to calculate
the innovation with observation operator. When we calculated the innovation we also
changed the observation error according to the observation time by

€ =04 X exp(—0.15At) (9),

here At is the absolute time difference between observation time and DA time. “

In the present form the conclusions include only general statements on the impact of SST DA,
which does not, however, add anything new to what was drawn from previous studies, and
there is nothing specific with respect to assimilating the OSISAF SST. More emphasize could be
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made on benefits due to the resolution of the OSISAF SST product, then a comparison against

similar experiments but assimilating satellite SST data with coarser resolution are required.

The major objective of this study is to demonstrate the potential impact of assimilating OSISAF

SST product on the forecast of the Baltic Sea. We showed in detail the potential of SST data

assimilation for the forecast of temperature, salinity, sea level, mixed layer depth and sea ice.

This study provides a clear and informative image to the Baltic Sea community for improving

the forecast of different fields in the future. It is also the first time that OSISAF SST was

assimilated into NEMO-Nordic model, which will replace the old operational forecasting

system and serve the operational purposes at SMHI.

We summarized some new results in this study:

1.

We demonstrated the potential of SST assimilation for the Baltic Sea forecast with the
OSISAF Level 2 product, which is not contaminated by hind-cast information.

We provided overall validations of the potential impact of SST assimilation for the
forecast in the whole Baltic Sea (both shallow basins and much deeper regions such as
the Gotland Basin).

We found that the assimilation of SST could generally improve the forecasts of sea
level from late spring to summer.

We showed an in-depth evaluation of the impact of SST assimilation on sea ice
forecast by comparing the model with the observations of sea ice concentration (SIC)
and sea ice extent (SIE). We found that the impact of SST assimilation on sea ice
forecast is time-dependent, more important during the phase of sea ice formation

than sea ice melting (March-April).

The assimilation of coarser resolution of the OSISAF product into the same model is

interesting, but we would respectfully think it is beyond the scope of this study. Actually,



previous studies showed that proper ‘observation-thinning’ schemes were very helpful to
assimilate high-density remote sensing data. For instance, Li et al (2009) assimilated 0.32x0.32
satellite SST observation in the Chinese shelf-coastal seas. With an ensemble-based
observation-thinning scheme, the assimilation of coarser resolution SST (0.52x0.52) can yield
an Analysis Error variance (AEV) of 0.19C. In the Baltic Sea, we expect that the impact of
coarsening SST data on the forecast is weakened to some degree, depending on the actual

thinning scheme.

Li XC, Zhu J, Xiao YG, Wang RW (2010) A Model-Based Observation-Thinning Scheme for the
Assimilation of High-Resolution SST in the Shelf and Coastal Seas around China Journal of
Atmospheric and Oceanic Technology 27:1044-1058 doi:10.1175/2010jtecho709.1

Specific comments

Lines 12-13: overall the sentence sounds misleading; moreover, for the localised SEIK you can
use the LSEIK abbreviation. Missing reference to Nerger et al. (2006).
Thank you. We now used the LSEIK for the data assimilation method.The Nerger et al. (2006)

was added as a reference in Section 2.2.

Line 20 (also line 453): | am just wondering whether 0.4% difference is a statistically

significant in this particular application.

The model SLA was highly correlate with observation. The improvement of SLA varies
considerably with stations. The 0.4% difference is the overall impact of the SST assimilation on
the SLA. Since it is difficult to test the significance of the overall impact, we removed this

sentence.

Line 119: please provide a reference to the used “runoff database”.

We added the reference for the river runoff data:



Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment
similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrological Sciences

Journal, 61, 255-273, 2016.

Lines 205, 206: the discussed is the representation error (Janji'c et al. 2017,

https://doi.org/10.1002/qgj.3130).

There is different definition of the components of observation error in different consideration

and theory. For clarify, we removed the discussion “The observation error mainly comes from
the observation instrument itself, the observatepresentativeness, the temporary reading error
and imperfect retrieval algorithm.”

Part 4, Lines 224-225, 228: Please explicitly determine the state vector — which particular

model variables it includes.

In the reversion, we added one sentence to clarify:

The sate vector includes sea level, temperature and salinity.

Lines 227-228: editing is required for the sentence “There does not exist uniform nature

of error covariance for the variables of the model state vector and for the coastal zones

Thank you. We rephrased the sentence as : “In the North Sea and Baltic Sea, error covarém

of different variables are not uniform and strondggpendent on whether the variable resides in
the open sea or coastal zone.”

Line 233: “a forgetting factor” or “the so-called forgetting factor”

Thank you. we use “the forgetting factor” as the same using in Nerger et al. (2006).

Liner 236: missing references to Janji'cO et al. 2011

We added this reference Janji¢ et al. (2011)

Lines 247-248: The sentence “The correlation length scale : : :.” is a copy-paste from

7



Losa et al. 2012; please rephrase and provide the references, including the references
to the original studies by reporting on the estimates of the Rossby radius of deformation
(Alenius et al., 2003; Fennel et al., 1991).

we rephrased this sentence and added the Losa et al., (2012) as a reference.

“The correlation length scale is to some extentedelgent on the Rossby radius of deformation
(Losa et al., 2012), which varies from ~ 200 kntha barotropic mode to ~ 10 km or even less

in the baroclinic mode (Fennel et al., 1991; Alsret al, 2003).”

Lines 271-276: the discussion on the bias seasonality: while, in general, the statement

(I. 271) is true and was also discussed in Losa et al. 2014, it is difficult (if ever necessary)
to conclude anything in this respect given just 2 snapshots for the increments (Figure 2).
Thanks for good comment. We removed the seasonally bias discussion related to Figure 2.
Line 457: “significantly improved” — this is not obvious.

we removed “significantly”.

Line 14: should it be “improvements of” instead of “improvements on”?

we revised it to “improvements”.

Lines 33-35: please provide references;

we added a reference Omstedt et al. 2014:

Omstedt, A., Elken, J., Lehmann,A., Lepparanta, M., Meier, H.E.M., Myrberg, K., and
Rutgersson, A.: Progress in physical oceanography of the Baltic Sea during the 2003-2014
period. Progress in Oceanography, 128, 139-171, 2014.

I"

Line 38: “a numerical model” instead of “a numeric model”;
It was fixed.

Line 46: “joint effort” instead of “joints effort”;

It was fixed.

III

Line 49: “used for the operational” instead of “used to the operational”?

It was fixed.



Line 85: “sea level anomaly” instead of “sea level Anomaly”;

It was fixed.

Line 271: “model forecast possibility” — please remove “possibility”;

In revision, we don’t want to discuss the season variation of model SST. Therefore, we deleted
the sentence “The SST bias of model forecamissibility has seasonal variability because of
the errors in the forcing and/or heat flux paramestion used in the ocean model (Fu et al.
2012)”

Line 308, 333, 335: “Arkona” instead of “Arokna”;

It was fixed.

Line 329: “The possible reason” not “The possibility reason”;

It was fixed.

Line 470: “strongly”, however the sentence in the lines 470-471 sounds misleading.

We removed “around the observation position.”

References

Janji’c0, T., Nerger, L., Albertella, A., Schroter, J., Skachko, S., 2011. On domain localization

in ensemble based Kalman filter algorithms. Monthly Weather Review 136 (7),

2046-2060.

Nerger, L., Danilov, S., Hiller, W., Schréter, J., 2006. Using sea level data to constrain

a finite-element primitive-equation model with a local SEIK filter. Ocean Dynamics 56,634—649.
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Abstract. We assess the impact of assimilating the sataléite surface temperature (SST) data on
the Baltic forecast, practically on the forecastoo&an variables related to SST. For this purpase,
multivariable DA system has been developed baseal Mordic version of the Nucleus for European
Modelling of the Ocean (NEMO-Nordic). We use a lasad Singular Evolutive Interpolated Kalman
(LSEIK) filter to characterize correlation scalestlire coastal regions. High resolution SST from
OSISAF is assimilated to verify the performancdd@f system. The assimilation run shows very sta-
ble improvementsf the model simulation as compared with both inddpahand dependent observa-
tions. The SST prediction of NEMO-Nordic is sigo#ntly enhanced by the DA system. Tempera-
tures are also closer to observation in the DAesyghan the model results in the water above 100 m
in the Baltic Sea. In the deeper layers, salirstyalso slightly improved. Besides, we find that Sea
level anomaly (SLA) is improved with the SST assatmon. Comparison with independent tide gauge
data show that overall root mean square error (RMSEeduced by 1.8% and overall correlation co-
efficient isslightly increasedsy-0-4%. Moreover, the sea ice concentration forecasnjgaoved con-

siderably in the Baltic proper, the Gulf of Finlaadd the Bothnian Seduring the sea ice formation

period respectively.
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1. Introduction

Monitoring the marine status of the Rallea with relevant resolution and accuracy isya ke
requirement to serve the marine policy for detecthre influence of human activities on the environ-
ment and better understanding the response of doesstelerating global climate change. The Baltic
Sea is one of the largest brackish seas in thedwibils a semi-enclosed basin, whose hydrography i
highly variable and influenced by large-scale afphesic processes and significant influx of freshwa-
ter from rivers runoff and precipitation (Leppéamar@nd Myrberg, 2009). In addition, the water ex-
change between the North Sea and Baltic Sea thrihwggBanish straits is hindered by shallow topo-
graphic restrictions in the transition zone (Fig. 1

A characteristic feature of numerical forecasthie Baltic Sea is in itself a major challenge
because of complex topography and rich dynamicaudber of ocean forecasting systems for the
Baltic Sea have been developed using hydrologicalehby operational agencies around this region.
Traditionally, these models have a horizontal netsmh of 1-5 km and approximately 20—100 layers

in vertical structurdOmstedt et al. 2014Pue to the geographic location and conditionthefBaltic

Sea, even higher resolutions are often neededtter bmderstand the circulation dynamics. However,
even ocean circulation models with a particulaiyhhspatial resolution (e.g. 1 km) cannot resole a
dynamically important physical processes in theaoc@Valanotte-Rizzoli and Tziperman, 1996). In
general, the forecast quality for a numalimodel depends on initial conditions, boundary ok
(lateral, open boundaries as well as meteorolodaaing and bathymetry) and a robust numerical
model itself. As an operational forecasting agetiog, Swedish Meteorological and Hydrological In-
stitute's (SMHI) needs to issue well-informed fasts and warnings for decision making by other
authorities during e.g. severe weather eventsalsat to the public. To improve the forecast quality
the core three-dimensional dynamic model of the Siperational forecast system has recently mi-
grated to the Nordic version of the Nucleus fordpgan Modelling of the Ocean (NEMO-Nordic).

In additional to model development, ateaged observational network has been established b
the joint efforts of the countries surrounding Badtic Sea. The observation platforms include vissse

buoys, coastal stations, satellite, etc. Speciallg, observations from satellite have dominated the
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coverage of SST observational networks in the 8&g&a (She et al. 2007). Among satellite products,
the SST is most popularly and widely ugedthe operational forecast, reanalysis or validatibthe
model because of both its coverage and propeigs. acts as a medium between atmospheric and
oceanic variations through activation of couplingamanisms. SST is also a key ocean variable to link
many processes that occur in the upper ocean,Xamgle, air-sea exchange of energy, primary
productivity, and formation of water masses (Tramtlet al., 2008).

A realistic forecast of SST is essential to aeamcforecasting system. SST is especially im-
portant for the Baltic Sea that the average waggthdis only 56 m and its surface water is directly
related to the bottom water by the mixing in thalsiw sub-basins. Recently, the applications of SST
for forecasting and analyzing the status of thetiN&ea and Baltic Sea have received particulan-atte
tion. In the short-term forecast, Losa et al. (202@214) investigated the systematic model uncertain
ties for forecasting the North and Baltic Seas bgirailating the Advanced Very High Resolution
Radiometer (AVHRR) SST data. Nowicki et al. (20Hpplied SST observed from Aqhéoderate
Resolution Imaging Spectroradiometer (MODIS) infd» Gupled ecosystem model of the Baltic Sea
with the Cressman analysis scheme. O’Dea et al62énhanced the SST prediction skill of the oper-
ational system by assimilating both in-situ datd &vel 2 SST data provided by the Global Ocean
Data Assimilation Experiment High-Resolution SSTHESST) into a European North-West shelf
operational model. Moreover, SST has been usdtkifong-term analysis in this region. For instance,
Stramska and Bialogrodzka (2015) analyzed spatidlteamporal variability of SST in the Baltic sea
based on 32-years of satellite data, which inditiaét there is a statistically significant trendiof
creasing SST in the entire Baltic sea. Howeveisdlleng-term SST data haven’t been used to verify
the application of sophisticated DA methods forreghaphy model in the Baltic profiles simulation,
especially at the Baltic deep water regions. Anothgortant question is: what amount of satellite
SST can improve long-term forecast of ocean vagmbtlated to SST in the Baltic Sea.

The objective of this study is to addrggsimpact of assimilating a high resolution SS@doict
on the forecast of the Baltic Sea, particularly finecast of SST related variables like sea levdl a

sea ice. It is also the first time that satelli&TSromthe Ocean and Sea Ice Satellite Application Fa-

cility (OSISAR was assimilated into NEMO-Nordic model (NEMO vatidor the North Sea and

3
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Baltic Sea). For operational forecast, the SST f@BISAF is the most important dataset in the Baltic

Seabecause it differs from hindcast analyzed protlketOSTIA (Operational SST and Sea Ice Anal-

ysis) data. As a level 2 product, the OSISAF SS3 eth good temporal and spatial coverage in the

Baltic Sea. As there is no hindcast informationuded in the OSISAF SST, we are able to assess

direct impacts of assimilating SST observatichserefore, exploring the potential of this prodisct

critically important to further improving the newperational forecast system. In addition, our study
will enrich the reanalysis database of the Balda.3n this study, we use the Singular Evolutivtern
polated Kalman (SEIK) filter (Pham, 2001) to acdolan the model uncertainties arising from a wide
range of spatial and temporal scales (Haines, 2@0¢ of our focuses is the impact of SST on the
modeled sea level and the sea ice in the Baltic B@athe whole Baltic Sea, how the SST assimila-
tion influences the temperature and salinity (TU&}the different depth is another focus of thisigtu
The outline of the paper is as follotv& model configuration and SEIK scheme are desdrib

in Section 2. An overview of the observations usethis study is presented in Section 3. The imple-
mentation of DA experiment is given in section gdther with the sampling of ensemble and localiza-
tion. Results are compared with observations foperature, salinity, sea levahomalyand sea ice in
Section 5. In this section, the impact of datamasation on the forecasts is also investigated. cien

sions and discussions are given in section 6.

2. M ethodology

2.1 NEMO-Nordic

NEMO (Nucleus for European Modelling oétB®cean; Madec, 2008) has been set up at SMHI
for the North Sea and the Baltic Sea, a configanatialled NEMO-Nordic (Hordoir et al., 2015) (Fig.
1). Open boundaries are implemented in northernhiN®ea between Scotland and Norway and in the
English Channel between Brittany and Cornwall, eesipely (Hordoir et al., 2013). In this study,
NEMO-Nordic employs a horizontal resolution of Ziheal miles (3.7 km) and 56 vertical levels, and
with a vertical resolution of 3 m close to the asgd, decreasing to 22 m at the bottom of the deepes

part of the Norwegian trench. NEMO-Nordic uses liyfoonlinear explicit free surface (Adcroft and
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Campin, 2004). A bulk formulation is used for theface boundary condition (Large and Yeager,
2004). The ocean model is coupled to the LouvaiNdave Sea Ice Model (LIM3) sea ice model
(Vancoppenolle et al., 2008) with a constant vaiti&0® PSU for the sea-ice salinity. A time-splitting
approach is used to compute a barotropic and alb@momode, as well as the interaction between
them. A Tidal Inversion Model is used to define bagotropic mode at the open boundary conditions
(Egbert and Erofeeva, 2002). 11 tidal harmonicsdafened for sea level and barotropic tidal veloci-
ties. In addition, a coarse resolution barotropicra surge model covering a large area of the North
ern Atlantic basin provides wind-driven sea levelttis added to the tidal contribution. The T/Sadat
at the open boundary are provided by the Levitusatblogy (Levitus and Boyer, 1994). Radiation
conditions are applied to calculate baroclinic e#les at these boundaries. A quadratic friction is
applied with a constant bottom roughness of 3 ard, the drag coefficient is computed for each bot-
tom grid cell. NEMO-Nordic uses a TVD advection acte with a modified leapfrog approach that
ensures a very high degree of tracer conservatiecldir and Madec, 2009). Unresolved vertical tur-
bulence is parameterized withe scheme (Umlauf and Burchard, 2003). In additioa|p&rin pa-
rameterization is used to obtain a stable long-tstratification for the Baltic Sea (Galperin et, al.
1988).

A Laplacian isopycnal diffusion is used fmth momentum and tracers with a diffusion parame
ter that is constant in time, but varies in spaaitional strong isopycnal diffusion is used cldee
the Neva river inflow (Gulf of St. Petersburg) irder to avoid negative salinities. The bottom beund
ary layer is parameterized to ease the propagafisaltwater inflows between the Danish Straits and
the deepest layers of the Baltic Sea (BeckmanrDarstther, 1997). A free-slip option is used for lat-
eral boundaries.

The model is forced by meteorological forcdegived from a downscaled run of Euro4M reanaly-
sis (Dahlgren et al., 2014). The downscaling issHam the regional atmospheric model RCA4 (Sam-
uelsson et al., 2011) which uses the reanalys&ssataboundary conditions. A runoff database praevide

the river flow to NEMO-NordigdDonnelly et al. 2016)it includes inter-annual variability for the Bal-

tic Sea basin and is based on climatological valaeshe North Sea basin. The salinity of the river

runoff is set to a constant value ofIBSU, which is the same value used for the setriesoid any
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negative salinity.

2.2 1 ocal Sigular Evolutive Interpolated Kalman (L SEIK) filter
The method used to assimilate SST intM@ENordic is theLocal Singular Evolutive Interpo-

lated Kalman I(SEIK) filter (Pham et al., 20QNerger et al. 2006 This is a sequential data assimila-

tion scheme, which is an error subspace extend &aliifter that uses a minimum number of ensem-
ble members to reduce the prohibitive computatiordén (Pham, 2001). THESEIK filter proceeds
in correction and forecast step:
1. Forecast: the analysis stX8 at timet;_, is integrated forward to the time of the next &alze
observationg; to compute the forecast sta¥d
X/ (t) = M(t;_q, t)X(t;-1) 1),

whereM denotes the nonlinear dynamic model operator titagrates a model state from tite,
to timet; . The superscrigf"' and'a’ denote the forecast and analysis. The correspgmdior covar-
iance matrix can be expressed as:

P/(t) = L[+ DT'TI'L] +Q;  (2),

L =X/ (t)T 3),
with Q; being the covariance matrix of model uncertaindedr + 1 is the minimum number of
sample ensemble members for error covariance mathi& superscriptl’" denotes the transpose of
matrix. The full rank matrix@ has a dimension dfr + 1) X r with zero column sumandL is a full

rank (r + 1) X r_matrix which implicitly represents the model vailéy .

2. Correction: when the observation is availablérae t;, the LSEIK filter merged the information
from model and observation to produce the anastaig with the formula:
X% (t) = X/ (t) + Ki[Y°(t) — HiX/ (t)] (4).
HereY? is a vector of observations. The gain maKixwhich linearly interpolates between the obser-
vations and the forecast, is given by
K; = P/H(HP/H' +R,)” = L,U;(HL)"R;" (5),

6
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where H; denotes the linearization of observation operatdnich mapping the model space to the

observation spac® is the observation error covariance matrix. Therixai; is updated according to

U7 =[U;_y + LTL) LI QL (LTL) ™™ + LTH/ Ry "H,L;  (6).

Localization was used to remove the uistallong-range correlation with a quasi-Gaussian

function and a uniform horizontal correlation scéles et al. 2013). It was performed by neglecting

observations that were beyond correlation distdrare@ an analyzed grid point. In other words, only

data located in the “neighborhood” of an analyzad goint should contribute to the analysis at this

point(Liu et al. 2009; Jarjiet al. 2011).

_ A second-order exact sampling is used to initiatize LSEIK filter. At time t;_;, a analysis
state X*(t;_,) and its corresponding error covariance maPik(t;_,), in the factorized form
L;_,U;_,LT_, , are available. The samples can be given bydt@nfing formular:

A(tieg) =X (tiy) + \/7"‘*‘_1Li—1(9k,i—1ci—1)T (7).
For I< k < r + 1, theC;_ is theCholesky decomposition &;; and;_; is a(r + 1) X r ma-
trix with orthonormal columns and zero column sumisereq), ;_; denotes th&‘" row of Q;_;. X@

Is the average of the analysis state.

3. Observations

3.1 Satellite observations

The satellite SST used in DA was provitlgdOSISAF http://osisaf.met.no/p/sst/index.himl

|im is to pro-
duce, control and distribute operationally in nesal-time products using available satellite datse
satellite datasets product used here includes lisereations from polar orbiting satellites (the EU-
METSAT MetOp-A and NOAA-18, -19) with the AVHRR itrament. The SST product has a resolu-

tion of 5 km and is produced twice daily at 00 Uad 12 UTC. It covers the Atlantic Ocean from
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50°N to 90°N. The SST observations are thermahrefit observations from the AVHRR instrument
and are therefore limited by cloud cover (Kilpatrat al. 2001). The cloud mask in use is based on a
multi-spectral thresholding algorithm by SMHI. Theoducts were retrieved using a nonlinear split
window algorithm (Walton et al. 1998). The coe#icis in the retrieval algorithm are determined
through regression toward in situ observations,thediataset thus represents the subskin temperatur
of the oceans. Further, subskin observations djeauto diurnal warming effects, which can be sig-
nificant in the Baltic Sea. Here only the subsk8TSat night{00 UTC) which is comparable to in situ
(buoy) measurement, is used to minimum this effébe SST is controlled with the climatology
check. A quality level from O to 5 is associatedwevery pixel. The higher level value, the better
quality of the observations (Brisson et al., 20@hservations with quality level 4 (good) or 5 (elxc
lent) are collected for the analysis and low gyadibservations were removed. By applying the above
quality control processes, only a subset of thgimai OSISAF products is kept in this study. Based
the former validation, a bias value of @5 given for this product.

Further, the IceMap from a sea ice concéntradataset with a high spatial resolution of 5 km
(http://Iwww.smhi.se/oceanografificeservicel/is_prmmphp) is used to validate the DA results. It is
produced by SMHI and originates from digitized atearts. An advantage of this data is that the ice
charts are quality checked manually. However, thevback is that they include some subjective
steps. The temporal resolution of the IceMap SSivise a week in the experiment period. Sea ice
occurs most frequently in the Bay of Bothnia, withto 100 ice covered days per year. However, sea
ice can occur in all parts of the Baltic Sea andiBlastraits, demonstrating the need for careéattr

ment of sea ice in the SST analysis.

3.2In situ data

The observations from the German Maritiamel Hydrographic Agency (BSH) moored buoy
stations were collected as independent datasealidate the assimilation results. The observations
have high temporal resolution and long continu@eord. The second dataset was downloaded from

the Swedish Oceanographic Data Centre -SHARK dagaptp://sharkweb.smhi.3eSHARK mainly

contains low-resolution CTD data from a list of ¢gg&ned standard stations in the Baltic Sea, at wel
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as in Kattegat and Skagerrak. Only observationshige passed gross quality control procedures are
collected into the SHARK database. This procedhckides, for example, location checks and local
stability checks. In addition, validating data netofrom tide gauges are also used. The sea level
anomaly measurements from tide gauges (sea latalrst) are measured in a local height system and
values are presented relative to theoretical meanevel, a level calculated from many years ofuann
al means, which takes into account the effect md laplift and sea level rise. The values are awgtag
over one hour period.

Not all the available observations fromefiié, moored buoys, CTDs, tide gauges were iragud
in this study. To obtain the high assimilation dgyatesults, another quality control was applied fo
these data before they were used into assimilatimhvalidation. These controls include examination
of forecast observation differences by excludingsthobservations for which the difference between
the forecast and the measurement exceeded givathastimaximum deviations. The criteria were set
up empirically based on past validation resultshef model (Liu et al. 2013). Furthermore, stations
located on land, according to the NEMO-Nordic gnére excluded. We also removed the duplicate

records of these data.

The accuracy of observation error ifid@ift to be defined for all water point§he-ebservation

temporary-reading-errorand-imperfectretrievabatgm-The observation is commonly assumed to

be spatially irrelevant, which results in an ercorvariance matrix that is time-invariant diagonadl a

its diagonal elements equal the variance of observarror. In this study, the observation erroswa
estimated to one value as the sum of all obsenvatiertainties used in the analysis. Besides, the
uncertainties of satellite SST varies from coastht open sea, i.e. higher uncertainties in thetcoa
region relative to the open sea. We used a canstandard deviation value of 6Gtbased on the
standard deviation of satellite SST, which rangedfthe ~0.9C to ~0.5°C in the Baltic Sea (She et

al. 2007, Hayer et al. 2016).

4. Configuration of LSEIK _in the experiment
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As above mentioned, the initializationtbé filter requires an initial analyzed state ankbwa
rank approximation of the corresponding estimatiberror covariance matrix. The data assimilation
process was initialized by a free model simulatkirst the model was spinning up 20 years to re@ach
statistically steady state. Then a further (fre@-iategration covered the period 2006-2009 was car
ried out to generate a historical sequence of metdde. To reduce the calculation cost, we took a

snapshot in every 6 days and saved 183 state seatoch includes sea level, temperature and salini-

ty, in total to describe the model variability becausecsasive states are quite similar. The initial en-
semble provided an estimate of the initial modeteseand its uncertainty before the assimilation of
SST observations. The quantity of the model valitgbivas expected to be reasonably comparable
with the forecast error, which was dominated byplisement of mesoscale features and varies in
location and intensity seasonally. Further, theyv@gh frequencies of model variability were also
unfavourable in an ensemble of state vectors far &3a assimilation (Oke et al., 2005). Therefare,

band-pass filter was used to remove the unwanesfiéncy of model variabilitylo initial low rank

error_covariance matrix, @ultivariable Empirical Orthogonal Functions (EC#fjalysis was applied

on the 183 state vectors of model variables (sesl, leemperature and salinityh the North Sea and

Baltic Sea, error covariances of different varialdee nouniformand strongly dependent on whether

the variable resides in the open sea or coasta #ach state variable was then normalized by the

inverse of its spatially averaged variance at eveoglellevel. At last, 34 leading EOF modes were
kept and they explained 85% overall variability efitthe initial error covariance matrix was estirdate
by P%(t,) = LoU,LL , where thel, is composited by the leading EOF modes &ds diagonal

matrix with the corresponding eigenvalues on igggdnal. We used a time-invariant sample ensemble

to approximate the background error covariancenduiihe experimental period (Korres et al, 2004;

Liu et al. 2017). This stationary ensemble affoadgood approximation of the ocean’s background

error covariance. Meanwhile, it is computationafiicient for our objective.

A forgetting factor p was introduced to parameterize the imperfect mogiehmplifying the al-

ready existing modes of the background efiarger et al, 2006)rhe matrixU; was calculated by

U7t = p(r+ DTTT + LYH'R; *H,L; (8).
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The localization scale is another importdado the assimilation system, especially at thastal
region. Large correlation scale may transfer aitifiincrements to the positions far away from the
analysis observation during the DA process. Howesgrall correlation scale is prone to cause the
singularity of ocean state around analyzed observatnd break the continuity of the ocean state.
Hence, an unreasonable scale causes the instatfilitye model integration or degrades the assimila-
tion quality. Unfortunately, the accuracy lengtin the correlation is unknown for the North Sea and

Baltic Sea.The correlation length scale is to some extent nd@eat on the Rossby radius of defor-

mation (Losa et al., 2012), which varies from ~ R@0in the barotropic mode to ~ 10 km or even less

in the baroclinic mode (Fennel et al., 1991; Alsnat al, 2003)According to the former researches

like Liu et al. (2013, 2017), a length scale ofkf was specified for both the North Sea and Baltic
Sea in this study. Not that this value may bepawstect and more accurate correlation length needs
be tested foL SEIK. For example, spatially variable length scalesthe next step for the regional DA

simulations.

To define the forgetting factor, a one-nfositmulation experiment with varying the facimmvas

done in January 2010. At last, a facbo= 0.3 resulted in the best assimilation performancetieuy

we define a two-day assimilation window in assitimla experiment. As a result, the observations in

the two days before the assimilation time were useathlculate the innovation with observation oper-

ator. When we calculated the innovation we alsaghd the observation error according to the obser-

vation time by

€ =0.4 x exp(—0.15A¢t)_ (9),

hereAt is the absolute time difference between obsemdiime and DA time.
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5. Results

In the following sub-sections, we conducted twosruvith and without assimilation of the
SST observations from the OSISAF database, both with the above setup of the analysis system.
Accordingly, the runs with and without assimilatiare called ASSIM and FREE, respectively. We
considered the evolution of SST based on 48-hdadgl analysis from 1 January 2010 to 31 Decem-

ber 2010. Thet8-hourly forecasSST from two runs was assessed withservationdrom different

datasetThen we analyzed the impact of the data assiimilain the profile simulation of T/S. At last,

we evaluated the system performance with respesgtdsurfacanormalyand sea ice, respectively.

5.1 Comparison with satellite data

First, we presentetivo cases to show the ocean state before andth@eassimilation of the

OSISAF SST data in Fig. 2. The first case was gatelil January 2010, a date with clear weather and
many observations available. The model has obwvibffigulties in reproducing the observed SST.
The cold biases in the forecast were found in tkeg8rrak, west coast of the Baltic proper and the
Bothnian Bay, respectively. However, the warm égaappeared in the interior of the Baltic Sea and
the Kattegat. The largest deviation in the FREEEhed 2.2C at the Skagerrak. Apparently, tempera-

ture by assimilation analysis agreed with the Betalerived data much better. This correctionhat t

analysis step has allowed us to reduce the dewmiatidhe SST forecast from the observatioRse

The DA system simulation
was also verifiecit 2 June 2010, which has also many available OSI&#gervations. The biases on
2 June 2010 were obviously different from that @nJanuary 2010. Moreover, it was found they had a
roughly opposite bias signal. For example, relatovéhe OSISAF SST at the Baltic proper, Bothnian
Sea and Bothnian Bay, FREE produced relatively wanvaterat January 1hnd colder wateat 2
June(Fig. 2), respectively. After data assimilatione thnalysis increments were appropriately added

to the model field. In general, the SST DA has iowed thesimulatedSST in bothcaseqFig. 2).
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Maps of annual averaged RMSE of SST from twas relative to the IceMap observation are
shown in Fig. 3. Obviously, the RMSE in FREE an8SAM had different distribution in the Baltic
Sea. In general, FREE had smaller error in the &kak, eastern the Kattegat and the interior of the
Bothnian Sea relative to other subbasin of thei@&ka. The largest RMSE was found at the connec-
tion region between the Baltic proper and the Biatii$ea. This could be caused by the shallow wa-
ter, complicated bathymetry and large observatiasds in this area. It was also noted that the RMSE
was larger in the coast region compared to itgimtén the Baltic proper and Bothnian Sea. Aftee t
assimilation, the SST has been significantly impbvlhe RMSE of SST from ASSIM was generally
smaller than 1.0C. However, there were still some regions whereirh@ovements were relatively
small and the RMSE of SST was greater thar’@.0hese large errors were predominantly located at
the edge of the Baltic Sea and the Danish stfatsinstance, the RMSE of SST was greater than 1.2
°C at both the entrance of the Gulf of Finland amel west coast of the Bothnian Sea. The relatively
small improvements were regularly caused by the odaservations or the less accurate observations
near the coast water.

_____The overall daily averaged SST errors against tedlhp observations have been estimated
(Fig. 4). The observations had better coverageimnser and autumn than in winter and spring. The
variability of the number of observation directlifezted the assessment of DA results. The model
biases had pronounced seasonal variability, whazh dmall values in spring and winter. In general,
the assimilation provided better SST estimatior® free run had a RMSE of 1.4C. After the as-
similation, the RMSE was reduced to 1°G3 whereas the bias was reduced by 0CZ3\n interesting
feature was that the SST error reduction due tassémilation was almost consistent with the varia-
bility of the number of IceMap observations. Foamwle, the improvement became large with in-
creasing the number of IceMap observations fromdido June 2010. However, the number of ob-
servations was kept constant during the period-Nowember 2010 and the improvement shown in
both the bias and RMSE of SST did not exhibit largegability, which meant reliable performance of

the DA system.

5.2 Comparison with independent in-situ data
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The time series of T/S were compareth witlependent observations located at Arkona statio
(13.87E, 54.88N) in the Arkona Basin and at BY15 (20.t5, 57.33°N) in the Eastern Gotland Ba-
sin, respectively. These two stations were seletdecerify the experiment results because of their
relatively completed observation records for thpesiment period. In the Aona Basin, the water
depth was shallow and the water column can be migktd between surface and bottom water. Thus,
the bottom T/S was largely affected by the surtdyg®amic (Liu et al. 2014). Relative to observations
the model had warm biases at this station (FigFsg-temperatures-differ by-about-15-°Z2hbetween
summer-and-winteAt a depth of 25m, the observed temperature shalethrgest variability, which
was a good representation of the bottom charattsrisf the mixed layer. In mid-August, the temper-
ature was abruptly increased by'@t a depth of 25m and slightly decreased at seirf@spectively.

The reasoris thatthe surface water suddenly sinks to deeper layeng;h warm the deep water.

However, this dynamic process hasn't reached tmakbottom and it didn’t cause the obvious bot-
tom temperature variabilityFig. 9) Both FREE and ASSIM had reproduced this procebgreas
FREE showed larger temperature biases. To thatgainthe Arkona station, the surface observations
were missing, the comparison at 7 m depth veriftesl subsurface simulations. The observations
showed larger salinity variability in winter relati to summer. This pronounced seasonal variation is
associated with the variation of fresh river rurarfid net E-P (Evaporation—Precipitation) flux (Fu e
al, 2012). At a depth of 7 m, salinity was obvigushderestimated from April to September and over-
estimated after November although the ASSIM haghdij better results compared to FREE. The DA
also provided better simulation of salinity at 25apth. For example, the salinity bias in the Oetob
was reduced by 3 psu by DA. At a depth of 40 m,ghiéwater inflows were observed, resulting in
sudden increases of salinity. For instance, thaigalvas increased by 3.5 psu in February followed
by a decreasing trend. The variations were repmdiut both FREE and ASSIM, whereas the intensi-
ty of the decreased process is weakly simulateld avdifference of 3 psu and the inflow in March was
not strong enough relative to the observed onee@®@hbtons also showed a large salinity variability
amounts to 4-8 psu in the autumn. Although FREEA®S8IM had shown these changes, their mag-
nitude was obvious weaker than observations. Theiple reason was that the model’s resolution was

inadequate to well resolve the topography and eddi¢his area. Both the large runoff and the com-
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plicated bathymetry posed challenges for the mtwl&dckle the small-scale dynamic process in such
a shallow basin. A higher resolution model perhaps more preferable to study this dynamic pro-
cess.

The Eastern Gotland Basin has deepesrvdaipth compared to the ran Basin, in which the
water column is permanently stratified and the ¢laie lies at about 60—-80 m (Fu et al, 2012). The
mixing and sinking of T/S are hindered by the sgrstratification. Unlike observations in thekéna
Basin (Fig. 5), the CTD observations at BY15 hagdotemporal resolution with almost one observa-
tion per month. In the mixing layer, it can be seavdel had overestimated the temperature (Fig. 6).
At a depth of 10 m, ASSIM has remarkably improvee simulation of temperature relative to FREE.
The bias has been reduced B 3n the spring of 2010. At 175 m depth, observeagerature
showed very small variation. The reason was thatntiain source for deep water ventilation is the
saltwater inflows which are suppressed by runothimni a depth range of 75-135 m in the Eastern
Gotland Basin (Vali et al. 2013). As a result, updathe bottom water is very slow. Both FREE and
ASSIM overestimated the temperature in the sprimdj the beginning of summer of 2010. Further,
ASSIM has increased the temperature bias aftersomamer relative to FREE. This result might be
explained by that the strong correlation isn’'t estpd between surface and layers bellow the hakclin
because of the strong stratification in this basihich perhaps yield the artificial correction. Tée
fore, the improvement of the surface temperatuna@guarantee its positive influence on the bottom
temperature. To the salinity, the model had lessirate simulation with generally low salinity biase
at 10 m depth. ASSIM provided better salinity siatigdn compared to FREE. At 70 m depth, the
small variation of salinity was found after DA. Maver, at 175 m depth, the observation had very
small variability about 0.1 psu. In general, boxpeximents have reproduced these variations. How-
ever, FREE increased salinity by 0.2 psu from MahApril relative to the observation, which
caused the overall salinity overestimated amour@t 20psu. This increasing process wasn’t shown in
observations and the reason remained unclear. Fhiead shown slight improvement, but it still salt-
er than the observations.

The mixed layer depth (MLD) was calculagéédhe Arkona and BY15 station and compared with

the SHARK observation in Fig. 7. We used the temipee criterion to define the MLD, i.e., the depth
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at which the temperature deviated from the surfetee by 0.5°C (Fu et al., 2012). Figure 7 shows

that the MLD at Arkona had larger variability rél&tto the MLD at BY15. The reason contributed to

this feature is that the deeper water at Arkoreasy affected by wind forcing because of the shallo

bathymetry and well mixing, whereas the temperavargation in upper water at BY15 difficulty in-

fluences the deeper water because of the stroatifisaition. Both runs had reproduced the MLD var-

iability feature similar as the observations. Framaple, the minimum MLD appeared in summer,

which was about several meters. The assimilatiosatfllite SST caused strong changes in the MLD

at both stations, especially in winter. One exgli@mawas that the Baltic Sea was largely affected b

wind forcing and the winter wind was much strontiian the summer wind. Further, strong heating in

summer promoted stratification in summer and shibtile MLD.

Further,the temporal and spatial distribution thfe SHARK observationss shown in Fig.

These observations were unevenly distributed inBhkic Sea. In the Skagerrak, the observations
appeared at the Danish and Swedish coast. Howievéte Bornholmn Basin, Kattegat, and Baltic
proper, the observations mainly were found in thetral and the Swedish coast side. There were also
many observations in the Bothnian Sea and rareraditans in the central of the Bothnian Bay. It
must be noticed that there aren't SHARK observationboth the Gulf of Finland and Gulf of Riga
during the experiment period. Moreover, these SHARiles in the first four months were mainly
located from the Skagerrak to the Baltic propericiiare relatively rare in the northern Baltic Skea.

the Bothnian Bay, the observations are mainly @wtinter period.

Figure 9 shows the change of overall bias and RMSES with depth against the SHARK

dataset. In the Baltic Sea, DA had large impacthentemperature forecast in the water above 100 m.

The RMSE showed that the forecast of temperatuseokaiously improved from surface to thermo-

cline in the ASSIM and the improvements generadigrdased with depth. Above 100 m, the overall

RMSE of temperature in ASSIM was decreased by 24.88m 1.59 to 1.25C). It was also found

the temperature error had similar variability as wWarm biases in two runs. In the transition zdnhe,

RMSE in the ASSIM was reduced by 5.59% and -20.3bve and below 100 m relative to the

FREE, respectively. Below 90 m, the temperature alas over-adjusted, which changed the warm

bias to cold bias. It is worth noting that the n@mbf the deeper water observation in the tramsitio
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zone is substantially less than that in the B&ga. For the salinity, both RMSE and bias of the AS

SIM showed very minor changes relative to the FRiSitle the Baltic Sea. For the water above 100

m, the total RMSE of salinity was increased by 304@rom 1.15 psu in the FREE to 1.19 psu in the

ASSIM) in the transition zone and 1.04% (from O in the FREE to 0.97 psu in the ASSIM) in

the Baltic Sea.

5.3 Sea Level Anomaly

SLA represents a vertically integrated effect ¢ TS variations over the whole water col-
umn. The accurate simulation of SLA is thus a gwalicator of the model performance. Therefore,
validating the impact of SST assimilation on thawdation of SLA is very important to the Baltic Sea
forecast. The observations from the 24 tide gatafess were used. These gauge stations are mainly
located at the Swedish codskee Fig.8h)Since only the SST is assimilated in this stutg, SLA
observations are completely independent.

We calculated the RMSE and correlation coefficientsdoth the FREE and ASSIM against the

observations from tide gauges (Fig. 10). The oV&WSE was reduced by 1.8% and the correlation

coefficients were slightly increased. Among thesgiens, RMSE at the Oskarshamn was decreased

by 5.6%, which is larger than that in other statibhe minimum RMSE change of SLA was seen at

the Klagshamn. For the correlation coefficient, ioy@ment on the SLA by the DA is very small.

Simrishamn station showed the biggest change oéletion coefficient, which is 1.1%. The RMSE

and correlation comparison demonstrated that thie ¥ has generally positive effects on the fore-

cast of the SLAG yated
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In addition, the time series tfe SLA error discrepancy (ASSIM minus FREE) in two ras

four stations were selected to evaluate the sinaalaesults (Figll). These four stations were select-
ed to represent the model performance at diffgoesttions of the Swedish coa3two runsshowed

evidently different performance in these four stagi. The variability of the SLA differencebetween

two experimentsit the Smogen station had higher frequency comparether stations. The reason

was that the Smogen station was located at thsiti@m zone where the water had higher frequency
variations caused by the brackish Baltic in/outfluyvrelative to other three stationt these four

stations, e improvemerdg were mainly in later spring and summaerhilst the degraded simulations

were mostly happened after Mid-September, respgtiVhe SST assimilation had less impact in late

winter and early spring compared to other seadBesides, the impact of SST assimilation on SLA

simulation was not same in the four positions. iRetanceduring the period from Mid-November to

Mid-Decemberthe SLAiIn ASSIM was improved at Simrishamn and degraddub#i the Ratan and

LandsortNorra stations, respectivelihis phenomenon was possibly caused by the imperterela-

tion between SST and SLA in the stationary samgtasther, these steric small changes of SLA by

DA were what we expected because only SST was aatohinto Nemo-Nordic.

5.4 Seaice
Sea ice in the Baltic Sea occurs primarily in isth region and influences the Baltic climate.
Accurate detecting the sea ice is very useful ¢ontbrthern Baltic living because too much or tateli

sea ice can be a problem for wildlife and peopéa Be concentration (SI@nd Sea ice extent (SIE)

are twoimportant and common indicator to modeling seaeis@ronment. We assessed the @il

SIE from simulations against the IceMap observationBign 12-13 Differ from the daily evaluation

in Losa et al. (2014), the monthly mean SIC waslusaepresent the general status of sea ice in the
Baltic Sea. Besides, SIC in January, February aaceBber showed the variation of the sea ice in

winter.
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In January 2010, the observations showed lageagerage in the Bothnian Bay and the Gulf
of Finland and small SIC in the Gulf of Riga, resipeely. Model generally reproduced this distribu-
tion of sea ice. However, FREE simulated too mueh ise in the Gulf of Finland and the eastern
coast of the Baltic proper relative to observatidra example, SIC from FREE almost to 30% higher
than observations along the Estonia coastlineoutccbe seen that the SST DA reduced these biases.
The reason is the SST DA modified the thermal egjenby providing the well temperature fields
above the thermocline. The temperature in Febrbapame colder relative to January in the Baltic
Sea. As a result, the sea ice in February extetwléioe Bothnian Sea and the whole Gulf of Riga.
Observation also showed small SIC in Kattegat aka&trak. Model simulated higher SIC in the
Bothnian Sea with largest biases along the SwealishFinnish coast. As an example, the observed
ice in the Bothnian Sea wabaracterized by concentrations mainly smaller th&hwhereas modeled
ice in FREE had concentration greater than 0.@énshallow region of the Bothnian Sea. FREE also
had smaller ice coverage with lower SIC in the giton zone between the North Sea and the Baltic
Sea relative to IceMap. After the SST assimilatid8SIM reduced SIC in the Bothnian Bay and the
west coast of the Baltic Sea, which was closehéabservations. The ice in ASSIM didn’t have ob-
vious variation in Kattegat and Skagerrak yet. AB&lso reduced too much ice at the southern of the
Bothhomn Basin. The reason is that the satellif€ &ervations had limited accuracy near the coast

and they could bring artificial information intoghmodelingIn March, compared to observation, the

FREE produced low SIC in the western coast of ththBian Sea, Gulf of Finland, Gulf of Riga and

the connect zone between the Bothnian Sea andofGkihland. However, the model SIC in the FREE

was higher than IceMap in the interior the Bothnigay. For instance, the SIC from FREE in the

western Bothnian Sea was 40% higher than obsenvdtiothe south coast of the Arkona basin and

Baltic proper, the FREE failed to reproduce theiseas in observation. After the DA, the high SIC

was decreased in western Bothnian Sea and clogkattan IceMap in Bothnian Sea. In the Gulf of

Finland and Gulf of Riga, the SIC error was inceshi the ASSIM. In April, the large SIC error in

the FREE was shown in the Bothnian Sea, the BathBay, Gulf of Rig and Gulf of Finland, where

no clear improvements were seen in the ASStvDecember, sea ice coverage was smaller because

of relatively warm temperature compared to thabtimer winter month. Most of the sea ice with high
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concentration was observed at the edge of the Bothray. Nevertheless, high concentration ice in
FREE also happened at the transition zone betweeBdthnian Sea and Bothnian bay. Relatively,
ASSIM reduced the high concentration biases ofiseaBy contrast, both ASSIM and FREE had
lower concentration ice than observation in théezascoast of the Bothnian Sea. The SIC from AS-
SIM was relatively lower than that from FREE in therthern Finish coast, whereas the observations
had high concentration ice there.

The daily SIE from FREE and ASSIM was comeglawith observations in Fig.13. The observed

SIE was generally increased from January to Fepraad reached the maximum in mid-February.

During the period of March-May, SIE was decreaseteaperature was increasing. SIEs in both the

FREE and ASSIM experiments were generally undeneséd by comparison with the observation in

2010, especially in the period from Mid-March talga\pril. The SIE bias in both runs was roughly

increased from January to early April. In early ighe maximum negative bias of SIE was found to

be 105000 krhfor ASSIM and 10000 kffor FREE. The impact of SST assimilation on thE &hs

positive during the phase of sea ice formation. &@mple, the SIE bias was reduced 25000 &m

end of February and in the Mid-December. Howevaring the phase of sea ice melting (March to

April), the SIE error was increased in ASSIM evethvithe error of SST decreased. For example, the

SIE bias in ASSIM was increased by 42000 ketative to FREE in the early March. These incrdase

SIE error in March mainly happened in the Gulf ad&Rand Gulf of Finland (Fig.11).

6. Conclusion and discussions

A DA system based onlsSEIK filter has been coupled to the NEMO circulatroodel of the
North and Baltic Seas. The method was successipiyied for assimilating high resolution satellite
SST data. We demonstrated that, over the peri@Ddd, the agreement of the SST forecast with the
independent satellite observation was improved 29:93% in comparison with the regular forecast
without DA. The assimilation quality is directlylaged to the number of observation.

Compared with independent in-situ data from SHARIeresults-showethe everalRMSE

of temperaturesfHSwas reduced b21.381-686 and 5.59% for the water above 100 m inside and
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outside of the Baltic Sea, respectivedypd-decreased-by2-17%;respectively—Thesevarsabi HS
mainhy-oceurred-in-the-waterabove-10MHowever, in the deeper layers, the temperaturesligistly
degradedwhile-salinity-was-slighth-improvean the Baltic SeaThis is partially caused by the artifi-

cial correlation between surface layer and deepars. The improvement of temperature by SST DA

can't guarantee corresponding improvement of thiaiga The statistics displays the salinity RMSE

was increased by 1.04% and 3.48% in the trans#one and the Baltic Sea, respectivépth AS-

SIM and FREE have captured the main dynamic prdoethe Baltic Sea, for example, the inflow and

the sink. However, ASSIM is closer to the obserord relative to FREE.

The forecast results were furthealidaied withthe independent SLA observatiofidie result
shows that all RMSEs and correlations for all Zdtishs are smaller than 0.12 m and greater than

0.86, respectively. After DA, the SLAs at thesdistes have been slightly improved. In general, the

RMSE was reduced by 1.8%nd correlation coefficients wesdightly increased, respectively. Fur-
ther, the model-observation comparison at seldctigdstations indicates that these improvements are
mainly in later of spring and summer. The compassalso denote the SST assimilation has less im-
pact in the late winter and early spring relativ@ther seasons.

When compared with monthly mean observations of, $t€h assimilation run and free run

reproduced maispatialdistributions of sea ice in the Baltic S&aring the sea ice formation period,

the SST assimilation has improved the resultSIGffrom FREE in the Gulf of Finland, the Bothnian
Sea and eastern coast of the Baltic proper. Howewvieor improvements were found in Kattegat and

SkagerrakBesides, over the sea ice melting period, the Staparison showed the SST assimilation

increased the SIE error, especially in the GuFiofand and Gulf of Riga.

The daily MLD from two runs has been compared it observations at Arkona and BY15

stations. Model could capture the variability featuof the MLD. Similar as Fu et al.(2012), it was

found that SST assimilation had less impact orMh® in summer than that in winter. In general, the

SST DA produced less influences on the MLD in tBegkr region (BY15) relative to that in the shal-

low region (Arkona).

Further, the reliability of the DA systesnworth being assessed. In Rodwell et al.(208®er-

fect reliable system error variance for ensembéakation was calculated by the sum of the vamanc
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of the sample ensemble, the square of innovatiagfinbietween observation and model) and the vari-

ance of observation at assimilation time. In thiglg, we used a constant observation error sintolar

Rodwell et al. (2016) because our DA design isedéht from that paper. The major difference be-

tween these two studies is that we estimate thkegbagnd error covariance from stationary ensemble

and avoid the perturbation of observation erroreréfore, the variance of the sample ensemble and

observation is univariate and the diagnostic ofabsimilation stability can be directly obtainednfr

the forecast error like the RMSE in Fig.4.

The results of the SST assimilation are encongagnd the assimilation helps to ameliorate
some model deficiencies such as the simulatiorafice in the Gulf of Finland. However, some prob-
lems need to be further addressed in the SST DAdtuture: firstly, the SST assimilation has worse
influence on the simulation of salinity in the uppeyers and temperature in the deeper layers. ebsa
al.(2012) denoted that the salinity simulation @uadrucially depends on the assumptions about the
model and data error statistics. Here a statioeapemble sample was used to represent the correla-
tion between T/S and between surface and deep.\idtese relationships could be changed with the
varying dynamics and forcing conditions. More safibated assumption should be used in the DA of
Baltic Sea. Secondly, the SHARK observations ia gtudy are absent at the Gulf of Finland and Gulf
of Riga. This denotes the validation results withARK observation didn’t include the evaluation of
the simulation of T/S in deep water of these twsilm Thirdly, the univariate localization scaleds
in this study could be another problem. The spreadif observation information straggdepended
on the correlation scakround-the-ebservation-pesitiofihe large localization scale can introduce the
artificial information, which could degrade the iasation quality. A flow-dependent background
error covariance with varying correlation scale rbaymore appropriate for the Baltic Sea with com-
plex bathymetry and rich dynamics. Fourthly, theio&e sensing observations near the coast could
have large bias because of the limit of the insemiritself. More strict quality controlling method

needed to be used for the satellite coastal obsengsbefore their assimilation.
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Figure 1. Geographical domain and bathymetry (irofthe NEMO-Nordic configuration.
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Figure 2. Map of SST from FREE (a,e), OSISAF (b,ASSIM (c, g) and the assimilation increments

(d, h) on 11 January 2010 (first row) and 2 JunE02@econd row), respectively.
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801 Figure 3. Map of the RMSE of SST from ASSIM (leéinel) and FREE (right panel) calculated

802 against IceMap SST in 2010, respectively.
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