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Received and published: 27 March 2018 

The marine status of the Baltic Sea is highly variable and influenced by the forcing from 

atmosphere and freshwater influx due to shallow topography and semi-enclosed restriction.  As 

a stable observation source, the high-resolution SST from satellite is rather important to 

improve the ocean operational forecast to serve the Baltic industry needs.   The  article  of  

“Assimilating  High-resolution  Sea  Surface  Temperature  Data Improves  the  Ocean  Forecast  

in  the  Baltic  Sea”  use  a  localized  Singular  Evolutive Interpolation Kalman (SEIK) filter to 

assimilate the OSISAF SST during one year of 2010. Compared with dependent and 

independent observations, the evaluation of the model runs with and without assimilating the 

SST shows the SST modeling has been improved clearly.  This study is suitable for publication 

in OS, but there are still some obvious  defects like  the  experimental  illustration  is  not  clear,  

lack  of conclusions  or analysis methods to inspire the readers.  

We appreciate the referee for the good comments, which definitely contributes to the 

improvement of this study. Our responses are in blue.   

The main comments are listed as follow:  

1) In this study, only to assimilate the OSISAF SST in the Baltic sea.  In fact, there are more 

SST candidates with equivalent high-resolution like OSITA (CMEMS) and RTG_SST_HR 

(http://polar.ncep.noaa.gov/sst/rtg_high_res/). So if assimilating one or two additional SST 

products, the related results will be more help the reader to well understand about them.  On the 

other word, the special features about the OSISAF SST in the Baltic Sea have not been 

highlighted at current, which looks not to support the study focused on it.  

We thank the reviewer for this comment. We used the OSISAF in this study for a couple of 

reasons. First, it is level 2 product and is retrieved directly from the satellite, which means there 
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is no hind-analysis information included; Second, the OSISAF has a high resolution in the 

Baltic Sea, which makes it more suitable for our operational forecast system. 

In the revised manuscript, we added a few sentences to clarify: 

“For operational forecast, the SST from OSISAF is the most important dataset in the Baltic Sea 

because it differs from hindcast analyzed product like OSTIA (Operational SST and Sea Ice 

Analysis) data. As a level 2 product, the OSISAF SST has both good temporal and spatial 

coverage in the Baltic Sea. As there is no hindcast information included in the OSISAF SST, we 

are able to assess direct impacts of assimilating SST observations” 

2) Lines 163-165, this SST product from AVHRR is available twice daily. It is not clear how to 

assimilate in the experiment.  The assimilation time window is daily?  How to calculate the 

innovation, is it asynchronous?  

In section 3.1, we mention “only the subskin SST at night, which is comparable to in situ (buoy) 

measurement, is used …”.  

In the revision, we clarified how to calculate the innovation: “Further, we define a two-day 

assimilation window in the assimilation experiment. As a result, the observations in the two 

days before the assimilation time were used to calculate the innovation with observation 

operator. When we calculated the innovation we also changed the observation error according to 

the observation time by  

ε = 0.4 × exp	(−0.15∆t)      (9),  

here ∆t is the absolute time difference between observation time and DA time.”  

3) In the first paragraph of 3.1, the assimilated SST has been filtered by the quality. But it is not 

clear how to consider the sea ice. Do you use the sea ice concentration of OSISAF to mask the 

SST product, and how to do?  

We didn’t use the sea ice concentration of OSISAF to mask the SST product. By the quality 

filter, we checked observation position, innovation relative to model result and the quality flag 

provided by OSISAF. If the model is covered by sea ice, the SST observation will be excluded.  



3 
 

4) The observation error for the OSISAF SST is important for this study, is it a constant of 0.5 

degree used? As a good consistence check, some diagnostic about the assimilation stability like 

Rodwell et al. (2016) is beneficial to understand the system reliability and the observation error. 

Rodwell,  M.  J.,  Lang,  S.  T.  K.,  Ingleby,  N.  B.,  Bormann,  N.,  Hólm,  E.,  Rabier,  F., 

Richardson, D. S., and Yamaguchi, M.:  Reliability in ensemble data assimilation, Q. J. Roy. 

Meteor. Soc., 142, 443–454, doi:10.1002/qj.2663, 2016. 

We agree that consistency check and assimilation stability are important for operational forecast 

systems with DA. We used a constant observation error similar to Rodwell et al. (2016) in this 

study, but our DA design is different from that paper. The major difference between these two 

studies is that we estimate the background error covariance from stationary ensembles and avoid 

the perturbation of observation error. Therefore, the diagnostic of the assimilation stability can 

be directly obtained from the forecast error, like the RMSE, in Fig.4, which shows comparable 

bias and RMSE in the assimilation and free forecast.   

In the revision, we cited the Rodwell et al. (2016) and discussed the assimilation stability in 

section 6. 

The corresponding text are added: 

“Further, the reliability of the DA system is worth being assessed. In Rodwell et al. (2006), a 

perfect reliable system error variance for ensemble assimilation was calculated by the sum of 

the variance of the sample ensemble, the square of innovation (misfit between observation and 

model), the variance of observation at assimilation time. In this study, we used a constant 

observation error similar to Rodwell et al. (2016) because our DA design is different from that 

paper. The major difference between these two studies is that we estimate the background error 

covariance from stationary ensembles and avoid the perturbation of observation error. 

Therefore, the variance of the sampled ensemble and observation is univariate and the 

diagnostic of the assimilation stability can be directly obtained from the forecast error like the 

RMSE in Fig.4.” 
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5)   The   IceMap   has   been   used   for   evaluation   as   one   independent   SST  observation. 

It   is   not   objective   and   only   twice   for   one   week.  In   fact, another   surface   water   

temperature   data   set   from   SMHI   collected   by   Ferry 

(http://www.smhi.se/hfa_coord/BOOS/Ferrybox/BSNI/BSNI-Wtemp.png)  is  more useful and 

independent for this study. 

We agree that Ferrybox data is a very good source for model evaluation. In this study, we aim to 

evaluate the overall impact of OASIF SST product on the model forecast in the Baltic Sea. In 

this sense, the IceMap data is more preferable due to its spatial coverage and quality while the 

Ferrybox data has limited spatial coverage. At the same time, we have also used the independent 

in situ SHARK observations to verify the experiment results. The Ferrybox data may 

corroborate our conclusions but we think it is not a critical factor for our evaluation and 

conclusions. 

6) The two in situ observations at Arkona and BY15 is super case to show the impact of 

assimilating SST only. It is valuable to do more specific analysis by diagnosing dynamic 

variables.  Firstly, investigating the mixed layer depth in the two runs can clearly show the 

mixing strength for Fig.5 and Fig.6.  Secondly, the temp/salinity misfits in vertical can be 

shown and mutual authentication with the SHARK results. 

We thank the reviewer for this important comment. To address the reviewer’s comment, we 

compared the mixed layer depth in the two runs (Fig. 7) in the revised manuscript. We also used 

the SHARK data to examine the misfits of temperature and salinity at both inside and outside of 

the Baltic Sea(Fig.9).  

In section 5.2, we added  

“The mixed layer depth (MLD) was calculated at the Arkona and BY15 station and compared 

with the SHARK observation in Fig. 7. We used the temperature criterion to define the MLD, 

i.e., the depth at which the temperature deviated from the surface value by 0.5 oC (Fu et al., 

2012). Figure 7 shows that the MLD at Arkona had larger variability relative to the MLD at 

BY15. The reason contributed to this feature is that the deeper water at Arkona is easy affected 

by wind forcing because of the shallow bathymetry and well mixing, whereas the temperature 



5 
 

variation in upper water at BY15 difficulty influences the deeper water because of the strong 

stratification.  Both runs had reproduced the MLD variability feature similar as the observations. 

For example, the minimum MLD appeared in summer, which was about several meters. The 

assimilation of satellite SST caused strong changes in the MLD at both stations, especially in 

winter. One explanation was that the Baltic Sea was largely affected by wind forcing and the 

winter wind was much stronger than the summer wind. Further, strong heating in summer 

promoted stratification in summer and shoaled the MLD.” 

7) Based on the current results, it indicates the salinity looks no remarkable improvement.  

However, the salinity peak in Sep 2010 at 7 m can be reduced by assimilation even this model 

run has an underestimation before. This event is a nice case to explore which factor contributes 

that positive correction. 

We appreciate the reviewer’s comment, but it is hard to attribute the improvement in September 

2010 to a specific factor. There are a couple of reasons for this: firstly, at the depth of 7 m, the 

model salinity was strongly affected by the simulation of advection, mixing and E-P flux. Bias 

in any of these factors could contribute to the large bias especially after mid-September. In other 

words, any improvement of these factors also helped to correct the salinity bias. Secondly, the 

salinity at 7 m is generally decreased irrespective of the model bias, suggesting that the method 

is stable. Therefore, it is very likely that the improvement is a cumulative effect of our data 

assimilation, including the effect of the changes of circulation and mixing (shown in the mixed 

layer depth in Fig. 7).  

8) Fig8 shows the vertical impact for temp/saln.  It is better to separate into two parts internal 

and out of Baltic sea. 

We separate the Bias and RMSE calculation in the two regions now. The figure caption of Fig. 

8 was changes as Fig. 9. 
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Figure 9. The overall RMSE and bias of temperature (up panel) and salinity (down panel) from 

FREE and ASSIM relative to observations as a function of water depth inside (b,d) and outside 

(a,c) of the Baltic Sea.  

The corresponding text are changed: 

“Figure 9 shows the change of overall bias and RMSE of T/S with depth against the SHARK 

dataset. In the Baltic Sea, DA had large impact on the temperature forecast in the water above 

100 m. The RMSE showed that the forecast of temperature was obviously improved from 

surface to thermocline in the ASSIM and the improvements generally decreased with depth. 

Above 100 m, the overall RMSE of temperature in ASSIM was decreased by 21.38% (from 

1.59 to 1.25 oC). It was also found the temperature error had similar variability as the warm 

biases in two runs. In the transition zone, the RMSE in the ASSIM was reduced by 5.59% and -
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20.31% above and below 100 m relative to the FREE, respectively. Below 90 m, the 

temperature was also over-adjusted, which changed the warm bias to cold bias. It is worth 

noting that the number of the deeper water observation in the transition zone is substantially less 

than that in the Baltic Sea. For the salinity, both RMSE and bias of the ASSIM showed very 

minor changes relative to the FREE inside the Baltic Sea. For the water above 100 m, the total 

RMSE of salinity was increased by 3.48% (from 1.15 psu in the FREE to 1.19 psu in the 

ASSIM) in the transition zone and 1.04% (from 0.96 psu in the FREE to 0.97 psu in the 

ASSIM) in the Baltic Sea.” 

 

9) The impact on SLA looks very small so I suggest replacing the related figure and table by a 

short paragraph. 

 We thank your good comment. We removed the Table 1 and added a Figure to show the 

variation by DA.  

“We calculated the RMSE and correlation coefficients for both the FREE and ASSIM against 

the observations from tide gauges (Fig. 10). The overall RMSE was reduced by 1.8% and the 

correlation coefficients were slightly increased. Among the stations, RMSE at the Oskarshamn 

was decreased by 5.6%, which is larger than that at other station. The minimum RMSE change 

of SLA was seen at the Klagshamn. For the correlation coefficient, improvement on the SLA by 

the DA is very small. Simrishamn station showed the biggest change of correlation coefficient, 

which is 1.1%. The RMSE and correlation comparison demonstrated that the SST DA has 

generally positive effects on the forecast of the SLA.” 
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Figure 10. The improvement (%) of correlation coefficient and RMSE for the SLA at 10 tide 

gauges stations. The positions are shown in Fig. 8b.   

Further, we also replaced the old figure 9 by Figure 11 to show the bias variation after data 

assimilation.  

 

Figure 11. The difference of SLA biases between ASSIM and FREE against observations as a 

function of time at four observing stations. 
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10) Fig. 10 shows an improvement by assimilating SST. But the quantitatively comparison with 

the OSISAF concentration in the time series is helpful to know the impact in different sea ice 

seasons. 

We added a new figure showing the comparison of monthly mean sea ice concentration in 

March and April and we also added the time series of the sea ice extent (SIE). 

In the manuscript, we revised the text as: 

“In March, compared to observation, the FREE produced low SIC in the western coast of the 

Bothnian Sea, Gulf of Finland, Gulf of Riga and the connect zone between the Bothnian Sea 

and Gulf of Finland. However, the model SIC in the FREE was higher than IceMap in the 

interior the Bothnian Bay. For instance, the SIC from FREE in the western Bothnian Sea was 

40% higher than observation. In the south coast of the Arkona basin and Baltic proper, the 

FREE failed to reproduce the sea ice as in observation. After the DA, the high SIC was 

decreased in western Bothnian Sea and closer to that in IceMap in Bothnian Sea. In the Gulf of 

Finland and Gulf of Riga, the SIC error was increased in the ASSIM. In April, the large SIC 

error in the FREE was shown in the Bothnian Sea, the Bothnian Bay, Gulf of Rig and Gulf of 

Finland, where no clear improvements were seen in the ASSIM.” 

       “The daily SIE from the FREE and ASSIM was compared with observations in Fig.13. The 

observed SIE was generally increased from January to February and reached the maximum in 

mid-February. During the period of March-May, SIE was decreased as temperature was 

increasing. SIEs in both the FREE and ASSIM experiments were generally underestimated by 

comparison with the observation in 2010, especially in the period from Mid-March to early 

April. The SIE bias in both runs was increased from January to early April. In early April, the 

maximum negative bias of SIE was found to be 105000 km2 for the ASSIM and 10000 km2 for 

the FREE. The impact of SST assimilation on the SIE was positive during the phase of sea ice 

formation. For example, the SIE bias was reduced 25000 km2 at the end of February and in the 

Mid-December. However, during the phase of sea ice melting (March to April), SIE error was 

increased in the ASSIM even with the error of SST decreased. For example, the SIE bias in the 
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ASSIM was increased by 42000 km2 relative to FREE in the early March. These increased SIE 

error in March mainly happened in the Gulf of Riga and Gulf of Finland (Fig.11).” 

 

Figure 13. The daily sea ice extent from FREE, ASSIM and IceMap and the sea ice extent bias 

(modelled minus observed field), respectively.  

 

Other small issues: 

1) Line 137, the operator of Li in Eq. 3 has no illustration. 

We added the line for the operator L illustration. 

2) Line 159, “OSISAF product” is it means more general products or only SST? 

To clarify, we delete “ products are using in priority the European Meteorological satellites 

METEOSAT and MetOp and also several American satellites operated by NOAA, DMSP and 

NASA. Its” 

3) Line 229, “model layer” replaced by “model level” because the model is not a layered model. 

It was corrected. 

4) Line 233, the forgotten factor is constant, or how to be defined? 

We add a sentence “ To define the forgetting factor, a one-month simulation experiment with 

varying the factor ρ was done in January 2010. At last, a factor ρ = 0.3 resulted in the best 

assimilation performance.”  At the end of Section 4. 
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5) Line 257, the evolution of SST based on 48-hourly local analysis.  Does it mean all the SST 

comparison afterward use the 48 hourly forecast from the model? 

Yes, we use the 48-hour forecast SST in the all comparison with observation.  

6) Fig 1, the text is hard to identify. It is better to show the rivers involved in the model. 

The two stations of Arkona and BY15 can be shown in Fig. 1 (or Fig. 7). 

We add the Neva River and the position of Arkona and BY15 in Fig.1 

7)  Fig  6,  the  observed  temperature  at  70  m  looks  missing  at  Nov  2014,  especially 

compared with other two depths or the salinity. 

This temperature at 70 at BY15 station hasn’t observation value at Nov 2010 in SHARK 

database.  

8) Line 289, the obvious improvement in the Gulf of Finland.  However, based on the snapshot 

of the observed SST distribution in Fig. 2 there are no observations.  

The OSISAF observation at a specific basin may be missing like the Figure 2. Our Figure 3 is 

based on annual averaged IceMap SST comparison in 2010.  

9) Line 278, “The model SST forecasts in both winter and summer (Fig2)”.  It is not corrected 

to say SST forecast in Fig.  2 because they only show the analyzed fields and the related 

increments, which not supports this conclusion. 

Thank you. We changed it to “the SST DA has improved the simulated SST in both cases 

(Fig.2)”  

10) Line 311, “The temperatures differ by about 15-22C between summer and winter” is 

confused. Does it mean the seasonal variability in observation? 

We intended to show the seasonal variability. Since we only done one-year simulation, we 

delete the sentence “The temperatures differ by about 15–22 oC between summer and winter.” 

to avoid confusion.  

11) Line 314, “The reason perhaps ...” this kind of illustrations in this study require some proofs 

like MLD diagnosing or others. 
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We add the mixed layer depth analysis, which will support our conclusion.  

12) Section 5.1, which mean ssh fields are used for tide gauges and the model simulations? 

Since the mean SSH fields may be different from each other in the model and observation we do 

the comparison of SLA in this study. We calculated the mean SSH by directly averaging the tide 

gauges or model fields.  
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We’d like to thank the referee (S. Losa) for her useful comments and suggestions, 

which helps to greatly improve the quality of our manuscript. Our responses are in 

blue. 

 

Interactive comment on “Assimilating High-resolution Sea Surface Temperature Data 

Improves the Ocean Forecast in the Baltic Sea” by Ye Liu and Weiwei Fu 

S. Losa (Referee) 

svetlana.losa@awi.de 

Received and published: 9 April 2018 

This paper describes an experience in assimilating a high-resolution satellite sea surface 

temperature (SST) product into a NEMO-based numerical model of the Baltic Sea. There is no 

doubt that the Baltic Community urgently requires a good quality forecast of the Baltic Sea 

hydrography. And there is no doubt that any forecasting system would definitely benefit from 

assimilating observational information. These circumstances provide a strong motivation for 

the study discussed. I am, however, not sure that this data assimilation experience is sufficient 

enough to be documented in a peer-reviewed publication (at least with respect to improving 

forecast, as stated). In its present form, I cannot recommend the manuscript for publication. 

Below I list my comments the authors might want to consider. 

We thank the referee for reviewing our manuscript, acknowledging the importance of our 

topic, and for her suggestions on how to improve the manuscript. 

General comments 

The Title does not correctly reflect the subject/results of the paper. My concern is the 

statement “Improves the Ocean Forecast”: 1) because of the use of atmospheric reanalysis 

(not the forecast) as the forcing; and 2) since it is not clear from the text whether the authors 

evaluate the system state after the LSEIK analysis or in the forecast phase (just before the 
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analysis). Same is to the statements in lines 20 – 21, 86, 278, 440. “the Ocean Forecast in the 

Baltic Sea” sounds a bit odd. 

1) We changed the title a bit to “Assimilating High-resolution Sea Surface Temperature Data 

Improves the Ocean Forecast Potential in the Baltic Sea”. We think the new title more 

correctly reflect the subject as our main focus is to demonstrate the potential impact of SST 

assimilation on the model predictions of the NEMO-Nordic, which aims for operational 

forecast. We believe that the reanalysis forcing will not impair this objective of our paper. In 

this study, we intended to showcase how useful the DA method and SST dataset are within the 

framework of NEMO-Nordic. One advantage of the reanalysis forcing is to reduce the 

uncertainty/bias of results arising from NWP forcing. We chose the atmospheric reanalysis to 

force the model, which, we thought, may reduce the intervention of the atmospheric errors 

regarding the analysis of the experiment results.  

 

2) In the revision, we clarified this issue by pointing out that the system evaluation was done in 

the forecast phase after the LSEIK filter analysis (Fig.2). In this study, we firstly verified the 

system with two cases in two different seasons. Then we assess the impact of the SST data 

assimilation on Baltic forecast based on 48-hours forecast.  

In the first paragraph of section 5, we added 

 “We considered the evolution of SST based on 48-hourly local analysis from 1 January 2010 to 

31 December 2010. The 48-hourly forecast of SST from two runs was assessed with 

observations from different dataset (see Fig. 2 for details).” 

 

There is a lack of detailed information on the data assimilation set up: whether the ensemble 

error statistics (or ensemble of model trajectories) dynamically evolve(s) in time or there is just 

one model trajectory and at the analysis step (every 48 hours) a constant (as it looks like given 

the expression “a stationary ensemble sample” in line 465, the suggestion on “a flow-

dependent background error covariance” in line 472) covariance matrix represents the model 
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error statistics: The SEIK and LSEIK are normally considered as ensemble-based data 

assimilation methods. It would be nice if the authors clearly emphasize what is 

different/distinct in their application and why they use (L)SEIK for the analysis while they do 

not use any ensemble at all. Why do the authors not use the flow-dependent background error 

covariance? Do the authors really “use a localized Singular Evolutive Interpolated Kalman 

(SEIK) filter” just only “to characterize correlation scales in the coastal regions”? Please 

describe the model variables used to construct the multivariate error covariance matrix and 

included in the state vector. 

 

According the reviewer’s comment, we added more details to clarify these points. we used a 

stationary ensemble to statistically estimate the background error covariance. We did not use 

time-varying ensemble based on a couple of considerations: 1) firstly, the stationary ensemble 

is computationally efficient as we don’t need to integrated many model states like the EnKF. 

Secondly, the time-invariant ensemble was shown to be able to mimic the signature of 

circulation in the background error covariance (Fu et al., 2011; Liu et al., 2013). Time-varying vs 

time-invariant ensemble is an interesting topic with respect to approximating the background 

error covariance (Korre et al. 2004). However, the major objective of this study is to validate 

the assimilation of high resolution SST data. Given the number of ensemble samples used in 

this study and our previous study, we are confident that the stationary ensemble can produce 

robust analysis (Liu et al. 2013). 

 

We added the text in the revision:” We used a time-invariant sample ensemble to approximate 

the background error covariance during the experimental period (Korres et al, 2004, Liu et al. 

2013, 2017). This stationary ensemble affords a good approximation of the ocean’s 

background error covariance. Meanwhile, it is computationally efficient for our objective.” 

 

We described the LSEIK in more details in the revised manuscript. 
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 Similar to other ensemble data assimilation EnOI or EnKF, the SEIK filter method includes both 

the global and local analysis based on different consideration. We used local analysis version of 

SEIK (LSEIK) with domain localization in this study (Neger et al. 2007). We used a localization 

scale of 70km for the Baltic and North Sea. Now we moved the following text from Section 4 to 

Section 2.2: 

“Localization was used to remove the unrealistic long-range correlation with a quasi-Gaussian 

function and a uniform horizontal correlation scale (Liu et al. 2013). It was performed by 

neglecting observations that were beyond correlation distance from an analyzed grid point. In 

other words, only data located in the “neighborhood” of an analyzed grid point contribute to 

the analysis at this point.”  

 

We stated that the state vector includes the sea level, temperature and salinity. The same 

model variables (sea level, temperature and salinity) were also used in the multivariable EOF 

analysis.  

 

To further clarify the DA setup, we also added the text about the observation error and forget 

factor: “To define the forgetting factor, a one-month simulation experiment with varying the 

factor ρ was done in January 2010. At last, a factor ρ = 0.3 resulted in the best assimilation 

performance. Further, we define a two-day assimilation window in assimilation experiment. As 

a result, the observations in the two days before the assimilation time were used to calculate 

the innovation with observation operator. When we calculated the innovation we also 

changed the observation error according to the observation time by  

ε = 0.4 × exp	(−0.15∆t)      (9), 

here ∆t is the absolute time difference between observation time and DA time. “  

 

In the present form the conclusions include only general statements on the impact of SST DA, 

which does not, however, add anything new to what was drawn from previous studies, and 

there is nothing specific with respect to assimilating the OSISAF SST. More emphasize could be 
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made on benefits due to the resolution of the OSISAF SST product, then a comparison against 

similar experiments but assimilating satellite SST data with coarser resolution are required. 

 

The major objective of this study is to demonstrate the potential impact of assimilating OSISAF 

SST product on the forecast of the Baltic Sea. We showed in detail the potential of SST data 

assimilation for the forecast of temperature, salinity, sea level, mixed layer depth and sea ice. 

This study provides a clear and informative image to the Baltic Sea community for improving 

the forecast of different fields in the future. It is also the first time that OSISAF SST was 

assimilated into NEMO-Nordic model, which will replace the old operational forecasting 

system and serve the operational purposes at SMHI.  

 

We summarized some new results in this study: 

1. We demonstrated the potential of SST assimilation for the Baltic Sea forecast with the 

OSISAF Level 2 product, which is not contaminated by hind-cast information.  

2. We provided overall validations of the potential impact of SST assimilation for the 

forecast in the whole Baltic Sea (both shallow basins and much deeper regions such as 

the Gotland Basin). 

3. We found that the assimilation of SST could generally improve the forecasts of sea 

level from late spring to summer.  

4. We showed an in-depth evaluation of the impact of SST assimilation on sea ice 

forecast by comparing the model with the observations of sea ice concentration (SIC) 

and sea ice extent (SIE). We found that the impact of SST assimilation on sea ice 

forecast is time-dependent, more important during the phase of sea ice formation 

than sea ice melting (March-April). 

 

The assimilation of coarser resolution of the OSISAF product into the same model is 

interesting, but we would respectfully think it is beyond the scope of this study. Actually, 
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previous studies showed that proper ‘observation-thinning’ schemes were very helpful to 

assimilate high-density remote sensing data. For instance, Li et al (2009) assimilated 0.3ºx0.3º  

satellite SST observation in the Chinese shelf-coastal seas. With an ensemble-based 

observation-thinning scheme, the assimilation of coarser resolution SST (0.5ºx0.5º) can yield 

an Analysis Error variance (AEV) of 0.1ºC. In the Baltic Sea, we expect that the impact of 

coarsening SST data on the forecast is weakened to some degree, depending on the actual 

thinning scheme. 

Li XC, Zhu J, Xiao YG, Wang RW (2010) A Model-Based Observation-Thinning Scheme for the 

Assimilation of High-Resolution SST in the Shelf and Coastal Seas around China Journal of 

Atmospheric and Oceanic Technology 27:1044-1058 doi:10.1175/2010jtecho709.1 

  

Specific comments 

 

Lines 12-13: overall the sentence sounds misleading; moreover, for the localised SEIK you can 

use the LSEIK abbreviation. Missing reference to Nerger et al. (2006). 

Thank you. We now used the LSEIK for the data assimilation method.The Nerger et al. (2006) 

was added as a reference in Section 2.2.  

 

Line 20 (also line 453): I am just wondering whether 0.4% difference is a statistically 

significant in this particular application. 

 

The model SLA was highly correlate with observation. The improvement of SLA varies 

considerably with stations.  The 0.4% difference is the overall impact of the SST assimilation on 

the SLA.  Since it is difficult to test the significance of the overall impact, we removed this 

sentence.  

 

Line 119: please provide a reference to the used “runoff database”. 

We added the reference for the river runoff data: 
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Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment 

similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrological Sciences 

Journal, 61, 255–273, 2016. 

 

Lines 205, 206: the discussed is the representation error (Janji´c et al. 2017, 

https://doi.org/10.1002/qj.3130). 

There is different definition of the components of observation error in different consideration 

and theory. For clarify, we removed the discussion “The observation error mainly comes from 

the observation instrument itself, the observation representativeness, the temporary reading error 

and imperfect retrieval algorithm.” 

Part 4, Lines 224-225, 228: Please explicitly determine the state vector – which particular 

model variables it includes. 

In the reversion, we added one sentence to clarify: 

 The sate vector includes sea level, temperature and salinity.  

 

Lines 227-228: editing is required for the sentence “There does not exist uniform nature 

of error covariance for the variables of the model state vector and for the coastal zones 

” 

Thank you. We rephrased the sentence as : “In the North Sea and Baltic Sea, error covariances 

of different variables are not uniform and strongly dependent on whether the variable resides in 

the open sea or coastal zone.” 

Line 233: “a forgetting factor” or “the so-called forgetting factor” 

Thank you. we use “the forgetting factor” as the same using in Nerger et al. (2006). 

 

Liner 236: missing references to Janji´c0 et al. 2011 

We added this reference Janjić  et al. (2011) 

 

Lines 247-248: The sentence “The correlation length scale : : :.” is a copy-paste from 
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Losa et al. 2012; please rephrase and provide the references, including the references 

to the original studies by reporting on the estimates of the Rossby radius of deformation 

(Alenius et al., 2003; Fennel et al., 1991). 

we rephrased this sentence and added the Losa et al., (2012) as a reference.  

“The correlation length scale is to some extent dependent on the Rossby radius of deformation 

(Losa et al., 2012), which varies from ~ 200 km in the barotropic mode to ~ 10 km or even less 

in the baroclinic mode (Fennel et al., 1991; Alenius et al, 2003).” 

 

Lines 271-276: the discussion on the bias seasonality: while, in general, the statement 

(l. 271) is true and was also discussed in Losa et al. 2014, it is difficult (if ever necessary) 

to conclude anything in this respect given just 2 snapshots for the increments (Figure 2). 

Thanks for good comment. We removed the seasonally bias discussion related to Figure 2. 

Line 457: “significantly improved” – this is not obvious. 

we removed “significantly”. 

Line 14: should it be “improvements of” instead of “improvements on”? 

we revised it to “improvements”. 

Lines 33-35: please provide references; 

we added a reference Omstedt et al. 2014: 

Omstedt, A., Elken, J., Lehmann,A., Leppäranta, M., Meier, H.E.M., Myrberg, K., and 

Rutgersson, A.: Progress in physical oceanography of the Baltic Sea during the 2003–2014 

period. Progress in Oceanography, 128, 139-171, 2014. 

 

Line 38: “a numerical model” instead of “a numeric model”; 

It was fixed. 

Line 46: “joint effort” instead of “joints effort”; 

It was fixed. 

Line 49: “used for the operational” instead of “used to the operational”? 

It was fixed. 
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Line 85: “sea level anomaly” instead of “sea level Anomaly”; 

It was fixed. 

Line 271: “model forecast possibility” – please remove “possibility”; 

In revision, we don’t want to discuss the season variation of model SST. Therefore, we deleted 

the sentence “The SST bias of model forecast possibility has seasonal variability because of 
the errors in the forcing and/or heat flux parameterization used in the ocean model (Fu et al. 
2012).” 

 

Line 308, 333, 335: “Arkona” instead of “Arokna”; 

It was fixed. 

Line 329: “The possible reason” not “The possibility reason”; 

It was fixed. 

Line 470: “strongly”, however the sentence in the lines 470-471 sounds misleading. 

We removed “around the observation position.” 

References 

Janji´c0, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S., 2011. On domain localization 

in ensemble based Kalman filter algorithms. Monthly Weather Review 136 (7), 

2046–2060. 

Nerger, L., Danilov, S., Hiller, W., Schröter, J., 2006. Using sea level data to constrain 

a finite-element primitive-equation model with a local SEIK filter. Ocean Dynamics 56,634–649. 
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Abstract.  We assess the impact of assimilating the satellite sea surface temperature (SST) data on 10 

the Baltic forecast, practically on the forecast of ocean variables related to SST. For this purpose, a 11 

multivariable DA system has been developed based on a Nordic version of the Nucleus for European 12 

Modelling of the Ocean (NEMO-Nordic). We use a localized Singular Evolutive Interpolated Kalman 13 

(LSEIK) filter to characterize correlation scales in the coastal regions. High resolution SST from 14 

OSISAF is assimilated to verify the performance of DA system. The assimilation run shows very sta-15 

ble improvements of the model simulation as compared with both independent and dependent observa-16 

tions. The SST prediction of NEMO-Nordic is significantly enhanced by the DA system. Tempera-17 

tures are also closer to observation in the DA system than the model results in the water above 100 m 18 

in the Baltic Sea. In the deeper layers, salinity is also slightly improved. Besides, we find that Sea 19 

level anomaly (SLA) is improved with the SST assimilation. Comparison with independent tide gauge 20 

data show that overall root mean square error (RMSE) is reduced by 1.8% and overall correlation co-21 

efficient is slightly increased by 0.4%.. Moreover, the sea ice concentration forecast is improved con-22 

siderably in the Baltic proper, the Gulf of Finland and the Bothnian Sea during the sea ice formation 23 

period, respectively.  24 

 25 
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1. Introduction 26 

          Monitoring the marine status of the Baltic Sea with relevant resolution and accuracy is a key 27 

requirement to serve the marine policy for detecting the influence of human activities on the environ-28 

ment and better understanding the response of ocean to accelerating global climate change. The Baltic 29 

Sea is one of the largest brackish seas in the world. It is a semi-enclosed basin, whose hydrography is 30 

highly variable and influenced by large-scale atmospheric processes and significant influx of freshwa-31 

ter from rivers runoff and precipitation (Leppäranta and Myrberg, 2009). In addition, the water ex-32 

change between the North Sea and Baltic Sea through the Danish straits is hindered by shallow topo-33 

graphic restrictions in the transition zone (Fig. 1). 34 

  A characteristic feature of numerical forecast in the Baltic Sea is in itself a major challenge 35 

because of complex topography and rich dynamics. A number of ocean forecasting systems for the 36 

Baltic Sea have been developed using hydrological model by operational agencies around this region. 37 

Traditionally, these models have a horizontal resolution of 1–5 km and approximately 20–100 layers 38 

in vertical structure (Omstedt et al. 2014). Due to the geographic location and conditions of the Baltic 39 

Sea, even higher resolutions are often needed to better understand the circulation dynamics. However, 40 

even ocean circulation models with a particularly high spatial resolution (e.g. 1 km) cannot resolve all 41 

dynamically important physical processes in the ocean (Malanotte-Rizzoli and Tziperman, 1996). In 42 

general, the forecast quality for a numerical model depends on initial conditions, boundary conditions 43 

(lateral, open boundaries as well as meteorological forcing and bathymetry) and a robust numerical 44 

model itself. As an operational forecasting agency, the Swedish Meteorological and Hydrological In-45 

stitute's (SMHI) needs to issue well-informed forecasts and warnings for decision making by other 46 

authorities during e.g. severe weather events, but also to the public. To improve the forecast quality, 47 

the core three-dimensional dynamic model of the SMHI operational forecast system has recently mi-48 

grated to the Nordic version of the Nucleus for European Modelling of the Ocean (NEMO-Nordic).  49 

          In additional to model development, an extended observational network has been established by 50 

the joint efforts of the countries surrounding the Baltic Sea. The observation platforms include vessels, 51 

buoys, coastal stations, satellite, etc. Specially, the observations from satellite have dominated the 52 
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coverage of SST observational networks in the Baltic Sea (She et al. 2007). Among satellite products, 53 

the SST is most popularly and widely used for the operational forecast, reanalysis or validation of the 54 

model because of both its coverage and properties. SST acts as a medium between atmospheric and 55 

oceanic variations through activation of coupling mechanisms. SST is also a key ocean variable to link 56 

many processes that occur in the upper ocean, for example, air-sea exchange of energy, primary 57 

productivity, and formation of water masses (Tranchant et al., 2008). 58 

  A realistic forecast of SST is essential to an ocean forecasting system. SST is especially im-59 

portant for the Baltic Sea that the average water depth is only 56 m and its surface water is directly 60 

related to the bottom water by the mixing in the shallow sub-basins. Recently, the applications of SST 61 

for forecasting and analyzing the status of the North Sea and Baltic Sea have received particular atten-62 

tion. In the short-term forecast, Losa et al. (2012, 2014) investigated the systematic model uncertain-63 

ties for forecasting the North and Baltic Seas by assimilating the Advanced Very High Resolution 64 

Radiometer (AVHRR) SST data. Nowicki et al. (2015) applied SST observed from Aqua Moderate 65 

Resolution Imaging Spectroradiometer (MODIS) into 3D coupled ecosystem model of the Baltic Sea 66 

with the Cressman analysis scheme. O’Dea et al. (2016) enhanced the SST prediction skill of the oper-67 

ational system by assimilating both in-situ data and level 2 SST data provided by the Global Ocean 68 

Data Assimilation Experiment High-Resolution SST (GHRSST) into a European North-West shelf 69 

operational model. Moreover, SST has been used in the long-term analysis in this region. For instance, 70 

Stramska and Bialogrodzka (2015) analyzed spatial and temporal variability of SST in the Baltic sea 71 

based on 32-years of satellite data, which indicate that there is a statistically significant trend of in-72 

creasing SST in the entire Baltic sea. However, these long-term SST data haven’t been used to verify 73 

the application of sophisticated DA methods for hydrography model in the Baltic profiles simulation, 74 

especially at the Baltic deep water regions. Another important question is: what amount of satellite 75 

SST can improve long-term forecast of ocean variables related to SST in the Baltic Sea.  76 

         The objective of this study is to address the impact of assimilating a high resolution SST product 77 

on the forecast of the Baltic Sea, particularly the forecast of SST related variables like sea level and 78 

sea ice. It is also the first time that satellite SST from the Ocean and Sea Ice Satellite Application Fa-79 

cility (OSISAF) was assimilated into NEMO-Nordic model (NEMO variant for the North Sea and 80 
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Baltic Sea). For operational forecast, the SST from OSISAF is the most important dataset in the Baltic 81 

Sea because it differs from hindcast analyzed product like OSTIA (Operational SST and Sea Ice Anal-82 

ysis) data. As a level 2 product, the OSISAF SST has both good temporal and spatial coverage in the 83 

Baltic Sea. As there is no hindcast information included in the OSISAF SST, we are able to assess 84 

direct impacts of assimilating SST observations. Therefore, exploring the potential of this product is 85 

critically important to further improving the new operational forecast system. In addition, our study 86 

will enrich the reanalysis database of the Baltic Sea. In this study, we use the Singular Evolutive Inter-87 

polated Kalman (SEIK) filter (Pham, 2001) to account for the model uncertainties arising from a wide 88 

range of spatial and temporal scales (Haines, 2010). One of our focuses is the impact of SST on the 89 

modeled sea level and the sea ice in the Baltic Sea. For the whole Baltic Sea, how the SST assimila-90 

tion influences the temperature and salinity (T/S) on the different depth is another focus of this study.  91 

           The outline of the paper is as follows: the model configuration and SEIK scheme are described 92 

in Section 2. An overview of the observations used in this study is presented in Section 3. The imple-93 

mentation of DA experiment is given in section 4 together with the sampling of ensemble and localiza-94 

tion. Results are compared with observations for temperature, salinity, sea level anomaly and sea ice in 95 

Section 5. In this section, the impact of data assimilation on the forecasts is also investigated. Conclu-96 

sions and discussions are given in section 6. 97 

 98 

2. Methodology 99 

2.1 NEMO-Nordic 100 

         NEMO (Nucleus for European Modelling of the Ocean; Madec, 2008) has been set up at SMHI 101 

for the North Sea and the Baltic Sea, a configuration called NEMO-Nordic (Hordoir et al., 2015) (Fig. 102 

1). Open boundaries are implemented in northern North Sea between Scotland and Norway and in the 103 

English Channel between Brittany and Cornwall, respectively (Hordoir et al., 2013).  In this study, 104 

NEMO-Nordic employs a horizontal resolution of 2 nautical miles (3.7 km) and 56 vertical levels, and 105 

with a vertical resolution of 3 m close to the surface, decreasing to 22 m at the bottom of the deepest 106 

part of the Norwegian trench. NEMO-Nordic uses a fully nonlinear explicit free surface (Adcroft and 107 
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Campin, 2004). A bulk formulation is used for the surface boundary condition (Large and Yeager, 108 

2004). The ocean model is coupled to the Louvain-la-Neuve Sea Ice Model (LIM3) sea ice model 109 

(Vancoppenolle et al., 2008) with a constant value of 10-3 PSU for the sea-ice salinity. A time-splitting 110 

approach is used to compute a barotropic and a baroclinic mode, as well as the interaction between 111 

them. A Tidal Inversion Model is used to define the barotropic mode at the open boundary conditions 112 

(Egbert and Erofeeva, 2002). 11 tidal harmonics are defined for sea level and barotropic tidal veloci-113 

ties. In addition, a coarse resolution barotropic storm surge model covering a large area of the North-114 

ern Atlantic basin provides wind-driven sea level that is added to the tidal contribution. The T/S data 115 

at the open boundary are provided by the Levitus climatology (Levitus and Boyer, 1994). Radiation 116 

conditions are applied to calculate baroclinic velocities at these boundaries. A quadratic friction is 117 

applied with a constant bottom roughness of 3 cm, and the drag coefficient is computed for each bot-118 

tom grid cell. NEMO-Nordic uses a TVD advection scheme with a modified leapfrog approach that 119 

ensures a very high degree of tracer conservation (Leclair and Madec, 2009). Unresolved vertical tur-120 

bulence is parameterized with κ-ε scheme (Umlauf and Burchard, 2003). In addition, Galperin pa-121 

rameterization is used to obtain a stable long-term stratification for the Baltic Sea (Galperin et al., 122 

1988). 123 

         A Laplacian isopycnal diffusion is used for both momentum and tracers with a diffusion parame-124 

ter that is constant in time, but varies in space. Additional strong isopycnal diffusion is used close to 125 

the Neva river inflow (Gulf of St. Petersburg) in order to avoid negative salinities. The bottom bound-126 

ary layer is parameterized to ease the propagation of saltwater inflows between the Danish Straits and 127 

the deepest layers of the Baltic Sea (Beckmann and Doscher, 1997). A free-slip option is used for lat-128 

eral boundaries. 129 

     The model is forced by meteorological forcing derived from a downscaled run of Euro4M reanaly-130 

sis (Dahlgren et al., 2014). The downscaling is based on the regional atmospheric model RCA4 (Sam-131 

uelsson et al., 2011) which uses the reanalysis data as boundary conditions. A runoff database provides 132 

the river flow to NEMO-Nordic (Donnelly et al. 2016); it includes inter-annual variability for the Bal-133 

tic Sea basin and is based on climatological values for the North Sea basin. The salinity of the river 134 

runoff is set to a constant value of 10-3 PSU, which is the same value used for the sea-ice to avoid any 135 
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negative salinity. 136 

 137 

2.2 Local Sigular Evolutive Interpolated Kalman (LSEIK) filter 138 

          The method used to assimilate SST into NEMO-Nordic is the Local Singular Evolutive Interpo-139 

lated Kalman (LSEIK) filter (Pham et al., 2001, Nerger et al. 2006). This is a sequential data assimila-140 

tion scheme, which is an error subspace extend Kalman filter that uses a minimum number of ensem-141 

ble members to reduce the prohibitive computation burden (Pham, 2001). The LSEIK filter proceeds 142 

in correction and forecast step: 143 

1. Forecast: the analysis state �� at time ���� is integrated forward to the time of the next available 144 

observations �� to compute the forecast state  ��, 145 

�����	 = ������, ��	�������	              (1), 146 

where � denotes the nonlinear dynamic model operator that integrates a model state from time ����  147 

to time �� . The superscript '�' and '�' denote the forecast and analysis. The corresponding error covar-148 

iance matrix can be expressed as:  149 

�����	 = ��[�� + 1	���]����
� + ��      (2), 150 

�� = �����	�                                               (3), 151 

with �� being the covariance matrix of model uncertainties and � + 1 is the minimum number of 152 

sample ensemble members for error covariance matrix. The superscript '�' denotes the transpose of 153 

matrix. The full rank matrix � has a dimension of �� + 1	 × � with zero column sums and � is a full 154 

rank �� + 1	 × � matrix which implicitly represents the model variability .  155 

2. Correction: when the observation is available at time ��, the LSEIK filter merged the information 156 

from model and observation to produce the analysis state with the formula: 157 

�����	 = �����	 + ��[�����	 − HHHH������	]             (4). 158 

Here �� is a vector of observations. The gain matrix �, which linearly interpolates between the obser-159 

vations and the forecast, is given by 160 

�� = ��
�HHHH�

�!HHHH���
�HHHH�

� + "�#
��

= ��$��HHHH���	�"�
��            (5), 161 
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where HHHH� denotes the linearization of observation operator, which mapping the model space to the 162 

observation space. " is the observation error covariance matrix. The matrix $� is updated according to  163 

 

$�
�� = [$��� + ���

���	����
��������

���	��]�� + ��
�HHHH�

�"�
��HHHH���    (6). 164 

         Localization was used to remove the unrealistic long-range correlation with a quasi-Gaussian 165 

function and a uniform horizontal correlation scale (Liu et al. 2013). It was performed by neglecting 166 

observations that were beyond correlation distance from an analyzed grid point. In other words, only 167 

data located in the “neighborhood” of an analyzed grid point should contribute to the analysis at this 168 

point(Liu et al. 2009; Janjić et al. 2011).  169 

         A second-order exact sampling is used to initialize the LSEIK filter. At time ����, a analysis 170 

state �������	 and its corresponding error covariance matrix �������	, in the factorized form 171 

����$�������
�  , are available. The samples can be given by the following formular: 172 

                      �&
������	 = ��'''��(−1	 + √� + 1����!*&,���+���#

�
                         (7). 173 

For 1≤ - ≤ � + 1, the +��� is the Cholesky decomposition of $���
��  and .��� is a �� + 1	 × � ma-174 

trix with orthonormal columns and zero column sums, where *&,��� denotes the -/0 row of *���.  ��'''' 175 

is the average of the analysis state. 176 

 177 

3. Observations 178 

3.1 Satellite observations  179 

         The satellite SST used in DA was provided by OSISAF (http://osisaf.met.no/p/sst/index.html). 180 

OSISAF products are using in priority the European Meteorological satellites METEOSAT and 181 

MetOp and also several American satellites operated by NOAA, DMSP and NASA. Its aim is to pro-182 

duce, control and distribute operationally in near real-time products using available satellite data. The 183 

satellite datasets product used here includes the observations from polar orbiting satellites (the EU-184 

METSAT MetOp-A and NOAA-18, -19) with the AVHRR instrument. The SST product has a resolu-185 

tion of 5 km and is produced twice daily at 00 UTC and 12 UTC. It covers the Atlantic Ocean from 186 
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50°N to 90°N. The SST observations are thermal infrared observations from the AVHRR instrument 187 

and are therefore limited by cloud cover (Kilpatrick et al. 2001). The cloud mask in use is based on a 188 

multi-spectral thresholding algorithm by SMHI. The products were retrieved using a nonlinear split 189 

window algorithm (Walton et al. 1998). The coefficients in the retrieval algorithm are determined 190 

through regression toward in situ observations, and the dataset thus represents the subskin temperature 191 

of the oceans. Further, subskin observations are subject to diurnal warming effects, which can be sig-192 

nificant in the Baltic Sea. Here only the subskin SST at night (00 UTC), which is comparable to in situ 193 

(buoy) measurement, is used to minimum this effect. The SST is controlled with the climatology 194 

check. A quality level from 0 to 5 is associated with every pixel. The higher level value, the better the 195 

quality of the observations (Brisson et al., 2001). Observations with quality level 4 (good) or 5 (excel-196 

lent) are collected for the analysis and low quality observations were removed. By applying the above 197 

quality control processes, only a subset of the original OSISAF products is kept in this study. Based on 198 

the former validation, a bias value of 0.5oC is given for this product.  199 

       Further, the IceMap from a sea ice concentration dataset with a high spatial resolution of 5 km 200 

(http://www.smhi.se/oceanografi/iceservice/is_prod_en.php) is used to validate the DA results. It is 201 

produced by SMHI and originates from digitized ice charts. An advantage of this data is that the ice 202 

charts are quality checked manually. However, the drawback is that they include some subjective 203 

steps. The temporal resolution of the IceMap SST is twice a week in the experiment period. Sea ice 204 

occurs most frequently in the Bay of Bothnia, with up to 100 ice covered days per year. However, sea 205 

ice can occur in all parts of the Baltic Sea and Danish straits, demonstrating the need for careful treat-206 

ment of sea ice in the SST analysis.  207 

 208 

3.2 In situ data  209 

         The observations from the German Maritime and Hydrographic Agency (BSH) moored buoy 210 

stations were collected as independent dataset to validate the assimilation results. The observations 211 

have high temporal resolution and long continuous record. The second dataset was downloaded from 212 

the Swedish Oceanographic Data Centre -SHARK database (http://sharkweb.smhi.se). SHARK mainly 213 

contains low-resolution CTD data from a list of predefined standard stations in the Baltic Sea, as well 214 
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as in Kattegat and Skagerrak. Only observations that have passed gross quality control procedures are 215 

collected into the SHARK database.  This procedure includes, for example, location checks and local 216 

stability checks. In addition, validating data records from tide gauges are also used. The sea level 217 

anomaly measurements from tide gauges (sea level stations) are measured in a local height system and 218 

values are presented relative to theoretical mean sea level, a level calculated from many years of annu-219 

al means, which takes into account the effect of land uplift and sea level rise. The values are averaged 220 

over one hour period.  221 

        Not all the available observations from satellite, moored buoys, CTDs, tide gauges were included 222 

in this study. To obtain the high assimilation quality results, another quality control was applied for 223 

these data before they were used into assimilation and validation. These controls include examination 224 

of forecast observation differences by excluding those observations for which the difference between 225 

the forecast and the measurement exceeded given standard maximum deviations. The criteria were set 226 

up empirically based on past validation results of the model (Liu et al. 2013). Furthermore, stations 227 

located on land, according to the NEMO-Nordic grid, were excluded. We also removed the duplicate 228 

records of these data.  229 

           The accuracy of observation error is difficult to be defined for all water points. The observation 230 

error mainly comes from the observation instrument itself, the observation representativeness, the 231 

temporary reading error and imperfect retrieval algorithm. The observation is commonly assumed to 232 

be spatially irrelevant, which results in an error covariance matrix that is time-invariant diagonal and 233 

its diagonal elements equal the variance of observation error. In this study, the observation error was 234 

estimated to one value as the sum of all observation uncertainties used in the analysis. Besides, the 235 

uncertainties of satellite SST varies from coast to the open sea, i.e. higher uncertainties in the coast 236 

region relative to the open sea.  We used a constant standard deviation value of 0.4oC based on the 237 

standard deviation of satellite SST, which ranged from the ~0.1oC to ~0.5 oC in the Baltic Sea (She et 238 

al. 2007, Høyer et al. 2016). 239 

 240 

4. Configuration of LSEIK in the experiment  241 
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         As above mentioned, the initialization of the filter requires an initial analyzed state and a low 242 

rank approximation of the corresponding estimation of error covariance matrix. The data assimilation 243 

process was initialized by a free model simulation. First the model was spinning up 20 years to reach a 244 

statistically steady state. Then a further (free-run) integration covered the period 2006-2009 was car-245 

ried out to generate a historical sequence of model state. To reduce the calculation cost, we took a 246 

snapshot in every 6 days and saved 183 state vectors, which includes sea level, temperature and salini-247 

ty, in total to describe the model variability because successive states are quite similar. The initial en-248 

semble provided an estimate of the initial model state and its uncertainty before the assimilation of 249 

SST observations. The quantity of the model variability was expected to be reasonably comparable 250 

with the forecast error, which was dominated by misplacement of mesoscale features and varies in 251 

location and intensity seasonally. Further, the very high frequencies of model variability were also 252 

unfavourable in an ensemble of state vectors for SST data assimilation (Oke et al., 2005). Therefore, a 253 

band-pass filter was used to remove the unwanted frequency of model variability. To initial low rank 254 

error covariance matrix, a multivariable Empirical Orthogonal Functions (EOF) analysis was applied 255 

on the 183 state vectors of model variables (sea level, temperature and salinity). In the North Sea and 256 

Baltic Sea, error covariances of different variables are not uniform and strongly dependent on whether 257 

the variable resides in the open sea or coastal zone. Each state variable was then normalized by the 258 

inverse of its spatially averaged variance at every model level. At last, 34 leading EOF modes were 259 

kept and they explained 85% overall variability. Then the initial error covariance matrix was estimated 260 

by 1���2	 ≈ 425242
� , where the 42 is composited by the leading EOF modes and 52 is diagonal 261 

matrix with the corresponding eigenvalues on its diagonal.  We used a time-invariant sample ensemble 262 

to approximate the background error covariance during the experimental period (Korres et al, 2004; 263 

Liu et al. 2017).  This stationary ensemble affords a good approximation of the ocean’s background 264 

error covariance. Meanwhile, it is computationally efficient for our objective. 265 

      A forgetting factor 6 was introduced to parameterize the imperfect model by amplifying the al-266 

ready existing modes of the background error (Nerger et al, 2006). The matrix 5� was calculated by   267 

$�
�� = 6�� + 1	��� + ��

�HHHH�
�"�

��HHHH���                  (8). 268 
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     Further, localization was used to remove the unrealistic long-range correlation with a quasi-269 

Gaussian function and a uniform horizontal correlation scale (Liu et al. 2013). It was performed by 270 

neglecting observations that were beyond correlation distance from an analyzed grid point and only 271 

data points located in the “neighborhood” of an analyzed grid point should contribute to the analysis at 272 

this point. As a result, the quality of fields obtained by data assimilation was determined by the obser-273 

vations coverage and quality (Liu et al. 2009).  274 

       The localization scale is another import factor to the assimilation system, especially at the coastal 275 

region. Large correlation scale may transfer artificial increments to the positions far away from the 276 

analysis observation during the DA process. However, small correlation scale is prone to cause the 277 

singularity of ocean state around analyzed observation and break the continuity of the ocean state. 278 

Hence, an unreasonable scale causes the instability of the model integration or degrades the assimila-279 

tion quality.  Unfortunately, the accuracy length for the correlation is unknown for the North Sea and 280 

Baltic Sea. The correlation length scale is to some extent dependent on the Rossby radius of defor-281 

mation (Losa et al., 2012), which varies from ~ 200 km in the barotropic mode to ~ 10 km or even less 282 

in the baroclinic mode (Fennel et al., 1991; Alenius et al, 2003). According to the former researches 283 

like Liu et al. (2013, 2017), a length scale of 70 km was specified for both the North Sea and Baltic 284 

Sea in this study.  Not that this value may be not perfect and more accurate correlation length needs to 285 

be tested for LSEIK. For example, spatially variable length scales are the next step for the regional DA 286 

simulations.  287 

        To define the forgetting factor, a one-month simulation experiment with varying the factor 6 was 288 

done in January 2010. At last, a factor 6 = 0.3  resulted in the best assimilation performance. Further, 289 

we define a two-day assimilation window in assimilation experiment. As a result, the observations in 290 

the two days before the assimilation time were used to calculate the innovation with observation oper-291 

ator. When we calculated the innovation we also changed the observation error according to the obser-292 

vation time by  293 

: = 0.4 × exp �−0.15∆�	      (9), 294 

here ∆� is the absolute time difference between observation time and DA time.   295 
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 296 

5. Results 297 

In the following sub-sections, we conducted two runs with and without assimilation of the 298 

SST observations from the OSISAF database, both runs with the above setup of the analysis system. 299 

Accordingly, the runs with and without assimilation are called ASSIM and FREE, respectively. We 300 

considered the evolution of SST based on 48-hourly local analysis from 1 January 2010 to 31 Decem-301 

ber 2010. The 48-hourly forecast SST from two runs was assessed with observations from different 302 

dataset. Then we analyzed the impact of the data assimilation on the profile simulation of T/S. At last, 303 

we evaluated the system performance with respect to sea surface anormaly and sea ice, respectively. 304 

 305 

5.1 Comparison with satellite data 306 

 First, we presented two cases to show the ocean state before and after the assimilation of the 307 

OSISAF SST data in Fig. 2. The first case was given at 11 January 2010, a date with clear weather and 308 

many observations available. The model has obvious difficulties in reproducing the observed SST. 309 

The cold biases in the forecast were found in the Skagerrak, west coast of the Baltic proper and the 310 

Bothnian Bay, respectively.  However, the warm biases appeared in the interior of the Baltic Sea and 311 

the Kattegat.  The largest deviation in the FREE reached 2.2 oC at the Skagerrak. Apparently, tempera-312 

ture by assimilation analysis agreed with the satellite-derived data much better. This correction at the 313 

analysis step has allowed us to reduce the deviation of the SST forecast from the observations. The 314 

SST bias of model forecast possibility has seasonal variability because of the errors in the forcing 315 

and/or heat flux parameterization used in the ocean model (Fu et al. 2012). The DA system simulation 316 

was also verified at 2 June 2010, which has also many available OSISAF observations. The biases on 317 

2 June 2010 were obviously different from that on 11 January 2010. Moreover, it was found they had a 318 

roughly opposite bias signal. For example, relative to the OSISAF SST at the Baltic proper, Bothnian 319 

Sea and Bothnian Bay, FREE produced relatively warmer water at January 11 and colder water at 2 320 

June (Fig. 2), respectively. After data assimilation, the analysis increments were appropriately added 321 

to the model field. In general, the SST DA has improved the simulated SST in both cases (Fig. 2).              322 
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      Maps of annual averaged RMSE of SST from two runs relative to the IceMap observation are 323 

shown in Fig. 3.  Obviously, the RMSE in FREE and ASSIM had different distribution in the Baltic 324 

Sea. In general, FREE had smaller error in the Skagerrak, eastern the Kattegat and the interior of the 325 

Bothnian Sea relative to other subbasin of the Baltic Sea.  The largest RMSE was found at the connec-326 

tion region between the Baltic proper and the Bothnian Sea. This could be caused by the shallow wa-327 

ter, complicated bathymetry and large observation biases in this area. It was also noted that the RMSE 328 

was larger in the coast region compared to its interior in the Baltic proper and Bothnian Sea. After the 329 

assimilation, the SST has been significantly improved. The RMSE of SST from ASSIM was generally 330 

smaller than 1.0 oC. However, there were still some regions where the improvements were relatively 331 

small and the RMSE of SST was greater than 1.0 oC. These large errors were predominantly located at 332 

the edge of the Baltic Sea and the Danish straits. For instance, the RMSE of SST was greater than 1.2 333 

oC at both the entrance of the Gulf of Finland and the west coast of the Bothnian Sea. The relatively 334 

small improvements were regularly caused by the rare observations or the less accurate observations 335 

near the coast water. 336 

           The overall daily averaged SST errors against the IceMap observations have been estimated 337 

(Fig. 4). The observations had better coverage in summer and autumn than in winter and spring. The 338 

variability of the number of observation directly affected the assessment of DA results. The model 339 

biases had pronounced seasonal variability, which had small values in spring and winter. In general, 340 

the assimilation provided better SST estimations. The free run had a RMSE of 1.47 oC. After the as-341 

similation, the RMSE was reduced to 1.03 oC, whereas the bias was reduced by 0.73 oC. An interesting 342 

feature was that the SST error reduction due to the assimilation was almost consistent with the varia-343 

bility of the number of IceMap observations. For example, the improvement became large with in-344 

creasing the number of IceMap observations from March to June 2010. However, the number of ob-345 

servations was kept constant during the period June-November 2010 and the improvement shown in 346 

both the bias and RMSE of SST did not exhibit large variability, which meant reliable performance of 347 

the DA system.  348 

 349 

5.2 Comparison with independent in-situ data 350 
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           The time series of T/S were compared with independent observations located at Arkona station 351 

(13.87oE, 54.88oN) in the Arkona Basin and at BY15 (20.05 oE, 57.33 oN) in the Eastern Gotland Ba-352 

sin, respectively. These two stations were selected to verify the experiment results because of their 353 

relatively completed observation records for the experiment period. In the Arkona Basin, the water 354 

depth was shallow and the water column can be well mixed between surface and bottom water. Thus, 355 

the bottom T/S was largely affected by the surface dynamic (Liu et al. 2014). Relative to observations, 356 

the model had warm biases at this station (Fig. 5). The temperatures differ by about 15–22 oC between 357 

summer and winter. At a depth of 25m, the observed temperature showed the largest variability, which 358 

was a good representation of the bottom characteristics of the mixed layer. In mid-August, the temper-359 

ature was abruptly increased by 10oC at a depth of 25m and slightly decreased at surface, respectively. 360 

The reason is that the surface water suddenly sinks to deeper layers, which warm the deep water. 361 

However, this dynamic process hasn’t reached to Arkona bottom and it didn’t cause the obvious bot-362 

tom temperature variability (Fig. 9). Both FREE and ASSIM had reproduced this process, whereas 363 

FREE showed larger temperature biases. To the salinity at the Arkona station, the surface observations 364 

were missing, the comparison at 7 m depth verified the subsurface simulations. The observations 365 

showed larger salinity variability in winter relative to summer. This pronounced seasonal variation is 366 

associated with the variation of fresh river runoff and net E–P (Evaporation–Precipitation) flux (Fu et 367 

al, 2012). At a depth of 7 m, salinity was obviously underestimated from April to September and over-368 

estimated after November although the ASSIM had slightly better results compared to FREE. The DA 369 

also provided better simulation of salinity at 25 m depth. For example, the salinity bias in the October 370 

was reduced by 3 psu by DA. At a depth of 40 m, the saltwater inflows were observed, resulting in 371 

sudden increases of salinity. For instance, the salinity was increased by 3.5 psu in February followed 372 

by a decreasing trend. The variations were reproduced in both FREE and ASSIM, whereas the intensi-373 

ty of the decreased process is weakly simulated with a difference of 3 psu and the inflow in March was 374 

not strong enough relative to the observed one. Observations also showed a large salinity variability 375 

amounts to 4–8 psu in the autumn. Although FREE and ASSIM had shown these changes, their mag-376 

nitude was obvious weaker than observations. The possible reason was that the model’s resolution was 377 

inadequate to well resolve the topography and eddies in this area. Both the large runoff and the com-378 
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plicated bathymetry posed challenges for the model to tackle the small-scale dynamic process in such 379 

a shallow basin. A higher resolution model perhaps was more preferable to study this dynamic pro-380 

cess.  381 

           The Eastern Gotland Basin has deeper water depth compared to the Arkoan Basin, in which the 382 

water column is permanently stratified and the halocline lies at about 60–80 m (Fu et al, 2012). The 383 

mixing and sinking of T/S are hindered by the strong stratification. Unlike observations in the Arkona 384 

Basin (Fig. 5), the CTD observations at BY15 had lower temporal resolution with almost one observa-385 

tion per month. In the mixing layer, it can be seen model had overestimated the temperature (Fig. 6). 386 

At a depth of 10 m, ASSIM has remarkably improved the simulation of temperature relative to FREE. 387 

The bias has been reduced by 3oC in the spring of 2010. At 175 m depth, observed temperature 388 

showed very small variation. The reason was that the main source for deep water ventilation is the 389 

saltwater inflows which are suppressed by runoff within a depth range of 75–135 m in the Eastern 390 

Gotland Basin (Vali et al. 2013). As a result, updating the bottom water is very slow. Both FREE and 391 

ASSIM overestimated the temperature in the spring and the beginning of summer of 2010. Further, 392 

ASSIM has increased the temperature bias after mid-summer relative to FREE.  This result might be 393 

explained by that the strong correlation isn’t expected between surface and layers bellow the halocline 394 

because of the strong stratification in this basin, which perhaps yield the artificial correction. There-395 

fore, the improvement of the surface temperature cannot guarantee its positive influence on the bottom 396 

temperature. To the salinity, the model had less accurate simulation with generally low salinity biases 397 

at 10 m depth. ASSIM provided better salinity simulation compared to FREE. At 70 m depth, the 398 

small variation of salinity was found after DA. Moreover, at 175 m depth, the observation had very 399 

small variability about 0.1 psu. In general, both experiments have reproduced these variations. How-400 

ever, FREE increased salinity by 0.2 psu from March to April relative to the observation, which 401 

caused the overall salinity overestimated amount to 0.2 psu. This increasing process wasn’t shown in 402 

observations and the reason remained unclear. The DA has shown slight improvement, but it still salt-403 

er than the observations.  404 

        The mixed layer depth (MLD) was calculated at the Arkona and BY15 station and compared with 405 

the SHARK observation in Fig. 7. We used the temperature criterion to define the MLD, i.e., the depth 406 
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at which the temperature deviated from the surface value by 0.5 oC (Fu et al., 2012). Figure 7 shows 407 

that the MLD at Arkona had larger variability relative to the MLD at BY15. The reason contributed to 408 

this feature is that the deeper water at Arkona is easy affected by wind forcing because of the shallow 409 

bathymetry and well mixing, whereas the temperature variation in upper water at BY15 difficulty in-410 

fluences the deeper water because of the strong stratification. Both runs had reproduced the MLD var-411 

iability feature similar as the observations. For example, the minimum MLD appeared in summer, 412 

which was about several meters. The assimilation of satellite SST caused strong changes in the MLD 413 

at both stations, especially in winter. One explanation was that the Baltic Sea was largely affected by 414 

wind forcing and the winter wind was much stronger than the summer wind. Further, strong heating in 415 

summer promoted stratification in summer and shoaled the MLD. 416 

        Further, the temporal and spatial distribution of the SHARK observations is shown in Fig.8. 417 

These observations were unevenly distributed in the Baltic Sea. In the Skagerrak, the observations 418 

appeared at the Danish and Swedish coast. However, in the Bornholmn Basin, Kattegat, and Baltic 419 

proper, the observations mainly were found in the central and the Swedish coast side. There were also 420 

many observations in the Bothnian Sea and rare observations in the central of the Bothnian Bay. It 421 

must be noticed that there aren’t SHARK observations in both the Gulf of Finland and Gulf of Riga 422 

during the experiment period. Moreover, these SHARK profiles in the first four months were mainly 423 

located from the Skagerrak to the Baltic proper, which are relatively rare in the northern Baltic Sea. In 424 

the Bothnian Bay, the observations are mainly in the winter period.   425 

Figure 9 shows the change of overall bias and RMSE of T/S with depth against the SHARK 426 

dataset. In the Baltic Sea, DA had large impact on the temperature forecast in the water above 100 m. 427 

The RMSE showed that the forecast of temperature was obviously improved from surface to thermo-428 

cline in the ASSIM and the improvements generally decreased with depth. Above 100 m, the overall 429 

RMSE of temperature in ASSIM was decreased by 21.38% (from 1.59 to 1.25 oC). It was also found 430 

the temperature error had similar variability as the warm biases in two runs. In the transition zone, the 431 

RMSE in the ASSIM was reduced by 5.59% and -20.31% above and below 100 m relative to the 432 

FREE, respectively. Below 90 m, the temperature was also over-adjusted, which changed the warm 433 

bias to cold bias. It is worth noting that the number of the deeper water observation in the transition 434 
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zone is substantially less than that in the Baltic Sea. For the salinity, both RMSE and bias of the AS-435 

SIM showed very minor changes relative to the FREE inside the Baltic Sea. For the water above 100 436 

m, the total RMSE of salinity was increased by 3.48% (from 1.15 psu in the FREE to 1.19 psu in the 437 

ASSIM) in the transition zone and 1.04% (from 0.96 psu in the FREE to 0.97 psu in the ASSIM) in 438 

the Baltic Sea. 439 

 440 

5.3 Sea Level Anomaly  441 

SLA represents a vertically integrated effect of the T/S variations over the whole water col-442 

umn. The accurate simulation of SLA is thus a good indicator of the model performance. Therefore, 443 

validating the impact of SST assimilation on the simulation of SLA is very important to the Baltic Sea 444 

forecast. The observations from the 24 tide gauge stations were used. These gauge stations are mainly 445 

located at the Swedish coast (see Fig.8b). Since only the SST is assimilated in this study, the SLA 446 

observations are completely independent. 447 

     We calculated the RMSE and correlation coefficients for both the FREE and ASSIM against the 448 

observations from tide gauges (Fig. 10). The overall RMSE was reduced by 1.8% and the correlation 449 

coefficients were slightly increased. Among these stations, RMSE at the Oskarshamn was decreased 450 

by 5.6%, which is larger than that in other station. The minimum RMSE change of SLA was seen at 451 

the Klagshamn. For the correlation coefficient, improvement on the SLA by the DA is very small. 452 

Simrishamn station showed the biggest change of correlation coefficient, which is 1.1%. The RMSE 453 

and correlation comparison demonstrated that the SST DA has generally positive effects on the fore-454 

cast of the SLA. Compared with tide gauge observations, the SLAs in FREE have been well simulated 455 

at these stations. The correlation coefficients in FREE at 21 stations are all larger than 0.9. At the 456 

Klagshamn, Barseback and Viken stations, the coefficients are smaller than 0.9 but still greater than 457 

0.86. These three stations are located near the Sound where the sub-grid scale feature of narrow 458 

transport cannot be fully resolved even in a high resolution model. Besides, the RMSE of SLA is 459 

smaller than 0.1 m at 19 stations. Generally, SST DA had positive effects on the simulation of SLA. In 460 

Table 1, the SLAs in ASSIM were better correlated with the tide gauge data than that in FREE. All the 461 

RMSEs were reduced in ASSIM relative to FREE. The overall RMSE and correlation coefficients 462 
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were reduced by 1.8% and increased by 0.4%, respectively. These stations are located from north to 463 

south of the Swedish coast, which imply the ASSIM had reliable performance in the all Swedish coast 464 

(Table 1). 465 

 In addition, the time series of the SLA error discrepancy (ASSIM minus FREE) in two runs at 466 

four stations were selected to evaluate the simulation results (Fig. 11). These four stations were select-467 

ed to represent the model performance at different positions of the Swedish coast. Two runs showed 468 

evidently different performance in these four stations. The variability of the SLA difference between 469 

two experiments at the Smogen station had higher frequency compared to other stations. The reason 470 

was that the Smogen station was located at the transition zone where the water had higher frequency 471 

variations caused by the brackish Baltic in/outflowing relative to other three stations. At these four 472 

stations, the improvements were mainly in later spring and summer, whilst the degraded simulations 473 

were mostly happened after Mid-September, respectively. The SST assimilation had less impact in late 474 

winter and early spring compared to other seasons. Besides, the impact of SST assimilation on SLA 475 

simulation was not same in the four positions. For instance, during the period from Mid-November to 476 

Mid-December, the SLA in ASSIM was improved at Simrishamn and degraded at both the Ratan and 477 

LandsortNorra stations, respectively. This phenomenon was possibly caused by the imperfect correla-478 

tion between SST and SLA in the stationary samples. Further, these steric small changes of SLA by 479 

DA were what we expected because only SST was assimilated into Nemo-Nordic.  480 

 481 

5.4 Sea ice 482 

Sea ice in the Baltic Sea occurs primarily in its north region and influences the Baltic climate. 483 

Accurate detecting the sea ice is very useful to the northern Baltic living because too much or too little 484 

sea ice can be a problem for wildlife and people. Sea ice concentration (SIC) and Sea ice extent (SIE) 485 

are two important and common indicator to modeling sea ice environment. We assessed the SIC and 486 

SIE from simulations against the IceMap observations in Fig. 12-13. Differ from the daily evaluation 487 

in Losa et al. (2014), the monthly mean SIC was used to represent the general status of sea ice in the 488 

Baltic Sea. Besides, SIC in January, February and December showed the variation of the sea ice in 489 

winter.  490 
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  In January 2010, the observations showed large ice coverage in the Bothnian Bay and the Gulf 491 

of Finland and small SIC in the Gulf of Riga, respectively. Model generally reproduced this distribu-492 

tion of sea ice. However, FREE simulated too much sea ice in the Gulf of Finland and the eastern 493 

coast of the Baltic proper relative to observations. For example, SIC from FREE almost to 30% higher 494 

than observations along the Estonia coastline. It could be seen that the SST DA reduced these biases. 495 

The reason is the SST DA modified the thermal expansion by providing the well temperature fields 496 

above the thermocline. The temperature in February became colder relative to January in the Baltic 497 

Sea. As a result, the sea ice in February extended to the Bothnian Sea and the whole Gulf of Riga. 498 

Observation also showed small SIC in Kattegat and Skagerrak. Model simulated higher SIC in the 499 

Bothnian Sea with largest biases along the Swedish and Finnish coast. As an example, the observed 500 

ice in the Bothnian Sea was characterized by concentrations mainly smaller than 0.5, whereas modeled 501 

ice in FREE had concentration greater than 0.9 in the shallow region of the Bothnian Sea. FREE also 502 

had smaller ice coverage with lower SIC in the transition zone between the North Sea and the Baltic 503 

Sea relative to IceMap. After the SST assimilation, ASSIM reduced SIC in the Bothnian Bay and the 504 

west coast of the Baltic Sea, which was closer to the observations. The ice in ASSIM didn’t have ob-505 

vious variation in Kattegat and Skagerrak yet. ASSIM also reduced too much ice at the southern of the 506 

Bothhomn Basin. The reason is that the satellite SST observations had limited accuracy near the coast 507 

and they could bring artificial information into the modeling. In March, compared to observation, the 508 

FREE produced low SIC in the western coast of the Bothnian Sea, Gulf of Finland, Gulf of Riga and 509 

the connect zone between the Bothnian Sea and Gulf of Finland. However, the model SIC in the FREE 510 

was higher than IceMap in the interior the Bothnian Bay. For instance, the SIC from FREE in the 511 

western Bothnian Sea was 40% higher than observation. In the south coast of the Arkona basin and 512 

Baltic proper, the FREE failed to reproduce the sea ice as in observation. After the DA, the high SIC 513 

was decreased in western Bothnian Sea and closer to that in IceMap in Bothnian Sea. In the Gulf of 514 

Finland and Gulf of Riga, the SIC error was increased in the ASSIM. In April, the large SIC error in 515 

the FREE was shown in the Bothnian Sea, the Bothnian Bay, Gulf of Rig and Gulf of Finland, where 516 

no clear improvements were seen in the ASSIM. In December, sea ice coverage was smaller because 517 

of relatively warm temperature compared to that in other winter month. Most of the sea ice with high 518 
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concentration was observed at the edge of the Bothnian bay. Nevertheless, high concentration ice in 519 

FREE also happened at the transition zone between the Bothnian Sea and Bothnian bay. Relatively, 520 

ASSIM reduced the high concentration biases of sea ice. By contrast, both ASSIM and FREE had 521 

lower concentration ice than observation in the eastern coast of the Bothnian Sea. The SIC from AS-522 

SIM was relatively lower than that from FREE in the northern Finish coast, whereas the observations 523 

had high concentration ice there.  524 

        The daily SIE from FREE and ASSIM was compared with observations in Fig.13. The observed 525 

SIE was generally increased from January to February and reached the maximum in mid-February. 526 

During the period of March-May, SIE was decreased as temperature was increasing. SIEs in both the 527 

FREE and ASSIM experiments were generally underestimated by comparison with the observation in 528 

2010, especially in the period from Mid-March to early April. The SIE bias in both runs was roughly 529 

increased from January to early April. In early April, the maximum negative bias of SIE was found to 530 

be 105000 km2 for ASSIM and 10000 km2 for FREE. The impact of SST assimilation on the SIE was 531 

positive during the phase of sea ice formation. For example, the SIE bias was reduced 25000 km2 at 532 

end of February and in the Mid-December. However, during the phase of sea ice melting (March to 533 

April), the SIE error was increased in ASSIM even with the error of SST decreased. For example, the 534 

SIE bias in ASSIM was increased by 42000 km2 relative to FREE in the early March. These increased 535 

SIE error in March mainly happened in the Gulf of Riga and Gulf of Finland (Fig.11). 536 

  537 

6. Conclusion and discussions 538 

A DA system based on a LSEIK filter has been coupled to the NEMO circulation model of the 539 

North and Baltic Seas. The method was successfully applied for assimilating high resolution satellite 540 

SST data. We demonstrated that, over the period of 2010, the agreement of the SST forecast with the 541 

independent satellite observation was improved by ~ 29.93% in comparison with the regular forecast 542 

without DA. The assimilation quality is directly related to the number of observation. 543 

Compared with independent in-situ data from SHARK, the results showed the overall RMSE 544 

of temperature of T/Swas reduced by 21.3811.68% and 5.59% for the water above 100 m inside and 545 



21 
 

outside of the Baltic Sea, respectively. and decreased by 2.17%, respectively. These variations of T/S 546 

mainly occurred in the water above 100 m.However, in the deeper layers, the temperature was slightly 547 

degraded  while salinity was slightly improvedin the Baltic Sea. This is partially caused by the artifi-548 

cial correlation between surface layer and deeper layers. The improvement of temperature by SST DA 549 

can’t guarantee corresponding improvement of the salinity. The statistics displays the salinity RMSE 550 

was increased by 1.04% and 3.48% in the transition zone and the Baltic Sea, respectively. Both AS-551 

SIM and FREE have captured the main dynamic process in the Baltic Sea, for example, the inflow and 552 

the sink.  However, ASSIM is closer to the observed one relative to FREE.   553 

 The forecast results were further validated with the independent SLA observations. The result 554 

shows that all RMSEs and correlations for all 21 stations are smaller than 0.12 m and greater than 555 

0.86, respectively. After DA, the SLAs at these stations have been slightly improved. In general, the 556 

RMSE was reduced by 1.8% and correlation coefficients were slightly increased, respectively. Fur-557 

ther, the model-observation comparison at selected four stations indicates that these improvements are 558 

mainly in later of spring and summer. The comparisons also denote the SST assimilation has less im-559 

pact in the late winter and early spring relative to other seasons.  560 

When compared with monthly mean observations of SIC, both assimilation run and free run 561 

reproduced main spatial distributions of sea ice in the Baltic Sea. During the sea ice formation period, 562 

the SST assimilation has improved the results of SIC from FREE in the Gulf of Finland, the Bothnian 563 

Sea and eastern coast of the Baltic proper. However, minor improvements were found in Kattegat and 564 

Skagerrak. Besides, over the sea ice melting period, the SIE comparison showed the SST assimilation 565 

increased the SIE error, especially in the Gulf of Finland and Gulf of Riga.  566 

The daily MLD from two runs has been compared with the observations at Arkona and BY15 567 

stations. Model could capture the variability features of the MLD. Similar as Fu et al.(2012),  it was 568 

found that SST assimilation had less impact on the MLD in summer than that in winter. In general, the 569 

SST DA produced less influences on the MLD in the deeper region (BY15) relative to that in the shal-570 

low region (Arkona). 571 

          Further, the reliability of the DA system is worth being assessed. In Rodwell et al.(2006), a per-572 

fect reliable system error variance for ensemble assimilation was calculated by the sum of the variance 573 
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of the sample ensemble, the square of innovation(misfit between observation and model) and the vari-574 

ance of observation at assimilation time. In this study, we used a constant observation error similar to 575 

Rodwell et al. (2016) because our DA design is different from that paper. The major difference be-576 

tween these two studies is that we estimate the background error covariance from stationary ensemble 577 

and avoid the perturbation of observation error. Therefore, the variance of the sample ensemble and 578 

observation is univariate and the diagnostic of the assimilation stability can be directly obtained from 579 

the forecast error like the RMSE in Fig.4. 580 

  The results of the SST assimilation are encouraging and the assimilation helps to ameliorate 581 

some model deficiencies such as the simulation of sea ice in the Gulf of Finland. However, some prob-582 

lems need to be further addressed in the SST DA in the future: firstly, the SST assimilation has worse 583 

influence on the simulation of salinity in the upper layers and temperature in the deeper layers. Losa et 584 

al.(2012) denoted that the salinity simulation quality crucially depends on the assumptions about the 585 

model and data error statistics. Here a stationary ensemble sample was used to represent the correla-586 

tion between T/S and between surface and deep water. These relationships could be changed with the 587 

varying dynamics and forcing conditions. More sophisticated assumption should be used in the DA of 588 

Baltic Sea. Secondly, the SHARK observations in this study are absent at the Gulf of Finland and Gulf 589 

of Riga. This denotes the validation results with SHARK observation didn’t include the evaluation of 590 

the simulation of T/S in deep water of these two basins. Thirdly, the univariate localization scale used 591 

in this study could be another problem. The spreading of observation information strongly depended 592 

on the correlation scale around the observation position. The large localization scale can introduce the 593 

artificial information, which could degrade the assimilation quality. A flow-dependent background 594 

error covariance with varying correlation scale may be more appropriate for the Baltic Sea with com-595 

plex bathymetry and rich dynamics. Fourthly, the remote sensing observations near the coast could 596 

have large bias because of the limit of the instrument itself. More strict quality controlling method 597 

needed to be used for the satellite coastal observations before their assimilation.  598 
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 765 

Figure 1. Geographical domain and bathymetry (in m) of the NEMO-Nordic configuration. 766 
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 782 

Figure 2. Map of SST from FREE (a,e), OSISAF (b, f),  ASSIM (c, g) and the assimilation increments 783 

(d, h) on 11 January 2010 (first row) and 2 June 2010 (second row), respectively. 784 
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 800 

Figure 3. Map of the RMSE of SST from ASSIM (left panel) and FREE (right panel) calculated 801 

against IceMap SST in 2010, respectively. 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 



32 
 

 821 

Figure 4. The evolution of basin-averaged bias and RMSE of SST from FREE and ASSIM relative to 822 

IceMap SST and the number of IceMap observation in 2010.  823 
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 837 

Figure 5. The time series of temperature (left panel) at a depth of 0, 25 and 40 m and salinity (right 838 

panel) at a depth of 7, 25 and 40 m at the Arkona station (13.87oE, 54.88oN ), respectively.  839 
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 854 

Figure 6. The time series of temperature (left panel) and salinity (right panel) at the BY15 station 855 

(20.05oE, 57.33oN ) at a depth of 10,  70 and 175 m, respectively.  856 
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 867 

Figure 7. The time series of mixed layer depth at Arkona and BY15 station.  868 
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 881 

Figure 8. (a) Map of the temperature and salinity profiles from SHARK database in 2010. The colors 882 

show the observations months.(b) The tide gauges station along the Swedish coast.   883 
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 896 

Figure 9. The overall RMSE and bias of temperature (up panel) and salinity (down panel) from FREE 897 

and ASSIM relative to observations as a function of water depth inside (b,d) and outside (a,c) of the 898 

Baltic Sea.  899 
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 904 

Figure 10. The improvement (%) of correlation and RMSE for the SLA at the tide gauges stations. The 905 

station position is in the Figure 8b.   906 
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  915 
Figure 11. The variation of SLA biases in ASSIM relative to FREE against observations as a function 916 

of time. The station position is shown in the Figure 8b.  917 
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 922 

Figure 12. The monthly mean sea ice concentrations in FREE (left panel), ASSIM (middle panel) and 923 

IceMap (right panel), respectively.  924 
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 928 

Figure 13. The daily sea ice extent from FREE, ASSIM and IceMap and the sea ice extent bias (mod-929 

elled minus observed field), respectively.  930 
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