

Interactive comment on “Assimilating High-resolution Sea Surface Temperature Data Improves the Ocean Forecast in the Baltic Sea” by Ye Liu and Weiwei Fu

Anonymous Referee #1

Received and published: 27 March 2018

The marine status of the Baltic Sea is highly variable and influenced by the forcing from atmosphere and freshwater influx due to shallow topography and semi-enclosed restriction. As a stable observation source, the high-resolution SST from satellite is rather important to improve the ocean operational forecast to serve the Baltic industry needs. The article of “Assimilating High-resolution Sea Surface Temperature Data Improves the Ocean Forecast in the Baltic Sea” use a localized Singular Evolutive Interpolation Kalman (SEIK) filter to assimilate the OSISAF SST during one year of 2010. Compared with dependent and independent observations, the evaluation of the model runs with and without assimilating the SST shows the SST modeling has been improved clearly. This study is suitable for publication in OS, but there are still some obvious defects like the experimental illustration is not clear, lack of conclusions or analysis methods to inspire the readers.

We appreciate the referee for the good comments, which definitely contributes to the improvement of this study. Our responses are in blue.

The main comments are listed as follow:

1) In this study, only to assimilate the OSISAF SST in the Baltic sea. In fact, there are more SST candidates with equivalent high-resolution like OSITA (CMEMS) and RTG_SST_HR (http://polar.ncep.noaa.gov/sst/rtg_high_res/). So if assimilating one or two additional SST products, the related results will be more help the reader to well understand about them. On the other word, the special features about the OSISAF SST in the Baltic Sea have not been highlighted at current, which looks not to support the study focused on it.

We thank the reviewer for this comment. We used the OSISAF in this study for a couple of reasons. First, it is level 2 product and is retrieved directly from the satellite, which means there

is no hind-analysis information included; Second, the OSISAF has a high resolution in the Baltic Sea, which makes it more suitable for our operational forecast system.

In the revised manuscript, we added a few sentences to clarify:

“For operational forecast, the SST from OSISAF is the most important dataset in the Baltic Sea because it differs from hindcast analyzed product like OSTIA (Operational SST and Sea Ice Analysis) data. As a level 2 product, the OSISAF SST has both good temporal and spatial coverage in the Baltic Sea. As there is no hindcast information included in the OSISAF SST, we are able to assess direct impacts of assimilating SST observations”

2) Lines 163-165, this SST product from AVHRR is available twice daily. It is not clear how to assimilate in the experiment. The assimilation time window is daily? How to calculate the innovation, is it asynchronous?

In section 3.1, we mention “only the subskin SST at night, which is comparable to in situ (buoy) measurement, is used ...”.

In the revision, we clarified how to calculate the innovation: “Further, we define a two-day assimilation window in the assimilation experiment. As a result, the observations in the two days before the assimilation time were used to calculate the innovation with observation operator. When we calculated the innovation we also changed the observation error according to the observation time by

$$\varepsilon = 0.4 \times \exp(-0.15\Delta t) \quad (9),$$

here Δt is the absolute time difference between observation time and DA time.”

3) In the first paragraph of 3.1, the assimilated SST has been filtered by the quality. But it is not clear how to consider the sea ice. Do you use the sea ice concentration of OSISAF to mask the SST product, and how to do?

We didn't use the sea ice concentration of OSISAF to mask the SST product. By the quality filter, we checked observation position, innovation relative to model result and the quality flag provided by OSISAF. If the model is covered by sea ice, the SST observation will be excluded.

4) The observation error for the OSISAF SST is important for this study, is it a constant of 0.5 degree used? As a good consistence check, some diagnostic about the assimilation stability like Rodwell et al. (2016) is beneficial to understand the system reliability and the observation error.

Rodwell, M. J., Lang, S. T. K., Ingleby, N. B., Bormann, N., Hólm, E., Rabier, F., Richardson, D. S., and Yamaguchi, M.: Reliability in ensemble data assimilation, *Q. J. Roy. Meteor. Soc.*, 142, 443–454, doi:10.1002/qj.2663, 2016.

We agree that consistency check and assimilation stability are important for operational forecast systems with DA. We used a constant observation error similar to Rodwell et al. (2016) in this study, but our DA design is different from that paper. The major difference between these two studies is that we estimate the background error covariance from stationary ensembles and avoid the perturbation of observation error. Therefore, the diagnostic of the assimilation stability can be directly obtained from the forecast error, like the RMSE, in Fig.4, which shows comparable bias and RMSE in the assimilation and free forecast.

In the revision, we cited the Rodwell et al. (2016) and discussed the assimilation stability in section 6.

The corresponding text are added:

“Further, the reliability of the DA system is worth being assessed. In Rodwell et al. (2006), a perfect reliable system error variance for ensemble assimilation was calculated by the sum of the variance of the sample ensemble, the square of innovation (misfit between observation and model), the variance of observation at assimilation time. In this study, we used a constant observation error similar to Rodwell et al. (2016) because our DA design is different from that paper. The major difference between these two studies is that we estimate the background error covariance from stationary ensembles and avoid the perturbation of observation error. Therefore, the variance of the sampled ensemble and observation is univariate and the diagnostic of the assimilation stability can be directly obtained from the forecast error like the RMSE in Fig.4.”

5) The IceMap has been used for evaluation as one independent SST observation. It is not objective and only twice for one week. In fact, another surface water temperature data set from SMHI collected by Ferry (http://www.smhi.se/hfa_coord/BOOS/Ferrybox/BSNI/BSNI-Wtemp.png) is more useful and independent for this study.

We agree that Ferrybox data is a very good source for model evaluation. In this study, we aim to evaluate the overall impact of OASIF SST product on the model forecast in the Baltic Sea. In this sense, the IceMap data is more preferable due to its spatial coverage and quality while the Ferrybox data has limited spatial coverage. At the same time, we have also used the independent in situ SHARK observations to verify the experiment results. The Ferrybox data may corroborate our conclusions but we think it is not a critical factor for our evaluation and conclusions.

6) The two in situ observations at Arkona and BY15 is super case to show the impact of assimilating SST only. It is valuable to do more specific analysis by diagnosing dynamic variables. Firstly, investigating the mixed layer depth in the two runs can clearly show the mixing strength for Fig.5 and Fig.6. Secondly, the temp/salinity misfits in vertical can be shown and mutual authentication with the SHARK results.

We thank the reviewer for this important comment. To address the reviewer's comment, we compared the mixed layer depth in the two runs (Fig. 7) in the revised manuscript. We also used the SHARK data to examine the misfits of temperature and salinity at both inside and outside of the Baltic Sea(Fig.9).

In section 5.2, we added

"The mixed layer depth (MLD) was calculated at the Arkona and BY15 station and compared with the SHARK observation in Fig. 7. We used the temperature criterion to define the MLD, i.e., the depth at which the temperature deviated from the surface value by 0.5 °C (Fu et al., 2012). Figure 7 shows that the MLD at Arkona had larger variability relative to the MLD at BY15. The reason contributed to this feature is that the deeper water at Arkona is easy affected by wind forcing because of the shallow bathymetry and well mixing, whereas the temperature

variation in upper water at BY15 difficulty influences the deeper water because of the strong stratification. Both runs had reproduced the MLD variability feature similar as the observations. For example, the minimum MLD appeared in summer, which was about several meters. The assimilation of satellite SST caused strong changes in the MLD at both stations, especially in winter. One explanation was that the Baltic Sea was largely affected by wind forcing and the winter wind was much stronger than the summer wind. Further, strong heating in summer promoted stratification in summer and shoaled the MLD.”

7) Based on the current results, it indicates the salinity looks no remarkable improvement. However, the salinity peak in Sep 2010 at 7 m can be reduced by assimilation even this model run has an underestimation before. This event is a nice case to explore which factor contributes that positive correction.

We appreciate the reviewer's comment, but it is hard to attribute the improvement in September 2010 to a specific factor. There are a couple of reasons for this: firstly, at the depth of 7 m, the model salinity was strongly affected by the simulation of advection, mixing and E-P flux. Bias in any of these factors could contribute to the large bias especially after mid-September. In other words, any improvement of these factors also helped to correct the salinity bias. Secondly, the salinity at 7 m is generally decreased irrespective of the model bias, suggesting that the method is stable. Therefore, it is very likely that the improvement is a cumulative effect of our data assimilation, including the effect of the changes of circulation and mixing (shown in the mixed layer depth in Fig. 7).

8) Fig8 shows the vertical impact for temp/saln. It is better to separate into two parts internal and out of Baltic sea.

We separate the Bias and RMSE calculation in the two regions now. The figure caption of Fig. 8 was changes as Fig. 9.

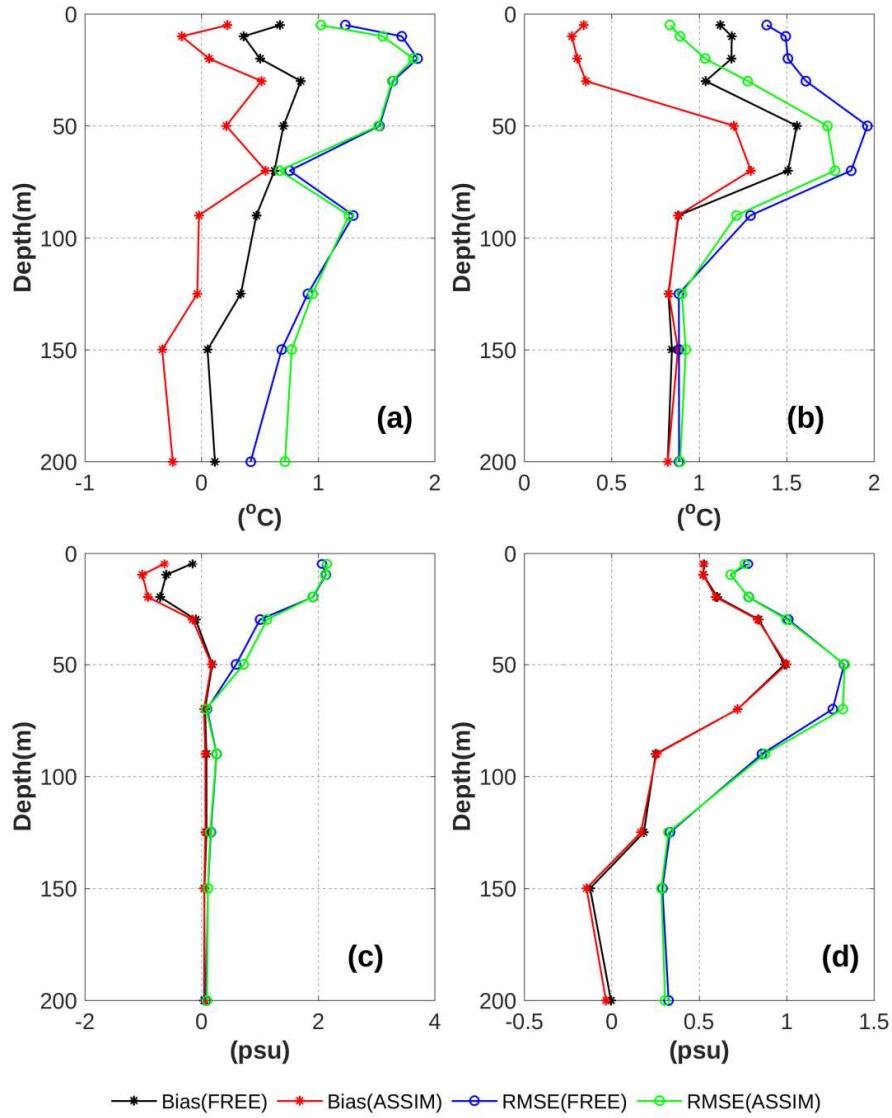


Figure 9. The overall RMSE and bias of temperature (up panel) and salinity (down panel) from FREE and ASSIM relative to observations as a function of water depth inside (b,d) and outside (a,c) of the Baltic Sea.

The corresponding text are changed:

“Figure 9 shows the change of overall bias and RMSE of T/S with depth against the SHARK dataset. In the Baltic Sea, DA had large impact on the temperature forecast in the water above 100 m. The RMSE showed that the forecast of temperature was obviously improved from surface to thermocline in the ASSIM and the improvements generally decreased with depth. Above 100 m, the overall RMSE of temperature in ASSIM was decreased by 21.38% (from 1.59 to 1.25 °C). It was also found the temperature error had similar variability as the warm biases in two runs. In the transition zone, the RMSE in the ASSIM was reduced by 5.59% and -

20.31% above and below 100 m relative to the FREE, respectively. Below 90 m, the temperature was also over-adjusted, which changed the warm bias to cold bias. It is worth noting that the number of the deeper water observation in the transition zone is substantially less than that in the Baltic Sea. For the salinity, both RMSE and bias of the ASSIM showed very minor changes relative to the FREE inside the Baltic Sea. For the water above 100 m, the total RMSE of salinity was increased by 3.48% (from 1.15 psu in the FREE to 1.19 psu in the ASSIM) in the transition zone and 1.04% (from 0.96 psu in the FREE to 0.97 psu in the ASSIM) in the Baltic Sea.”

9) The impact on SLA looks very small so I suggest replacing the related figure and table by a short paragraph.

We thank your good comment. We removed the Table 1 and added a Figure to show the variation by DA.

“We calculated the RMSE and correlation coefficients for both the FREE and ASSIM against the observations from tide gauges (Fig. 10). The overall RMSE was reduced by 1.8% and the correlation coefficients were slightly increased. Among the stations, RMSE at the Oskarshamn was decreased by 5.6%, which is larger than that at other station. The minimum RMSE change of SLA was seen at the Klagshamn. For the correlation coefficient, improvement on the SLA by the DA is very small. Simrishamn station showed the biggest change of correlation coefficient, which is 1.1%. The RMSE and correlation comparison demonstrated that the SST DA has generally positive effects on the forecast of the SLA.”

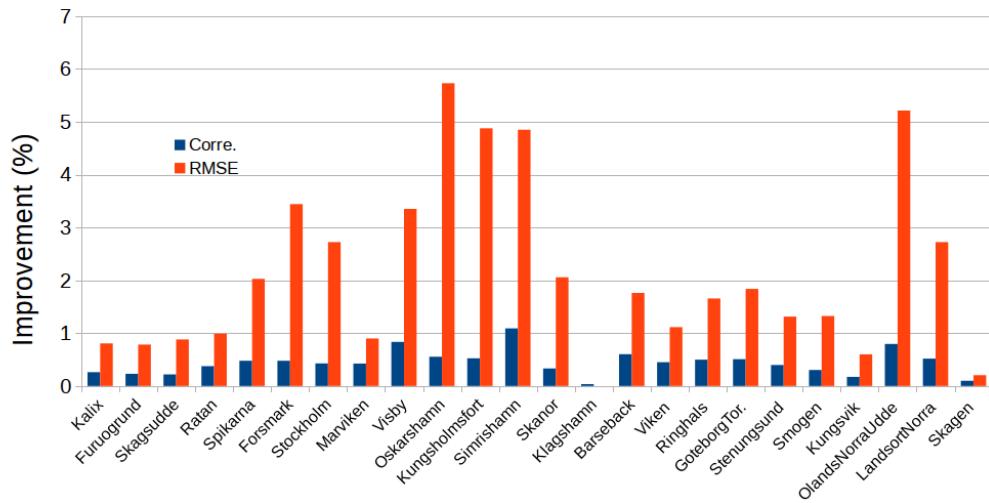


Figure 10. The improvement (%) of correlation coefficient and RMSE for the SLA at 10 tide gauges stations. The positions are shown in Fig. 8b.

Further, we also replaced the old figure 9 by Figure 11 to show the bias variation after data assimilation.

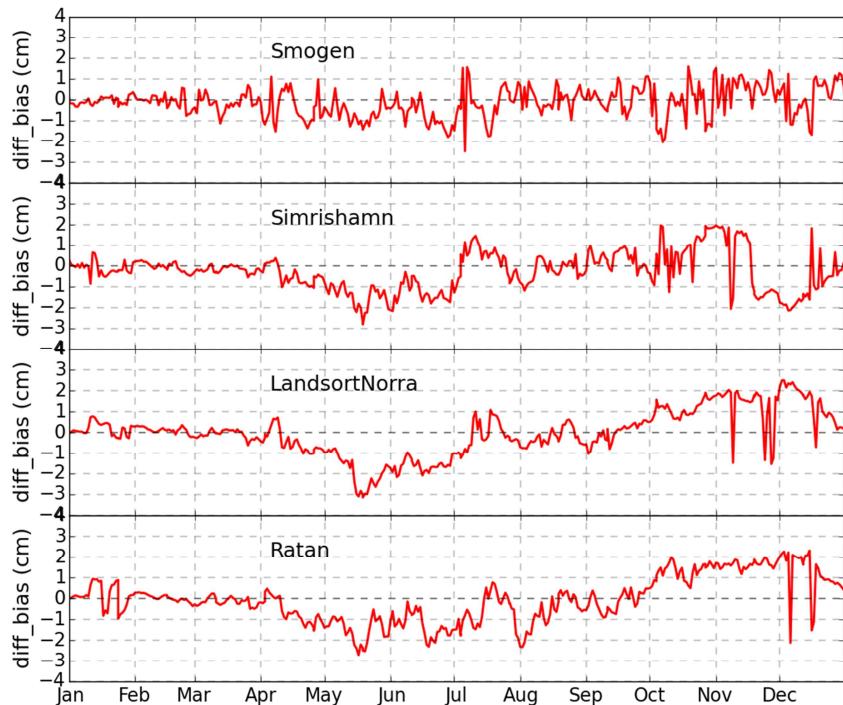


Figure 11. The difference of SLA biases between ASSIM and FREE against observations as a function of time at four observing stations.

10) Fig. 10 shows an improvement by assimilating SST. But the quantitatively comparison with the OSISAF concentration in the time series is helpful to know the impact in different sea ice seasons.

We added a new figure showing the comparison of monthly mean sea ice concentration in March and April and we also added the time series of the sea ice extent (SIE).

In the manuscript, we revised the text as:

“In March, compared to observation, the FREE produced low SIC in the western coast of the Bothnian Sea, Gulf of Finland, Gulf of Riga and the connect zone between the Bothnian Sea and Gulf of Finland. However, the model SIC in the FREE was higher than IceMap in the interior the Bothnian Bay. For instance, the SIC from FREE in the western Bothnian Sea was 40% higher than observation. In the south coast of the Arkona basin and Baltic proper, the FREE failed to reproduce the sea ice as in observation. After the DA, the high SIC was decreased in western Bothnian Sea and closer to that in IceMap in Bothnian Sea. In the Gulf of Finland and Gulf of Riga, the SIC error was increased in the ASSIM. In April, the large SIC error in the FREE was shown in the Bothnian Sea, the Bothnian Bay, Gulf of Rig and Gulf of Finland, where no clear improvements were seen in the ASSIM.”

“The daily SIE from the FREE and ASSIM was compared with observations in Fig.13. The observed SIE was generally increased from January to February and reached the maximum in mid-February. During the period of March-May, SIE was decreased as temperature was increasing. SIEs in both the FREE and ASSIM experiments were generally underestimated by comparison with the observation in 2010, especially in the period from Mid-March to early April. The SIE bias in both runs was increased from January to early April. In early April, the maximum negative bias of SIE was found to be 105000 km^2 for the ASSIM and 10000 km^2 for the FREE. The impact of SST assimilation on the SIE was positive during the phase of sea ice formation. For example, the SIE bias was reduced 25000 km^2 at the end of February and in the Mid-December. However, during the phase of sea ice melting (March to April), SIE error was increased in the ASSIM even with the error of SST decreased. For example, the SIE bias in the

ASSIM was increased by 42000 km² relative to FREE in the early March. These increased SIE error in March mainly happened in the Gulf of Riga and Gulf of Finland (Fig.11).”

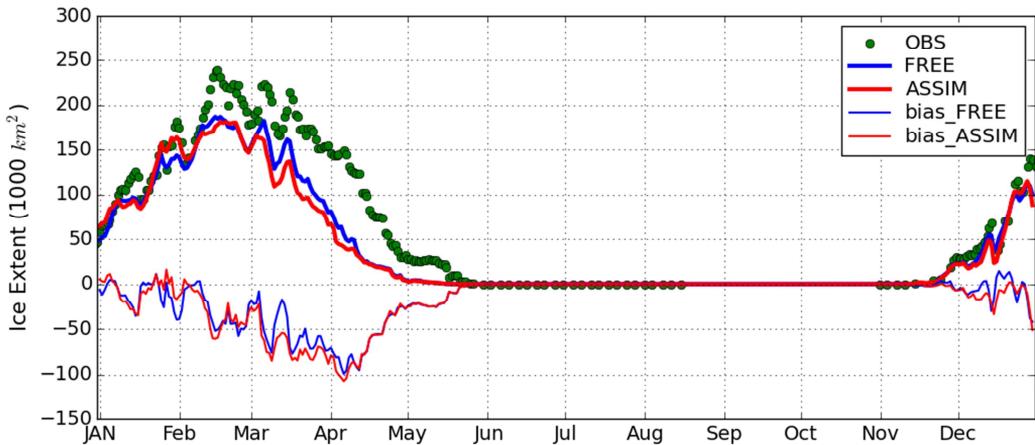


Figure 13. The daily sea ice extent from FREE, ASSIM and IceMap and the sea ice extent bias (modelled minus observed field), respectively.

Other small issues:

1) Line 137, the operator of \mathbf{L} in Eq. 3 has no illustration.

We added the line for the operator \mathbf{L} illustration.

2) Line 159, “OSISAF product” is it means more general products or only SST?

To clarify, we delete “ products are using in priority the European Meteorological satellites METEOSAT and MetOp and also several American satellites operated by NOAA, DMSP and NASA. Its”

3) Line 229, “model layer” replaced by “model level” because the model is not a layered model.

It was corrected.

4) Line 233, the forgotten factor is constant, or how to be defined?

We add a sentence “ To define the forgetting factor, a one-month simulation experiment with varying the factor ρ was done in January 2010. At last, a factor $\rho = 0.3$ resulted in the best assimilation performance.” At the end of Section 4.

5) Line 257, the evolution of SST based on 48-hourly local analysis. Does it mean all the SST comparison afterward use the 48 hourly forecast from the model?

Yes, we use the 48-hour forecast SST in the all comparison with observation.

6) Fig 1, the text is hard to identify. It is better to show the rivers involved in the model.

The two stations of Arkona and BY15 can be shown in Fig. 1 (or Fig. 7).

We add the Neva River and the position of Arkona and BY15 in Fig.1

7) Fig 6, the observed temperature at 70 m looks missing at Nov 2014, especially compared with other two depths or the salinity.

This temperature at 70 at BY15 station hasn't observation value at Nov 2010 in SHARK database.

8) Line 289, the obvious improvement in the Gulf of Finland. However, based on the snapshot of the observed SST distribution in Fig. 2 there are no observations.

The OSISAF observation at a specific basin may be missing like the Figure 2. Our Figure 3 is based on annual averaged IceMap SST comparison in 2010.

9) Line 278, "The model SST forecasts in both winter and summer (Fig2)". It is not corrected to say SST forecast in Fig. 2 because they only show the analyzed fields and the related increments, which not supports this conclusion.

Thank you. We changed it to "the SST DA has improved the simulated SST in both cases (Fig.2)"

10) Line 311, "The temperatures differ by about 15-22C between summer and winter" is confused. Does it mean the seasonal variability in observation?

We intended to show the seasonal variability. Since we only done one-year simulation, we delete the sentence "The temperatures differ by about 15–22 °C between summer and winter." to avoid confusion.

11) Line 314, "The reason perhaps ..." this kind of illustrations in this study require some proofs like MLD diagnosing or others.

We add the mixed layer depth analysis, which will support our conclusion.

12) Section 5.1, which mean ssh fields are used for tide gauges and the model simulations?

Since the mean SSH fields may be different from each other in the model and observation we do the comparison of SLA in this study. We calculated the mean SSH by directly averaging the tide gauges or model fields.

We'd like to thank the referee (S. Losa) for her useful comments and suggestions, which helps to greatly improve the quality of our manuscript. Our responses are in blue.

Interactive comment on “Assimilating High-resolution Sea Surface Temperature Data

Improves the Ocean Forecast in the Baltic Sea” by Ye Liu and Weiwei Fu

S. Losa (Referee)

svetlana.losa@awi.de

Received and published: 9 April 2018

This paper describes an experience in assimilating a high-resolution satellite sea surface temperature (SST) product into a NEMO-based numerical model of the Baltic Sea. There is no doubt that the Baltic Community urgently requires a good quality forecast of the Baltic Sea hydrography. And there is no doubt that any forecasting system would definitely benefit from assimilating observational information. These circumstances provide a strong motivation for the study discussed. I am, however, not sure that this data assimilation experience is sufficient enough to be documented in a peer-reviewed publication (at least with respect to improving forecast, as stated). In its present form, I cannot recommend the manuscript for publication.

Below I list my comments the authors might want to consider.

We thank the referee for reviewing our manuscript, acknowledging the importance of our topic, and for her suggestions on how to improve the manuscript.

General comments

The Title does not correctly reflect the subject/results of the paper. My concern is the statement “Improves the Ocean Forecast”: 1) because of the use of atmospheric reanalysis (not the forecast) as the forcing; and 2) since it is not clear from the text whether the authors evaluate the system state after the LSEIK analysis or in the forecast phase (just before the

analysis). Same is to the statements in lines 20 – 21, 86, 278, 440. “the Ocean Forecast in the Baltic Sea” sounds a bit odd.

1) We changed the title a bit to “Assimilating High-resolution Sea Surface Temperature Data Improves the Ocean Forecast Potential in the Baltic Sea”. We think the new title more correctly reflect the subject as our main focus is to demonstrate the potential impact of SST assimilation on the model predictions of the NEMO-Nordic, which aims for operational forecast. We believe that the reanalysis forcing will not impair this objective of our paper. In this study, we intended to showcase how useful the DA method and SST dataset are within the framework of NEMO-Nordic. One advantage of the reanalysis forcing is to reduce the uncertainty/bias of results arising from NWP forcing. We chose the atmospheric reanalysis to force the model, which, we thought, may reduce the intervention of the atmospheric errors regarding the analysis of the experiment results.

2) In the revision, we clarified this issue by pointing out that the system evaluation was done in the forecast phase after the LSEIK filter analysis (Fig.2). In this study, we firstly verified the system with two cases in two different seasons. Then we assess the impact of the SST data assimilation on Baltic forecast based on 48-hours forecast.

In the first paragraph of section 5, we added

“We considered the evolution of SST based on 48-hourly local analysis from 1 January 2010 to 31 December 2010. The 48-hourly forecast of SST from two runs was assessed with observations from different dataset (see Fig. 2 for details).”

There is a lack of detailed information on the data assimilation set up: whether the ensemble error statistics (or ensemble of model trajectories) dynamically evolve(s) in time or there is just one model trajectory and at the analysis step (every 48 hours) a constant (as it looks like given the expression “a stationary ensemble sample” in line 465, the suggestion on “a flow-dependent background error covariance” in line 472) covariance matrix represents the model

error statistics: The SEIK and LSEIK are normally considered as ensemble-based data assimilation methods. It would be nice if the authors clearly emphasize what is different/distinct in their application and why they use (L)SEIK for the analysis while they do not use any ensemble at all. Why do the authors not use the flow-dependent background error covariance? Do the authors really “use a localized Singular Evolutive Interpolated Kalman (SEIK) filter” just only “to characterize correlation scales in the coastal regions”? Please describe the model variables used to construct the multivariate error covariance matrix and included in the state vector.

According the reviewer's comment, we added more details to clarify these points. we used a stationary ensemble to statistically estimate the background error covariance. We did not use time-varying ensemble based on a couple of considerations: 1) firstly, the stationary ensemble is computationally efficient as we don't need to integrated many model states like the EnKF. Secondly, the time-invariant ensemble was shown to be able to mimic the signature of circulation in the background error covariance (Fu et al., 2011; Liu et al., 2013). Time-varying vs time-invariant ensemble is an interesting topic with respect to approximating the background error covariance (Korre et al. 2004). However, the major objective of this study is to validate the assimilation of high resolution SST data. Given the number of ensemble samples used in this study and our previous study, we are confident that the stationary ensemble can produce robust analysis (Liu et al. 2013).

We added the text in the revision:" We used a time-invariant sample ensemble to approximate the background error covariance during the experimental period (Korres et al, 2004, Liu et al. 2013, 2017). This stationary ensemble affords a good approximation of the ocean's background error covariance. Meanwhile, it is computationally efficient for our objective."

We described the LSEIK in more details in the revised manuscript.

Similar to other ensemble data assimilation EnOI or EnKF, the SEIK filter method includes both the global and local analysis based on different consideration. We used local analysis version of SEIK (LSEIK) with domain localization in this study (Neger et al. 2007). We used a localization scale of 70km for the Baltic and North Sea. Now we moved the following text from Section 4 to Section 2.2:

“Localization was used to remove the unrealistic long-range correlation with a quasi-Gaussian function and a uniform horizontal correlation scale (Liu et al. 2013). It was performed by neglecting observations that were beyond correlation distance from an analyzed grid point. In other words, only data located in the “neighborhood” of an analyzed grid point contribute to the analysis at this point.”

We stated that the state vector includes the sea level, temperature and salinity. The same model variables (sea level, temperature and salinity) were also used in the multivariable EOF analysis.

To further clarify the DA setup, we also added the text about the observation error and forget factor: “To define the forgetting factor, a one-month simulation experiment with varying the factor ρ was done in January 2010. At last, a factor $\rho = 0.3$ resulted in the best assimilation performance. Further, we define a two-day assimilation window in assimilation experiment. As a result, the observations in the two days before the assimilation time were used to calculate the innovation with observation operator. When we calculated the innovation we also changed the observation error according to the observation time by

$$\varepsilon = 0.4 \times \exp(-0.15\Delta t) \quad (9),$$

here Δt is the absolute time difference between observation time and DA time. “

In the present form the conclusions include only general statements on the impact of SST DA, which does not, however, add anything new to what was drawn from previous studies, and there is nothing specific with respect to assimilating the OSISAF SST. More emphasize could be

made on benefits due to the resolution of the OSISAF SST product, then a comparison against similar experiments but assimilating satellite SST data with coarser resolution are required.

The major objective of this study is to demonstrate the potential impact of assimilating OSISAF SST product on the forecast of the Baltic Sea. We showed in detail the potential of SST data assimilation for the forecast of temperature, salinity, sea level, mixed layer depth and sea ice. This study provides a clear and informative image to the Baltic Sea community for improving the forecast of different fields in the future. It is also the first time that OSISAF SST was assimilated into NEMO-Nordic model, which will replace the old operational forecasting system and serve the operational purposes at SMHI.

We summarized some new results in this study:

1. We demonstrated the potential of SST assimilation for the Baltic Sea forecast with the OSISAF Level 2 product, which is not contaminated by hind-cast information.
2. We provided overall validations of the potential impact of SST assimilation for the forecast in the whole Baltic Sea (both shallow basins and much deeper regions such as the Gotland Basin).
3. We found that the assimilation of SST could generally improve the forecasts of sea level from late spring to summer.
4. We showed an in-depth evaluation of the impact of SST assimilation on sea ice forecast by comparing the model with the observations of sea ice concentration (SIC) and sea ice extent (SIE). We found that the impact of SST assimilation on sea ice forecast is time-dependent, more important during the phase of sea ice formation than sea ice melting (March-April).

The assimilation of coarser resolution of the OSISAF product into the same model is interesting, but we would respectfully think it is beyond the scope of this study. Actually,

previous studies showed that proper ‘observation-thinning’ schemes were very helpful to assimilate high-density remote sensing data. For instance, Li et al (2009) assimilated $0.3^\circ \times 0.3^\circ$ satellite SST observation in the Chinese shelf-coastal seas. With an ensemble-based observation-thinning scheme, the assimilation of coarser resolution SST ($0.5^\circ \times 0.5^\circ$) can yield an Analysis Error variance (AEV) of 0.1°C . In the Baltic Sea, we expect that the impact of coarsening SST data on the forecast is weakened to some degree, depending on the actual thinning scheme.

Li XC, Zhu J, Xiao YG, Wang RW (2010) A Model-Based Observation-Thinning Scheme for the Assimilation of High-Resolution SST in the Shelf and Coastal Seas around China Journal of Atmospheric and Oceanic Technology 27:1044-1058 doi:10.1175/2010jtecho709.1

Specific comments

Lines 12-13: overall the sentence sounds misleading; moreover, for the localised SEIK you can use the LSEIK abbreviation. Missing reference to Nerger et al. (2006).

Thank you. We now used the LSEIK for the data assimilation method. The Nerger et al. (2006) was added as a reference in Section 2.2.

Line 20 (also line 453): I am just wondering whether 0.4% difference is a statistically significant in this particular application.

The model SLA was highly correlate with observation. The improvement of SLA varies considerably with stations. The 0.4% difference is the overall impact of the SST assimilation on the SLA. Since it is difficult to test the significance of the overall impact, we removed this sentence.

Line 119: please provide a reference to the used “runoff database”.

We added the reference for the river runoff data:

Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, *Hydrological Sciences Journal*, 61, 255–273, 2016.

Lines 205, 206: the discussed is the representation error (Janjić et al. 2017,

<https://doi.org/10.1002/qj.3130>.

There is different definition of the components of observation error in different consideration and theory. For clarify, we removed the discussion “The observation error mainly comes from the observation instrument itself, the observation representativeness, the temporary reading error and imperfect retrieval algorithm.”

Part 4, Lines 224-225, 228: Please explicitly determine the state vector – which particular model variables it includes.

In the reversion, we added one sentence to clarify:

The state vector includes sea level, temperature and salinity.

Lines 227-228: editing is required for the sentence “There does not exist uniform nature of error covariance for the variables of the model state vector and for the coastal zones ”

Thank you. We rephrased the sentence as : “In the North Sea and Baltic Sea, error covariances of different variables are not uniform and strongly dependent on whether the variable resides in the open sea or coastal zone.”

Line 233: “a forgetting factor” or “the so-called forgetting factor”

Thank you. we use “the forgetting factor” as the same using in Nerger et al. (2006).

Liner 236: missing references to Janjić et al. 2011

We added this reference Janjić et al. (2011)

Lines 247-248: The sentence “The correlation length scale ::::” is a copy-paste from

Losa et al. 2012; please rephrase and provide the references, including the references to the original studies by reporting on the estimates of the Rossby radius of deformation (Alenius et al., 2003; Fennel et al., 1991).

we rephrased this sentence and added the Losa et al., (2012) as a reference.

“The correlation length scale is to some extent dependent on the Rossby radius of deformation (Losa et al., 2012), which varies from ~ 200 km in the barotropic mode to ~ 10 km or even less in the baroclinic mode (Fennel et al., 1991; Alenius et al, 2003).”

Lines 271-276: the discussion on the bias seasonality: while, in general, the statement (l. 271) is true and was also discussed in Losa et al. 2014, it is difficult (if ever necessary) to conclude anything in this respect given just 2 snapshots for the increments (Figure 2).

Thanks for good comment. We removed the seasonally bias discussion related to Figure 2.

Line 457: “significantly improved” – this is not obvious.

we removed “significantly”.

Line 14: should it be “improvements of” instead of “improvements on”?

we revised it to “improvements”.

Lines 33-35: please provide references;

we added a reference Omstedt et al. 2014:

Omstedt, A., Elken, J., Lehmann, A., Leppäranta, M., Meier, H.E.M., Myrberg, K., and

Rutgersson, A.: Progress in physical oceanography of the Baltic Sea during the 2003–2014 period. *Progress in Oceanography*, 128, 139-171, 2014.

Line 38: “a numerical model” instead of “a numeric model”;

It was fixed.

Line 46: “joint effort” instead of “joints effort”;

It was fixed.

Line 49: “used for the operational” instead of “used to the operational”?

It was fixed.

Line 85: “sea level anomaly” instead of “sea level Anomaly”;

[It was fixed.](#)

Line 271: “model forecast possibility” – please remove “possibility”;

[In revision, we don't want to discuss the season variation of model SST. Therefore, we deleted the sentence “The SST bias of model forecast **possibility** has seasonal variability because of the errors in the forcing and/or heat flux parameterization used in the ocean model \(Fu et al. 2012\).”](#)

Line 308, 333, 335: “Arkona” instead of “Arokna”;

[It was fixed.](#)

Line 329: “The possible reason” not “The possibility reason”;

[It was fixed.](#)

Line 470: “strongly”, however the sentence in the lines 470-471 sounds misleading.

[We removed “around the observation position.”](#)

References

Janjić, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S., 2011. On domain localization

in ensemble based Kalman filter algorithms. *Monthly Weather Review* 136 (7),

2046–2060.

Nerger, L., Danilov, S., Hiller, W., Schröter, J., 2006. Using sea level data to constrain a finite-element primitive-equation model with a local SEIK filter. *Ocean Dynamics* 56, 634–649.

1 **Assimilating High-resolution Sea Surface Temperature**

2 **Data Improves the Ocean Forecast Potential in the Baltic**

3 **Sea**

4 Ye Liu¹, Weiwei Fu²

5 1. Swedish Meteorological and Hydrological Institute, Norrköping 60176, Sweden.

6 2. Department of Earth System Science, University of California, Irvine, California, 92697, USA.

7

8 *Correspondence to:* Ye Liu (ye.liu@smhi.se)

9

10 **Abstract.** We assess the impact of assimilating the satellite sea surface temperature (SST) data on
11 the Baltic forecast, practically on the forecast of ocean variables related to SST. For this purpose, a
12 multivariable DA system has been developed based on a Nordic version of the Nucleus for European
13 Modelling of the Ocean (NEMO-Nordic). We use a localized Singular Evolutive Interpolated Kalman
14 (SEIK) filter to characterize correlation scales in the coastal regions. High resolution SST from
15 OSISAF is assimilated to verify the performance of DA system. The assimilation run shows very sta-
16 ble improvements of the model simulation as compared with both independent and dependent observa-
17 tions. The SST prediction of NEMO-Nordic is significantly enhanced by the DA system. Tempera-
18 tures are also closer to observation in the DA system than the model results in the water above 100 m
19 in the Baltic Sea. In the deeper layers, salinity is also slightly improved. Besides, we find that Sea
20 level anomaly (SLA) is improved with the SST assimilation. Comparison with independent tide gauge
21 data show that overall root mean square error (RMSE) is reduced by 1.8% and overall correlation co-
22 efficient is slightly increased by 0.4%. Moreover, the sea ice concentration forecast is improved con-
23 siderably in the Baltic proper, the Gulf of Finland and the Bothnian Sea during the sea ice formation
24 period, respectively.

25

26 **1. Introduction**

27 Monitoring the marine status of the Baltic Sea with relevant resolution and accuracy is a key
28 requirement to serve the marine policy for detecting the influence of human activities on the environment
29 and better understanding the response of ocean to accelerating global climate change. The Baltic
30 Sea is one of the largest brackish seas in the world. It is a semi-enclosed basin, whose hydrography is
31 highly variable and influenced by large-scale atmospheric processes and significant influx of freshwater
32 from rivers runoff and precipitation (Leppäranta and Myrberg, 2009). In addition, the water exchange
33 between the North Sea and Baltic Sea through the Danish straits is hindered by shallow topographic
34 restrictions in the transition zone (Fig. 1).

35 A characteristic feature of numerical forecast in the Baltic Sea is in itself a major challenge
36 because of complex topography and rich dynamics. A number of ocean forecasting systems for the
37 Baltic Sea have been developed using hydrological model by operational agencies around this region.
38 Traditionally, these models have a horizontal resolution of 1–5 km and approximately 20–100 layers
39 in vertical structure ([Omstedt et al. 2014](#)). Due to the geographic location and conditions of the Baltic
40 Sea, even higher resolutions are often needed to better understand the circulation dynamics. However,
41 even ocean circulation models with a particularly high spatial resolution (e.g. 1 km) cannot resolve all
42 dynamically important physical processes in the ocean (Malanotte-Rizzoli and Tziperman, 1996). In
43 general, the forecast quality for a [numerical](#) model depends on initial conditions, boundary conditions
44 (lateral, open boundaries as well as meteorological forcing and bathymetry) and a robust numerical
45 model itself. As an operational forecasting agency, the Swedish Meteorological and Hydrological Institute's (SMHI) needs to issue well-informed forecasts and warnings for decision making by other
46 authorities during e.g. severe weather events, but also to the public. To improve the forecast quality,
47 the core three-dimensional dynamic model of the SMHI operational forecast system has recently migrated
48 to the Nordic version of the Nucleus for European Modelling of the Ocean (NEMO-Nordic).

50 In addition to model development, an extended observational network has been established by
51 the joint efforts of the countries surrounding the Baltic Sea. The observation platforms include vessels,
52 buoys, coastal stations, satellite, etc. Specially, the observations from satellite have dominated the

53 coverage of SST observational networks in the Baltic Sea (She et al. 2007). Among satellite products,
54 the SST is most popularly and widely used for the operational forecast, reanalysis or validation of the
55 model because of both its coverage and properties. SST acts as a medium between atmospheric and
56 oceanic variations through activation of coupling mechanisms. SST is also a key ocean variable to link
57 many processes that occur in the upper ocean, for example, air-sea exchange of energy, primary
58 productivity, and formation of water masses (Tranchant et al., 2008).

59 A realistic forecast of SST is essential to an ocean forecasting system. SST is especially im-
60 portant for the Baltic Sea that the average water depth is only 56 m and its surface water is directly
61 related to the bottom water by the mixing in the shallow sub-basins. Recently, the applications of SST
62 for forecasting and analyzing the status of the North Sea and Baltic Sea have received particular atten-
63 tion. In the short-term forecast, Losa et al. (2012, 2014) investigated the systematic model uncertain-
64 ties for forecasting the North and Baltic Seas by assimilating the Advanced Very High Resolution
65 Radiometer (AVHRR) SST data. Nowicki et al. (2015) applied SST observed from Aqua Moderate
66 Resolution Imaging Spectroradiometer (MODIS) into 3D coupled ecosystem model of the Baltic Sea
67 with the Cressman analysis scheme. O'Dea et al. (2016) enhanced the SST prediction skill of the oper-
68 ational system by assimilating both in-situ data and level 2 SST data provided by the Global Ocean
69 Data Assimilation Experiment High-Resolution SST (GHRSSST) into a European North-West shelf
70 operational model. Moreover, SST has been used in the long-term analysis in this region. For instance,
71 Stramska and Bialogrodzka (2015) analyzed spatial and temporal variability of SST in the Baltic sea
72 based on 32-years of satellite data, which indicate that there is a statistically significant trend of in-
73 creasing SST in the entire Baltic sea. However, these long-term SST data haven't been used to verify
74 the application of sophisticated DA methods for hydrography model in the Baltic profiles simulation,
75 especially at the Baltic deep water regions. Another important question is: what amount of satellite
76 SST can improve long-term forecast of ocean variables related to SST in the Baltic Sea.

77 The objective of this study is to address the impact of assimilating a high resolution SST product
78 on the forecast of the Baltic Sea, particularly the forecast of SST related variables like sea level and
79 sea ice. It is also the first time that satellite SST from the Ocean and Sea Ice Satellite Application Fa-
80 cility (OSISAF) was assimilated into NEMO-Nordic model (NEMO variant for the North Sea and

81 Baltic Sea). For operational forecast, the SST from OSISAF is the most important dataset in the Baltic
82 Sea [because it differs from hindcast analyzed product like OSTIA \(Operational SST and Sea Ice Anal-](#)
83 [ysis\) data. As a level 2 product, the OSISAF SST has both good temporal and spatial coverage in the](#)
84 [Baltic Sea. As there is no hindcast information included in the OSISAF SST, we are able to assess](#)
85 [direct impacts of assimilating SST observations.](#) Therefore, exploring the potential of this product is
86 critically important to further improving the new operational forecast system. In addition, our study
87 will enrich the reanalysis database of the Baltic Sea. In this study, we use the Singular Evolutive Inter-
88 polated Kalman (SEIK) filter (Pham, 2001) to account for the model uncertainties arising from a wide
89 range of spatial and temporal scales (Haines, 2010). One of our focuses is the impact of SST on the
90 modeled sea level and the sea ice in the Baltic Sea. For the whole Baltic Sea, how the SST assimila-
91 tion influences the temperature and salinity (T/S) on the different depth is another focus of this study.

92 The outline of the paper is as follows: the model configuration and SEIK scheme are described
93 in Section 2. An overview of the observations used in this study is presented in Section 3. The imple-
94 mentation of DA experiment is given in section 4 together with the sampling of ensemble and localiza-
95 tion. Results are compared with observations for temperature, salinity, sea level [anomaly](#) and sea ice in
96 Section 5. In this section, the impact of data assimilation on the forecasts is also investigated. Conclu-
97 sions and discussions are given in section 6.

99 **2. Methodology**

100 **2.1 NEMO-Nordic**

101 NEMO (Nucleus for European Modelling of the Ocean; Madec, 2008) has been set up at SMHI
102 for the North Sea and the Baltic Sea, a configuration called NEMO-Nordic (Hordoir et al., 2015) (Fig.
103 1). Open boundaries are implemented in northern North Sea between Scotland and Norway and in the
104 English Channel between Brittany and Cornwall, respectively (Hordoir et al., 2013). In this study,
105 NEMO-Nordic employs a horizontal resolution of 2 nautical miles (3.7 km) and 56 vertical levels, and
106 with a vertical resolution of 3 m close to the surface, decreasing to 22 m at the bottom of the deepest
107 part of the Norwegian trench. NEMO-Nordic uses a fully nonlinear explicit free surface (Adcroft and

108 Campin, 2004). A bulk formulation is used for the surface boundary condition (Large and Yeager,
109 2004). The ocean model is coupled to the Louvain-la-Neuve Sea Ice Model (LIM3) sea ice model
110 (Vancoppenolle et al., 2008) with a constant value of 10^{-3} PSU for the sea-ice salinity. A time-splitting
111 approach is used to compute a barotropic and a baroclinic mode, as well as the interaction between
112 them. A Tidal Inversion Model is used to define the barotropic mode at the open boundary conditions
113 (Egbert and Erofeeva, 2002). 11 tidal harmonics are defined for sea level and barotropic tidal veloci-
114 ties. In addition, a coarse resolution barotropic storm surge model covering a large area of the North-
115 ern Atlantic basin provides wind-driven sea level that is added to the tidal contribution. The T/S data
116 at the open boundary are provided by the Levitus climatology (Levitus and Boyer, 1994). Radiation
117 conditions are applied to calculate baroclinic velocities at these boundaries. A quadratic friction is
118 applied with a constant bottom roughness of 3 cm, and the drag coefficient is computed for each bot-
119 tom grid cell. NEMO-Nordic uses a TVD advection scheme with a modified leapfrog approach that
120 ensures a very high degree of tracer conservation (Leclair and Madec, 2009). Unresolved vertical tur-
121 bulence is parameterized with κ - ϵ scheme (Umlauf and Burchard, 2003). In addition, Galperin pa-
122 rameterization is used to obtain a stable long-term stratification for the Baltic Sea (Galperin et al.,
123 1988).

124 A Laplacian isopycnal diffusion is used for both momentum and tracers with a diffusion parame-
125 ter that is constant in time, but varies in space. Additional strong isopycnal diffusion is used close to
126 the Neva river inflow (Gulf of St. Petersburg) in order to avoid negative salinities. The bottom bound-
127 ary layer is parameterized to ease the propagation of saltwater inflows between the Danish Straits and
128 the deepest layers of the Baltic Sea (Beckmann and Doscher, 1997). A free-slip option is used for lat-
129 eral boundaries.

130 The model is forced by meteorological forcing derived from a downscaled run of Euro4M reanaly-
131 sis (Dahlgren et al., 2014). The downscaling is based on the regional atmospheric model RCA4 (Sam-
132 uelsson et al., 2011) which uses the reanalysis data as boundary conditions. A runoff database provides
133 the river flow to NEMO-Nordic ([Donnelly et al. 2016](#)); it includes inter-annual variability for the Bal-
134 tic Sea basin and is based on climatological values for the North Sea basin. The salinity of the river
135 runoff is set to a constant value of 10^{-3} PSU, which is the same value used for the sea-ice to avoid any

136 negative salinity.

137

138 **2.2 Local** Singular Evolutive Interpolated Kalman (LSEIK) filter

139 The method used to assimilate SST into NEMO-Nordic is the Local Singular Evolutive Interpo-
140 lated Kalman (LSEIK) filter (Pham et al., 2001, Nerger et al. 2006). This is a sequential data assimila-
141 tion scheme, which is an error subspace extend Kalman filter that uses a minimum number of ensem-
142 ble members to reduce the prohibitive computation burden (Pham, 2001). The LSEIK filter proceeds
143 in correction and forecast step:

144 1. Forecast: the analysis state \mathbf{X}^a at time t_{i-1} is integrated forward to the time of the next available
145 observations t_i to compute the forecast state \mathbf{X}^f ,

146
$$\mathbf{X}^f(t_i) = \mathbf{M}(t_{i-1}, t_i)\mathbf{X}^a(t_{i-1}) \quad (1),$$

147 where \mathbf{M} denotes the nonlinear dynamic model operator that integrates a model state from time t_{i-1}
148 to time t_i . The superscript ' f ' and ' a ' denote the forecast and analysis. The corresponding error covar-
149 iance matrix can be expressed as:

150
$$\mathbf{P}^f(t_i) = \mathbf{L}_i[(r + 1)\mathbf{T}^T\mathbf{T}]^{-1}\mathbf{L}_i^T + \mathbf{Q}_i \quad (2),$$

151
$$\mathbf{L}_i = \mathbf{X}^f(t_i)\mathbf{T} \quad (3),$$

152 with \mathbf{Q}_i being the covariance matrix of model uncertainties and $r + 1$ is the minimum number of
153 sample ensemble members for error covariance matrix. The superscript ' T ' denotes the transpose of
154 matrix. The full rank matrix \mathbf{T} has a dimension of $(r + 1) \times r$ with zero column sums and \mathbf{L} is a full
155 rank $(r + 1) \times r$ matrix which implicitly represents the model variability.

156 2. Correction: when the observation is available at time t_i , the LSEIK filter merged the information
157 from model and observation to produce the analysis state with the formula:

158
$$\mathbf{X}^a(t_i) = \mathbf{X}^f(t_i) + \mathbf{K}_i[\mathbf{Y}^o(t_i) - \mathbf{H}_i\mathbf{X}^f(t_i)] \quad (4).$$

159 Here \mathbf{Y}^o is a vector of observations. The gain matrix \mathbf{K} , which linearly interpolates between the obser-
160 vations and the forecast, is given by

161
$$\mathbf{K}_i = \mathbf{P}_i^f \mathbf{H}_i^T (\mathbf{H}_i \mathbf{P}_i^f \mathbf{H}_i^T + \mathbf{R}_i)^{-1} = \mathbf{L}_i \mathbf{U}_i (\mathbf{H}_i \mathbf{L}_i)^T \mathbf{R}_i^{-1} \quad (5),$$

162 where \mathbf{H}_i denotes the linearization of observation operator, which mapping the model space to the
163 observation space. \mathbf{R} is the observation error covariance matrix. The matrix \mathbf{U}_i is updated according to

164
$$\mathbf{U}_i^{-1} = [\mathbf{U}_{i-1} + (\mathbf{L}_i^T \mathbf{L}_i)^{-1} \mathbf{L}_i^T \mathbf{Q}_i \mathbf{L}_i (\mathbf{L}_i^T \mathbf{L}_i)^{-1}]^{-1} + \mathbf{L}_i^T \mathbf{H}_i^T \mathbf{R}_i^{-1} \mathbf{H}_i \mathbf{L}_i \quad (6).$$

165 Localization was used to remove the unrealistic long-range correlation with a quasi-Gaussian
166 function and a uniform horizontal correlation scale (Liu et al. 2013). It was performed by neglecting
167 observations that were beyond correlation distance from an analyzed grid point. In other words, only
168 data located in the “neighborhood” of an analyzed grid point should contribute to the analysis at this
169 point(Liu et al. 2009; Janjić et al. 2011).

170 A second-order exact sampling is used to initialize the LSEIK filter. At time t_{i-1} , a analysis
171 state $\mathbf{X}^a(t_{i-1})$ and its corresponding error covariance matrix $\mathbf{P}^a(t_{i-1})$, in the factorized form
172 $\mathbf{L}_{i-1} \mathbf{U}_{i-1} \mathbf{L}_{i-1}^T$, are available. The samples can be given by the following formular:

173
$$\mathbf{X}_k^a(t_{i-1}) = \bar{\mathbf{X}}^a(t_{i-1}) + \sqrt{r+1} \mathbf{L}_{i-1} (\boldsymbol{\Omega}_{k,i-1} \mathbf{C}_{i-1})^T \quad (7).$$

174 For $1 \leq k \leq r+1$, the \mathbf{C}_{i-1} is the Cholesky decomposition of \mathbf{U}_{i-1}^{-1} and $\boldsymbol{\Omega}_{i-1}$ is a $(r+1) \times r$ ma-
175 trix with orthonormal columns and zero column sums, where $\boldsymbol{\Omega}_{k,i-1}$ denotes the k^{th} row of $\boldsymbol{\Omega}_{i-1}$. $\bar{\mathbf{X}}^a$
176 is the average of the analysis state.

177

178 **3. Observations**

179 **3.1 Satellite observations**

180 The satellite SST used in DA was provided by OSISAF (<http://osisaf.met.no/p/sst/index.html>).
181 OSISAF ~~products are using in priority the European Meteorological satellites METEOSAT and~~
182 ~~MetOp and also several American satellites operated by NOAA, DMSP and NASA. Its aim is to pro-~~
183 duce, control and distribute operationally in near real-time products using available satellite data. The
184 satellite datasets product used here includes the observations from polar orbiting satellites (the EU-
185 METSAT MetOp-A and NOAA-18, -19) with the AVHRR instrument. The SST product has a resolu-
186 tion of 5 km and is produced twice daily at 00 UTC and 12 UTC. It covers the Atlantic Ocean from

187 50°N to 90°N. The SST observations are thermal infrared observations from the AVHRR instrument
188 and are therefore limited by cloud cover (Kilpatrick et al. 2001). The cloud mask in use is based on a
189 multi-spectral thresholding algorithm by SMHI. The products were retrieved using a nonlinear split
190 window algorithm (Walton et al. 1998). The coefficients in the retrieval algorithm are determined
191 through regression toward in situ observations, and the dataset thus represents the subskin temperature
192 of the oceans. Further, subskin observations are subject to diurnal warming effects, which can be sig-
193 nificant in the Baltic Sea. Here only the subskin SST at night ([00 UTC](#)), which is comparable to in situ
194 (buoy) measurement, is used to minimum this effect. The SST is controlled with the climatology
195 check. A quality level from 0 to 5 is associated with every pixel. The higher level value, the better the
196 quality of the observations (Brisson et al., 2001). Observations with quality level 4 (good) or 5 (excel-
197 lent) are collected for the analysis and low quality observations were removed. By applying the above
198 quality control processes, only a subset of the original OSISAF products is kept in this study. Based on
199 the former validation, a bias value of 0.5°C is given for this product.

200 Further, the IceMap from a sea ice concentration dataset with a high spatial resolution of 5 km
201 (http://www.smhi.se/oceanografi/iceservice/is_prod_en.php) is used to validate the DA results. It is
202 produced by SMHI and originates from digitized ice charts. An advantage of this data is that the ice
203 charts are quality checked manually. However, the drawback is that they include some subjective
204 steps. The temporal resolution of the IceMap SST is twice a week in the experiment period. Sea ice
205 occurs most frequently in the Bay of Bothnia, with up to 100 ice covered days per year. However, sea
206 ice can occur in all parts of the Baltic Sea and Danish straits, demonstrating the need for careful treat-
207 ment of sea ice in the SST analysis.

208

209 **3.2 In situ data**

210 The observations from the German Maritime and Hydrographic Agency (BSH) moored buoy
211 stations were collected as independent dataset to validate the assimilation results. The observations
212 have high temporal resolution and long continuous record. The second dataset was downloaded from
213 the Swedish Oceanographic Data Centre -SHARK database (<http://sharkweb.smhi.se>). SHARK mainly
214 contains low-resolution CTD data from a list of predefined standard stations in the Baltic Sea, as well

215 as in Kattegat and Skagerrak. Only observations that have passed gross quality control procedures are
216 collected into the SHARK database. This procedure includes, for example, location checks and local
217 stability checks. In addition, validating data records from tide gauges are also used. The sea level
218 anomaly measurements from tide gauges (sea level stations) are measured in a local height system and
219 values are presented relative to theoretical mean sea level, a level calculated from many years of annu-
220 al means, which takes into account the effect of land uplift and sea level rise. The values are averaged
221 over one hour period.

222 Not all the available observations from satellite, moored buoys, CTDs, tide gauges were included
223 in this study. To obtain the high assimilation quality results, another quality control was applied for
224 these data before they were used into assimilation and validation. These controls include examination
225 of forecast observation differences by excluding those observations for which the difference between
226 the forecast and the measurement exceeded given standard maximum deviations. The criteria were set
227 up empirically based on past validation results of the model (Liu et al. 2013). Furthermore, stations
228 located on land, according to the NEMO-Nordic grid, were excluded. We also removed the duplicate
229 records of these data.

230 The accuracy of observation error is difficult to be defined for all water points. ~~The observation~~
231 ~~error mainly comes from the observation instrument itself, the observation representativeness, the~~
232 ~~temporary reading error and imperfect retrieval algorithm.~~ The observation is commonly assumed to
233 be spatially irrelevant, which results in an error covariance matrix that is time-invariant diagonal and
234 its diagonal elements equal the variance of observation error. In this study, the observation error was
235 estimated to one value as the sum of all observation uncertainties used in the analysis. Besides, the
236 uncertainties of satellite SST varies from coast to the open sea, i.e. higher uncertainties in the coast
237 region relative to the open sea. We used a constant standard deviation value of 0.4°C based on the
238 standard deviation of satellite SST, which ranged from the ~0.1°C to ~0.5 °C in the Baltic Sea (She et
239 al. 2007, Høyer et al. 2016).

240

241 **4. Configuration of LSEIK in the experiment**

242 As above mentioned, the initialization of the filter requires an initial analyzed state and a low
 243 rank approximation of the corresponding estimation of error covariance matrix. The data assimilation
 244 process was initialized by a free model simulation. First the model was spinning up 20 years to reach a
 245 statistically steady state. Then a further (free-run) integration covered the period 2006-2009 was car-
 246 ried out to generate a historical sequence of model state. To reduce the calculation cost, we took a
 247 snapshot in every 6 days and saved 183 state vectors, [which includes sea level, temperature and salini-](#)
 248 [ty, in](#) total to describe the model variability because successive states are quite similar. The initial en-
 249 semble provided an estimate of the initial model state and its uncertainty before the assimilation of
 250 SST observations. The quantity of the model variability was expected to be reasonably comparable
 251 with the forecast error, which was dominated by misplacement of mesoscale features and varies in
 252 location and intensity seasonally. Further, the very high frequencies of model variability were also
 253 unfavourable in an ensemble of state vectors for SST data assimilation (Oke et al., 2005). Therefore, a
 254 band-pass filter was used to remove the unwanted frequency of model variability. [To initial low rank](#)
 255 [error covariance matrix, a](#) multivariable Empirical Orthogonal Functions (EOF) analysis was applied
 256 [on the 183 state vectors of model variables \(sea level, temperature and salinity\). In the North Sea and](#)
 257 [Baltic Sea, error covariances of different variables are not](#) uniform [and strongly dependent on whether](#)
 258 [the variable resides in the open sea or coastal zone](#). Each state variable was then normalized by the
 259 inverse of its spatially averaged variance at every model [level](#). At last, 34 leading EOF modes were
 260 kept and they explained 85% overall variability. Then the initial error covariance matrix was estimated
 261 by $P^a(t_0) \approx L_0 U_0 L_0^T$, where the L_0 is composed by the leading EOF modes and U_0 is diagonal
 262 matrix with the corresponding eigenvalues on its diagonal. [We used a time-invariant sample ensemble](#)
 263 [to approximate the background error covariance during the experimental period \(Korres et al, 2004;](#)
 264 [Liu et al. 2017\). This stationary ensemble affords a good approximation of the ocean's background](#)
 265 [error covariance. Meanwhile, it is computationally efficient for our objective.](#)

266 A [forgetting](#) factor ρ was introduced to parameterize the imperfect model by amplifying the al-
 267 ready existing modes of the background error [\(Nerger et al, 2006\)](#). The matrix U_i was calculated by

$$268 \quad \mathbf{U}_i^{-1} = \rho(r + 1)\mathbf{T}^T \mathbf{T} + \mathbf{L}_i^T \mathbf{H}_i^T \mathbf{R}_i^{-1} \mathbf{H}_i \mathbf{L}_i \quad (8).$$

269 ~~Further, localization was used to remove the unrealistic long range correlation with a quasi-~~
270 ~~Gaussian function and a uniform horizontal correlation scale (Liu et al. 2013). It was performed by~~
271 ~~neglecting observations that were beyond correlation distance from an analyzed grid point and only~~
272 ~~data points located in the “neighborhood” of an analyzed grid point should contribute to the analysis at~~
273 ~~this point. As a result, the quality of fields obtained by data assimilation was determined by the obser-~~
274 ~~vations coverage and quality (Liu et al. 2009).~~

275 The localization scale is another import factor to the assimilation system, especially at the coastal
276 region. Large correlation scale may transfer artificial increments to the positions far away from the
277 analysis observation during the DA process. However, small correlation scale is prone to cause the
278 singularity of ocean state around analyzed observation and break the continuity of the ocean state.
279 Hence, an unreasonable scale causes the instability of the model integration or degrades the assimila-
280 tion quality. Unfortunately, the accuracy length for the correlation is unknown for the North Sea and
281 Baltic Sea. The correlation length scale is to some extent dependent on the Rossby radius of defor-
282 mation (Losa et al., 2012), which varies from ~ 200 km in the barotropic mode to ~ 10 km or even less
283 in the baroclinic mode (Fennel et al., 1991; Alenius et al. 2003). According to the former researches
284 like Liu et al. (2013, 2017), a length scale of 70 km was specified for both the North Sea and Baltic
285 Sea in this study. Not that this value may be not perfect and more accurate correlation length needs to
286 be tested for LSEIK. For example, spatially variable length scales are the next step for the regional DA
287 simulations.

288 To define the forgetting factor, a one-month simulation experiment with varying the factor ρ was
289 done in January 2010. At last, a factor $\rho = 0.3$ resulted in the best assimilation performance. Further,
290 we define a two-day assimilation window in assimilation experiment. As a result, the observations in
291 the two days before the assimilation time were used to calculate the innovation with observation oper-
292 ator. When we calculated the innovation we also changed the observation error according to the obser-
293 vation time by

$$294 \quad \varepsilon = 0.4 \times \exp(-0.15\Delta t) \quad (9),$$

295 here Δt is the absolute time difference between observation time and DA time.

296

297 **5. Results**

298 In the following sub-sections, we conducted two runs with and without assimilation of the
299 SST observations from the OSISAF database, both runs with the above setup of the analysis system.
300 Accordingly, the runs with and without assimilation are called ASSIM and FREE, respectively. We
301 considered the evolution of SST based on 48-hourly local analysis from 1 January 2010 to 31 Decem-
302 ber 2010. The [48-hourly forecast SST from](#) two runs was assessed with [observations from different](#)
303 [dataset](#). Then we analyzed the impact of the data assimilation on the profile simulation of T/S. At last,
304 we evaluated the system performance with respect to sea surface [anomaly](#) and sea ice, respectively.
305

306 **5.1 Comparison with satellite data**

307 First, we presented [two cases to show the ocean state before and after](#) the assimilation of the
308 OSISAF SST data in Fig. 2. The first case was given at 11 January 2010, a date with clear weather and
309 many observations available. The model has obvious difficulties in reproducing the observed SST.
310 The cold biases in the forecast were found in the Skagerrak, west coast of the Baltic proper and the
311 Bothnian Bay, respectively. However, the warm biases appeared in the interior of the Baltic Sea and
312 the Kattegat. The largest deviation in the FREE reached 2.2 °C at the Skagerrak. Apparently, tempera-
313 ture by assimilation analysis agreed with the satellite-derived data much better. This correction at the
314 analysis step has allowed us to reduce the deviation of the SST forecast from the observations. ~~The~~
315 ~~SST bias of model forecast possibility has seasonal variability because of the errors in the forcing~~
316 ~~and/or heat flux parameterization used in the ocean model (Fu et al. 2012)~~. [The](#) DA system simulation
317 was also verified [at](#) 2 June 2010, which has also many available OSISAF observations. The biases on
318 2 June 2010 were obviously different from that on 11 January 2010. Moreover, it was found they had a
319 roughly opposite bias signal. For example, relative to the OSISAF SST at the Baltic proper, Bothnian
320 Sea and Bothnian Bay, FREE produced relatively warmer water [at January 11](#) and colder water [at 2](#)
321 [June](#) (Fig. 2), respectively. After data assimilation, the analysis increments were appropriately added
322 to the model field. In general, the SST DA has improved the [simulated](#) SST in both [cases](#) (Fig. 2).

323 Maps of annual averaged RMSE of SST from two runs relative to the IceMap observation are
324 shown in Fig. 3. Obviously, the RMSE in FREE and ASSIM had different distribution in the Baltic
325 Sea. In general, FREE had smaller error in the Skagerrak, eastern the Kattegat and the interior of the
326 Bothnian Sea relative to other subbasin of the Baltic Sea. The largest RMSE was found at the connec-
327 tion region between the Baltic proper and the Bothnian Sea. This could be caused by the shallow wa-
328 ter, complicated bathymetry and large observation biases in this area. It was also noted that the RMSE
329 was larger in the coast region compared to its interior in the Baltic proper and Bothnian Sea. After the
330 assimilation, the SST has been significantly improved. The RMSE of SST from ASSIM was generally
331 smaller than 1.0 °C. However, there were still some regions where the improvements were relatively
332 small and the RMSE of SST was greater than 1.0 °C. These large errors were predominantly located at
333 the edge of the Baltic Sea and the Danish straits. For instance, the RMSE of SST was greater than 1.2
334 °C at both the entrance of the Gulf of Finland and the west coast of the Bothnian Sea. The relatively
335 small improvements were regularly caused by the rare observations or the less accurate observations
336 near the coast water.

337 ————— The overall daily averaged SST errors against the IceMap observations have been estimated
338 (Fig. 4). The observations had better coverage in summer and autumn than in winter and spring. The
339 variability of the number of observation directly affected the assessment of DA results. The model
340 biases had pronounced seasonal variability, which had small values in spring and winter. In general,
341 the assimilation provided better SST estimations. The free run had a RMSE of 1.47 °C. After the as-
342 similation, the RMSE was reduced to 1.03 °C, whereas the bias was reduced by 0.73 °C. An interesting
343 feature was that the SST error reduction due to the assimilation was almost consistent with the varia-
344 bility of the number of IceMap observations. For example, the improvement became large with in-
345 creasing the number of IceMap observations from March to June 2010. However, the number of ob-
346 servations was kept constant during the period June-November 2010 and the improvement shown in
347 both the bias and RMSE of SST did not exhibit large variability, which meant reliable performance of
348 the DA system.

349

350 **5.2 Comparison with independent in-situ data**

351 The time series of T/S were compared with independent observations located at Arkona station
352 (13.87°E, 54.88°N) in the Arkona Basin and at BY15 (20.05 °E, 57.33 °N) in the Eastern Gotland Ba-
353 sin, respectively. These two stations were selected to verify the experiment results because of their
354 relatively completed observation records for the experiment period. In the Arkona Basin, the water
355 depth was shallow and the water column can be well mixed between surface and bottom water. Thus,
356 the bottom T/S was largely affected by the surface dynamic (Liu et al. 2014). Relative to observations,
357 the model had warm biases at this station (Fig. 5). ~~The temperatures differ by about 15–22 °C between~~
358 ~~summer and winter.~~ At a depth of 25m, the observed temperature showed the largest variability, which
359 was a good representation of the bottom characteristics of the mixed layer. In mid-August, the temper-
360 ature was abruptly increased by 10°C at a depth of 25m and slightly decreased at surface, respectively.
361 The reason is that the surface water suddenly sinks to deeper layers, which warm the deep water.
362 However, this dynamic process hasn't reached to Arkona bottom and it didn't cause the obvious bot-
363 tom temperature variability (Fig. 9). Both FREE and ASSIM had reproduced this process, whereas
364 FREE showed larger temperature biases. To the salinity at the Arkona station, the surface observations
365 were missing, the comparison at 7 m depth verified the subsurface simulations. The observations
366 showed larger salinity variability in winter relative to summer. This pronounced seasonal variation is
367 associated with the variation of fresh river runoff and net E–P (Evaporation–Precipitation) flux (Fu et
368 al, 2012). At a depth of 7 m, salinity was obviously underestimated from April to September and over-
369 estimated after November although the ASSIM had slightly better results compared to FREE. The DA
370 also provided better simulation of salinity at 25 m depth. For example, the salinity bias in the October
371 was reduced by 3 psu by DA. At a depth of 40 m, the saltwater inflows were observed, resulting in
372 sudden increases of salinity. For instance, the salinity was increased by 3.5 psu in February followed
373 by a decreasing trend. The variations were reproduced in both FREE and ASSIM, whereas the intensi-
374 ty of the decreased process is weakly simulated with a difference of 3 psu and the inflow in March was
375 not strong enough relative to the observed one. Observations also showed a large salinity variability
376 amounts to 4–8 psu in the autumn. Although FREE and ASSIM had shown these changes, their mag-
377 nitude was obvious weaker than observations. The possiblee reason was that the model's resolution was
378 inadequate to well resolve the topography and eddies in this area. Both the large runoff and the com-

379 plicated bathymetry posed challenges for the model to tackle the small-scale dynamic process in such
380 a shallow basin. A higher resolution model perhaps was more preferable to study this dynamic pro-
381 cess.

382 The Eastern Gotland Basin has deeper water depth compared to the Ark^oan Basin, in which the
383 water column is permanently stratified and the halocline lies at about 60–80 m (Fu et al, 2012). The
384 mixing and sinking of T/S are hindered by the strong stratification. Unlike observations in the Ark^ona
385 Basin (Fig. 5), the CTD observations at BY15 had lower temporal resolution with almost one observa-
386 tion per month. In the mixing layer, it can be seen model had overestimated the temperature (Fig. 6).
387 At a depth of 10 m, ASSIM has remarkably improved the simulation of temperature relative to FREE.
388 The bias has been reduced by 3°C in the spring of 2010. At 175 m depth, observed temperature
389 showed very small variation. The reason was that the main source for deep water ventilation is the
390 saltwater inflows which are suppressed by runoff within a depth range of 75–135 m in the Eastern
391 Gotland Basin (Vali et al. 2013). As a result, updating the bottom water is very slow. Both FREE and
392 ASSIM overestimated the temperature in the spring and the beginning of summer of 2010. Further,
393 ASSIM has increased the temperature bias after mid-summer relative to FREE. This result might be
394 explained by that the strong correlation isn't expected between surface and layers bellow the halocline
395 because of the strong stratification in this basin, which perhaps yield the artificial correction. There-
396 fore, the improvement of the surface temperature cannot guarantee its positive influence on the bottom
397 temperature. To the salinity, the model had less accurate simulation with generally low salinity biases
398 at 10 m depth. ASSIM provided better salinity simulation compared to FREE. At 70 m depth, the
399 small variation of salinity was found after DA. Moreover, at 175 m depth, the observation had very
400 small variability about 0.1 psu. In general, both experiments have reproduced these variations. How-
401 ever, FREE increased salinity by 0.2 psu from March to April relative to the observation, which
402 caused the overall salinity overestimated amount to 0.2 psu. This increasing process wasn't shown in
403 observations and the reason remained unclear. The DA has shown slight improvement, but it still salt-
404 er than the observations.

405 The mixed layer depth (MLD) was calculated at the Arkona and BY15 station and compared with
406 the SHARK observation in Fig. 7. We used the temperature criterion to define the MLD, i.e., the depth

407 at which the temperature deviated from the surface value by 0.5 °C (Fu et al., 2012). Figure 7 shows
408 that the MLD at Arkona had larger variability relative to the MLD at BY15. The reason contributed to
409 this feature is that the deeper water at Arkona is easily affected by wind forcing because of the shallow
410 bathymetry and well mixing, whereas the temperature variation in upper water at BY15 difficulty in-
411 fluences the deeper water because of the strong stratification. Both runs had reproduced the MLD var-
412 iability feature similar as the observations. For example, the minimum MLD appeared in summer,
413 which was about several meters. The assimilation of satellite SST caused strong changes in the MLD
414 at both stations, especially in winter. One explanation was that the Baltic Sea was largely affected by
415 wind forcing and the winter wind was much stronger than the summer wind. Further, strong heating in
416 summer promoted stratification in summer and shoaled the MLD.

417 Further, the temporal and spatial distribution of the SHARK observations is shown in Fig.8.
418 These observations were unevenly distributed in the Baltic Sea. In the Skagerrak, the observations
419 appeared at the Danish and Swedish coast. However, in the Bornholm Basin, Kattegat, and Baltic
420 proper, the observations mainly were found in the central and the Swedish coast side. There were also
421 many observations in the Bothnian Sea and rare observations in the central of the Bothnian Bay. It
422 must be noticed that there aren't SHARK observations in both the Gulf of Finland and Gulf of Riga
423 during the experiment period. Moreover, these SHARK profiles in the first four months were mainly
424 located from the Skagerrak to the Baltic proper, which are relatively rare in the northern Baltic Sea. In
425 the Bothnian Bay, the observations are mainly in the winter period.

426 Figure 9 shows the change of overall bias and RMSE of T/S with depth against the SHARK
427 dataset. In the Baltic Sea, DA had large impact on the temperature forecast in the water above 100 m.
428 The RMSE showed that the forecast of temperature was obviously improved from surface to thermo-
429 cline in the ASSIM and the improvements generally decreased with depth. Above 100 m, the overall
430 RMSE of temperature in ASSIM was decreased by 21.38% (from 1.59 to 1.25 °C). It was also found
431 the temperature error had similar variability as the warm biases in two runs. In the transition zone, the
432 RMSE in the ASSIM was reduced by 5.59% and -20.31% above and below 100 m relative to the
433 FREE, respectively. Below 90 m, the temperature was also over-adjusted, which changed the warm
434 bias to cold bias. It is worth noting that the number of the deeper water observation in the transition

435 zone is substantially less than that in the Baltic Sea. For the salinity, both RMSE and bias of the AS-
436 SIM showed very minor changes relative to the FREE inside the Baltic Sea. For the water above 100
437 m, the total RMSE of salinity was increased by 3.48% (from 1.15 psu in the FREE to 1.19 psu in the
438 ASSIM) in the transition zone and 1.04% (from 0.96 psu in the FREE to 0.97 psu in the ASSIM) in
439 the Baltic Sea.

440

441 **5.3 Sea Level Anomaly**

442 SLA represents a vertically integrated effect of the T/S variations over the whole water col-
443 umn. The accurate simulation of SLA is thus a good indicator of the model performance. Therefore,
444 validating the impact of SST assimilation on the simulation of SLA is very important to the Baltic Sea
445 forecast. The observations from the 24 tide gauge stations were used. These gauge stations are mainly
446 located at the Swedish coast (see Fig.8b). Since only the SST is assimilated in this study, the SLA
447 observations are completely independent.

448 We calculated the RMSE and correlation coefficients for both the FREE and ASSIM against the
449 observations from tide gauges (Fig. 10). The overall RMSE was reduced by 1.8% and the correlation
450 coefficients were slightly increased. Among these stations, RMSE at the Oskarshamn was decreased
451 by 5.6%, which is larger than that in other station. The minimum RMSE change of SLA was seen at
452 the Klagshamn. For the correlation coefficient, improvement on the SLA by the DA is very small.
453 Simrishamn station showed the biggest change of correlation coefficient, which is 1.1%. The RMSE
454 and correlation comparison demonstrated that the SST DA has generally positive effects on the fore-
455 cast of the SLA. Compared with tide gauge observations, the SLAs in FREE have been well simulated
456 at these stations. The correlation coefficients in FREE at 21 stations are all larger than 0.9. At the
457 Klagshamn, Barseback and Viken stations, the coefficients are smaller than 0.9 but still greater than
458 0.86. These three stations are located near the Sound where the sub-grid scale feature of narrow
459 transport cannot be fully resolved even in a high resolution model. Besides, the RMSE of SLA is
460 smaller than 0.1 m at 19 stations. Generally, SST DA had positive effects on the simulation of SLA. In
461 Table 1, the SLAs in ASSIM were better correlated with the tide gauge data than that in FREE. All the
462 RMSEs were reduced in ASSIM relative to FREE. The overall RMSE and correlation coefficients

463 ~~were reduced by 1.8% and increased by 0.4%, respectively. These stations are located from north to~~
464 ~~south of the Swedish coast, which imply the ASSIM had reliable performance in the all Swedish coast~~
465 ~~(Table 1).~~

466 In addition, the time series of [the SLA error discrepancy \(ASSIM minus FREE\) in two runs](#) at
467 four stations were selected to evaluate the simulation results (Fig. 11). These four stations were select-
468 ed to represent the model performance at different positions of the Swedish coast. [Two runs](#) showed
469 evidently different performance in these four stations. [The variability of the SLA difference between](#)
470 [two experiments](#) at the Smogen station had higher frequency compared to other stations. The reason
471 was that the Smogen station was located at the transition zone where the water had higher frequency
472 variations caused by the brackish Baltic in/outflowing relative to other three stations. [At these four](#)
473 [stations, the improvements](#) were mainly in later spring and summer, [whilst the degraded simulations](#)
474 [were mostly happened after Mid-September, respectively.](#) The SST assimilation had less impact in late
475 winter and early spring compared to other seasons. Besides, the impact of SST assimilation on SLA
476 simulation was not same in the four positions. For instance, [during the period from Mid-November to](#)
477 [Mid-December, the SLA in ASSIM was improved at Simrishamn and degraded at both the Ratan and](#)
478 [LandsortNorra stations, respectively.](#) This phenomenon was possibly caused by the imperfect correla-
479 tion between SST and SLA in the stationary samples. Further, these steric small changes of SLA by
480 [DA](#) were what we expected because only SST was assimilated into Nemo-Nordic.

481

482 5.4 Sea ice

483 Sea ice in the Baltic Sea occurs primarily in its north region and influences the Baltic climate.
484 Accurate detecting the sea ice is very useful to the northern Baltic living because too much or too little
485 sea ice can be a problem for wildlife and people. Sea ice concentration (SIC) [and Sea ice extent \(SIE\)](#)
486 [are two](#) important and common indicator to modeling sea ice environment. We assessed the SIC [and](#)
487 [SIE](#) from simulations against the IceMap observations in Fig. 12-13. Differ from the daily evaluation
488 in Losa et al. (2014), the monthly mean SIC was used to represent the general status of sea ice in the
489 Baltic Sea. Besides, SIC in January, February and December showed the variation of the sea ice in
490 winter.

491 In January 2010, the observations showed large ice coverage in the Bothnian Bay and the Gulf
492 of Finland and small SIC in the Gulf of Riga, respectively. Model generally reproduced this distribution
493 of sea ice. However, FREE simulated too much sea ice in the Gulf of Finland and the eastern
494 coast of the Baltic proper relative to observations. For example, SIC from FREE almost to 30% higher
495 than observations along the Estonia coastline. It could be seen that the SST DA reduced these biases.
496 The reason is the SST DA modified the thermal expansion by providing the well temperature fields
497 above the thermocline. The temperature in February became colder relative to January in the Baltic
498 Sea. As a result, the sea ice in February extended to the Bothnian Sea and the whole Gulf of Riga.
499 Observation also showed small SIC in Kattegat and Skagerrak. Model simulated higher SIC in the
500 Bothnian Sea with largest biases along the Swedish and Finnish coast. As an example, the observed
501 ice in the Bothnian Sea was characterized by concentrations mainly smaller than 0.5, whereas modeled
502 ice in FREE had concentration greater than 0.9 in the shallow region of the Bothnian Sea. FREE also
503 had smaller ice coverage with lower SIC in the transition zone between the North Sea and the Baltic
504 Sea relative to IceMap. After the SST assimilation, ASSIM reduced SIC in the Bothnian Bay and the
505 west coast of the Baltic Sea, which was closer to the observations. The ice in ASSIM didn't have ob-
506 vious variation in Kattegat and Skagerrak yet. ASSIM also reduced too much ice at the southern of the
507 Bothhomn Basin. The reason is that the satellite SST observations had limited accuracy near the coast
508 and they could bring artificial information into the modeling. [In March, compared to observation, the](#)
509 [FREE produced low SIC in the western coast of the Bothnian Sea, Gulf of Finland, Gulf of Riga and](#)
510 [the connect zone between the Bothnian Sea and Gulf of Finland. However, the model SIC in the FREE](#)
511 [was higher than IceMap in the interior the Bothnian Bay. For instance, the SIC from FREE in the](#)
512 [western Bothnian Sea was 40% higher than observation. In the south coast of the Arkona basin and](#)
513 [Baltic proper, the FREE failed to reproduce the sea ice as in observation. After the DA, the high SIC](#)
514 [was decreased in western Bothnian Sea and closer to that in IceMap in Bothnian Sea. In the Gulf of](#)
515 [Finland and Gulf of Riga, the SIC error was increased in the ASSIM. In April, the large SIC error in](#)
516 [the FREE was shown in the Bothnian Sea, the Bothnian Bay, Gulf of Rig and Gulf of Finland, where](#)
517 [no clear improvements were seen in the ASSIM. In December, sea ice coverage was smaller because](#)
518 [of relatively warm temperature compared to that in other winter month. Most of the sea ice with high](#)

519 concentration was observed at the edge of the Bothnian bay. Nevertheless, high concentration ice in
520 FREE also happened at the transition zone between the Bothnian Sea and Bothnian bay. Relatively,
521 ASSIM reduced the high concentration biases of sea ice. By contrast, both ASSIM and FREE had
522 lower concentration ice than observation in the eastern coast of the Bothnian Sea. The SIC from AS-
523 SIM was relatively lower than that from FREE in the northern Finish coast, whereas the observations
524 had high concentration ice there.

525 The daily SIE from FREE and ASSIM was compared with observations in Fig.13. The observed
526 SIE was generally increased from January to February and reached the maximum in mid-February.
527 During the period of March-May, SIE was decreased as temperature was increasing. SIEs in both the
528 FREE and ASSIM experiments were generally underestimated by comparison with the observation in
529 2010, especially in the period from Mid-March to early April. The SIE bias in both runs was roughly
530 increased from January to early April. In early April, the maximum negative bias of SIE was found to
531 be 105000 km² for ASSIM and 10000 km² for FREE. The impact of SST assimilation on the SIE was
532 positive during the phase of sea ice formation. For example, the SIE bias was reduced 25000 km² at
533 end of February and in the Mid-December. However, during the phase of sea ice melting (March to
534 April), the SIE error was increased in ASSIM even with the error of SST decreased. For example, the
535 SIE bias in ASSIM was increased by 42000 km² relative to FREE in the early March. These increased
536 SIE error in March mainly happened in the Gulf of Riga and Gulf of Finland (Fig.11).

537

538 **6. Conclusion and discussions**

539 A DA system based on a LSEIK filter has been coupled to the NEMO circulation model of the
540 North and Baltic Seas. The method was successfully applied for assimilating high resolution satellite
541 SST data. We demonstrated that, over the period of 2010, the agreement of the SST forecast with the
542 independent satellite observation was improved by ~ 29.93% in comparison with the regular forecast
543 without DA. The assimilation quality is directly related to the number of observation.

544 Compared with independent in-situ data from SHARK, ~~the results showed~~ the overall RMSE
545 of temperature ~~of T/S~~ was reduced by ~~21.38~~^{11.68}% and 5.59% for the water above 100 m inside and

546 outside of the Baltic Sea, respectively, and decreased by 2.17%, respectively. These variations of T/S
547 mainly occurred in the water above 100 m. However, in the deeper layers, the temperature was slightly
548 degraded while salinity was slightly improved in the Baltic Sea. This is partially caused by the artifi-
549 cial correlation between surface layer and deeper layers. The improvement of temperature by SST DA
550 can't guarantee corresponding improvement of the salinity. The statistics displays the salinity RMSE
551 was increased by 1.04% and 3.48% in the transition zone and the Baltic Sea, respectively. Both AS-
552 SIM and FREE have captured the main dynamic process in the Baltic Sea, for example, the inflow and
553 the sink. However, ASSIM is closer to the observed one relative to FREE.

554 The forecast results were further validated with the independent SLA observations. The result
555 shows that all RMSEs and correlations for all 21 stations are smaller than 0.12 m and greater than
556 0.86, respectively. After DA, the SLAs at these stations have been slightly improved. In general, the
557 RMSE was reduced by 1.8% and correlation coefficients were slightly increased, respectively. Fur-
558 ther, the model-observation comparison at selected four stations indicates that these improvements are
559 mainly in later of spring and summer. The comparisons also denote the SST assimilation has less im-
560 pact in the late winter and early spring relative to other seasons.

561 When compared with monthly mean observations of SIC, both assimilation run and free run
562 reproduced main spatial distributions of sea ice in the Baltic Sea. During the sea ice formation period,
563 the SST assimilation has improved the results of SIC from FREE in the Gulf of Finland, the Bothnian
564 Sea and eastern coast of the Baltic proper. However, minor improvements were found in Kattegat and
565 Skagerrak. Besides, over the sea ice melting period, the SIE comparison showed the SST assimilation
566 increased the SIE error, especially in the Gulf of Finland and Gulf of Riga.

567 The daily MLD from two runs has been compared with the observations at Arkona and BY15
568 stations. Model could capture the variability features of the MLD. Similar as Fu et al.(2012), it was
569 found that SST assimilation had less impact on the MLD in summer than that in winter. In general, the
570 SST DA produced less influences on the MLD in the deeper region (BY15) relative to that in the shal-
571 low region (Arkona).

572 Further, the reliability of the DA system is worth being assessed. In Rodwell et al.(2006), a per-
573 fect reliable system error variance for ensemble assimilation was calculated by the sum of the variance

574 of the sample ensemble, the square of innovation(misfit between observation and model) and the vari-
575 ance of observation at assimilation time. In this study, we used a constant observation error similar to
576 Rodwell et al. (2016) because our DA design is different from that paper. The major difference be-
577 tween these two studies is that we estimate the background error covariance from stationary ensemble
578 and avoid the perturbation of observation error. Therefore, the variance of the sample ensemble and
579 observation is univariate and the diagnostic of the assimilation stability can be directly obtained from
580 the forecast error like the RMSE in Fig.4.

581 The results of the SST assimilation are encouraging and the assimilation helps to ameliorate
582 some model deficiencies such as the simulation of sea ice in the Gulf of Finland. However, some prob-
583 lems need to be further addressed in the SST DA in the future: firstly, the SST assimilation has worse
584 influence on the simulation of salinity in the upper layers and temperature in the deeper layers. Losa et
585 al.(2012) denoted that the salinity simulation quality crucially depends on the assumptions about the
586 model and data error statistics. Here a stationary ensemble sample was used to represent the corre-
587 lation between T/S and between surface and deep water. These relationships could be changed with the
588 varying dynamics and forcing conditions. More sophisticated assumption should be used in the DA of
589 Baltic Sea. Secondly, the SHARK observations in this study are absent at the Gulf of Finland and Gulf
590 of Riga. This denotes the validation results with SHARK observation didn't include the evaluation of
591 the simulation of T/S in deep water of these two basins. Thirdly, the univariate localization scale used
592 in this study could be another problem. The spreading of observation information strongly depended
593 on the correlation scale ~~around the observation position~~. The large localization scale can introduce the
594 artificial information, which could degrade the assimilation quality. A flow-dependent background
595 error covariance with varying correlation scale may be more appropriate for the Baltic Sea with com-
596 plex bathymetry and rich dynamics. Fourthly, the remote sensing observations near the coast could
597 have large bias because of the limit of the instrument itself. More strict quality controlling method
598 needed to be used for the satellite coastal observations before their assimilation.

599

600 Acknowledgment

601 The research presented in this study was funded by the Swedish Space Board within the project 'As-

602 simulating SLA and SST in an operational ocean forecasting mode for the North Sea and Baltic Sea
603 using satellite observations and different methodologies' (grant no.172/13).

604

605 **References**

606 Adcroft, A., and Campin, J. M.: Re-scaled height coordinates for accurate representation of free-
607 surface flows in ocean circulation model, *Ocean Modell.*, 7, 269–284, 2004.

608

609 [Alenius, P. A., Nekrasov, A., and Myrberg, K.: Variability of the baroclinic Rossby radius in the Gulf](#)
610 [of Finland, Cont. Shelf Res., 23 \(6\), 563–573, 2003.](#)

611

612 Beckmann, A., and Döscher, R.: A method for improved representation of dense water spreading over
613 topography in geopotential-coordinate models, *J. Phys. Oceanogr.*, 27, 581–591, 1997.

614

615 Brisson, A., Le Borgne, P., and Marsouin, A.: Results of one year of preoperational production of sea
616 surface temperatures from GOES-8, *J. Atmos. Oceanic Technol.*, 19(10), 1638–1652, 2002.

617

618 Dahlgren, P., Källberg, P., Landelius, T. and Undén, P.: EURO4M Project Report, D 2.9 Comparison
619 of the Regional Reanalyses Products with Newly Developed and Existing State-of-the Art Systems.
620 Technical Report, Online at: <http://www.euro4m.eu/Deliverables.htm>, 2014.

621

622 [Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment similarities to](#)
623 [evaluate the E-HYPE multi-basin model across Europe, Hydrological Sciences Journal, 61, 255–273,](#)
624 [2016.](#)

625

626 Egbert, G. D., and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, *J. Atmos.*
627 *Oceanic Technol.*, 19(2), 183–204, doi: 10.1175/1520-0426, 2002.

628

629 [Fennel, W., Seifert, T., and Kayser, B.: Rossby radii and phase speeds in the Baltic Sea. Cont. Shelf](#)
630 [Res., 11\(1\), 23–26, 1991.](#)

631

632 Fu, W.W., She, J., and Dobrynin, M.: A 20-year reanalysis experiment in the Baltic Sea using
633 three-dimensional variational (3DVAR) method. *Ocean Sci.*, 8, 827–844, 2012.

634

635 Galperin, B., Kantha, L. H., Hassid, S., and Rosati A.: A quasi-equilibrium turbulent energy model for
636 geophysical flows, *J. Atmos. Sci.*, 45, 55–62, 1988.

637

638 Haines, K.: Ocean data assimilation. In: *Data Assimilation: Making Sense of Observations.* . Springer-
639 Verlag, Berlin Heidelberg, pp. 517-548. ISBN 9783540747024, 2010.

640

641 Hordoir, R., Axell, L., Löptien, U., Dietze, H., and Kuznetsov, I.: Influence of sea level rise on the
642 dynamics of salt inflows in the Baltic Sea, *J. Geophys. Res. Oceans*, 120, doi:10.1002/2014JC010642,
643 2015.

644

645 Hordoir, R., Dieterich, C., Basu, C., Dietze, H., and Meier M.: Freshwater outflow of the Baltic Sea
646 and transport in the Norwegian current: A statistical correlation analysis based on a numerical experi-
647 ment, *Cont. Shelf Res.*, 64, 1–9, doi:10.1016/j.csr.2013.05.006, 2013.

648

649 Høyer J.L., and Karagali, I.: Sea Surface Temperature Climate Data Record for the North Sea and
650 Baltic Sea. *JOURNAL OF CLIMATE*. 29, 2529–2541, 2016.

651

652 [Janjić, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S., On domain localization in ensemble](#)
653 [based Kalman filter algorithms. Monthly Weather Review, 136 \(7\), 2046–2060, 2011.](#)

654

655 Kilpatrick, K. A., Podesta, G. P., and Evans, R.: Overview of the NOAA/NASA Advanced Very High
656 Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup data-

657 base, *J. Geophys. Res.*, 106(C5), 9179–9197, doi:10.1029/1999JC000065, 2001.

658

659 Large, W. G., and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models: The
660 data sets and flux climatologies, NCAR Tech. Note, NCAR/TN-4601STR, CGD Div. of the Natl.
661 Cent. for Atmos. Res., 2004.

662

663 Leclair, M., and Madec, G.: A conservative leapfrog time stepping method, *Ocean Modell.*, 30, 88–94,
664 doi:10.1016/j.ocemod.2009.06.006, 2009.

665

666 Leppäranta, M., and Myrberg, K.: *The Physical Oceanography of the Baltic Sea*, pp. 378, Springer-
667 Verlag, Berlin-Heidelberg, New York, 2009.

668

669 Levitus, S., and Boyer, T. P.: Salinity, in *World Ocean Atlas 1994*, NOAA Atlas NESDIS, vol. 3, 99
670 pp., U.S. Gov. Print. Off., Washington, D. C., 1994.

671

672 Liu, Y., Zhu, J., She, J., Zhuang, S. Y., Fu, W.W., and Gao, J.D.: Assimilating temperature and salini-
673 ty profile observations using an anisotropic recursive filter in a coastal ocean model. *Ocean Model.* 30,
674 75–87, 2009.

675

676 Liu, Y., Meier, H. E. M., and Axell, L.: Reanalyzing temperature and salinity on decadal time scales
677 using the ensemble optimal interpolation data assimilation method and a 3-D ocean circulation model
678 of the Baltic Sea. *J. Geophys. Res.Oceans.*, 118, 5536–5554, 2013.

679

680 Liu, Y., Meier, H. E. M., and Eilola, K.: Improving the multiannual, high-resolution modelling of bio-
681 geochemical cycles in the Baltic Sea by using data assimilation, *Tellus A*, 66, 24908,
682 doi:10.3402/tellusa.v66.24908, 2014.

683 Liu, Y., Meier, H. E. M., and Eilola, K.: Nutrient transports in the Baltic Sea – results from a 30-year
684 physical–biogeochemical reanalysis. *Biogeosciences*, 14, 2113–2131, 2017.

685

686 Losa S.N., Danilov, S., Schröter, J., Nerger, L., Maßmann, S., and Janssen, F.: Assimilating NOAA

687 SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about

688 the data. *Journal of Marine Systems*, 105–108, 152–162, 2012.

689

690 Losa S.N., Danilov, S., Schröter, J., Janjic, J., Nerger, L., and Janssen, F.: Assimilating NOAA SST

691 data into the BSH operational circulation model for the North and Baltic Seas: Part 2. Sensitivity of

692 the forecast's skill to the prior model error statistics. *Journal of Marine Systems*, 259–270, 2014.

693

694 Madec, G.: NEMO ocean engine, version 3.3, Note du Pôle de modélisation de l'Inst. Pierre-Simon

695 Laplace 27, Inst. Pierre-Simon Laplace, Paris. (Available at <http://www.nemo-ocean.eu/>), 2010.

696

697 Malanotte-Rizzoli, P., and Tziperman, E.: The oceanographic data assimilation problem: overview,

698 motivation and purposes. In *Modern Approaches to Data Assimilation in Ocean Modeling*, Amster-

699 dam: Elsevier, 3–17, 1996.

700

701 [Nerger, L., Danilov, S., Hiller, W., and Schröter, J.: Using sea level data to constrain a finite-element](#)

702 [primitive-equation ocean model with a local SEIK filter. Ocean Dynamics 56, 634–649, 2006.](#)

703

704 Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., and Kałas, M.: Assimilation of the satellite SST

705 data in the 3D CEMBS model. *Oceanologia*, 57, 17–24, 2015.

706

707 O'Dea E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., Siddorn, J. R.,

708 Storkey, D., While, J., Holt, J. T., and Liu H.: An operational ocean forecast system incorporating

709 NEMO and SST data assimilation for the tidally driven European North-West shelf, *Journal of Opera-*

710 *tional oceanography*, 5(1), 3-17, 2012.

711

712 Oke, P. R., Schiller, A., Griffin, D. A., and Brassington, G. B.: Ensemble data assimilation for an ed-

713 dy-resolving ocean model of the Australian Region. *Q. J. Roy. Meteorol. Soc.* 131, 3301–3311, 2005.

714

715 [Omstedt, A., Elken, J., Lehmann, A., Leppäranta, M., Meier, H.E.M., Myrberg, K., and Rutgersson, A.: Progress in physical oceanography of the Baltic Sea during the 2003–2014 period. Progress in Oceanography, 128, 139-171, 2014.](#)

716

717

718

719 Pham, D.T.: Stochastic methods for sequential data assimilation in strongly nonlinear systems. *Mon. Weather Rev.* 129, 1194–1207, 2001.

720

721

722 [Rodwell, M. J., Lang, S. T. K., Ingleby, N. B., Bormann, N., Hólm, E., Rabier, F., Richardson, D. S., and Yamaguchi, M.: Reliability in ensemble data assimilation. Q. J. Roy. Meteor. Soc., 142, 443–454, doi:10.1002/qj.2663, 2016.](#)

723

724

725

726 Samuelsson, P., Jones, C., Willen, U., Ullerstig, A., and co-authors.: The Rossby Centre Regional

727 Climate model RCAS3: model description and performance, *TellusA*, 63, 4–23, 2011.

728

729 She, J, Høyer, J. L., and Larsen, J.: Assessment of sea surface temperature observational networks in

730 the Baltic Sea and North Sea. *Journal of Marine Systems* 65, 314–335, 2007.

731

732 Stramska, M., and Białogrodzka, J.: Spatial and temporal variability of sea surface temperature in the

733 Baltic Sea based on 32-years (1982—2013) of satellite data. *Oceanologia*, 57, 223–235, 2015.

734

735 Tranchant B., Reffray, G., Greiner, E., Nugroho, D., Koch-Larrouy, A., and Gaspar, P.: Evaluation of

736 an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas

737 (NEMO2.3/INDO12) –Part 1: Ocean physics. *Geosci. Model Dev.*, 9, 1037–1064, 2016.

738

739 Umlauf, L., and Burchard, H.: A generic length-scale equation for geophysical turbulence models, *J. Mar. Syst.*, 61, 235–265, 2003.

740

741

742 Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and Maqueda, M. A. M.: Simu-
743 lating the mass balance and salinity of arctic and Antarctic sea ice, *Ocean Modell.*, 27(1–2), 33–53,
744 doi:10.1016/j.ocemod.2008.10.005, 2008.

745

746 Väli, G., Meier, H. E. M., and Elken, J.: Simulated halocline variability in the Baltic Sea and its im-
747 pact on hypoxia during 1961–2007, *J. Geophys. Res.-Ocean.*, 118, 6982–7000,
748 doi:10.1002/2013JC009192, 2013.

749

750 Walton, C. C., Pichel, W. G., Sapper, F. J., and May, D. A.: The development and operational applica-
751 tion of nonlinear algorithms for the measurement of sea surface temperatures with NOAA polar-
752 orbiting environmental satellites, *J. Geophys. Res.*, 103(C12), 27,999–28,012,
753 doi:10.1029/98JC02370, 1998.

754

755

756

757

758

759

760

761

762

763

764

765

766 Figure 1. Geographical domain and bathymetry (in m) of the NEMO-Nordic configuration.

767

768

769

770

771

772

773

774

775

776

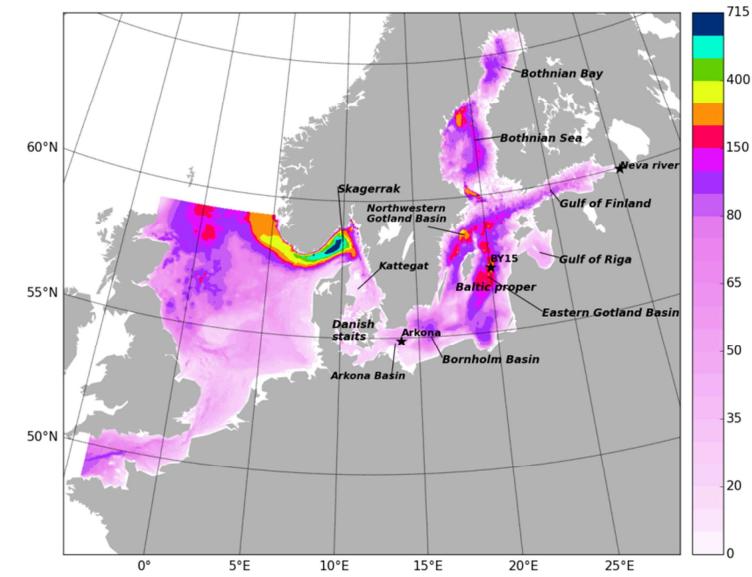
777

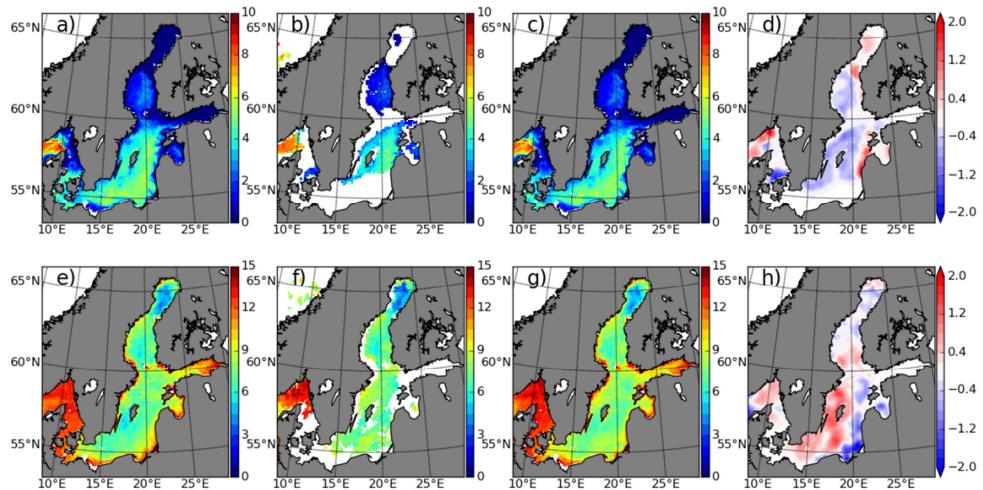
778

779

780

781





782

783 Figure 2. Map of SST from FREE (a,e), OSISAF (b, f), ASSIM (c, g) and the assimilation increments
 784 (d, h) on 11 January 2010 (first row) and 2 June 2010 (second row), respectively.

785

786

787

788

789

790

791

792

793

794

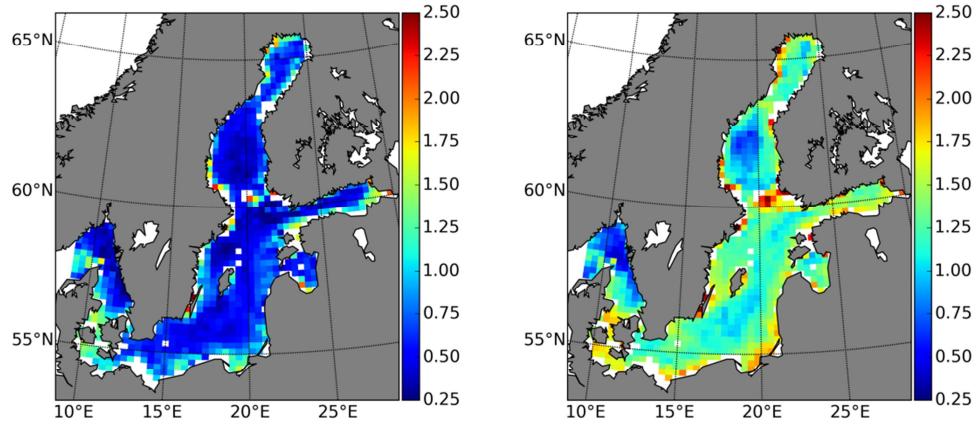
795

796

797

798

799



800

801 Figure 3. Map of the RMSE of SST from ASSIM (left panel) and FREE (right panel) calculated
 802 against IceMap SST in 2010, respectively.

803

804

805

806

807

808

809

810

811

812

813

814

815

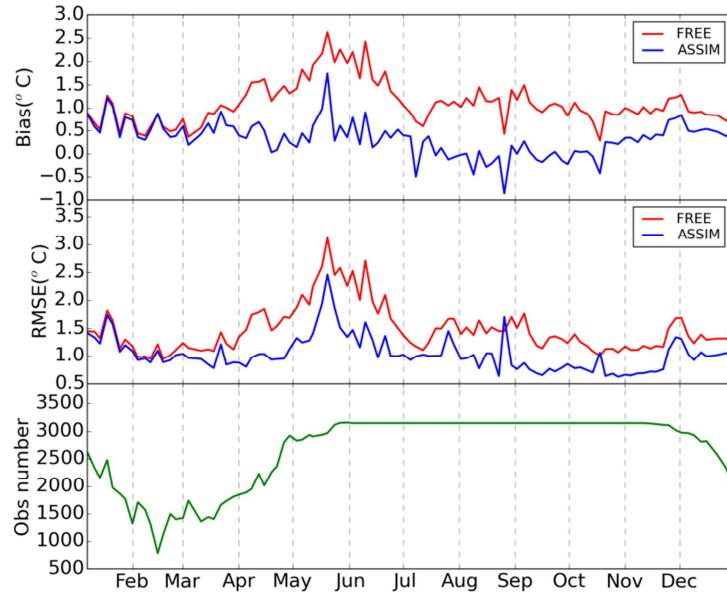
816

817

818

819

820



821

822 Figure 4. The evolution of basin-averaged bias and RMSE of SST from FREE and ASSIM relative to
 823 IceMap SST and the number of IceMap observation in 2010.

824

825

826

827

828

829

830

831

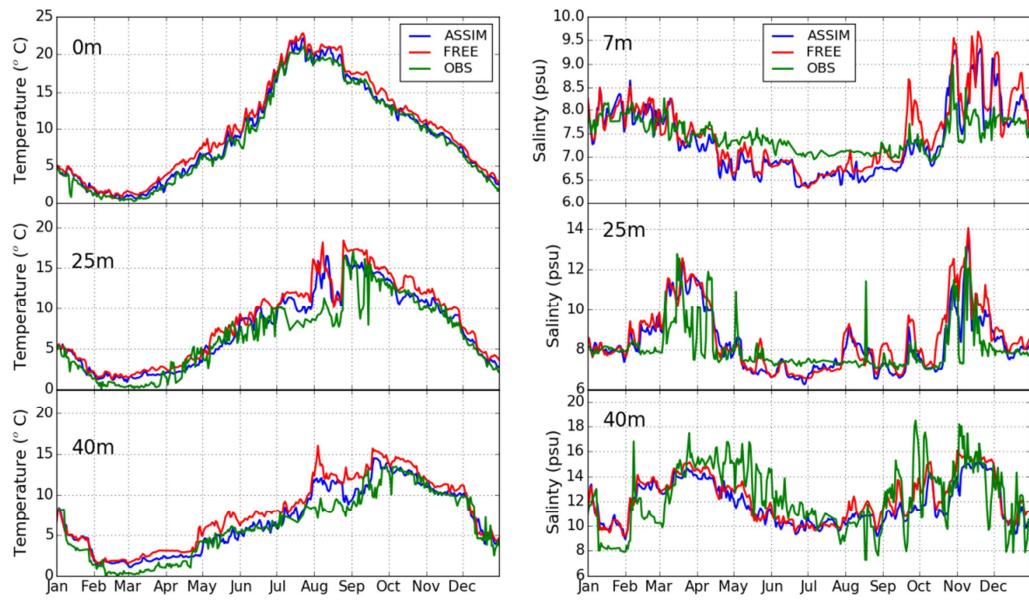
832

833

834

835

836



837

838 Figure 5. The time series of temperature (left panel) at a depth of 0, 25 and 40 m and salinity (right
 839 panel) at a depth of 7, 25 and 40 m at the Arkona station (13.87°E , 54.88°N), respectively.

840

841

842

843

844

845

846

847

848

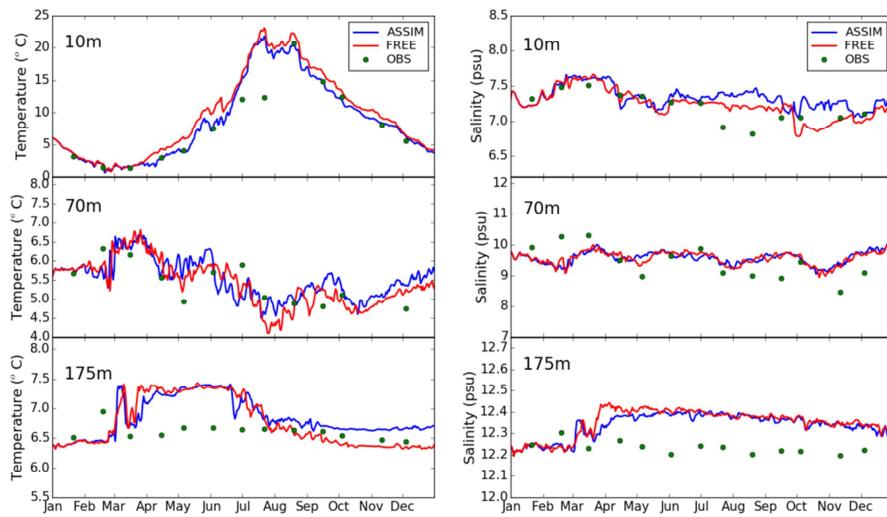
849

850

851

852

853



854

855 Figure 6. The time series of temperature (left panel) and salinity (right panel) at the BY15 station
 856 (20.05°E, 57.33°N) at a depth of 10, 70 and 175 m, respectively.

857

858

859

860

861

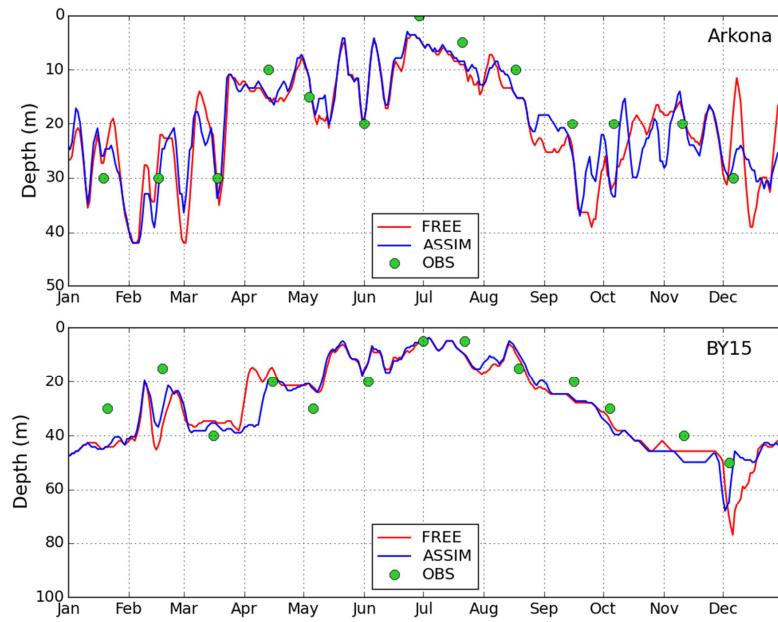
862

863

864

865

866



[Figure 7. The time series of mixed layer depth at Arkona and BY15 station.](#)

867

868

869

870

871

872

873

874

875

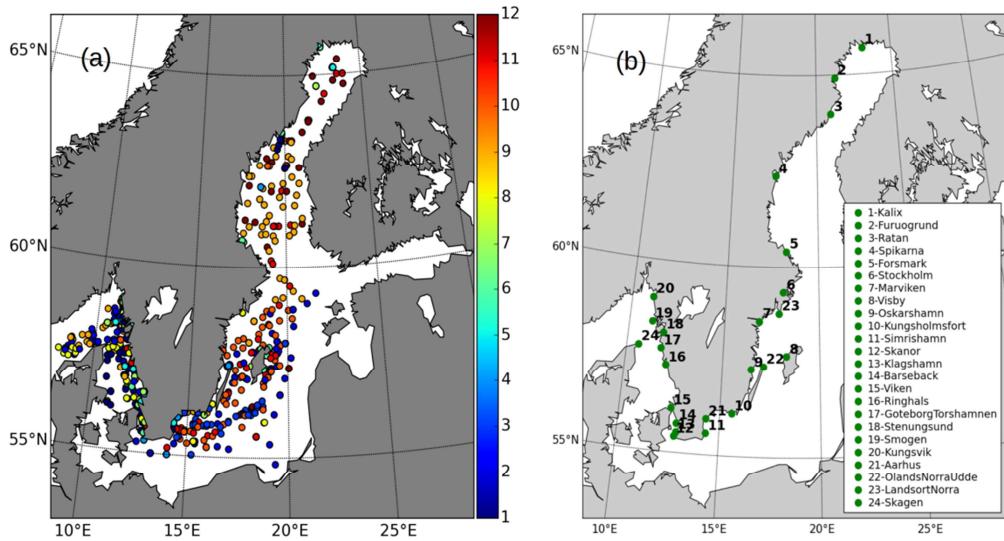
876

877

878

879

880



881

882 Figure 8. (a) Map of the temperature and salinity profiles from SHARK database in 2010. The colors
 883 show the observations months.(b) The tide gauges station along the Swedish coast.

884

885

886

887

888

889

890

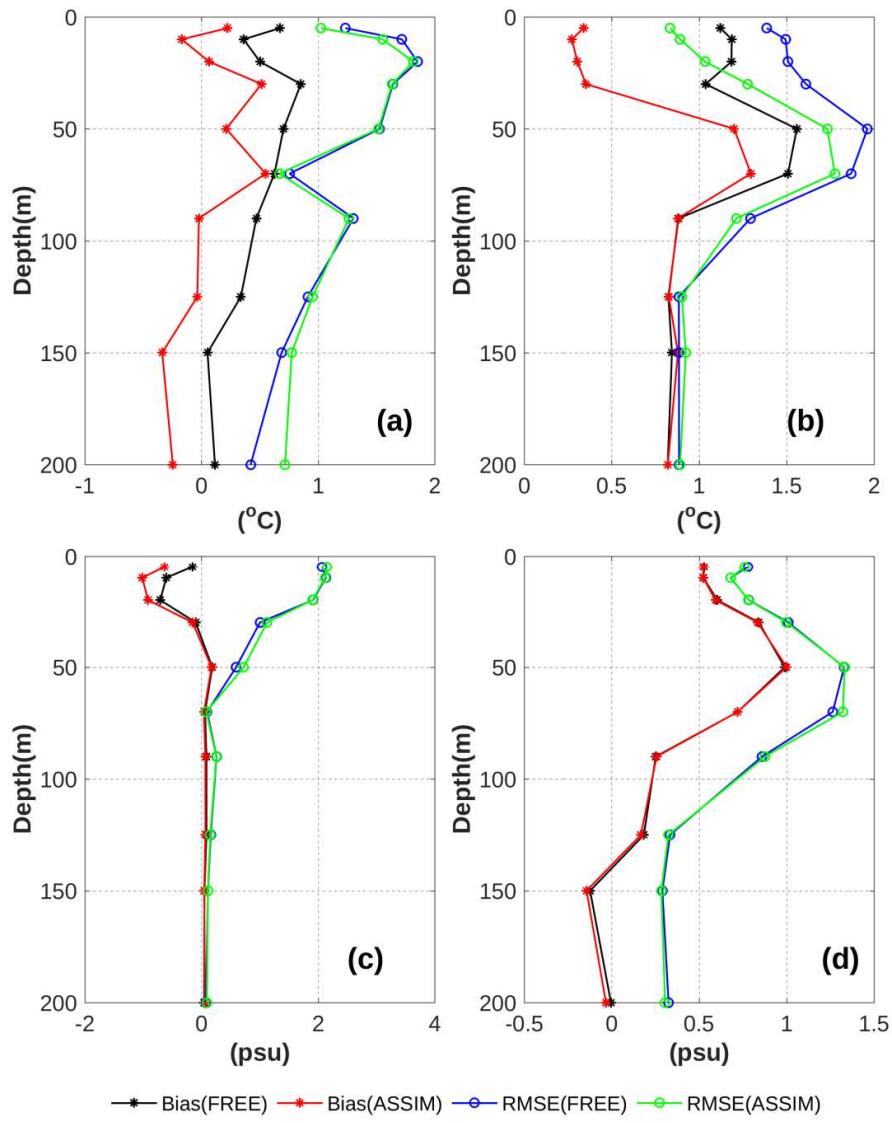
891

892

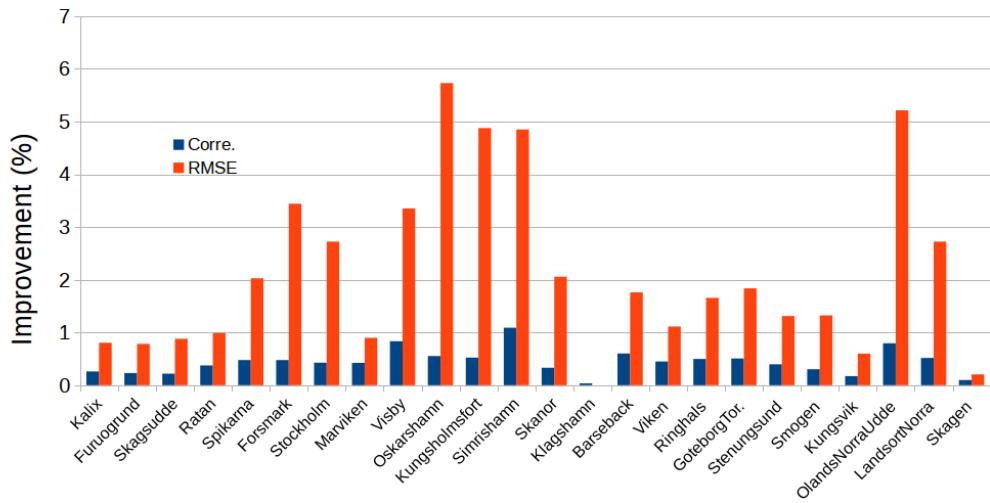
893

894

895

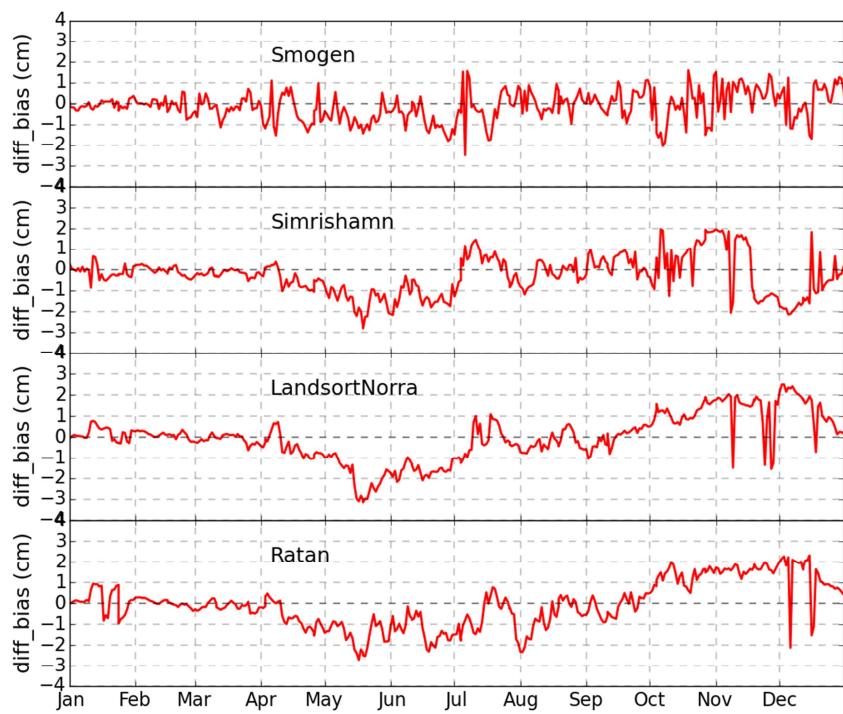


896
897 Figure 9. The overall RMSE and bias of temperature (up panel) and salinity (down panel) from FREE
898 and ASSIM relative to observations as a function of water depth inside (b,d) and outside (a,c) of the
899 Baltic Sea.

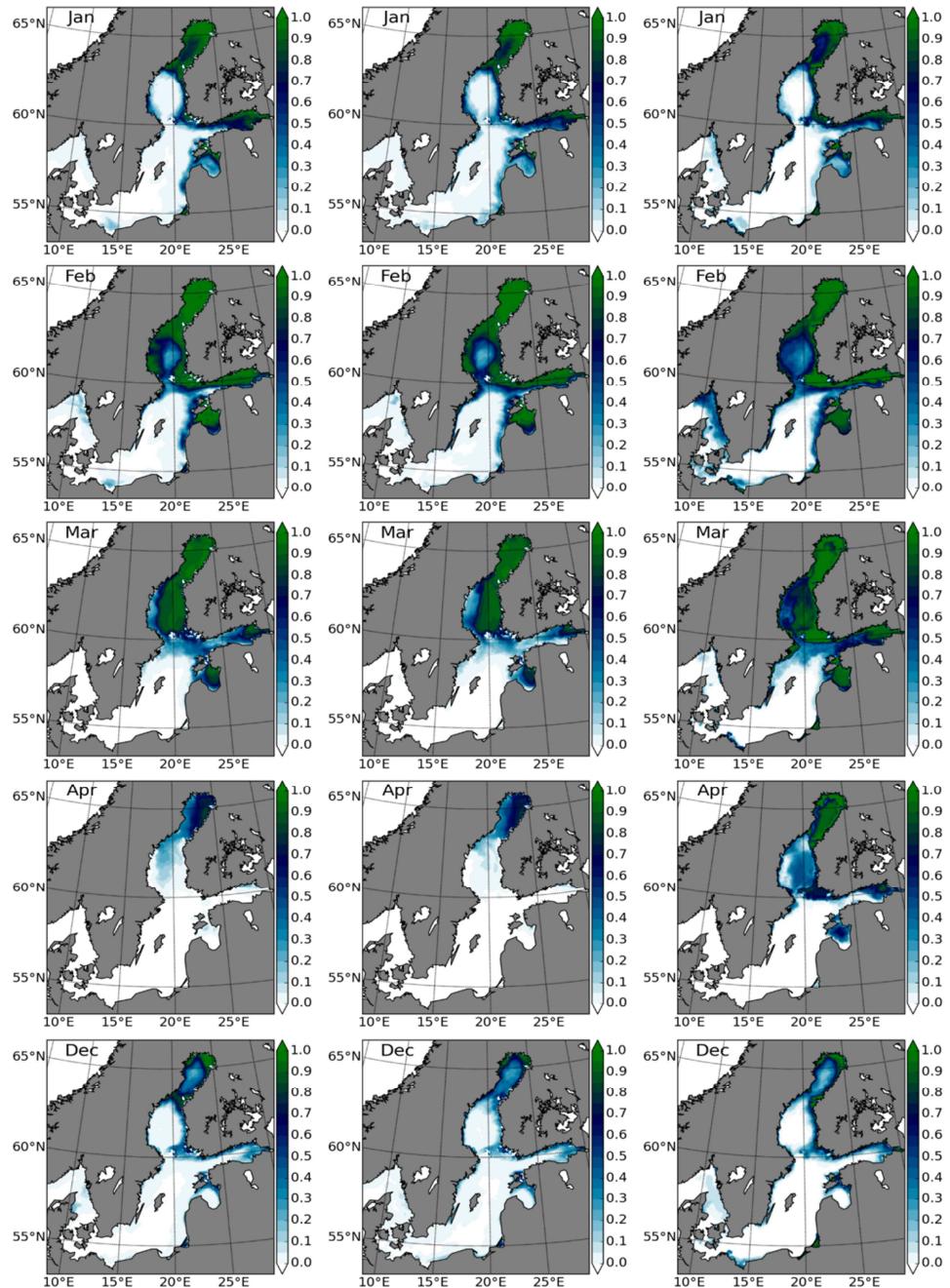


904
905 [Figure 10. The improvement \(%\) of correlation and RMSE for the SLA at the tide gauges stations. The](#)
906 [station position is in the Figure 8b.](#)

907
908
909
910
911
912
913
914



915
916 Figure 11. The [variation of SLA biases in ASSIM relative to FREE against](#) observations as a function
917 of time. The [station](#) position is [shown](#) in the [Figure 8b](#).
918
919
920
921

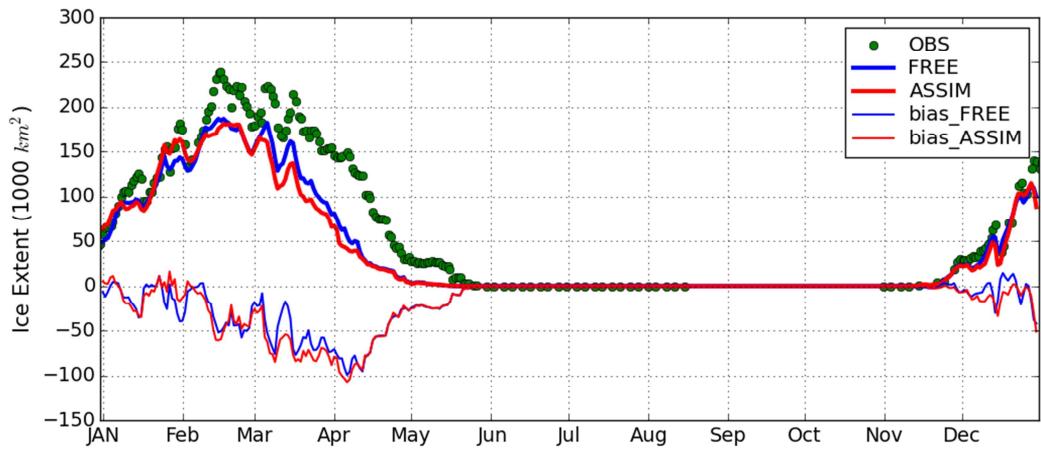


922
 923 Figure 12. The monthly mean sea ice concentrations in FREE (left panel), ASSIM (middle panel) and
 924 IceMap (right panel), respectively.

925

926

927



[Figure 13. The daily sea ice extent from FREE, ASSIM and IceMap and the sea ice extent bias \(modelled minus observed field\), respectively.](#)